JellyWeb: an interactive information system on Scyphozoa, Cubozoa and Staurozoa

Stefano Martellos', Luca Ukosich ${ }^{1}$, Massimo Avian ${ }^{\prime}$
I University of Trieste, Department of Life Sciences, via L. Giorgieri 10, I-34127 Trieste, Italy
Corresponding author: Stefano Martellos (martelst@units.it)

Academic editor: L. van Ofwegen | Received 2 October 2015 | Accepted 25 November 2015 | Published 18 January 2016
http://zoobank.org/AA6565FA-986E-4616-80D3-E15329A3E3BD
Citation: Martellos S, Ukosich L, Avian M (2016) JellyWeb: an interactive information system on Scyphozoa, Cubozoa and Staurozoa. ZooKeys 554: 1-25. doi: 10.3897/zookeys.554.6745

Abstract

Identification of organisms is traditionally based on the use of "classic" identification keys, normally printed on paper. These keys have several drawbacks: they are mainly based on the systematics, requiring identification of orders, families and genera at first; they are written by experts for other experts, in a specific scientific jargon; they have a "frozen" structure (sequence of theses/antitheses); once published, they cannot be changed or updated without printing a new edition. Due to the use of computers, it is now possible to build new digital identification tools, which: 1) can be produced automatically, if the characters are stored in a database; 2) can be freed from the traditional systematics, giving priority to easy-to-observe characters, incl. those usually uncommon to the classical keys, such as ecology and distribution; 3) can be updated in real time once published on-line; 4) can be available on different media, and on mobile devices. An important feature of these new digital tools is their "collaborative" nature. They can be enriched by the contribution of several researchers, which can cooperate while maintaining rights and property of the resources and data they contribute to the system. JellyWeb, the information system on Scyphozoa, Cubozoa and Staurozoa has been developed in Trieste since 2010. The system was created with the aim of - potentially - becoming a starting point for a wide collaborative effort in developing a user-friendly worldwide digital identification system for jellyfishes.

Keywords

Biodiversity informatics, Cnidaria, FRIDA, identification, jellyfish, Medusozoa

[^0]
Introduction

Since the Rio Earth Summit in 1992, access to biodiversity information has become a fundamental task. Biodiversity data are targeted by several efforts of digitalization and aggregation, most of which focus on primary biodiversity data, i.e. natural history collection specimens and field records. Some of these efforts produced wide global networks, e.g. the GBIF (Global Biodiversity Information Facility; Berendsohn et al. 2010, King et al. 2010), which, together with the BioCASE (Biodiversity Collection Access for Europe, Holetschek et al. 2012), is mobilizing ca. 600 millions of records. Primary biodiversity data are mostly used in modeling the distribution of the taxa, and in predicting the effect of climate changes and anthropic pressure on endangered or alien invasive taxa. Taxon related information (nomenclature, auto-ecology, etc.) become the focus of similar large scale efforts only in the last years (Martellos and Attorre 2012, Martellos 2014). The GBIF itself is starting to aggregate checklist data (GBIF 2010), while other efforts are focused on molecular data (Field et al. 2011, Holetschek et al. 2012, Wieczorek et al. 2012), and to ecological information (Fegraus et al. 2005). In the field of hydrobiology, some recent examples can be Fish-SPRICH (Brosse et al. 2013) and Fish-AMAZBOL (Carvajal-Vallejos et al. 2014). In the case of jellyfishes, online resources are however scarce, but some relevant exceptions (e.g., the Jellyfish Dataset Initiative, http://www.bco-dmo.org/dataset/526852).

Digital identification keys are a particular case in the world of biodiversity informatics. Since the development of the DELTA language (Dallwitz 1980), efforts aiming at creating online digital identification keys followed several approaches. The resulting products differ in usability, accessibility, size, etc. (Nimis and Martellos 2009, Hagedorn et al. 2010, Randlane et al. 2010, Martellos and Nimis 2015). With the development of FRIDA (FRiendly IDentificAtion, Martellos 2010), the researchers of the Department of Life Sciences, University of Trieste, aimed at producing a simple but effective instrument for the development of digital identification keys in collaborative efforts. This led to the publication - in the framework of project Dryades, and of the EU projects KeyToNature (http://www.keytonature.eu), SiiT (http://ww.siit.eu) and CSMON-LIFE (LIFE13 ENV/IT/842, http://www.csmon-life.eu) - of ca. 600 different digital identification keys for several groups of organisms.

As far as Scyphozoa, Cubozoa and Staurozoa are concerned, there are digital databases hosting taxonomic information, such as WoRMS (World Register of Marine Species, http://www.marinespecies.org/), as well as paper printed keys to genera (as an example, see Cornelius 1997; other keys are listed in Morandini et al., 2005). Few examples of digital resources are available in the web, often limited to specific geographic regions, as the Cubozoan and scyphozoan key of the Carolinian Biogeographic Province (Calder 2009), the key to the Scyphozoa and Cubozoa of the South Atlantic Bight (Calder and King 2008), and, as far as the Mediterranean is concerned, the web site MeteoMeduse (Boero 2013, http://meteomeduse.focus.it/). The latter, however, is an example of citizen science observatory, and does not provide an identification key. To our knowledge, no comprehensive digital identification tools to species of these taxa exist.

By combining taxonomical, ecological, and morphological and anatomical features into an information system, we developed the so called JellyWeb, a simple tool which allow to researchers and laypersons to identify Scyphozoa, Cubozoa and Staurozoa to the species level. This paper presents the results of this effort, available online at the URL http://dryades.units.it/jelly.

Methods

Data were collected from several sources in literature. The most relevant are Kramp (1961), WoRMS (http://www.marinespecies.org/), the Scyphozoan Wiki (http://thescyphozoan.ucmerced.edu/), and Mills (1999-). Further sources are listed in Balboni 2008, Benci 2008, Sarto 2009, Sola 2009, Coral 2012, Benci 2012, Savonitto 2012, Ukosich 2014. Other paper are under consideration, and will lead to adding to the database other species for several genera, such as Atolla (A. russelli, A. gigantea, A. chuni), Aurelia (A. marginalis), Chironex (C. yamaguti), Cyanea (C. lamarkii, C. rosea, C. annaskala, C. tzetlinii, and several other species), Desmonema (D. comatum, D. scoresbyanna), Drymonema (D. gorgo, D. larsoni), Nausithoe (N. marginata), Pelagia (P. benovici) Tripedalia (T. binata).

The information system is freely available online at the URL http://dryades.units. $\mathrm{it} / \mathrm{jelly}$. It organizes data collected in the last five years by the research unit headed by Massimo Avian, at the Dept. of Life Sciences of the University of Trieste. The researchers which contributed to the project agreed on distributing the data under a Creative Commons, share alike, by attribution 3.0 (CC 3.0 by-sa) license.

The software of the information system has been developed in PHP language. The data are stored in a MySQL database. The system is equipped with a multi-entry query interface (Hagedorn et al. 2010), which operates on both a taxonomic database, and a database of nine easily recognizable morphological characters (see below). The multientry interface allows complex queries, which can be a first step in the identification of an organism. The multi-entry query system returns lists of taxa, on which the identification process can continue by using a digital identification system. The latter has been developed by using the FRIDA (FRiendly IDentificAtion) package (Martellos 2010). It operates on a morpho-anatomical database, which hosts ca. 200 characters for several infra-generic taxa of Scyphozoa, Cubozoa and Staurozoa (a revision of the content of the database due to recent taxonomic advancements is ongoing). The output of the digital identification system is a digital identification key to the remaining taxa, which can be used by an interactive interface, or printed out as a dichotomous, illustrated key. The whole key can also be exported in a stand-alone version for mobile devices (Nimis et al. 2012).

The query interfaces have been developed according to the results of several usability tests, conducted in the framework of projects KeyToNature and SiiT, as detailed in Martellos and Nimis (2015). The system is under continuous development, following users' input.

Results

JellyWeb hosts several information pages and two query system. The home page (http:// dryades.units.it/jelly) provides access to several sections: information, describing how the system works; survey area; query (detailed below); checklist, listing all taxa alphabetically by genus and species name, and providing access to their taxon pages; credits.

The query system is made of two parts.

1) Multi-entry interface (Fig. 1). The first interface of the query system provides the users with the opportunity of specifying a set of nine easily observable characters, and/or scientific name and family. The morphological characters are:

- Jellyfish sessile / swimming;
- Umbrella shaped like a cube or a box / not shaped like a cube or a box;
- Tentacles present / absent;
- Tentacles isolated / grouped in clusters;
- Umbrella with a coronal groove / without a coronal groove;
- Umbrella flat / not flat;
- Oral arms absent / 4 / more than 4;
- Jellyfish with filaments (oral arm appendages) / without filaments;
- Jellyfish with scapulae / without scapulae.

Figure I. Multi-entry interface. The multi-entry interface allows to combine the states of several morphologic and anatomic characters, together with taxonomic information, to query the database.

For each character, an information popup window with images and text detailing the most relevat features is accessible by clicking on the question mark button. The result of a query is a list of taxa (Fig. 2). For each taxon an image is displayed (if available, see below). A link provides access to the taxon page (Fig. 3), which displays a description, as well as all the images available in the system, with credits and metadata, and other information (when available). Taxon pages can host a virtually unlimited amount of information and images, and/or provide access to external resources through HTML links.
2) Digital identification key. The results page of the multi-entry interface allows to generate an interactive identification key to remaining taxa. The key can be used through a simple single entry interface (Fig. 4, Hagedorn et al. 2010), or printed out as a textual, illustrated dichotomous key. At each step of the identification process users can list out the remaining taxa, or print an illustrated key. By clicking on a taxon name, the corresponding taxon page is shown (Fig. 3). Each key generated by this system is different from the others, since they contain a different number of infra-generic taxa. Normally, the lower the number of taxa is, the easier the resulting key. A key to all the taxa currently included in our databases can also be generated, and is provided below.

