First survey of Interstitial molluscs from Cayo Nuevo, Campeche Bank, Gulf of Mexico

Deneb Ortigosa¹, Nancy Yolimar Suárez-Mozo¹, Noe C. Barrera², Nuno Simões¹,³,⁴

¹ Unidad Multidisciplinaria de Docencia e Investigación Sisal (UMDI-SISAL), Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, CP 97356 Yucatán, Mexico ² Harte Research Institute, Texas A&M University-Corpus Christi, 300 Ocean Dr., Unit 5869, Corpus Christi, Texas 78412-5869, U.S.A. ³ Laboratorio Nacional de Resiliencia Costera Laboratorios Nacionales, CONACYT, Mexico City, Mexico ⁴ International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University – Corpus Christi, Corpus Christi, Texas, USA

Corresponding author: Nuno Simões (ns@ciencias.unam.mx)

Abstract

Six sediment samples weighing between 224–735 g were collected in June of 2016 from Cayo Nuevo reef, located at the Campeche Bank, southern Gulf of Mexico. Samples were collected by SCUBA diving, from were two stations at depths of 7.6 and 18.2 m. Sediment was sieved and molluscs (adults and micromolluscs ≤ 10 mm) were sorted, examined, and identified to the lowest taxonomic level. A total of 1,347 specimens was found, of which 224 shells were dead and 1,123 were alive. Thirty-four families, 53 genera, and 67 species were identified. The most abundant families were Chamidae and Arcidae for the Bivalvia class, and Caecidae and Tornidae for the Gastropoda class. The vertical range of Bentharca sp. was extended.

Keywords

baseline, inventory, Campeche Bank, Gulf of Mexico, micromolluscs
Introduction

Frequently, species molluscan biodiversity accounts are incomplete because of the lack of some groups such as sea slugs and micromolluscs. Compared with macromolluscs, the study of micromolluscs is still in its infancy, which is probably due not to the difficulty involved in obtaining samples, but difficulties in identification of such small animals and the time-consuming process required to separate specimens from sand or other substrates (e.g., algae or rocks), and photography. In order to get a more realistic picture of the biodiversity for different habitats, micromolluscs should be incorporated into the different studies (Sasaki 2008, and pers. obs.).

The term micromollusc has been applied in arbitrary and non-standardised ways. Micromolluscs are molluscs not visible without some type of artificial assistance, such as a microscope or magnifying glass. The most restrictive definition, or *sensu stricto*, stated that micromollusc size should be less than 5 mm as an adult (Narciso 2005, Geiger et al. 2007). Other authors considered micromolluscs as specimens smaller than 10 mm as an adult (Barrera and Tunnell 2001). Finally, the wider definition of micromollusc, or *sensu lato*, includes molluscs whose size is typically less than 10 mm as an adult and also included juvenile representative of macromolluscs (Moore 1964; García-Cubas 1970; Tunnell 1974; Kay 1980; Vokes and Vokes 1983).

Barrera (2001) stated that within Texas and Mexico, the majority of the studies involved macromolluscs. In Mexico, more than 4,643 species of marine molluscs have been recorded, and approximately 2,067 of them inhabit the Gulf of Mexico (GoMx) and the Mexican Caribbean Sea (Castillo-Rodríguez 2014). Unfortunately, Castillo-Rodríguez did not state which of them were micromolluscs. Important molluscan compilations focusing on these groups include publications by García-Cubas and Reguero (2007) and Vokes and Vokes (1983), although only a few publications have addressed the micromolluscan fauna specifically such as García-Cubas (1963, 1970 and 1971) for lagoons in the Gulf of Mexico and Hicks et al. (2001) at Alacranes reef.

The Campeche Bank is located at the southern GoMx and is composed of several emergent and submerged coral reefs (Tunnell et al. 2010). One of the smaller and most remote reefs is Cayo Nuevo, located between Arenas and Triángulos reefs (190 km offshore) in the GoMx (Fig. 1). Studies on this reef are almost non-existent with the exception of polychaetes (Granados-Barba et al. 2003).

The present work focuses on the molluscs of the Cayo Nuevo sandy bottoms, Gulf of Mexico. In this substrate we could find micromolluscs *sensu stricto* and juveniles of macromolluscs species that inhabit the interstitial as but also empty shells that could be carried by external factors such wind and currents.

