Research Article |
Corresponding author: Roberto Leonan M. Novaes ( robertoleonan@gmail.com ) Academic editor: DeeAnn Reeder
© 2021 Roberto Leonan M. Novaes, Vinícius C. Cláudio, Roxanne J. Larsen, Don E. Wilson, Marcelo Weksler, Ricardo Moratelli.
This is an open access article distributed under the terms of the CC0 Public Domain Dedication.
Citation:
Novaes RLM, Cláudio VC, Larsen RJ, Wilson DE, Weksler M, Moratelli R (2021) The taxonomic status of Myotis nesopolus larensis (Chiroptera, Vespertilionidae) and new insights on the diversity of Caribbean Myotis. ZooKeys 1015: 145-167. https://doi.org/10.3897/zookeys.1015.59248
|
Myotis nesopolus currently comprises two subspecies. The nominate subspecies (M. n. nesopolus) occurs on the Caribbean islands of Curaçao and Bonaire, Netherlands Antilles, whereas M. n. larensis is known from mainland South America in northeastern Colombia and northwestern Venezuela. Our Maximum Likelihood phylogenetic analyses of cytochrome-b gene sequences recovered M. nesopolus as a paraphyletic group, with M. n. nesopolus and M. n. larensis as non-sister lineages. The haplotype network indicates that these two subspecies do not share any haplotypes and are in different evolutionary trajectories. Additionally, these two subspecies can be distinguished on the basis of qualitative and quantitative morphological traits. This pattern supports the recognition of M. nesopolus and M. larensis as full species. Our results also reveal that the assemblage of Caribbean Myotis do not form a monophyletic group. Caribbean species are phylogenetically close to mainland species from northern South America and Central America, suggesting that colonization of Caribbean islands happened multiple times.
Atualmente Myotis nesopolus compreende duas subespécies: M. n. nesopolus ocorre nas ilhas caribenhas de Curaçao e Bonaire, Antilhas Holandesas, enquanto M. n. larensis é conhecido para o continente da América do Sul, no nordeste da Colômbia e noroeste da Venezuela. Nossa inferência filogenética por Máxima Verossimilhança recuperou M. nesopolus como parafilética, com M. n. nesopolus e M. n. larensis sendo linhagens não-irmãs. Além disso, essas duas subespécies não compartilham nenhum haplótipo. Adicionalmente, as subespécies podem ser diferenciadas a partir de caracteres morfológicos e morfométricos. Esse achado suporta o reconhecimento de M. nesopolus e M. larensis como espécies distintas. Nossos resultados revelam que os Myotis do Caribe não formam um grupo monofilético. Espécies caribenhas são filogeneticamente próximas de espécies continentais das Américas Central e do Sul, sugerindo que a colonização das ilhas do Caribe aconteceu por múltiplos eventos de dispersão.
Bats, biogeography, Lesser Antilles, morphology, morphometry, taxonomy, South America, Venezuela
Myotis Kaup, 1829 (Vespertilionidae, Myotinae) comprises more than 120 species distributed worldwide, and is the most speciose genus of bats (
Two subspecies of Myotis nesopolus Miller, 1900 are recognized. The nominate subspecies, M. n. nesopolus, is known from Curaçao and Bonaire in the Netherlands Antilles. The other subspecies, M. n. larensis LaVal, 1973, is known from mainland South America in northeastern Colombia and northwestern Venezuela (
Previous molecular and morphological studies questioned the subspecific status of mainland populations of M. nesopolus, suggesting that the two subspecies might represent different species (
Specimens of M. nesopolus used in this study are deposited in the American Museum of Natural History (
Phylogenetic analyses of complete cytochrome-b gene (cyt-b, 1,140 bp, no gaps) sequences were conducted for the Neotropical assemblage of Myotis. A total of 122 sequences, including outgroups, were retrieved from GenBank (Appendix
The phylogenetic analysis was carried out using Maximum Likelihood (ML) method (
To understand the population structure of M. n. nesopolus, M. n. larensis and other phylogenetically related population groups, we built a haplotype network (distribution of haplotypes by previously defined population groups) using the median-joining algorithm in the Network 4.6.1.3 software (
We examined 284 specimens for the morphological comparisons, including M. n. nesopolus (N = 10), M. n. larensis (N = 9) and 14 species of Neotropical Myotis deposited in 11 collections in Brazil, Canada and United States (Appendix
We took one external and 16 craniodental measurements (Table
Description of cranial, mandibular, and external dimensions (and their abbreviations). Lengths were measured from the anteriormost point or surface of the 1st structure to the posteriormost point or surface of the 2nd structure, except as specified.