Figure 2. List of taxa. The result of a query made by using the multi-entry interface is an illustrated list of infra-generic taxa.

Aurelia aurita (Linnaeus, 1758)


```
SISTEMATIC POSITION
Classis: Scyphozoa
Classis: Scyphozoa
SubClassis: Discomedusae
Faniliai Ulmaridae (ex AL
SubFamilia: Aurolinaeo
Genus: Aurelia (Peron \& Lesueur. 1809)
Spocies: A. aurita (Linnaous, 1775)
synonyms
Aurelia coerulea
COMMONNAMES
Moon Jellyrish
MORPHO-ANA
lemacles ansing form the side of exumbrella, above the mario
lappet-Ike structures ansing trom the side of exumbrella above the margin
-bell margin divided in 8 or16 broad velar lobes
- 8 thopalia each vith 2 ocelli
- some or all racial cenals with anastomosing brenches
- with ring canal
- Invaginaten gonars wint extemaa subgentral piss
Aurala aurfa
- flat thin bell, dian
- very transparent
numerous thin shoot tentacles of various colours
- 8 broad velar lappets
4 lnear thick oral amms, wth densely crenulated margins, as long as bells ratius
- 4 interradial stomach pouches, each with a line of gastric filaments, just centripetal to gonad
- 8 hopalar and 8 adradial canels unbranched, others 16 branched vith anastomoses
- 4 evident brilliant horseshoe-shaped gonads, Iring gastric pouches
GEOGRAPHICAL AND SEASONAL DISTRIBUTION
Coastal species, Ciccum-Boreal distribution, occurring usually at spring
STING EFFECTS
The venom of A. aurita contains potent lethal dermonecrotic, vasopermeability and hemolitic factors, but great differences have been reported concerning the dangenousness of specimens from different zones of the world Specimens from Red Sea were stated to be most dangerous, causing local pain, ploerection uticaria, ulcerations. In other zones, usually causing only local itching, but may possible cross-reaction betwe
``` venom of Aurelia and ones of \(C\). quinquecirrha, Chironex fleckeri and Physaia physali

Figure 3. Taxon page. A typical taxon page displays an image, a description, as well as all the other images available in the system, together with credits and metadata. Taxon pages can host a virtually unlimited amount of data, links and media.

\section*{Dichotomous key to all taxa}

This key was automatically generated by the system, and contains all the infra-generic taxa currently stored in our databases at the date October 30, 2015. When a taxon is added to the system the key automatically changes. Hence, the key an user will obtain in the future will be slightly - or completely - different. The keys are not the transposition of an existing paper printed key, but are automatically generated by the system from a database for morphological and anatomical characters by using the package FRIDA (Martellos 2010).

Figure 4. Single entry digital identification key. The digital identification key to remaining taxa is generated from the results of the multy-entry query system. It is used through a single entry interface, and can be printed out as a textual, illustrated dichotomous key as well.
1 Medusa sessile 2
Medusa swimming 34
2 (1) Medusa without aboral peduncleLucernariopsis vanhoeffeni (Browne, 1910)
- Medusa with aboral peduncle 3
3 (2) Medusa with sense organs: rhopalioids (anchors) 4
- Medusa without sense organs. 15
4 (3) Coronal muscle divided 5
- Coronal muscle unbroken 10
5 (4) Calyx not conical 6
- Calyx conical 7
6 (5) Calyx quadro-pyramidal Haliclystus borealis Uchida, 1933
- Calyx pyramidal, octangular