Materials and methods

Using SCUBA gear, six sediment samples of coarse sand to fine gravel weighing 224–735 g each were collected by hand at 7.6 and 18.2 m on 19 June 2017 at Cayo Nuevo.
Molluscs from Cayo Nuevo, Mexico

Figure 1. Map of the Gulf of Mexico, with the largest reef in the GoMx and sampling locations where micromolluscs have been documented in the literature and this study (adapted from Felder and Camp 2009).

Table 1. Sampling stations and coordinates at Cayo Nuevo on 18 June 2016.

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth (m)</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.2</td>
<td>21°49'40.32”</td>
<td>92°4'37.62”</td>
<td>GoMex-001</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
<td>21°49'47.82”</td>
<td>92°4'34.32”</td>
<td>GoMex-006</td>
</tr>
</tbody>
</table>

reef (Table 1). Each sample was sieved by pouring water through six differently sized sieves (2 mm, 1.4 mm, 1 mm; 710 µm, 500 µm, and 250 µm) (Table 2) and sorted dry using a dissecting Nikon SMZ800 microscope. Specimens were picked out using soft forceps and 000 fine paint brushes. Molluscs were placed into 2 mm tubes and micromolluscs were placed into PCR tubes, both with 70% ethanol for long-term storage. Identification of specimens to species level was based on Abbott (1974), Tunnell et al. (2010) and Redfern (2013). Whenever possible, at least one specimen of each species
Table 2. Weight of each sample per sieve size in grams.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>GoMex-001</th>
<th>GoMex-002</th>
<th>GoMex-002</th>
<th>GoMex-004</th>
<th>GoMex-005</th>
<th>GoMex-006</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>86.89</td>
<td>335.85</td>
<td>372.2</td>
<td>645.4</td>
<td>679.1</td>
<td>615.19</td>
</tr>
<tr>
<td>1.4 mm</td>
<td>46.94</td>
<td>60.04</td>
<td>21.7</td>
<td>46</td>
<td>80.7</td>
<td>91.53</td>
</tr>
<tr>
<td>1 mm</td>
<td>34.01</td>
<td>28.43</td>
<td>5.7</td>
<td>27.3</td>
<td>14.8</td>
<td>22.96</td>
</tr>
<tr>
<td>710 µm</td>
<td>27.1</td>
<td>11.13</td>
<td>1.3</td>
<td>28.5</td>
<td>2.3</td>
<td>5.32</td>
</tr>
<tr>
<td>500 µm</td>
<td>16.04</td>
<td>3.07</td>
<td>0.3</td>
<td>16.7</td>
<td>0.7</td>
<td>0.82</td>
</tr>
<tr>
<td>250 µm</td>
<td>13.86</td>
<td>1.2</td>
<td>0.07</td>
<td>2.6</td>
<td>0.6</td>
<td>0.004</td>
</tr>
<tr>
<td>Total</td>
<td>224.84</td>
<td>439.72</td>
<td>401.27</td>
<td>766.5</td>
<td>778.2</td>
<td>735.824</td>
</tr>
</tbody>
</table>

or morphotype was photographed. All the specimens were deposited at the “Colección de Moluscos de la Península de Yucatán” (CMPY), Unidad Multidisciplinaria de Docencia e Investigación Campus Sisal, Universidad Nacional Autónoma de México.

The nomenclature of the species listed was assigned according to Bouchet and Rocroi (2010) for Bivalvia, Bouchet et al. (2017) for Gastropoda, and Kaas and Van Belle (1985) for Polyplacophora, due to the variability of some categories we only present the Linnaean ones. Abundance categories were assigned following Hicks et al. (2001): Abundant ≥ 50 (A); Common = 6–49 (C); Uncommon = 2–5 (UC), and Rare = 1 (R). Juvenile species are denoted by an asterisk (*).

Results

The results from the analysis of the sediment from Cayo Nuevo reef revealed 67 species of molluscs, from which 50 species are gastropods, 14 species are bivalves and three are chitons. These species belong to 38 different families.