Measurements | Acronyms | Descriptions |
---|---|---|
Forearm length | FA | From the elbow to the distal end of the forearm including carpals |
Greatest length of skull | GLS | From the apex of the upper internal incisors, to the occiput |
Condylo-canine length | CCL | From the anterior surface of the upper canines to a line connecting the occipital condyles |
Condylo-basal length | CBL | From the premaxillae to a line connecting the occipital condyles |
Condylo-incisive length | CIL | From the apex of upper internal incisors to a line connecting the occipital condyles |
Basal length | BAL | Least distance from the apex of upper internal incisors to the ventral margin of the foramen magnum |
Zygomatic breadth | ZYG | Greatest breadth across the outer margins of the zygomatic arches |
Mastoid breadth | MAB | Greatest breadth across the mastoid region |
Braincase breadth | BCB | Greatest breadth of the globular part of the braincase |
Interorbital breadth | IOB | Least breadth between the orbits |
Postorbital breadth | POB | Least breadth across frontals posterior to the postorbital bulges |
Breadth across canines | BAC | Greatest breadth across outer edges of the crowns of upper canines, including cingulae |
Breadth across molars | BAM | Greatest breadth across outer edges of the crowns of upper molars |
Maxillary toothrow length | MTL | From the upper canine to M3 |
Molariform toothrow length | M1–M3 | From M1 to M3 |
Mandibular length | MAL | From the mandibular symphysis to the condyloid process |
Mandibular toothrow length | MAN | From the lower canine to m3 |
The ML phylogeny based on cyt-b sequences indicates that M. nesopolus, as currently recognized, is paraphyletic, with M. n. nesopolus more closely related to an eastern Peruvian unidentified lineage, whereas M. n. larensis was recovered more closely related to an unidentified lineage from western Ecuador (Fig.
The Caribbean Myotis species do not form a monophyletic group, being related to Myotis atacamensis (Lataste, 1892) and other mainland putative species. Nevertheless, the phylogenetic relationship of Caribbean Myotis clade is not fully resolved, since a polytomy was recovered among M. sp. 3 from Honduras and the ancestral lineage of M. n. nesopolus and M. sp. 2 from Peru, and of M. n. larensis and M. sp. 1 from Ecuador. Similarly, a polytomy was recovered among M. atacamensis, M. martiniquensis and an ancestral lineage of M. dominicensis, M. nyctor and M. sp. 4 from Suriname (Fig.
Phylogenetic tree resulting from the Maximum Likelihood analysis of cytochrome-b sequences of species of Myotis. Nodal support was calculated by bootstrap and black solid circles are values between 100–95% and hollow white circle are values between 94–90%. Values less than 90% were not indicated. The rectangle encloses the phylogenetic relationship, where branches were transformed to cladogram, among M. nesopolus, M. larensis, Caribbean Myotis (colored terminals) and mainland haplogroups of five more closely related species and candidate species.
The average cyt-b pairwise distance between M. n. larensis and Myotis sp. 1 from western Ecuador is 2.1% ± 0.3; between M. n. nesopolus and Myotis sp. 2 from eastern Peru is 3.8% ± 0.4; and between M. n. nesopolus and M. n. larensis is 4.0% ± 0.3 (Table
Average Kimura 2-parameter genetic distances within (along diagonal) and among (below diagonal) Myotis taxa based on cytochrome-b gene sequences. Boldface value indicates the distance between M. larensis and M. nesopolus. Hyphen indicates groups with a single sequence.