\(\qquad\)
Haliclystus salpinx Clark, 18637 (5) Marginal anchors fairly large, egg-shaped.
Haliclystus stejnegeri Kishinouye, 1899
- Not as above 8
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{8 (7)} & Marginal anchors very large, biscuit-shaped \\
\hline & Haliclystus antarcticus Pfeffer, 1889 \\
\hline - & Not as above.. 9 \\
\hline \multirow[t]{2}{*}{9 (8)} & Marginal anchors kidney-shaped, with a short, cylindric stalk \\
\hline & Haliclystus auricula (Rathke, 1806) \\
\hline - & Marginal anchors small, oval. Haliclystus kerguelensis Vanhöffen, 1908 \\
\hline 10 (4) & Peduncle single-chambered Manania hexaradiata (Broch, 1907) \\
\hline - & Peduncle with 4 perradial chambers... 11 \\
\hline 11 (10) & Gonads not united by a transverse circumferential membrane (claustrum) which divide each of the 4 perradial stomach pouches into an outer and an inner space. Stenoscyphus inabai (Kishinouye, 1893) \\
\hline - & Gonads united by a transverse circumferential membrane (claustrum) which divide each of the 4 perradial stomach pouches into an outer and an inner space. \(\qquad\) \\
\hline 12 (11) & Calyx as long as wide........Manania gwilliami Larson \& Fautin, 1989 \\
\hline - & Calyx longer than wide .. 13 \\
\hline \multirow[t]{2}{*}{13 (12)} & Calyx with dark herringbone pattern .. \\
\hline & ...Manania distincta (Kishinouye, 1910) \\
\hline - & Calyx without dark herringbone pattern.. 14 \\
\hline 14 (13) & Arms twice as long as broad........ Halimocyathus platypus Clark, 1863 \\
\hline - & Arms short...........................Manania handi Larson \& Fautin, 1989 \\
\hline 15 (3) & Peduncle with 4 perradial chambers.. 16 \\
\hline - & Peduncle single-chambered.. 22 \\
\hline 16 (15) & Peduncle with muscle in the septa ... 17 \\
\hline - & Peduncle without muscle in the septa .. 18 \\
\hline 17 (16) & On each arm about 9 tentacles \(\qquad\) Depastrum cyathiforme (M. Sars, 1846) \\
\hline \multirow[t]{2}{*}{-} & On each arm about 25 tentacles \\
\hline & Depastromorpha africana Carlgren, 1935 \\
\hline 18 (16) & Gonads united by a transverse circumferential membrane (claustrum) which divide each of the 4 perradial stomach pouches into an outer and an inner space \(\qquad\) .19 \\
\hline - & Gonads not united by a transverse circumferential membrane (claustrum) which divide each of the 4 perradial stomach pouches into an outer and an inner space \(\qquad\) 20 \\
\hline \multirow[t]{2}{*}{19 (18)} & On each arm 60-80 tentacles \\
\hline & Craterolophus convolvulus (Johnston, 1835) \\
\hline \multirow[t]{2}{*}{-} & On each arm about 30 tentacles \\
\hline & Craterolophus macrocystis von Lendenfeld, 1884 \\
\hline 20 (18) & Arms adradial Kishinouyea nagatensis (Oka, 1897) \\
\hline - & Arms interradial.. 21 \\
\hline \multirow[t]{2}{*}{21 (20)} & Arms larger at base than S. tsingtaoensis... \\
\hline & .. Sasakiella cruciformis Okubo, 1917 \\
\hline
\end{tabular}
- Arms narrower at base than S. cruciformis
Sasakiella tsingtaoensis Ling, 1937
22 (15) Peduncle without muscle in the septa
Lucernariopsis campanulata (Lamouroux, 1815)
- Peduncle with muscle in the septa 23
23 (22) Marginal lobes (arms) faintly developed 24
- Marginal lobes (arms) well developed 26
24 (23) Tentacles reduced Lipkea stephensoni Carlgren, 1933
- Not as above 25
25 (24) Tentacles not true Lipkea ruspoliana Vogt, 1886
- Tentacles rudimentary Lipkea sturdzi (Antipa, 1893)
26 (23) Tentacles up to 60 on each arm 27
- Tentacles more than 60 on each arm 28
27 (26) Subumbrellar margin with 4 perradial pigment spots.Stylocoronella riedli Salvini-Plawen, 1966Subumbrellar margin without 4 perradial pigment spotsStylocoronella variabilis Salvini-Plawen, 1987
28 (26) Peduncle rudimentary. Lucernaria australis Vanhöffen, 1908
- Peduncle true 29
29 (28) Peduncle as long or longer than height of calyx 30
- Peduncle shorter than height of calyx. 31
30 (29) Tentacles 100-140 on each arm.Lucernaria quadricornis O.F.Müller, 1776
- Tentacles 700-850 on each arm Lucernaria walteri (Antipa, 1892)
31 (29) Tentacles 80 or less on each arm
Lucernaria infundibulum Haeckel, 1880
- Tentacles more than 80 on each arm. 32
32 (31) Peduncle \(1 / 3\) as long as height of calyx Lucernaria baeckeli (Antipa, 1892)
- Peduncle about half as long as height of calyx33
33 (32) Peduncle less than \(1 / 3\) of the height of calyx
Lucernaria bathyphila Haeckel, 1880
34 (1) Medusa with calixLucernaria sainthilairei (Redikorzev, 1925)Tesserantha connectens, Haeckel, 1880 - Warning: some authors debateon the validity of swimming Stauromedusae (see Rodriguez et al. 2011)
35
35 (34) Exumbrella divided by a circular and deep coronal groove 36
- Exumbrella not divided by a circular and deep coronal groove. 64
36 (35) Tentacles from 4 to 6 37
- Tentacles 8 or more 42
37 (36) Rhopalia 4 38
- Rhopalia 6 39
38 (37) Gonads almost equidistant Pericolpa campana (Haeckel, 1880)
Gonads in 4 pairs Pericolpa quadrigata Haeckel, 1880
39 (37) Gonads 6 Atorella arcturi Bigelow, 1928
- Not as above 40
40 (39) Gonads 8 Atorella octogonus Mills, Larson \& Young, 1987
- Gonads 4 41
41 (40) Gonads sac-like, swollen Atorella subglobosa Vanhöffen, 1902
- Gonads leaf-shaped Atorella vanhoeffeni Bigelow, 1909
42 (36) Rhopalia up to 6 43
- Rhopalia more than 6 48
43 (42) Rhopalia perradial, 4 44
- Rhopalia interradial, 4 45
44 (43) Coronal muscle divided Paraphyllina intermedia Maas, 1903
- Coronal muscle unbroken Paraphyllina ransoni Russel, 1956
45 (43) Marginal lappets 32 Nauphantopsis diomedeae Fewkes, 1885
- Not as above 46
46 (45) Gonads 4 Periphyllopsis galatheae Kramp, 1959
Gonads 8 47
47 (46) Marginal lappets 16.... Periphylla periphylla (Péron \& Lesueur, 1809)
- Marginal lappets 24 Periphyllopsis braueri Vanhöffen, 1902
48 (42) Gonads 4 or 4 pairs 49
- Gonads 8 53
49 (48) Stomach pouches break up into numerous ragged-edged branches in the marginal lappets 50
- Stomach pouches simple, radiating 51
50 (49) Subumbrellar protuberances in 2 circles Linuche aquila Mayer 1910Subumbrellar protuberances in 3 circlesLinuche unguiculata (Schwartz, 1788)
51 (49) Gonads bean-shaped Palephyra indica Vanhöffen, 1902
Gonads crescent-shaped 52
52 (51) Gonads with horns recurved Palephyra antiqua Haeckel, 1880
- Gonads consisting of 3 swellings. Palephyra pelagica Haeckel, 1880
53 (48) Rhopalia > 8 54
- Rhopalia 8 (Genus Nausithoe. The key refers to free-swimming stages only) 56
54 (53) Gastric ostia with two pigmented spots. Atolla vanhoeffeni Russell, 1957
Gastric ostia without pigmented spots 55
55 (54) Species with 20-24 tentacles Atolla parva Russell, 1958
Species with usually 22, sometimes up to 32 tentacles
Atolla wyvillei Haeckel, 1880
56 (53) Central disk with large pits 57
- Central disk without pits 58
57 (56) Central disk with radiating furrows . Nausithoe rubra Vanhöffen, 1 1902
- . Nausithoe atlantica Broch, 1914
58 (56) Gonads very small
- Not as above59
59 (58) Gonads of normal dimensions Nausithoe albatrossi (Maas, 1897)
- Gonads large 60
60 (59) Central disk not thick nor finely punctured
Nausithoe globifera Broch, 1914
Central disk thick, finely punctured 61
61 (60) Central disk with radiating furrows
Nausithoe challengeri (Haeckel, 1880)
- Central disk without radiating furrows 62
62 (61) Medusa with chocolate brown or carmine gonads and blue gastric cirri.. Nausithoe picta Agassis \& Mayer, 1902
-63 (62) Gastric cirri not grouped in clusters.
Nausithoe punctata (Kölliker, 1853)
- Gastric cirri grouped in clusters . Nausithoe limpida Hartlaub, 1909
64 (35) Opening of the subumbrellar cavity partly closed by an annular dia- phragm (velarium) 65
- Opening of the subumbrellar cavity not closed by an annular diaphragm (velarium) 88
65 (64) Tentacles 8 or more 66
- Tentacles from 4 to 6 76
66 (65) Stomach pouches without diverticula
Tripedalia cystophora Conant, 1897
Stomach pouches with 8 diverticula 67
67 (66) Gonads not four-leaved
.................. Chirodectes maculatus (Cornelius, Fenner \& Hore, 2005)
- Gonads four-leaved. 68
68 (67) Medusa with nematocysts on bell 69
- Medusa without nematocysts on bell 71
69 (68) Each pedalium with more than 4 fingers and tentacles.
Chiropsalmus quadrumanus Müller, 1859
- Each pedalium with 4 or less fingers and tentacles 7070 (69) Each pedalium with 2 fingers and tentacles.Chiropsalmus zygonema Haeckel, 1880
- Each pedalium with 3-4 fingers and tentacles.
Chiropsalmus alipes Gershwin, 2006
71 (68) Medusa with mesenteries poorly developed
Chiropsella bronzie Gershwin, 2006
- Not as above 72
72 (71) Gastric saccules are functioning gonads Chironex fleckeri Southcott, 1 1956
- Gastric saccules are not functioning gonads 73
73 (72) Stomach pouches with 2 branched or feathered saccules 74
- Stomach pouches with 2 unbranched saccules 75
74 (73) Each pedalium with 9-11 fingers and tentaclesChirodropus gorilla Haeckel, 1880Each pedalium with 21 fingers and tentaclesChirodropus palmatus Haeckel, 1880
75 (73) Tentacles and fingers irregularly placedChiropsoides buitendijki (van der Horst, 1907)Tentacles and fingers not irregularly placed
Chiropsoides quadrigatus (Haeckel, 1880)
76 (65) Tentacles branched Manokia stiasnyi Bigelow, 1938
Tentacles simple. 77
77 (76) Stomach with weakly developed mesenteries 78
- Not as above 80
78 (77) Sensory niches without well developed covering scale
Copula sivickisi Stiasny, 1926
- Sensory niches with covering scale above 79
79 (78) Velarial canals 3-4 per octant... Carybdea marsupialis (Linnaeus, 1758)
- Velarial canals 2 per octant Carybdea rastonii Haacke, 1886
80 (77) Stomach without mesenteries 81
- Stomach with well developed mesenteries 84
81 (80) Exumbrella without nematocyst-warts Alatina moseri (Mayer, 1906)
- Exumbrella with nematocyst-warts 82
82 (81) Velarial canals 3 per octant Alatina rainensis Gershwin ,2005
- Velarial canals \(4-5\) per octant 83
83 (82) Medusa with 6 eyes per rhopalium.....Alatina madraspartana Menon, 1930
- Medusa with 1 eye per rhopalium.. Alatina tetraptera (Haeckel, 1880)84 (80) Medusa with phacellaeTamoya haplonema Müller, 1859
- Medusa without phacellae 85
85 (84) Velarial canals 1 per octant Carukia shinju Gershwin, 2005
- Not as above 86
86 (85) Velarial canals 2 per octant Carukia barnesi Southcott, 1966
Not as above 87
87 (86) Velarial canals \(4-5\) per octant Malo maxima Gershwin, 2005
- Velarial canals more than 5 per octant
Gerongia rifkinae Gershwin \& Alderslade, 2005
88 (64) Medusa with a permanent primary mouth opening in adult specimens 89
- Medusa without a permanent primary mouth opening in adult speci- mens 135
89 (88) Medusa without tentacles 90
- Medusa with tentacles 94
90 (89) marginal lappets very shallow, or entirely lacking 91
 gins Deepstaria enigmatica (Russel, 1967)
Exumbrella reddish-brown, with stomach margin lighter brown
Deepstaria reticulum (Lerson, Madin \& Harbison, 1988)
92 (90) Rhopalia from 24 to more than 50 , one in every cleft between the lap- pets........ Tiburonia granrojo (Matsumoto, Raskoff \& Lindsay, 2003)
93 (92) Rhopalia 20 Stygiomedusa gigantea (Browne, 1910)
Rhopalia 8Stellamedusa ventana (Raskoff \&x Matsumoto, 2004) - Rhopalia 8
94 (89) Medusa with ring-canal 95
- Medusa without ring-canal 113
95 (94) Tentacles arising from umbrella's margin 96
- Tentacles not arising from umbrella's margin 104
96 (95) Marginal lappets 48
.... Undosa undulata (Stiasny, 1935) - Warning: dubious species, someauthors suggest it is a juvenile stage of Discomedusa lobata Claus 1877
Not as above 97
97 (96) Marginal lappets 16 98
- Not as above 99
98 (97) Oral arms broad, egg-shaped Ulmaris prototypus (Haeckel, 1880)
- Oral arms narrow and pointed Ulmaris snelliusi (Stiasny, 1935)
99 (97) Marginal lappets 32 100
- Marginal lappets 64 102
100 (99) Tentacles 32 or 48 Discomedusa lobata (Claus, 1877)
- Tentacles 24 101
101 (100) Perradial canals branched Discomedusa philippina (Mayer, 1910)
- Perradial canals not branched Floresca parthenia (Haeckel, 1880)
102 (99) Tentacles 24 Parumbrosa polylobata (Kishinouye, 1910)
- Tentacles 16 103
103 (102) Anastomoses absent Diplulmaris antarctica (Maas, 1908)
- Anastomoses present Diplulmaris malayensis (Stiasny, 1935)
104 (95) Tentacles arising from subumbrella 105
- Tentacles arising from exumbrella 107
105 (104) Gonads 8 Poralia rufescens (Vanhöffen, 1902)
- Gonads 4 106
106 (105) Rhopalia 8 Sthenonia albida (Eschscholtz, 1829)
- Rhopalia 16 Phacellophora camtschatica (Brandt, 1835)
107 (104) Oral arms bifurcated Aurosa furcata (Haeckel, 1880)
- Oral arms not bifurcated 108
108 (107) Marginal lappets 16 ..Aurelia labiata (Chamisso \& Eysenhardt, 1821) - Marginal lappets 8 109
109 (108) Oral arms short, thick and curved, much folded, extending laterally against subumbrellar surface Aurelia limbata (Brandt, 1835)
- Not as above 110
110 (109) Oral arms linear, thick and stiff, with densely crenulated margins, as long as bell's radius Aurelia aurita (Linnaeus, 1758) Not as above 111
111 (110) Oral arms narrow and thin, with slightly folded margins only in proximal part Aurelia solida (Browne, 1905)
- Oral arms long and broad, curtain-like, with densely crenulated margins.. 112
112 (111) Adradial canals not branched....... Aurelia maldivensis (Bigelow, 1904)
- Adradial canals branched Aurelia colpata (Brandt, 1838)
113 (94) Tentacles arising from the subumbrella at some distance from the mar- gin 114
- Tentacles arising from the exumbrellar margin 122
114 (113) Tentacles not arranged in tufts
Drymonema dalmatinum (Haeckel, 1880)
- Tentacles arranged in tufts 115
115 (114) Medusa without radial muscolature in the subumbrella 116
- Medusa with radial muscolature in the subumbrella 118
116 (115) Medusa with few broad canals in the lappets
Desmonema gaudichaudi (Lesson, 1830)
- Medusa with numerous narrow canals in the lappets 117
117 (116) Tentacles not ribbon-like
Desmonema chierchianum (Vanhöffen, 1888)
- Tentacles ribbon-like Desmonema glaciale (Larson, 1986)
118 (115) Rhopalar and tentacular stomach pouches completely separated 119
- Rhopalar and tentacular stomach pouches connected by anastomoses 120