Phylum Mollusca Linnaeus, 1758
Class Polyplacophora Gray, 1821
Polyplacophora sp. 1 * (R) (Fig. 2-1)
Polyplacophora sp. 2 * (R) (Fig. 2-2)

Order Chitonina Thiele, 1909
Family Chitonoidea Rafinesque, 1815
Genus Ischnochiton Gray, 1847
Ischnochiton sp. * (UC) (Fig. 2-3)

Class Bivalvia Linnaeus, 1758
Order Arcida Stoliczka, 1871
Family Arcidae Lamarck, 1809
Arcidae sp. (UC) (Fig. 2-4)
Genus Arca Linnaeus, 1758
Arca imbricata Bruguière, 1789 * (UC) (Fig. 2-5a, b)
Figure 2. Polyplocophora 1–3: 1 Polyplocophora sp. 1, dorsal view, scale bar 0.5 mm 2 Polyplocophora sp. 2, dorsal view, scale bar 1 mm 3 Ischnochiton sp., dorsal view, scale bar 0.5 mm. Bivalvia 4–15: 4 Arcidae sp., dorsal view, scale bar 0.5 mm 5 Arca imbricata 5a ventral view 5b dorsal view, scale bar 1 mm 6 Barbatia domingensis 6a ventral view 6b dorsal view, scale bar 1 mm 7 Barbatia sp. 7a ventral view 7b dorsal view, scale bar 1 mm 8 Bentharca sp. 8a ventral view 8b dorsal view, scale bar 1 mm 9 Anomia sp. 9a ventral view 9b dorsal view, scale bar 1 mm 10 Carditopsis smithii 10a ventral view 10b dorsal view, scale bar 1 mm, 11 Lucinidae sp., ventral view, scale bar 0.5 mm 12 Chama sinuosa 12a ventral view 12b dorsal view, scale bar 0.5 mm 13 Chamidae sp. 13a ventral view 13b dorsal view, scale bar 1 mm, 14 Crassinella munidata 14a ventral view 14b dorsal view, scale bar 1 mm 15 Semele bellastriata 15a dorsal view 15b lateral view, scale bar 1 mm. Gastropoda 16–23: 16 Gastropoda sp., ventral view, scale bar 0.5 mm, 17 Diodora minuta, ventral view, scale bar 0.25, 18 Diodora listeri 18a ventral view 18b dorsal view, scale bar 1 mm, 19 Scissurella redfernii 19a ventral view 19b dorsal view, scale bar 1 mm 20 Synaptocolea picta 20a ventral view 20b dorsal view, scale bar 1 mm 21 Lodderena ornata 21a ventral view 21b Apical view, scale bar 0.5 mm 22 Cerithium sp. 1 22a ventral view 22b dorsal view, 1 scale bar 1 mm 23 Cerithium sp. 2 23a ventral view 23b dorsal view, scale bar 1 mm.
Genus *Barbatia* Gray, 1842

Barbatia domingensis * (Lamarck, 1819) (UC) (Fig. 2-6a, b)

Barbatia sp. * (C) (Fig. 2-7a, b)

Genus *Bentharca* Verrill & Bush, 1898

Bentharca sp. (R) (Fig. 2-8a, b)

Order Mytilida Férussac, 1822
Family Mytilidae Rafinesque, 1815
Genus *Crenella* T. Brown, 1827

Crenella sp. (R)

Order Pectinida Gray, 1854
Family Anomiidae Rafinesque, 1815
Genus *Anomia* Linnaeus, 1758

Anomia sp.* (R) (Fig. 2-9a, b)

Order Cardita Bruguière, 1792
Family Carditidae Férussac, 1822
Genus *Carditopsis* E. A. Smith, 1881

Carditopsis smithii (Dall, 1896) (C) (Fig. 2-10a, b)

Order Lucinida Gray, 1854
Family Lucinidae J. Fleming, 1828

Lucinidae sp. * (UC) (Fig. 2-11)

Order Venerida Gray, 1854
Family Chamidae Lamarck, 1809

Chamidae sp. (UC) (Fig. 2-12a, b)
Genus *Chama* Linnaeus, 1758

Chama sinuosa Broderip, 1835 * (A) (Fig. 2-13a, b)