Taxa | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M. atacamensis (Peru) | – | |||||||||||
2 | Myotis sp. 4 (Suriname) | 0.085 | 0.002 | ||||||||||
3 | M. nyctor (Grenada) | 0.103 | 0.080 | – | |||||||||
4 | M. nyctor (Barbados) | 0.089 | 0.070 | 0.002 | 0.004 | ||||||||
5 | M. dominicensis (Dominica) | 0.080 | 0.087 | 0.092 | 0.088 | 0.001 | |||||||
6 | M. martiniquensis (Martinique) | 0.087 | 0.093 | 0.089 | 0.094 | 0.887 | 0.002 | ||||||
7 | M. n. larensis (Venezuela) | 0.093 | 0.107 | 0.127 | 0.119 | 0.097 | 0.096 | 0.003 | |||||
8 | Myotis sp. 1 (W Ecuador) | 0.091 | 0.104 | 0.134 | 0.120 | 0.092 | 0.093 | 0.021 | 0.002 | ||||
9 | Myotis sp. 2 (E Peru) | 0.104 | 0.115 | 0.138 | 0.126 | 0.107 | 0.104 | 0.034 | 0.033 | 0.001 | |||
10 | M. n. nesopolus (Bonaire) | 0.103 | 0.115 | 0.147 | 0.124 | 0.104 | 0.106 | 0.040 | 0.044 | 0.038 | 0.008 | ||
11 | Myotis sp. 3 (Honduras) | 0.103 | 0.116 | 0.133 | 0.120 | 0.107 | 0.105 | 0.046 | 0.049 | 0.056 | 0.053 | – | |
12 | M. attenboroughi (Tobago) | 0.081 | 0.093 | 0.101 | 0.099 | 0.091 | 0.088 | 0.068 | 0.075 | 0.076 | 0.078 | 0.079 | 0.000 |
The haplotype network indicates that there are no haplotypes shared between M. n. nesopolus, M. n. larensis, and phylogenetically close species (Fig.
The first principal component (PC1) accounted for 87% of the total craniometric variation, and represents overall skull size (Fig.
Plots showing convex-hulls and vector correlation of cranial measurements of Principal Component Analysis (A, B) and Discriminant Function Analysis (C, D) for Myotis nesopolus from Curaçao (black square), Myotis nesopolus from Bonaire (blue triangles) and Myotis larensis from Venezuela mainland (red dots).
Vector correlation loadings with original variables of principal components (PC1 and PC2) and discriminant functions (DF1 and DF2) for selected samples of M. larensis and M. nesopolus. See Table
Measurements | PC 1 | PC2 | DF1 | DF2 |
---|---|---|---|---|
MAN | 0.324 | -0.091 | 0.063 | 0.016 |
GLS | 0.573 | -0.103 | 0.109 | 0.026 |
CIL | 0.506 | -0.056 | 0.093 | 0.027 |
MAB | 0.097 | 0.327 | 0.012 | 0.012 |
BCB | 0.109 | 0.108 | 0.019 | 0.003 |
IOB | 0.258 | 0.775 | 0.051 | 0.014 |
POB | -0.02 | 0.363 | -0.005 | 0.026 |
BAC | 0.198 | 0.031 | 0.04 | 0.021 |
BAM | 0.277 | -0.165 | 0.059 | -0.015 |
MTL | 0.262 | -0.088 | 0.052 | 0.011 |
M1–3 | 0.187 | -0.298 | 0.040 | -0.007 |
Populations from the Antilles and mainland South America do not overlap in measurements of several characters, which may be useful in distinguishing species: M. n. larensis forearm length ranges from 31.2 to 33.2 mm, and GLS from 13.6 to 14.5 mm; M. n. nesopolus forearm length ranges from 28.2 to 31.0 mm, and GLS from 12.9 to 13.4 mm. The Mann-Whitney test found significant differences in 11 of the 14 measurements tested (Table
Selected measurements (mm) of M. larensis from Venezuela and M. nesopolus from Curaçao and Bonaire. Descriptive statistics include the mean, range (in parentheses), and sample size. See Table
Measurements | Myotis larensis | Myotis nesopolus | P–value |
---|---|---|---|
FA | 32.2 (31.2–33.2) 7 | 29.7 (28.2–31.0) 11 | – |
GLS | 13.7 (13.3–14.4) 9 | 12.9 (12.8–13.1) 9 | < 0.001 |
CCL | 12.1 (11.5–12.7) 9 | 11.6 (11.4–11.8) 9 | < 0.001 |
CBL | 12.8 (12.4–13.5) 9 | 12.2 (12.0–12.5) 9 | < 0.001 |
CIL | 12.9 (12.6–13.6) 9 | 12.4 (12.2–12.6) 9 | < 0.001 |
BAL | 11.6 (11.2–12.4) 9 | 11.1 (10.9–11.3) 9 | < 0.001 |
ZYG | 8.1 (8.0–8.2) 3 | 7.8 (7.7–8.0) 8 | – |