119 (118) Peripheral canals without, or with few anastomoses
Cyanea capillata (Linnaeus, 1758)
- Peripheral canals with numerous anastomoses
Cyanea purpurea (Kishinouye, 1910)
120 (118) Peripheral canals with numerous anastomoses
Cyanea nozakii (Kishinouye, 1891)
- Peripheral canals without, or with few anastomoses 121
121 (120) Radial muscles originating from the outer side of coronal muscle 1919)Radial muscles originating from the middle of coronal muscle
Cyanea mjobergi (Stiasny, 1921)
122 (113) Stomach pouches 32 123
- Stomach pouches 16 124
123 (122) Subgenital pits heart-shaped Sanderia malayensis (Goette, 1886)Subgenital pits horseshoe-shapedSanderia pampinosus (Gershwin \& Zeidler, 2008)
124 (122) Marginal lappets 16 125
- Not as above 126
125 (124) Nematocyst warts about as long as wide
Pelagia noctiluca (Forsskål, 1775)
- Nematocyst warts highly protrusive, more long than wide
Pelagia flaveola (Eschscholtz, 1829)
126 (124) Marginal lappets 48 127
- Marginal lappets 32 129
127 (126) Tentacles all alike Chrysaora fulgida (Reynaud, 1830)
- Tentacles different in length 128
128 (127) Tentacles usually 5 per octant, 1 central primary, 2 lateral secondaryabout half in length, 2 tertiary, between former two types, about \(1 / 4\) aslong as the median.Chrysaora lactea (Eschscholtz, 1829)
- Tentacles 5 per octant, 3 primary arising from deep cleft between tentacu-lar lappets and 2 lateral and shorter secondary, arising from subumbrellarside of rhopalar lappets Chrysaora quinquecirrha (Desor, 1848)
129 (126) Tentacles 8 Chrysaora colorata (Russel, 1964)
- Tentacles 24 130
130 (129) Exumbrella yellowish-brown or reddish-yellow with 32-rayed chestnut-brown starChrysaora fusescens (Brandt, 1835)
- Not as above 131
131 (130) Exumbrella reddish-brown or purplish-pink with 16 broad, darker radial bands and numerous light spots Chrysaora plocamia (Lesson, 1830)
- Not as above 132
132 (131) Oral arms extremely large with frilly margins, hardly coiled to form a dense mass Chrysaora
achlyos (Martin, Gershwin, Burnett, Cargo \& Bloom, 1997)
- Oral arms linear, with broad frilly margins, more or less coiled aroundcentral body133
133 (132) Exumbrella golden-brown, with darker margins, sometimes with 16-32 lighter radial stripes Chrysaora fuscescens (Brandt, 1835)
- Not as above 134
134 (133) Stomach pouches all-alike Chrysaora hysoscella (Linnaeus, 1766)
- Stomach pouches unequal, tentacular ones slightly broader proximally anddistally than rhopalar ones............ Chrysaora melanaster (Brandt, 1838)
135 (88) Umbrella with papillar knobs 136
- Umbrella without papillar knobs 138
136 (135) Oral arms without filaments Lobonemoides sewelli Rao, 1931
- Oral arms with filaments 137
137 (136) Intracircular anastomosing network in communication with the inter-rhopalar canals.Lobonema smithii Mayer, 1910
- Intracircular anastomosing network not in communication with the in-ter-rhopalar canalsLobonemoides robustus Stiasny, 1920
138 (135) Oral arms dichotomous 139
- Oral arms three-winged 159
139 (138) Medusa with 4 completely separated subgenital cavities 140
- Medusa with 4 not completely separated subgenital cavities 147
140 (139) Oral arms \(3 / 4\) the lenght of bell radius.......Cassiopea frondosa (Pallas, 1774)
- Not as above 141
141 (140) Oral arms cylindrical, slender, somewhat longer than bell radius Cassiopea ornata Haeckel, 1880
- Not as above 142
142 (141) Oral arms very large, flat, with 6-8 short, wide-spreading main branches ..
Cassiopea depressa Haeckel, 1880
- Not as above 143
143 (142) Oral arms \(11 / 4\) times the lenght of bell radius, triangular in cross-section, aboral surface broad and flat, with 10-15 alternate primary branches
Cassiopea xamachana Bigelow, 1892
- Not as above 144
144 (143) Oral arms wide, flat, with 4-6 flat, short tree-shaped side branches Cassiopea andromeda (Forskål, 1775)
- Not as above 145
145 (144) Oral arms with numerous small lateral branches in their proximal por- tion Cassiopea medusa Light, 1914
Oral arms cylindrical, 1 1/2 times as long as bell radius, branched tree- like 146
146 (145) Species with numerous large club-shaped vesicles
Cassiopea mertensi Brandt, 1838
- Species without ribbon-like filaments
Cassiopea ndrosia Agassiz \& Mayer, 1899
147 (139) Oral arms without filaments 148
- Oral arms with filaments 150
148 (147) Exumbrella without a central rised dome
Marivagia stellata (Galil \& Gershwin, 2010)
- Exumbrella with a central rised dome 149
149 (148) More than 1 cupolar warts
Netrostoma dumokuroa (Agassiz \& Mayer, 1899)
- 1 cupolar wart Netrostoma nuda (Gershwin \& Zeidler, 2008)
150 (147) In each octant 3 radial canals 151
- In each octant more than 3 radial canals 153
151 (150) Between the mouths two kinds of appendagesNetrostoma coerulescens Maas, 1903
- Between the mouths numerous appendages 152
152 (151) Exumbrella with a central rised domeNetrostoma setouchianum (Kishinouye, 1902)
Exumbrella without a central rised dome
Cephea octostyla (Forskål, 1775)
153 (150) Exumbrella without a central rised dome
Polyrhiza vesiculosa (Agassiz, 1862)
- Exumbrella with a central rised dome 154
154 (153) Medusa with warts on the central portion of the exumbrella 155
- Medusa without warts on the central portion of the exumbrella 156
155 (154) Radial canals 5-6 per ottante Cephea cephea (Forskål, 1775)
Radial canals 7 per ottante Cephea coerulea Vanhöffen, 1902
156 (154) In each octant 4-6 radial canals....Cotylorbiza erythraea Stiasny, 1920
- Not as above 157
157 (156) In each octant 7-9 radial canals.... Cotylorhiza tuberculata (Macri, 1778)
- In each octant more than 11 radial canals 158
158 (157) Radial canals 11-13 per ottante......Cotylorbiza ambulacrata Haeckel, 1880
- Radial canals 16-17 per ottante..... Cotylorhiza pacifica (Mayer, 1915)
159 (138) Oral arms triangular 160
- Oral arms not triangular 162
160 (159) Oral arms terminate in a short, oval knob
Thysanostoma loriferum (Ehrenberg, 1835)
- Not as above 161
161 (160) Oral arms terminate in a long, tapering filament
Thysanostoma flagellatum (Haeckel, 1880)- Oral arms without a terminal portionThysanostoma thysanura Haeckel, 1880
162 (159) Oral arms not pyramidal 163
- Oral arms pyramidal 181
163 (162) Oral arms broad 164
- Oral arms of normal width 169
164 (163) Oral arms without filaments 165
- Oral arms with filaments 166
165 (164) Oral arms without terminal clubs.... Lychnorhiza malayensis Stiasny, 1920
- Oral arms with terminal clubs.... Pseudorhiza aurosa von Lendenfeld, 1 1882
166 (164) Oral arms with terminal clubs 167
- Oral arms without terminal clubs 168
167 (166) Medusa without a single filament at the distal end of one of the oral arms Anomalorbiza shawi Light, 1921
- Medusa with a single filament at the distal end of one of the oral arms...
Pseudorhiza haeckeli Haacke, 1884
168 (166) In each octant 8 velar lappets Lychnorhiza arubae Stiasny, 1920
- In each octant 4 velar lappets Lychnorhiza lucerna Haeckel, 1880
169 (163) Oral arms coalesced throughout their entire length 170
- Oral arms coalesced in proximal portion only 171
170 (169) Velar lappets about 14 in each octant
Stomolophus meleagris Agassiz, 1862
Velar lappets about 24 in each octant
Stomolophus fritillaria Haeckel, 1880
171 (169) Oral arms with filaments 172
- Oral arms without filaments 175
172 (171) Umbrella more than 100 cm wide
Nemopilema nomurai (Kishinouye, 1922)
- Umbrella less than 100 cm wide 173
173 (172) Velar lappets 14-20 in each octant
Rhopilema esculentum Kishinouye, 1891
- Velar lappets 8 in each octant 174174 (173) Exumbrella with sharply conical warts
Rhopilema bispidum (Vanhöffen, 1888)
- Exumbrella with blunt tuberculation
Rhopilema nomadica Galil, Spanier \& Ferguson, 1990
175 (171) Oral arms with clubs 176
- Oral arms without clubs 177
176 (175) Velar lappets 14-20 in each octant
Rhopilema rhopalophorum Haeckel, 1880
- Velar lappets 6 in each octant Rhopilema verrilli (Fewkes, 1887)
177 (175) Oral arms without terminal clubs 178
- Oral arms with terminal clubs 179
178 (177) Umbrella ca. 150 mm wide; marginal lobes rectagular in shape Eupilema scapulare Haeckel, 1880
- Umbrella ca. 400 mm wide; marginal lobes triangular in shape
Eupilema inexpectata (Pages, Gili \& Bouillon, 1992)
179 (177) Proximal portion of oral arms considerably longer than distal portion Rhizostoma luteum (Quoy \& Gaimard, 1827)
- Proximal portion of oral arms about as long as distal portion. 180
180 (179) Taxon present in the Mediterranean and in the Atlantic Ocean Rhizostoma pulmo (Macri, 1778)
- Taxon present in the North Sea only Rhizostoma octopus (Macri, 1778)
181 (162) Oral arms shorter than usual. 182
- Oral arms of normal lenght 195
182 (181) Oral arms without terminal appendages 183
- Oral arms with terminal appendages 184
183 (182) Medusa with rhopalar canals with anastomoses throughout thier length .Mastigietta palmipes (Haeckel, 1880)
- Medusa with perradial rhopalar canals without anastomoses, interradialcanals with anastomoses.Versuriga anadyomene (Maas, 1903)
184 (182) Intracircular mesh-work of canals never communicating with the rho-palar canals185
\begin{tabular}{|c|c|}
\hline - & Intracircular mesh-work of canals usually communicating with the rhopalar canals \(\qquad\) \\
\hline \multirow[t]{2}{*}{185 (184)} & Terminal appendages nearly as long as the oral arms............................ \\
\hline & Phyllorhiza pacifica (Light, 1921) \\
\hline - & Terminal appendages very long, with distal expansion 186 \\
\hline 186 (185) & Oral filaments without a triple heart-shaped knob; bell diameter far larger than 25 cm \(\qquad\) Phyllorbiza punctata (von Lendenfeld, 1884) \\
\hline - & Oral filaments with a triple heart-shaped knob; bell of ca. 25 cm of diameter \(\qquad\) Phyllorhiza peronlesueuri (Goy, 1990) \\
\hline 187 (184) & Mouth arms twice as long as disk radius 188 \\
\hline - & Not as above.. 189 \\
\hline \multirow[t]{2}{*}{188 (187)} & In each octant more than 10 ca \\
\hline & Mastigias pantherinus Haeckel, 1880 \\
\hline - & In each octant up to 10 canal-roots........ Mastigias siderea Chun, 1896 \\
\hline 189 (187) & Mouth arms shorter than disk radius ... 190 \\
\hline - & Mouth arms long as disk radius .. 192 \\
\hline \multirow[t]{2}{*}{190 (189)} & In each octant more than 10 cana \\
\hline & .. Mastigias ocellatus (Modeer, 1791) \\
\hline - & In each octant up to 10 canal-roots... 191 \\
\hline \multirow[t]{2}{*}{191 (190)} & Vaulted bell, thin at margin but very thick at ap \\
\hline & .. Mastigias gracilis (Vanhöffen, 1888) \\
\hline \multirow[t]{2}{*}{-} & Doubtful species, flat and hat-shaped bell, average size unknown \\
\hline & .. Mastigias roseus (Reynaud, 1830) \\
\hline 192 (189) & In each octant up to 10 canal-roots... 193 \\
\hline - & In each octant more than 10 canal-roots...................................... 194 \\
\hline 193 (192) & Umbrella not flat.............................Mastigias papua (Lesson, 1830) \\
\hline - & Umbrella flat, disk-shaped Phyllorhiza luzoni Mayer, 1915 \\
\hline \multirow[t]{2}{*}{194 (192)} & Perradial rhopalar canals not bottle-shaped.. \\
\hline & .. Mastigias albipunctatus Stiasny, 1920 \\
\hline \multirow[t]{2}{*}{-} & Perradial rhopalar canals bottle-shaped .. \\
\hline & Mastigias andersoni Stiasny, 1926 \\
\hline 195 (181) & Oral arms with filaments .. 196 \\
\hline - & Oral arms without filaments .. 199 \\
\hline 196 (195) & Intracircular anastomosing network not in communication with the rhopalar canals \(\qquad\) 197 \\
\hline - & Intracircular anastomosing network in communication with the rhopalar canals. \(\qquad\) 198 \\
\hline 197 (196) & Distal three-winged portion of oral arms about twice as long as proximal simple portion. \(\qquad\) Crambione bartschi (Mayer, 1910) \\
\hline - & \begin{tabular}{l}
Distal three-winged portion of oral arms as long as proximal simple portion \\
Crambione mastigophora Maas, 1903
\end{tabular} \\
\hline \multirow[t]{2}{*}{198 (196)} & Oral arms narrow with short filaments.. \\
\hline & ...Acromitus flagellatus (Maas, 1903) \\
\hline
\end{tabular}
- Oral arms thick and broad with long filaments
Acromitus maculosus Light, 1914
199 (195) Oral arms with terminal clubs 200
- Oral arms without terminal clubs 202
200 (199) In each octant 10 velar lappets
Leptobrachia leptopus (Chamisso \& Eysenhardt, 1821)
- Not as above 201
201 (200) In each octant 16 velar lappets Crambionella orsini (Vanhoffen, 1888) Crambionella stuhlmanni (Chun, 1896) - In each octant 12 velar lappets - In each octant 12 velar lappets
202 (199) Intracircular anastomosing network not in communication with the rho- palar canals 203
- Intracircular anastomosing network in communication with the rhopalar canals 204
203 (202) In each octant 4 cleft velar lappets
Acromitoides purpurus (Mayer, 1910)
- In each octant at least 5 cleft velar lappets Acromitoides stiphropterus (Schultze, 1897)
204 (202) Distal three-winged portion of oral arms \(1 / 6\) as long as proximal simple portion Catostylus mosaicus (Quoy \& Gaimard, 1824)Not as above.. 205
205 (204) Distal three-winged portion of oral arms 6 times as long as proximal sim-ple portion.Catostylus perezi Ranson, 1945
- Not as above 206
206 (205) Distal three-winged portion of oral arms 5 times as long as proximal sim- ple portion Catostylus viridescens (Chun, 1896)
- Not as above 207
207 (206) Distal three-winged portion of oral arms half as long as proximal simple portion Catostylus tripterus (Haeckel, 1880)
Not as above 208
208 (207) Distal three-winged portion of oral arms as long as proximal simple por- tion Catostylus ornatellus (Vanhöffen, 1888)
- Distal three-winged portion of oral arms 2-4 times as long as proximalsimple portion209
209 (208) Oral arms \(2 / 3\) the length of bell diameterCatostylus townsendi Mayer, 1915
- Not as above 210
210 (209) Oral arms 1-1,5 times the length of bell radius
Catostylus cruciatus (Lesson, 1830)
Oral arms as long as bell diameter........ Catostylus tagi (Haeckel, 1869) - Oral arms as long as bell diameter.