Family Galeommatidae Gray, 1840

Galeommatidae sp. (R)

Order Carditida Dall, 1889
Family Crassatellidae Férussac, 1822
Genus *Crassinella* Guppy, 1874

Crassinella lunulata (Conrad, 1834) * (R) (Fig. 2-14a, b)

Order Cardiida Férussac, 1822
Family Semelidae Stoliczka, 1870 (1825)
Genus *Semele* Schumacher, 1817

Semele bellastratiata (Conrad, 1837) * (UC) (Fig. 2-15a, b)
Class Gastropoda Cuvier, 1795
Gastropoda sp. * (R) (Fig. 2-16)

Order Lepetelloidea Dall, 1882
Family Fissurellidae Fleming, 1822
Genus Diodora Gray, 1821
Diodora minuta (Lamarck, 1822) * (UC) (Fig. 2-17)
Diodora listeri (d’Orbigny, 1847) (R) (Fig. 2-18a, b)

Family Scissurellidae Gray, 1847
Genus Scissurella d’Orbigny, 1824
Scissurella redfernii (Rolán, 1996) (C) (Fig. 2-19a, b)

Order Trochida Rafinesque, 1815
Family Trochidae Rafinesque, 1815
Genus Synaptocochlea Pilsbry, 1890
Synaptocochlea picta (d’Orbigny, 1847) (A) (Fig. 2-20a, b)

Family Skeneidae W. Clark, 1851
Genus Lodderena Iredale, 1924
Lodderena ornata (Olsson & McGinty, 1958) (A) (Fig. 2-21a, b)

Family Cerithiidae Fleming, 1822
Genus Cerithium Bruguière, 1789
Cerithium sp. 1 (R) (Fig. 2-22a, 22b)
Cerithium sp. 2 (UC) (Fig. 2-23a, 23b)
Cerithium atratum (Borns, 1778) (R) (Fig. 3-1a, b)

Family Litiopidae Gray, 1847
Genus Alaba H. adams & A. Adams, 1853
Alaba incerta (d’Orbigny, 1841) (C) (Fig. 3-2a, b)

Family Scaliolidae Jousseaume, 1912
Finella sp. (UC) (Fig. 3-3a, 3b)

Family Pickworthiidae Iredale, 1917
Subfamily Pickworthiinae Iredale, 1917
Genus Sansonia Jousseaume, 1892
Sansonia tuberculata (Watson, 1886) (R) (Fig. 3-4a, b)

Family Hypponicidae Troschel, 1861
Hipponix sp. (C) (Fig. 3-5a, 5b)
Figure 3. Gastropoda 1–26: 1 *Cerithium atratum* 1a ventral view 1b dorsal view, scale bar 1 mm 2 *Alaba incerta* 2a ventral view 2b dorsal view, scale bar 0.25 mm 3 *Finella* sp. 3a ventral view 3b dorsal view, scale bar 1 mm 4 *Sansonia tuberculata* 4a ventral view 4b dorsal view, scale bar 1 mm 5 *Hipponix* sp. 5a ventral view 5b dorsal view, scale bar 0.1 mm 6 *Iniforis turristhomae* 6a ventral view 6b dorsal view, scale bar 1 mm 7 *Metaxia rugulosa* 7a ventral view 7b dorsal view, scale bar 0.5 mm 8 *Cerithiopsis* sp. 8a ventral view 8b dorsal view, scale bar 1 mm 9 *Cerithiopsis* cf. *iuxtafuniculata* 9a ventral view 9b dorsal view, scale bar 1 mm 10 *Vermetidae incertae sedis* irregularis scale bar 1 mm 11 *Dendropoma corrodens* scale bar 1 mm 12 Vermetid sp. C, ventral view, scale bar 0.25 mm 13 *Petaloconchus mcgintyi*, ventral view, scale bar 0.25 mm 14 *Thylacodes* sp. scale bar 1 mm 15 *Simulamerelia caribaea* 15a ventral view 15b dorsal view, scale bar 1 mm 16 *Schwartziella fischeri* 16a ventral view 16b dorsal view, scale bar 1 mm 17 *Zebina* sp. 2 17a ventral view 17b dorsal view, scale bar 1 mm 18 *Zebina* sp. 2 18a ventral view 18b dorsal view, scale bar 0.5 mm 19 *Truncatella* sp. 19a ventral view 19b dorsal view, scale bar 0.5 mm 20 *Caecum circumvolutum*, lateral view, scale bar 0.2 mm 21 *Caecum donmoorei* 21a stage 1, lateral view, scale bar 0.2 mm 21b adult, lateral view, scale bar 0.2 mm 22 *Caecum johnsoni*, lateral view, scale bar 0.2 mm 23 *Caecum pulchellum*, lateral view, scale bar 0.2 mm 24 *Caecum textile*, lateral view, scale bar 0.2 mm 25 *Caecum* sp. B, lateral view, scale bar 0.2 mm 26 *Meioceras nitidum*, lateral view, scale bar 0.2 mm.