MAB | 5.3 (5.1–5.6) 9 | 6.7 (6.4–6.8) 9 | 0.247 |
BCB | 6.2 (6.1–6.3) 9 | 6.1 (5.9–6.2) 9 | 0.017 |
IOB | 4.4 (4.0–4.7) 9 | 4.0 (3.9–4.2) 9 | 0.003 |
POB | 3.3 (3.2–3.4) 9 | 3.3 (3.2–3.5) 9 | 0.374 |
BAC | 3.3 (3.2–3.5) 9 | 3.0 (3.0–3.2) 9 | < 0.001 |
BAM | 5.3 (5.1–5.5) 9 | 4.9 (4.8–5.0) 9 | < 0.001 |
MTL | 5.2 (5.0–5.4) 9 | 4.8 (4.7–4.9) 9 | < 0.001 |
M1M3 | 2.9 (2.8–3.2) 9 | 2.7 (2.6–2.8) 9 | < 0.001 |
MAL | 9.8 (9.5–10.3) 4 | 9.0 (8.8–9.2) 9 | – |
MAN | 5.5 (5.3–5.9) 8 | 5.1 (4.9–5.3) 9 | < 0.001 |
Population samples from the Antilles and mainland South America have several qualitative morphological differences. Specimens of M. n. nesopolus have moderately silky fur (length of dorsal fur 5–6 mm; length of ventral fur 3–4 mm); dorsal fur Dresden-Brown with little contrast between bases and tips slightly lighter tips; ventral fur with blackish bases and Light-Buff tips (Fig.
The congruence between the molecular and morphological evidence indicates that the two subspecies of M. nesopolus do not form a clade. Thus, M. larensis represents an independent evolutionary lineage and should be treated as a full species.
Myotis larensis is a small-sized bat (total length 78–82 mm; forearm length 31.2–33.2; body mass 3–5 g), morphologically similar to several Neotropical congeners. Ears are moderate in size (length 10–13 mm), and when laid forward extend halfway from eye to nostril. Antitragal notch is barely evident. Membranes are Mummy-brown. Fur on dorsal surface of uropatagium extends slightly past the knees. Plagiopatagium is attached to the foot at toes level by a broad band of membrane. Third metacarpal, tibia, and skull are long in relation to forearm (mean ratios 0.96, 0.48, and 0.43, respectively; see
Myotis larensis can be distinguished from all Caribbean and South American congeners by qualitative and quantitative traits. It differs from M. nesopolus by its larger size (no overlapping in forearm length and greatest length of skull), presence of sagittal crest, and dorsal fur longer and strongly bicolored. Considering the Myotis species that occurs in the northern South America, M. larensis differs from M. albescens (É. Geoffroy, 1806) by the absence of a fringe of hairs along the trailing edge of the uropatagium; from M. keaysi J. A. Allen, 1914, M. pilosatibialis LaVal, 1973, M. riparius Handley, 1960, and M. simus Thomas, 1901 by the long silky dorsal fur strongly bicolored. Myotis larensis can also be distinguished from M. simus by the plagiopatagium broadly attached at base of the toes. Myotis larensis differs from M. diminutus Moratelli & Wilson, 2011 by its larger cranial dimensions and dorsal fur strongly contrasting; from M. handleyi
Previous phylogenetic studies based on mitochondrial and nuclear DNA recovered M. nesopolus and M. larensis as sister lineages and questioned the subspecific status of M. larensis because the cyt-b genetic distance of 4% between mainland and Antilles populations suggests a potential for separation at the species level (see
Nevertheless, it is important to mention the limitation of cyt-b gene for establishing species boundaries in the Caribbean clade, particularly between M. larensis and M. sp. 1 from Ecuador and between M. nesopolus and M. sp. 2 from Peru. Although widely used (e.g.,
With the recognition of M. larensis at the species level hierarchy, M. nesopolus is restricted to Bonaire and Curaçao and is the only species of the genus found in these islands (Fig.