\section*{Discussion}

Digital resources on biodiversity can be relevant not only to researchers, but also to laypeople, such as tourists or citizen scientists. The importance of involving citizens in understanding, monitoring and protecting biodiversity has been recently expressed by the European Commission, in the document "Establishing Horizon 2020" (EU Regulation no. 1291/2013). However, most of the biodiversity-related resources available in the Web - especially the ones dedicated to to "difficult" groups, such as jellyfish - are normally devoted almost exclusively to experts (Martellos and Nimis 2015). Exposing scientific information in a form which can be accessible to everybody - without losing its content and informative value - can be a true revolution. Many citizens, especially if already interested in nature and aware of environmental issues (e.g. the presence of invasive alien species), are potentially interested in similar resources. Hence digital resources can be used to involve a wider amount of citizens in scientific tasks, such as the collection of those "big data" which are nowadays fundamental to researchers. The examples of OPAL initiative in the British Isles (http://www.opalexplorenature.org; accessed 08 August 2015) or, in the field of jellyfish, of MeteoMedusa (Boero 2013, Boero et al. 2013), and JellyWatch (http://www.jellywatch.org/; accessed 08 August 2015) are demonstrating the effectiveness of a citizen science approach in collecting scientific data.

JellyWeb is based on morpho-anatomic and taxonomic data, collected and organized in ca. 10 years of research. The development of the portal (Martellos and Nimis 2015) was based upon the experience of the European project KeyToNature (mainly devoted to digital identification) and of the project Dryades (devoted to the pubblication of biodiversity data in the web). This is the first portal devoted to organisms other than vascular plants developed by the research unit of the Dept. of Life Science of the University of Trieste. During its development, a particular attention was paid to user interfaces, in order to provide high quality scientific information in the most straightforward way, and to make it useable by the wider audience as possible.

The multi-entry interface can be useful to both researchers (whom can simply type the name of a taxon to retrieve related information or generate an identification key), and laypeople (whom can use it to start the identification of a jellyfish they have just seen on the seashore). As a further help, interactive keys are enriched by images and drawings of the most relevant characters. Since digital keys are generated in real time, on the basis of the list of remaining organisms, each query produces a different identification key.

Since identification is nowadays often based on molecular analysis, the system has been developed to host molecular data as well. In fact, several attempts to revise the taxonomy of the various taxa like the Discomedusae on the basis of morphological observations integrated with genetic analysis are underway, highlighting several critical points, such as the recognition of cryptic species in the Aurelia complex within the "traditional" species Aurelia aurita (Dawson and Jacobs 2001, Dawson and Martin 2001, Dawson 2003, Dawson et al. 2005, Ramšak et al. 2012), or even at higher taxonomic levels like the proposition of at least two new families within the Semaeostomeae
(Bayha and Dawson 2010, Straehler-Pohl et al. 2011). The integration of molecular information in a digital identification system by using the FRIDA software was studied by Bruni et al. (2012) for vascular plants.