Family Triphoridae Gray, 1847
Genus *Iniforis* Jousseaume, 1884
Iniforis turristhomae (Holten, 1802) (UC) (Fig. 3-6a, b)
Genus *Metaxia* Monterosato, 1884
Metaxia rugulosa (C. B. Adams, 1850) (R) (Fig. 3-7a, b)

Family Cerithiopsidae H. Adams & A. Adams, 1853
Genus *Cerithiopsis* Forbes & Hanley, 1850
Cerithiopsis sp. (R) (Fig. 3-8a, 8b)
Cerithiopsis cf. *iuxtafuniculata* Rolán, Espinosa & Fernández-Garcés, 2007 (R) (Fig. 3-9a, b)

Family Vermetidae Rafinesque, 1815
Vermetidae incertae sedis irregularis d’Orbigny, 1841 (Fig. 3-10)

Genus *Dendropoma* Mörch, 1861
Dendropoma corrodens (d’Orbigny, 1841) (R) (Fig. 3-11)
Vermetid sp. C Redfern 2013 (A) (Fig. 3-12)

Genus *Petaloconchus* Lea, 1843
Petaloconchus mcgintyi (Olsson & Harbison, 1953) * (C) (Fig. 3-13)

Genus *Thylacodes* Guettard, 1770
Thylacodes sp. * (R) (Fig. 3-14)

Family Rissoidae Gray, 1847
Genus *Simulamerelina* Ponder, 1985
Simulamerelina caribaea (d’Orbigny, 1842) (UC) (Fig. 3-15a, b)

Family Zebinidae Coan, 1964
Genus *Schwartziella* G. Nevill, 1881
Schartziella fischeri (Desjardin, 1949) (UC) (Fig. 3-16a, b)

Genus *Zeolina* H. Adams & A. Adams, 1854
Zeolina sp. 1 (A) (Fig. 3-17a, 17b)
Zeolina sp. 2 (C) (Fig. 3-18a, 18b)

Family Truncatellidae Gray, 1840
Genus *Truncatella* Risso, 1826
Truncatella sp. (R) (Fig. 4-19a, 19b)

Family Caecidae Gray, 1850
Genus *Caecum* Fleming, 1813
Caecum circumvolutum de Folin, 1867 (C) (Fig. 3-20)
Caecum donmoorei Mitchell-Tapping, 1979 (C) (Fig. 3-21a, b)
Caecum johnsoni Winkley, 1908 (A) (Fig. 3-22)
Figure 4. Gastropoda 1–18: 1 *Parviturboides* sp. 1a ventral view 1b dorsal view, scale bar 1 mm 2 *Vitrinella* sp. 2a ventral view 2b dorsal view, scale bar 0.5 mm 3 *Gibberula lavalleecana* 3a ventral view 3b dorsal view, scale bar 1 mm 4 *Volutrina* sp. 1a ventral view 4b dorsal view, scale bar 1 mm 5 *Volutrina* sp. 2 5a ventral view 5b dorsal view, scale bar 1 mm 6 Columbellidae sp. 1 6a ventral view 6b dorsal view, scale bar 0.5 mm 7 Columbellidae sp. 2 7a ventral view 7b dorsal view, scale bar 0.5 mm 8 *Steironepion moniferum* 8a ventral view 8b dorsal view, scale bar 1 mm 9 *Phrontis* sp. 9a ventral view 9b dorsal view, scale bar 0.5 mm 10 *Trachypollia* sp. 10a ventral view 10b dorsal view, scale bar 1 mm 11 Turridae sp. 11a ventral view 11b dorsal view, scale bar 1 mm 12 *Ammonicera lineofuscata*, Apical view, scale bar 0.25 mm 13 *Ammonicera minortalis* 13a Apical view 13b ventral view, scale bar 0.1 mm 14 *Rissoella galba* 14a ventral view 14b dorsal view, scale bar 0.1 mm 15 *Pseudoscilla* aff. *babylonia* 15a ventral view 15b dorsal view, scale bar 1 mm.