The biogeographic interpretations made by
With the recognition of M. larensis as a full species, 28 species of Neotropical Myotis (sensu
We are grateful to G. Garbino, B. Lim, and C. Carrión-Bonilla for the valuable revision of the original text. Support for RLMN and VCC (Ph.D. scholarships) comes from the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil). RM has received support from National Council for Scientific and Technological Development (CNPq, Brazil), and from the Smithsonian Institution (USA). This paper is part of Coordination for the Improvement of Higher Education Personnel the Ph.D. requirements of at the Biodiversity and Evolutionary Biology Graduate Program of the Federal University of Rio de Janeiro.
List of specimens examined in the American Museum of Natural History (
Myotis albescens (N = 10). Venezuela: Trujillo, Valera, Río Motatán (
Myotis attenboroughi (N = 13). Trinidad and Tobago: Tobago Island, Charlottesville, 1 km N of Pirate’s Bay, Saint John Parish (
Myotis caucensis (N = 22): Colombia: Valle del Cauca, Cauca river (
Myotis clydejonesi (N = 1): Suriname: Sipaliwini, Raleigh Falls (
Myotis diminutus (N = 2): Ecuador: Los Ríos, Santo Domingo, 47 Km S (By Road), Río Palenque Science Center (
Myotis handleyi (N = 27). Venezuela: Araguá, Rancho Grande Biological Station, 13 km NW Maracay (
Myotis keaysi (N = 45). Venezuela: Araguá, Rancho Grande Biological Station, 13 km NW Maracay (
Myotis larensis (N = 16). Venezuela: Lara, Río Tucuyo (
Myotis nesopolus (N = 26). Curaçao: Punda (
Myotis cf. nigricans (N = 23). Suriname: Para, Zanderij (
Myotis oxyotus (N = 9). Venezuela: Amazonas, Cerro Duida, Cano Culebra, 50 km NW Esmeralda (
Myotis pilosatibialis (N = 11). Trinidad and Tobago: Trinidad Island, St. George (
Myotis riparius (N = 33). Costa Rica: Puntarenas, 5.3 km S (byroad) San Vito (
Myotis simus (N = 56). Brazil: Amazonas, Borba (
Specimens used in cytochrome-b analyses, including terminal taxa (focal and putative species of Myotis), GenBank accession numbers of sequences, voucher specimens, localities of origin, and source of information. The information presented for terminal taxonomic identifications results from re-identification of specimens (see Materials and methods), and does not necessarily match those identifications assigned by researchers that generated the corresponding sequence(s) available at GenBank. Abbreviations and acronyms for institutional collections are as follows: American Museum of Natural History, New York, USA (
Terminal | GenBank | Voucher | Locality | Source |
---|---|---|---|---|
M. albescens | JX130444 |
|
Nickerie, Suriname |
|
JX130463 |
|
Pastaza, Ecuador |
|
|
JX130464 |
|
Pastaza, Ecuador |
|
|
JX130465 |
|
Pastaza, Ecuador |
|
|
JX130522 |
|
Pastaza, Ecuador |
|
|