\section*{Conclusion}

JellyWeb is an accumulative system, which can potentially host all data on Scyphozoa, Cubozoa and Staurozoa, and even extend its aim to other groups of the phylum Cnidaria. However, a research group alone can hardly complete such a challenging task. The research unit at the University of Trieste plans to maintain and enrich JellyWeb, but its growth could be faster, if other research groups join this effort. A researcher, or a research group, can contribute to the system by:
- Fostering a taxon (such as a genus, or a family). This can be done by managing an instance of the FRIDA system. FRIDA allows to different authors to independently manage separate instances, while at the same time contributing to the same database of morphological ans anatomical data, hence, generating updated multi-authored keys to any subset of taxa in the whole system (for a complete description see Martellos 2010). All the digital keys which are generated by the system give credit to the authors of all the data. The keys and all the data and images in JellyWeb are always distributed under a Creative Commons share alike, by attribution 3.0 license (CC 3.0 by-sa).
- Contributing to the image archive. High quality images of morphological and anatomical characters and of the whole organisms are probably the most relevant bottlenecks in the process of creating a portal such as JellyWeb. Especially when identifing a taxon, digital images are of capital relevance, both for choosing among the leads of each choice, and as visual census when an identification has been achieved. Several species of Scyphozoa, Cubozoa and Staurozoa are known for one or few specimens, and, even when the taxa are well known, high quality images are, however, scarce. JellyWeb was developed to host a virtually unlimited number of images for each taxon. Each image is displayed with credits to the author(s) and owner(s), institution(s), other metadata, and license.
- Producing descriptions. Another relevant bottleneck in developing digital identification keys and portals to one or more groups of organisms are their descriptions. While taxonomic descriptions can be found in books and papers, descriptions which could be actually useful to people other than researches are difficult to produce. In our experience, to be appreciated by a wider audience, they should mix different sources of information, from ecology to taxonomy, from distribution to human uses, relevance for economy, etymology of the name, etc. Hence, their production is not a simple cut and paste, but a relevant effort of analysis and synthesis.

Potential contributor can contact Massimo Avian (avian@units.it), to define the extent of their participation.

\section*{Acknowledgements}

The authors are grateful to all the researchers and students (Balboni, Benci, Coral, Sarto, Savonitto, Sola) who contributed to this study. We are also grateful to Dr. Rodolfo Riccamboni, who developed the code of the multi-entry interface of the portal, and to Prof. Pierluigi Nimis, for his suggestions and comments. We are also grateful do Mrs. Sara Triulzi for English language check.

\section*{References}

Balboni G (2008) Medusaweb: progettazione e realizzazione di un database e di strumenti digitali interattivi per l'identificazione di Scyphozoa e Cubozoa. Master Thesis, University of Trieste, Trieste.
Bayha KM, Dawson MN (2010) New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), empahisezes evolution in functional morphology and trophic ecology of gelatinous zooplankton. Biological Bulletin 219: 249-267.
Benci E (2008) Progettazione e sviluppo di un database consultabile in rete su Scyphozoa e Cubozoa. Undergr. Thesis, University of Trieste, Trieste.
Benci C (2012) Analisi critica ed aggiornamento del database Medusaweb. Scyphozoa: ordine Kolpophorae, famiglia Mastigiidae. Undergr. Thesis, University of Trieste, Trieste.
Berendsohn WG, Chavan V, Macklin JA (2010) Recommendations of the GBIF task group on the global strategy and action plan for the mobilisation of natural history collections data. Journal of Biodiversity Informatics 7: 67-71.
Boero F (2013) Review of jellyfish blooms in the Mediterranean and Black Sea. GFCM Studies and Reviews 92: 1-53.
Boero F, Belmonte G, Bracale R, Fraschetti S, Piraino S, Zampardi S (2013) A salp bloom (Tunicata, Thaliacea) along the Apulian coast and in the Otranto Channel between MarchMay 2013. F1000Research 2: 181. doi: 10.12688/f1000research.2-181.v1
Brosse S, Beauchard O, Blanchet S, Dürr HH, Grenouillet G, Hugueny B, Lauzeral C, Leprieur F, Tedesco PA, Villéger S, Oberdorff T (2013) Fish-SPRICH: a database of freshwater fish species richness throughout the World. Hydrobiologia 700(1): 343-349. doi: 10.1007/s10750-012-1242-6

Bruni I, De Mattia F, Martellos S, Galimberti A, Savadori P, Casiraghi M, Nimis PL, Labra M (2012) DNA Barcoding as an Effective Tool in Improving a Digital Plant Identification System: A Case Study for the Area of Mt. Valerio, Trieste (NE Italy). PLoS ONE 7(9): e43256. doi: 10.1371/journal.pone. 0043256
Calder DR, King RA (2008) An illustrated key to the Scyphozoa and Cubozoa of the South Atlantic Bight. Southeastern Regional Taxonomic Center, South Carolina Department of Natural Resources, Charleston, South Carolina, 18 pp. http://www.dnr.sc.gov/marine/ sertc/SAB_jellies_key.pdf [accessed 12 April 2014]
Calder DR (2009) Cubozoan and scyphozoan jellyfishes of the Carolinian Biogeographic Province, southeastern USA. Royal Ontario Museum Contributions in Science 3: 1-58.

Carvajal-Vallejos FM, Bigorne R, Zeballos Fernández AJ, Sarmiento J, Barrera S, Yunoki T, Pouilly M, Zubieta J, Barra E, Jegú M, Maldonado M, Damme P, Céspedes R, Oberdorff T (2014) Fish-AMAZBOL: a database on freshwater fishes of the Bolivian Amazon. Hydrobiologia 732(1): 19-27. doi: 10.1007/s10750-014-1841-5
Coral C (2012) Analisi critica ed aggiornamento del database "Medusaweb". "Scyphozoa Discomedusae - Rhizostomeae - Kolpophorae - Cepheidae". Undergr. Thesis, University of Trieste, Trieste.
Cornelius PFS (1997) Keys to the genera of Cubomedusae and Scyphomedusae (Cnidaria). In: den Hartog JC (Ed.) Proceedings of the \(6^{\text {th }}\) International Conference on Coelenterate Biology, 1995. Nationaal Natuurhistorisch Museum, Leiden, 109-122.
Dallwitz MJ (1980) A general system for coding taxonomic descriptions. Taxon 29: 41-6. doi: 10.2307/1219595

Dawson MN (2003) Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology 143: 369-379. doi: 10.1007/s00227-003-1070-3
Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin 200: 92-96. doi: 10.2307/1543089
Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa: Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259-273. doi: 10.1023/A:1011869215330
Dawson MN, Gupta AS, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America 102: 1196811973. doi: 10.1073/pnas. 0503811102

Fegraus EH, Andelman S, Jones MB, Schildhauer M (2005) Maximizing the value of ecological data with structured metadata: an introduction to ecological metadata language (EML) and principles for metadata creation. Bulletin of the Ecological Society of America 86(3): 158-168. doi: 10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM, Gilbert J, Glöckner FO, Hirschman L, Karsch-Mizrachi J, Klenk HP, Knight R, Kottmann R, Kyrpides N, Meyer F, San Gil I, Sansone SA, Schriml LM, Sterk P, Tatusova T, Ussery DW, White O, Wooley J (2011) The Genomic Standards Consortium. PLoS Biol 9: 6. doi: 10.1371/ journal.pbio. 1001088
GBIF (2010) Best Practices in Publishing Species Checklists, 10 pp. http://www.gbif.org/ orc/?doc_id=2869 [accessed 12 April 2014]
Hagedorn G, Rambold G, Martellos S (2010) Types of identification keys. In: Nimis PL, Vignes Lebbe R (Eds) Tools for Identifying Biodiversity: Progress and Problems, 59-64.
Holetschek J, Dröge G, Güntsch A, Berendsohn WG (2012) The ABCD of rich data access to Natural History Collections. Plant Biosystems 146(4): 771-779. doi: 10.1080/11263504.2012.740085

King N, Krishtalka L, Chavan V (2010) Thoughts on implementation of the recommendations of the GBIF task group on a global strategy and action plan for mobilisation of natural history collections data. Journal of Biodiversity Informatics 7: 72-76. doi: 10.17161/bi.v7i2.4019

Martellos S (2010) Multi-authored interactive identification keys: The FRIDA (FRiendly IDentificAtion) package. Taxon 59: 922-929.
Martellos S (2012) From a textual checklist to an information system: The case study of ITALIC, the Information System on Italian Lichens. Plant Biosystems 146: 764-770. doi: 10.1080/11263504.2012.740088

Martellos S (2014) A federated database of taxon pages in the Italian Biodiversity Network. Plant Biosystems. doi: 10.1080/11263504.2014.988191
Martellos S, Attorre F (2012) New Trends in Biodiversity Informatics. Plant Biosystems 146(4): 749-751.
Martellos S, Nimis PL (2015) From Local Checklists to Online Identification Portals: A case study on vascular plants. PLoS ONE 10(3): e0120970. doi: 10.1371/journal.pone. 0120970
Mills CE (1999) Stauromedusae: list of all valid species names. http://faculty.washington.edu/ cemills/Staurolist.html [accessed 12 April 2015]
Morandini AC, Ascher D, Stampar SN, Ferreira JFV (2005) Cubozoa e Scyphozoa (Cnidaria: Medusozoa) de águas costeiras do Brasil. Iheringia (Série Zoologia) 95: 281-294.
Nimis PL, Martellos S (2009) Computer-aided tools for identifying organisms and their importance for protected areas. Journal on Protected Mountain Areas Research 1:55-60.
Nimis PL, Riccamboni R, Martellos S (2012) Identification keys on mobile devices: the Dryades experience. Plant Biosystems 146: 783-788. doi: 10.1080/11263504.2012.740089
Ramšak A, Stopar K, Malej A (2012) Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria: Scyphozoa) in European Seas. Hydrobiologia 690: 69-80. doi: 10.1080/11263504.2012.740092
Randlane T, Saag A, Martellos S, Nimis PL (2010) Computer-aided, interactive keys to lichens in the EU project KeyToNature, and related resources. Bibliotheca Lichenologica 105: 37-42.
Rodriguez C, Marques AC, Stampar SN, Morandini AC, Christiansen E, Genzano G, Mianzan HW (2011) The taxonomic position of the pelagic 'staurozoan' Tessera gemmaria as a ceriantharian larva. Zootaxa 2971: 49-58.
Sarto R (2009) Analisi critica ed aggiornamento del database Medusaweb. Cubozoa: Carybdeidae e Chirodropidae. Undergr. Thesis, University of Trieste, Trieste.
Savonitto M (2012) Analisi critica e aggiornamento del database Medusaweb. Scyphozoa: ordine Daktyliophorae, famiglia Rhizostomatidae e Stomolophidae. Undergr. Thesis, University of Trieste, Trieste.
Sola M (2009) Sviluppo della chiave digitale interattiva Medusaweb: Ord. Semaeostomeae. Master thesis. University of Trieste, Trieste, Italy.
Straehler-Pohl L, Widmer CD, Morandini A (2011) Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae). Zootaxa 2741: 1-37.
Ukosich L (2014) Una panoramica su un portale interattivo di Scyphozoa e Cubozoa. Undergr. thesis. Thesis, University of Trieste, Trieste.
Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An Evolving Community-Developed Biodiversity Data Standard. PLoS ONE 7(1): e29715. doi: 10.1371/journal.pone. 0029715