Caecum pulchellum Stimpson, 1851 (C) (Fig. 3-23)

Caecum textile de Folin, 1867 (UC) (Fig. 3-24)

Caecum sp. B sensu Redfern 2013 (C) (Fig. 3-25)

Genus *Meioceras* Carpenter, 1859

Meioceras nitidum (Stimpson, 1851) (UC) (Fig. 3-26)

Family *Tornidae* Sacco, 1896 (1884)

Genus *Parviturboides* Pilsbry & McGinty, 1949

Parviturboides sp. (C) (Fig. 4-1a, b)

Genus *Vitrinella* C. B. Adams, 1850

Vitrinella sp. (A) (Fig. 4-2a, b)
Family Cystiscidae Stimpson, 1865
Genus *Gibberula* Swainson, 1840
Gibberula lavalleeana (d'Orbigny, 1824) (UC) (Fig. 4-3a, b)

Family Marginellidae Fleming, 1828
Genus *Volvarina* Hinds, 1844
Volvarina sp. 1 (UC) (Fig. 4-4a, 4b)
Volvarina sp. 2 (R) (Fig. 4-5a, 5b)

Family Columbellidae Swainson, 1840
Columbellidae sp. 1 (UC) (Fig. 4-6a, b)
Columbellidae sp. 2 (R) (Fig. 4-7a, 7b)
Genus *Steironepion* Pilsbry & H. N. Lowe, 1932
Steironepion moniliferum (G. B. Sowerby I, 1844) (UC) (Fig. 4-8a, b)

Family Nassariidae Iredale, 1916 (1835)
Genus *Phrontis* H. Adams & A. Adams, 1853
Phrontis sp. (UC) (Fig. 4-9a, b)

Family Muricidae Rafinesque, 1815
Genus *Trachypollia* Woodring, 1928
Trachypollia sp. (R) (Fig. 4-10a, b)

Family “Turridae” H. Adams & A. Adams, 1853 (1838)
Turridae sp. 1 (R) (Fig. 4-11a, 11b)

Family Omalogyridae G.O. Sars, 1878
Genus *Ammonicera* Vayssière, 1893
Ammonicera lineofuscata Rolán, 1992 (A) (Fig. 4-12)
Ammonicera minortalis Rolán, 1992 (A) (Fig. 4-13a, b)

Family Rissoellidae Gray, 1850
Genus Rissoella Gray, 1847
Rissoella galba Robertson, 1961 (R) (Fig. 4-14a, b)

Order Aplysiida
Family Aplysiidae Lamarck, 1809
Genus *Aplysia* Linnaeus, 1767
Aplysia sp. (R)

Order Siphonarimorpha
Family Pyramidellidae Gray, 1840
Genus *Pseudoscilla* Boettger, 1901
Pseudoscilla aff. babylonia (C. B. Adams, 1845) (R) (Fig. 4-15a, 185b)
Discussion

The most abundant families of gastropods were the Caecidae (456 specimens, seven species), Tornidae (221 specimens, two species), and Omalogyridae (132 specimens, two species). The most abundant families of bivalves were Arcidae (40 specimens, five species) and Chamidae (59 specimens, two species). The most abundant gastropod species were *Caecum johnsoni* (310 specimens), *Vitrinella* sp. (208 specimens), Vermetid sp. C (91 specimens), *Lodderena ornata* (71 specimens), and *Caecum donmoorei* (147 specimens). For the Bivalvia the most abundant species were *Chama sinuosa* (57 specimens), *Barbatia domingensis* (57 specimens) and *Carditopsis smithii* (12 specimens).