JX130472 |
|
El Oro, Ecuador |
|
|
JX130500 |
|
El Oro, Ecuador |
|
|
JX130501 |
|
Guayas, Ecuador |
|
|
JX130445 |
|
Huánuco, Peru |
|
|
AF376839 | FMNH 162543 | Tarija, Bolivia | Ruedi and Mayer (2001) | |
JX130503 |
|
Boquerón, Paraguay |
|
|
JX130502 |
|
Ñeembucú, Paraguay |
|
|
JX130504 |
|
Ñeembucú, Paraguay |
|
|
M. atacamensis | AM261882 | MVZ 168933 | Olmos, Peru |
|
M. attenboroughi | JN020573 | UNSM ZM–29470 | St. George Parish, Tobago |
|
JN020574 | UNSM ZM–29483 | St. George Parish, Tobago |
|
|
M. chiloensis | AM261888 | – | Santiago, Chile |
|
M. clydejonesi | JX130520 |
|
Sipaliwini, Suriname |
|
M. dinellii | JX130475 |
|
Córdoba, Argentina |
|
M. dominicensis | AF376848 | – | St. Joseph’s Parish, Dominica | Ruedi and Mayer (2001) |
JN020554 |
|
St. Joseph’s Parish, Dominica |
|
|
JN020555 |
|
St. Joseph’s Parish, Dominica |
|
|
JN020556 |
|
St. Joseph’s Parish, Dominica |
|
|
M. larensis | JN020569 |
|
Guárico, Venezuela |
|
JX130529 |
|
Guárico, Venezuela |
|
|
JX130530 | – | Guárico, Venezuela |
|
|
JX130531 |
|
Guárico, Venezuela |
|
|
JX130532 |
|
Guárico, Venezuela |
|
|
JX130533 |
|
Guárico, Venezuela |
|
|
JX130535 |
|
Guárico, Venezuela |
|
|
JX130543 |
|
Guárico, Venezuela |
|
|
JX130543 |
|
Guárico, Venezuela |
|
|
M. lavali | AF376864 | MVZ AD50 | Paraíba, Brazil | Ruedi and Mayer (2001) |
M. levis | AF376853 | FMNH 141600 | São Paulo, Brazil | Ruedi and Mayer (2001) |
M. martiniquensis | AM262332 | – | Martinique |
|
JN020558 | MNHN:2005–896 | Le Morne–Rouge, Martinique |
|
|
M. martiniquensis | JN020557 | MNHN:2005–895 | GranďRivière, Martinique |
|
JN020559 | – | GranďRivière, Martinique |
|
|
JN020560 | MNHN:2008–974 | GranďRivière, Martinique |
|
|
JN020561 | – | GranďRivière, Martinique |
|
|
M. nesopolus | JN020575 | – | Bonaire, Netherlands Antilles |
|
JN020576 | – | Bonaire, Netherlands Antilles |
|
|
JN020577 | – | Bonaire, Netherlands Antilles |
|
|
M. nigricans | JX130450 |
|
La Paz, Bolivia |
|
JX130528 |
|
La Paz, Bolivia |
|
|
JX130455 |
|
San Pedro, Paraguay |
|
|
JX130496 |
|
Presidente Hayes, Paraguay |
|
|
JX130498 |
|
Alto Paraguai, Paraguay |
|
|
JX130499 |
|
Ñeembucú, Paraguay |
|
|
JX130539 |
|
Concepciόn, Paraguay |
|
|
JX130540 |
|
Boquerón, Paraguay |
|
|
M. nyctor | JN020562 |
|
St. David Parish, Grenada |
|
JN020563 |
|
St. Thomas Parish, Barbados |
|
|
JN020564 |
|
St. Thomas Parish, Barbados |
|
|
JN020565 |
|
St. Thomas Parish, Barbados |
|
|
JN020566 |
|
St. Thomas Parish, Barbados |
|
|
JN020567 |
|
St. Thomas Parish, Barbados |
|
|
M. oxyotus | AF376865 | FMNH 129208 | Lima, Peru | Ruedi and Mayer (2001) |
M. pilosatibialis | JX130449 |
|
Yucatán, Mexico |
|
JX130525 | – | Yucatán, Mexico |
|
|
AF376852 | – | Yucatán, Mexico | Ruedi and Mayer (2001) | |
JX130489 |
|
Vera Cruz, Mexico |