\title{
A new species of open-air processional column termite, Hospitalitermes nigriantennalis sp. n. (Termitidae), from Borneo
}

\author{
Syaukani Syaukani', Graham J. Thompson \({ }^{2}\), Herbert Zettel \({ }^{3}\), Teguh Pribadi \({ }^{4}\) \\ I Department of Biology, Faculty of Mathematics and Natural Science, Syiah Kuala University Darussalam 23111, Banda Aceh, Indonesia 2 Department of Biology, University of Western Ontario, 1151 Richmond Road North, London N6A 5B7, Ontario, Canada 3 Entomological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria 4 Department of Forestry, Faculty of Agriculture, PGRI University of Palangkaraya, Central Kalimantan 73112, Indonesia
}

Corresponding author: Syaukani Syaukani (syaukani@gmail.com)

Academic editor: E. Cancello \| Received 23 August 2015 | Accepted 27 October 2015 | Published 18 January 2016
http://zoobank.org/4B9B51D3-260B-49B9-8DAD-9C4FF66101A2
Citation: Syaukani S, Thompson GJ, Zettel H, Pribadi T (2016) A new species of open-air processional column termite, Hospitalitermes nigriantennalis sp. n. (Termitidae), from Borneo. ZooKeys 554: 27-36. doi: 10.3897/zookeys.554.6306

\begin{abstract}
A new species of open-air processional column termite is here described based on the soldier and worker castes from eight colonies in north Barito, central Kalimantan. Hospitalitermes nigriantennalis sp. \(\mathbf{n}\). is readily distinguished in the field from related Hospitalitermes spp. by the light brown to orangish coloration of the soldier head capsule that, further, is with vertex yellowish and nasus brownish. The soldier antenna and the maxillary and labial palps are blackish. By contrast, soldiers from other species of Hospitalitermes from this region have a uniformly black head capsule and antennae. Finally, \(H\). nigriantennalis sp. n. has a minute indentation in the middle of the posterior part of head capsule, which further helps to differentiate this new species from other Hospitalitermes from the Indo-Malayan and Austro-Malayan regions.
\end{abstract}

\section*{Keywords}

Termite, Hospitalitermes, new species, central Kalimantan, Borneo

\footnotetext{
Copyright Syaukani Syaukani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
}

\section*{Introduction}

More than 2,900 living termite species (Engel et al. 2009) belonging to 281 genera have been described worldwide (Krishna et al. 2013). This diversity is partitioned among nine families, six of which (Kalotermitidae, Archotermopsidae, Hodotermitidae, Rhinotermitidae, Stylotermitidae, and Termitidae) are known from the Oriental region (Roonwal 1970). Three of these (Kalotermitidae, Rhinotermitidae and Termitidae) have been recorded in the Indo-Malayan sub-region of Asia (Ahmad 1965, Thapa 1981, Tho 1992).

The open-air processional column termites consist of three genera: Hospitalitermes Holmgren, 1912, Lacessititernes Holmgren, 1912 and Longipeditermes Holmgren, 1912 (Syaukani et al. 2011). Most species of this group are conspicuous because, unlike the vast majority of termites, workers and soldiers forage above ground or on leaf litter in processional columns (Tho 1992, Jones and Gathorne-Hardy 1995, Miura and Matsumoto 1998, Syaukani 2010, Syaukani et al. 2011). Almost all individuals are relatively quick moving, as evidenced by their disproportionately long legs. Further, they are heavily pigmented, which is presumably related to their above-ground lifestyle and camouflage on leaf litter (Jones and Gathorne-Hardy 1995). This three-genus group has been well described, and much is know about its distribution, caste system and feeding behavior (Kalshoven 1958, Roonwal 1970, Collins 1979, Jones and GathorneHardy 1995, Miura and Matsumoto 1998, Jones and Brendell 1998).

Seven species have previously been recorded from Borneo: H. hospitalis (Haviland, 1898), H. hospitaloides (Holmgren, 1913), H. rufus (Haviland, 1898), H. lividiceps (Holmgren, 1913), H. umbrinus (Haviland, 1898), H. flaviventris (Wasmann, 1902) and H. medioflavus (Holmgren, 1913) (Krishna et al. 2013). In this paper the eighth species from this region is described.

\section*{Material and methods}

Specimens of Hospitalitermes nigriantennalissp. n. were collected from a processional column on the primary forest floor in Pararawen Nature Reserve, Muara Teweh, North Barito, Central Kalimantan (Borneo), Indonesia. The head, body (in profile), pronotum and antenna of the soldier caste (preserved in \(70 \%\) ethanol) were photographed using a digital microscope (Olympus SZX12 and Nikon DS-Fi2, Japan). From these images, multi-focused montages were constructed using Helicon Focus 6.2.2 software (Helicon Soft Ltd. Kharkov Ukraine). General morphological terminology used for describing soldiers and workers follow Roonwal and Chhotani (1989), Sands (1998), Tho (1992) and Syaukani et al. (2011).

Measurements of the soldier body parts specifically follow precedent from Roonwal and Chhotani (1989) and Tho (1992). Head capsule length including nasus (HLN), head capsule length excluding nasus (HL), nasus length (NL), nasus index = NL/HL, maximum head width at anterior part (HWA), maximum head width at posterior part (HWP), maximum height of head capsule excluding postmentum (HH), pronotum length (PL), and pronotum width (PW). Measurements for the soldier caste are summarized in Table 1.

\section*{Systematics}

\section*{Family Termitidae Latreille, 1802 Genus Hospitalitermes Holmgren, 1913}

\section*{Hospitalitermes nigriantennalis Syaukani \& Thompson, sp. n.} http://zoobank.org/1EEA9B9D-A871-41EB-A2F7-38055284D924
Figs 1-15

Description. Imago. Unknown.
Soldier (Figs 1-5). Head capsule pale brown to orange with yellowish vertex and dark brown nasus; nasus paler in basal part and darker in apical part; antenna uniformly blackish, contrasting with head capsule. Pronotum in dorsal view as darker than head capsule. Abdominal tergites are gold orange to pale brown. Coxae are blackish brown; femora and tibiae pale to dark brown.

Head capsule in dorsal view strongly constricted behind antennal sockets, with anterior part excluding nasus much smaller than posterior part in size; median portion of its posterior margin nearly straight with a minute indentation in the middle; dorsal outline (including nasus) in profile weakly concave, while posterior part of head capsule fairly developed. Nasus in dorsal view more than half as long as receiving head capsule, basal part much wider than tip. Antenna with 14 segments; third segment longer than fourth, while fourth and fifth segment are nearly equal, \(6^{\text {th }}-14^{\text {th }}\) gradually decreasing in length. Pronotum in dorsal view with anterior margin moderately indented in middle and posterior margin roundly convex.

Worker (Figs 6-13). Dimorphic. Largest workers. Head capsule dark brown to black; epicranial suture pale brown; fontanel brown to dark brown; labrum pale brown to dark brown; clypeus blackish brown to black; anteclypeus dark brown; antenna dark brown to blackish. Antenna consisting of 15 segments; third segment longer than fourth, while the fourth segment is slightly shorter than fifth, \(6^{\text {th }}-15^{\text {th }}\) gradually increasing in length. Left mandible: apical tooth clearly shorter than first marginal tooth;

Table I. Measurements (in mm) for \(\mathrm{n}=20\) soldiers of Hospitalitermes nigriantennalis sp . n . from eight colonies.
\begin{tabular}{l|c|c}
\hline Character & Holotype & Size range \\
\hline Head capsule length including nasus & 1.72 & \(1.64-1.72\) \\
\hline Head capsule length excluding nasus & 1.18 & \(1.01-1.19\) \\
\hline Nasus length & 0.65 & \(0.63-0.65\) \\
\hline Nasus index & 0.55 & \(0.60-0.61\) \\
\hline Maximum head width at anterior part & 0.58 & \(0.55-0.60\) \\
\hline Maximum head width at posterior part & 1.06 & \(1.00-1.07\) \\
\hline Maximum height of head capsule excluding postmentum & 0.82 & \(0.75-0.82\) \\
\hline Pronotum length & 0.37 & \(0.32-0.37\) \\
\hline Pronotum width & 0.62 & \(0.56-0.63\) \\
\hline
\end{tabular}

Figures I-3. Soldiers of Hospitalitermes nigriantennalis sp. n. Habitus in profile (I), head in profile (2), head in dorsal view (3). Scale bars: \(0.5 \mathrm{~mm}(\mathbf{I}), 0.3 \mathrm{~mm}(\mathbf{2}, \mathbf{3})\).
anterior edge of first marginal tooth distinctly longer than posterior edge; second marginal tooth absent, incorporated into cutting edge between first and third marginal teeth; third marginal tooth smaller than first marginal tooth, weakly protruding from

Figures 4-5. Soldier of Hospitalitermes nigriantennalis sp. n. Antenna (4) and pronotum (5). Scale bars: \(0.3 \mathrm{~mm}(\mathbf{4}), 0.2 \mathrm{~mm}(\mathbf{5})\).
cutting edge and separated from molar prominence by a distinct gap; fourth marginal tooth retracted, completely hidden behind molar prominence. Right mandible: first marginal tooth with anterior edge down-curved; second marginal tooth weakly recognized and separated from much larger first marginal tooth; posterior edge of second marginal tooth straight; outline of molar plate weakly visible; cockroach notch of molar plate absent.