From the six sediment samples, the most commonly found molluscs were *Lodderena ornata*, *Caecum johnsoni* and *Ammonicera lineofuscata*, while other species appeared only once: *Leptochiton* sp., *Arcidae* sp., *Bentharca* sp., *Crenella* sp., *Anomia* sp., *Chama* sp., *Galeommatidae* sp., *Chione elevata*, *Semele bellastriata*, *Cerithium* sp. 1, *Gastropoda* sp., *Diodora listeri*, *Cerithium atratum*, *Sansonia tuberculata*, *Iniforis turristhomae*, *Metaxia rugulosa*, *Cerithiopsis cf. iuxtafuniculata*, *Cerithiopsis* sp., *Vermetidae incertae sedis irregularis*, *Dendropoma corrondens*, *Thylacodes* sp., *Finella* sp., *Caecum textile*, *Hipponix* sp., *Volvarina* sp. 2, *Columbellidae* sp. 2, *Aplysia* sp., and *Pseudoscilla aff. babylonia*.

This new data becomes a taxonomic reference list for the molluscs that inhabit Cayo Nuevo, GoMx, including micromolluscs as well as juvenile macromolluscs. To place it within a useful context we mention other inventories made in this area: Felder and Camp (2009) recorded some 5,517 species of invertebrates in the GoMx, of which 2,455 were marine molluscs (Moretzsohn et al. 2009). González et al. (1991) recorded 298 species of molluscs and included 33 localities distributed around the coasts of the Yucatan Peninsula and adjacent coral reefs but did not mentioned Cayo Nuevo. García-Cubas et al. (1999) recorded 110 species of gastropods in the northern and northeastern regions of the Yucatan Peninsula. Rice and Kornicker (1962) recorded 130 species for Alacranes reef in the Campeche Bank and later, Hicks et al. (2001) recorded 215 species of molluscs on the same reef. Although earlier articles include reefs or sampling locations within the Bank of Campeche (e.g., Rehder and Abbott 1951, Springer and Bullis 1956, Kornicker et al. 1959), no mention of molluscs from Cayo Nuevo were found. Only Barrera (2001) study focuses on reef micromolluscs, recording 131 species from the East and West Flower Garden Banks (FGB).

The molluscan assemblage at Cayo Nuevo shares many species also present at the FGB (Barrera 2001) and Alacranes Reef (Hicks et al. 2001) (19 families/21 genera and 21 families/22 genera, respectively) (Table 3). The most diverse families recorded by Barrera (2001) and Hicks et al. (2001) were Caecidae (six genera and ten species) and Rissoideae (five genera and seven species) for Gastropoda and Arcidae (four genera and seven species) for Bivalvia.

Barrera (2001) most abundant gastropod species were *Amphithalamus vallei* (672 individuals) and cf. *Vitrinella* sp. (534 individuals); however, at Cayo Nuevo, 208 individuals of sf. *Vitrinella* sp., were found. Differences in the numbers of collected individ-

<table>
<thead>
<tr>
<th>Systematics</th>
<th>Lagoons</th>
<th>Reefs</th>
<th>Maximum recorded size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Madre</td>
<td>Tamiahua</td>
<td>Términos</td>
</tr>
<tr>
<td>Class Bivalvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arca imbricata</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Barbatia domingensis</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cardiopsis smithii</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chama sinuosa</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Crassinella lamulata</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Semele bellastrata</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Gastropoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diodora minuta</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diodora listeri</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Scissurella redfernii</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Synaptochlea picta</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lodderena ornata</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cerithium atratum</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaba incerta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sansonia tuberculata</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Iniforis turritthomae</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Metaxia rugulosa</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerithiopsis cf. tuxatofuniculata</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermetidiae incertae sedis irregularis</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendropoma corrodens</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Petaloconchus mcgintyi</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Simulamerelina caribaea</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwartziella fischeri</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caecum circumvolutum</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caecum donmoorei</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caecum johnsoni</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Caecum pulchellum</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Caecum textile</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Metoceras nitidum</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Gibberula lavalleiana</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steronepion moniliferum</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonicera lineofuscata</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonicera minoralis</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Rissoella galba</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Pseudoscilla aff. babylonia</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Vitamins can be explained by geography, but also by differences in the quantity of sediment collected and processed, fifteen sites with 300 ml sediment sampled at FGB and six samples of 224–735 g at Cayo Nuevo. *Vitrinella* sp. could not be identified to specific
level due to the low similarity of characters shown with other described western Atlantic species. Barrera (2001) previously suggested that it could be an undescribed new species, but further detailed studies are required to establish its identity.