|
|
M. elegans | JX130479 |
|
Atlántida, Honduras |
|
JX130480 |
|
Atlántida, Honduras |
|
|
M. riparius | AM261891 | – | La Selva, Costa Rica |
|
JX130474 |
|
Bolívar, Venezuela |
|
|
JX130473 |
|
Para, Suriname |
|
|
JX130469 |
|
Esmeraldas, Ecuador |
|
|
JX130515 |
|
Esmeraldas, Ecuador |
|
|
JX130572 |
|
Esmeraldas, Ecuador |
|
|
JX130492 |
|
Esmeraldas, Ecuador |
|
|
JX130513 |
|
Pastaza, Equador |
|
|
JX130506 |
|
El Oro, Equador |
|
|
JX130516 | QCAZ 11380 | Chimborazo, Equador |
|
|
JX130436 | – | Huánuco, Peru |
|
|
JX130481 |
|
Huánuco, Peru |
|
|
AF376866 | MVZ AD119* | Pernambuco, Brazil | Ruedi and Mayer (2001) | |
AF376867 | MVZ AD472* | São Paulo, Brazil | Ruedi and Mayer (2001) | |
AM262336 | – | São Paulo, Brazil |
|
|
JX130485 |
|
Paraguari, Paraguay |
|
|
JX130486 |
|
Canindeyu, Paraguay |
|
|
M. riparius | JX130488 |
|
Canindeyu, Paraguay |
|
JX130491 |
|
Canindeyu, Paraguay |
|
|
M. velifer | EF222340 |
|
Texas, USA |
|
EU680299 |
|
Texas, USA |
|
|
JX130468 |
|
Texas, USA |
|
|
AF376870 | MVZ 146766 | Sonora, Mexico | Ruedi and Mayer (2001) | |
JX130478 |
|
Tamaulipas, Mexico |
|
|
JX130438 | UAMI 15306 | Michoacán, Mexico |
|
|
JX130462 | UAMI 15304 | Michoacán, Mexico |
|
|
JX130589 | UAMI 15305 | Michoacán, Mexico |
|
|
JX130592 | – | Michoacán, Mexico |
|
|
JX130477 |
|
Santa Ana, El Salvador |
|
|
M. vivesi | AJ504406 | – | Gulf of California, Mexico | Stadelmann et al. (2004) |
AJ504407 | – | Gulf of California, Mexico | Stadelmann et al. (2004) | |
M. yumanensis | AF376875 | MVZ 15585 | California, USA | Ruedi and Mayer (2001) |
M. sp. 1 | JX130523 |
|
El Oro, Ecuador |
|
JX130541 |
|
El Oro, Ecuador |
|
|
JX130546 |
|
El Oro, Ecuador |
|
|
JX130547 |
|
El Oro, Ecuador |
|
|
JX130548 |
|
El Oro, Ecuador |
|
|
JX130549 |
|
El Oro, Ecuador |
|
|
JX130550 |
|
El Oro, Ecuador |
|
|
M. sp. 2 | JX130452 |
|
Huánuco, Peru |
|
JX130537 |
|
Huánuco, Peru |
|
|
JX130538 |
|
Huánuco, Peru |
|
|
M. sp. 3 | JX130493 |
|
Valle, Honduras |
|
M. sp. 4 | JN020570 |
|
Nickerie, Suriname |
|
JN020571 |
|
Para, Suriname |
|
|
JN020572 |
|
Para, Suriname |
|
|
Outgroups | ||||
M. brandtii | AF376844 | – | Neuhaus, Germany | Ruedi and Mayer (2001) |
AM261886 | NMP PB 916 | North west, Russia |
|
|
AY665139 | – | Moscow, Russia | Tsytsulina et al. (2012) | |
AY665168 | – | Znojmo, Czech Republic | Tsytsulina et al. (2012) | |
M. gracilis | AB106609 | – | Hokkaido, Japan | Kawai et al. (2003) |
AB243025 | – | Hokkaido, Japan | Kawai et al. (2006) | |
AB243026 | – | Hokkaido, Japan | Kawai et al. (2006) | |
AB243027 | – | Hokkaido, Japan | Kawai et al. (2006) | |
AB243028 | – | Hokkaido, Japan | Kawai et al. (2006) | |
AB243029 | – | Hokkaido, Japan | Kawai et al. (2006) | |
AB243030 | – | Hokkaido, Japan | Kawai et al. (2006) |