Regarding bivalves, the most abundant species reported by Barrera (2001) for the FGB were *Gregariella coralliophaga* (145 individuals) (summing nine identified as *Barbatia domingensis* (102 individuals) and eleven identified as *Barbatia cancellaria* (68 individuals, currently a synonym), and *Carditopsis smithii* (51 individuals). In comparison, 37 individuals of *Barbatia domingensis* and 12 *Carditopsis smithii* were collected at Cayo Nuevo and these were not the most abundant species.

It should come as no surprise that many organisms were not identified to species level (e.g., *Leptochiton* sp., *Bentharca* sp., *Crenella* sp., *Anomia* sp., *Lottia* sp., *Diodora* sp., *Cerithium* sp., *Cerithiopsis* sp., *Thylacodes* sp., *Zebina* sp. 1, *Zebina* sp. 2, and *Phrontis* sp.). We relied on regional and local literature that in fact was scarce. In the case of juveniles, shells within a genus are similar because they share many characters and the differential characters are difficult to discern even as adults and almost impossible in juveniles. Our specimens identified under the name of *Gibberula lavalleeana* could be considerate as a species complex, due to the evidence and description of new species in Cuban waters (Espinosa and Ortea 2007).

These faunistic results from Cayo Nuevo represent the first inventory of molluscs from this remote reef. These findings contribute to record expansions for the southern GoMx of *Bentharca* sp. This contribution highlights the importance of conserving small areas that can harbour a considerable diversity of organisms. Seasonal changes on the mollusc community assemblages were not evaluated but would be an interesting future project, as would collecting growth series of species to assist in confirming identifications. In 2004, González and Torruco stated the importance of the Campeche Bank’s reefs and proposed a marine reserve for the reefs located within this area, Cayo Nuevo included. However, this proposal never materialized and, up to now, only Alacranes reef has governmental protection under the status of marine reserve. Species checklists of micromolluscs, as well as other faunal groups, are of vital importance to serve as a baseline data set, due to the proximity to Mexico’s offshore oil production area within the GoMx. The soft benthic interstitial mollusc communities are diverse, and their monitoring could well represent ecological indicators of ecosystem health, especially in the light of potential future oil-spills.

Acknowledgements

We give our gratitude to the researchers from the Yucatan Marine Biodiversity Team (BDMY) who participated in the expedition on the boat “Isla Mujeres”, especially to P. Tapia Díaz who collected the samples. Thanks to M. Badillo Alemán and C. Galindo de Santiago for their general laboratory technical assistance and to B. Rodrigo Cobarribias Conrreras for his technical assistance with the granulometry analysis, all at the Unidad Académica Sisal, UNAM. Professor Fabio Moretzsohn kindly provided the
base map. Financial support provided by the Harte Charitable Foundation, through the Harte Research Institute (Biodiversity of the southern Gulf of Mexico) and by the CONABIO NE018 Project (Update on the knowledge of the biodiversity of shallow water benthic marine invertebrate species (<50m) from the southern GoMx). First author received a postdoctoral grant from DGAPA-UNAM 2018-2019. We are grateful to Editor Nathalie Yonow for comments in the manuscript. We also thank the reviewer Dr. Henk Dekker and two other anonymous reviewers for their constructive comments and suggestions. We dedicate this work to our malacologist colleague, Dr. Wes Tunnell, who just left us. Dr. Tunnell was always curious for the Gulf of Mexico invertebrates and tireless promoter of marine biodiversity knowledge in the region.

References

Supplementary material I

Species abundance per sample

Authors: Deneb Ortigosa, Nancy Yolimar Suárez-Mozo, Noe C. Barrera, Nuno Simões

Data type: occurrences

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.779.24562.suppl1