Comparisons. Hospitalitermes nigriantennalis \(\mathrm{sp} . \mathrm{n}\). is separated from the other species from Indo-Malayan and Austro-Malayan sub-regions by its peculiar coloration in the soldier. Specifically, H. nigriantennalis has prominent black antennae and palps that contrast with the pale head capsule. In other species, the head capsule is uniformly dark and does not contrast with the dark antennae. Further, by morphology \(H\). nigriantennalis can be distinguished from other regional congeners \(H\). rufus, \(H\). hospitalis, H. medioflavus, H. moluccanus Ahmad, 1947, H. ferrugineus (John, 1925), H. lividiceps, H. diurnus Kemner, 1934, and H. seikii Syaukani, 2010 by comparing the head capsule; in dorsal view the posterior margin and the median portion of head capsule of \(H\). nigriantennalis are elongated. In other species the head capsule is less elongated, rounded.

Likewise, in lateral view, the dorsal outline (including nasus) in profile weakly separate this new species from congeners (e.g., H. umbrinus, H. birmanicus (Snyder, 1934), H. bicolor (Haviland, 1898), H. monoceros (Koenig, 1779), H. papuanus Ahmad, 1947, H. jepsoni (Snyder, 1934) and H. krishnai Syaukani, 2011 by its elongate form.

Material examined. Holotype: soldier collected from a mass processional column on the forest floor (leaving nest to feeding sites) in an undisturbed lowland rain forest (250 m in altitude), Pararawen Nature Reserve (\(0^{\circ} 38^{\prime} 13^{\prime \prime} S ; 114^{\circ} 41^{\prime} 10^{\prime \prime}\) E), North Barito, Central Kalimantan, Borneo. The nest was located in soil at the base of a dead standing tree (Shorea sp.), 6 m in height. Syaukani leg. 22.vi.2014. Colony code: SY-2014-Pararawen-0036. Other material from the same locality: SY-2014-PararawenC0045, C0051, C0052, C0059 (collected from nests at the base of standing tree), SY-2014-Pararawen-C0019, C0037, C0043 (collected from a processional column

Figures 6-I3. Worker of Hospitalitermes nigriantennalis sp. n. Large workers (6, 8, I0-II), small worker (7,9,I2-I3). Left \((\mathbf{I O}, \mathbf{I} \mathbf{2})\) and right \((\mathbf{I I}, \mathbf{I 3})\) mandibles. Worker head in dorsal view \((\mathbf{6}, \mathbf{7})\), worker habitus in dorsal (8,9). Scale bars: \(0.3 \mathrm{~mm}(\mathbf{6}), 0.2 \mathrm{~mm}(\mathbf{7}), 0.6 \mathrm{~mm}(\mathbf{8}, \mathbf{9}), 0.1 \mathrm{~mm}(\mathbf{I O}, \mathbf{I I}), 0.05(\mathbf{I} \mathbf{2}, \mathbf{I} \mathbf{3})\).

Figure 14. Foraging party of soldiers and workers of Hospitalitermes nigriantennaris sp. n. on the forest floor.
en masse). The holotype is deposited at Museum Zoologicum Bogoriense (MZB), Cibinong, Indonesia. Paratypes: soldiers and workers from C0019, C0036, C0037, C0043, C0045, C0051, C0052; will be depository at MZB, the Natural History Museum, London (UK), Natural History Museum Vienna (Austria), Syiah Kuala University, Darussalam, Banda Aceh (Indonesia), the Kitakyushu Museum of Natural History and Human History (Japan), and the American Museum of Natural History, New York (USA).

Etymology. This species is named after the blackish antennae in the soldier caste.
Biological observation. With the discovery of this new species, the total number of Hospitalitermes species increased to eight for the island of Borneo. This species foraged above the ground and seemed to prefer leaf litter, which may afford some protection from predators. However, when huge logs or fallen trees disrupt this cover, the soldiers can be seen running in a zigzag pattern along the column edges. This observation of soldier behavior is consistent with observations by Hoare and Jones (1998) who reported this response in Longipeditermes longipes as a response to disturbance. The strong dimorphism in coloration between the soldier and worker castes is peculiar among the members of this genus, and distinguishes this species. Finally, Hospitalitermes nigriantennalis has a dimorphic worker caste.

Figure I 5. Nest of Hospitalitermes nigriantennalis sp. n. inside a standing dead Shorea sp. trunk.

\section*{Acknowledgments}

We are grateful to Seiki Yamane (Kagoshima University, Japan) for helpful discussion and advice. We thank Katsuyuki Eguchi, Takeshi Yamasaki and Akira Shimizu (Tokyo Metropolitan University, Japan) for providing equipment for photographs and discussion. Husni, Saida Rasnovi, and M. Ali S (Syiah Kuala University, Indonesia) for assistance in the laboratory. We thank Paul Eggleton and David Jones (Natural History Museum, UK), and Rosichon Ubaidillah and Darmawan (Museum Zoologicum Bogoriense, Indonesia) for kind arrangement of the type material. Finally, we thank the Head and staffs of Central Kalimantan Natural Resources Conservation Agency (BKSDA) and Agency of Regional Conservation (SKW) III Muara Teweh for help with field surveys. This work was supported by funds from the Directorate General for Higher Education (Ministry of National Education, Indonesia) RG to Syaukani (2014-15).

\section*{References}

Ahmad M (1965) Termites (Isoptera) of Thailand. Bulletin of the American Museum of Natural History 131: 1-113
Collins NM (1979) Observations on the foraging activity of Hospitalitermes umbrinus (Haviland), (Isoptera, Termitidae) in the Gunong Mulu National Park, Sarawak. Ecological Entomology 4: 231-238. doi: 10.1111/j.1365-2311.1979.tb00580.x
Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): Their Phylogeny, Classification, and Rise to Ecological Dominance. American Museum Novitates 3650: 1-27. doi: 10.1206/651.1

Hoare A, Jones DT (1998) Note on the foraging behaviour and taxonomy of the southeast Asian termite Longipeditermes longipes (Termitidae: Nasutitermitinar). Journal of Natural History 32: 1357-1366. doi: 10.1080/00222939800770681
Jones DT, Brendel MJD (1998) The termite (Insecta: Isoptera) fauna of Pasoh Forest Reserve, Malaysia. Raffless Bulletin Zoology 46: 79-91.
Jones DT, Gathorne-Hardy F (1995) Foraging activity of the processional termite Hospitalitermes hospitalis (Termitidae: Nasutitermitinae) in the rain forest of Brunei, north-west Borneo. Insectes Sociaux 42: 359-369. doi: 10.1007/BF01242164
Kalsoven LGE (1958) Observation on the black termites, Hospitalitermes spp. of Java and Sumatra. Insectes Sociaux 5(1): 9-30. doi: 10.1007/BF02222427
Kambhampati S, Eggleton P (2000) Phylogenetics and taxonomy. In: Abe T, Bignell DE, Higashi M (Eds) Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic Publishers, Dordrecht, 1-24. doi: 10.1007/978-94-017-3223-9_1
Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History 377: 1-2704. doi: 10.1206/377.1
Miura T, Matsumoto T (1998) Open-air litter foraging in the nasute termite Longipeditermes longipes (Isoptera: Termitidae). Journal of Insect Behavior 11: 179-189. doi: 10.1023/A:1021039722402

Roonwal ML (1970) Termites of the Oriental Region. In: Krishna K, Wesneer FM (Eds) Biology of termites, Vol. 2. Academic Press, New York, 315-391
Roonwal ML, Chhotani OB (1989) The Fauna of India and the Adjacent Countries. Zoological Survey of India, Calcutta, 672 pp .
Sands WA (1998) The identification of worker caste of termite from soil of Africa and the Middle East. CAB International, Wallingford, 500 pp .
Syaukani (2010) Lacessititermes yamanei and Hospitalitermes seikii, two new species of open-air processional termites from West Sumatra, Indonesia. Malayan Nature Journal 62:349-358.
Syaukani, Thompson GJ, Yamane Sk (2011) Hospitalitermes krishnai, a new nasute termite (Nasutitermitinae, Termitidae, Isoptera), from southern Sumatra, Indonesia. ZooKeys 148: 161-169. doi: 10.3897/zookeys.148.1768
Thapa RS (1981) Termites of Sabah. Sabah Forest Record 12: 1-374.
Tho YP (1992) Termites of Peninsular Malaysia. Malayan Forest Records 36: 1-224.

\title{
Two new Megalothorax species of the minimus group (Collembola, Neelidae)
}

\author{
Clément Schneider', David Porco², Louis Deharveng \({ }^{\text { }}\) \\ I Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Museum national d'Histoire naturelle, Sorbonne Universités, 45 rue Buffon, CP50, F-75005 Paris, France 2 Université de Rouen, Laboratoire ECODIV, Bàtiment IRESE A, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France
}

Corresponding author: Clément Schneider (clement.schneider@mnhn.fr)

Academic editor: W. Weiner | Received 1 June 2015 | Accepted 25 September 2015 | Published 18 January 2016
http://zoobank.org/29E3D8FE-C20A-469F-9A66-6DECC6F255B6
Citation: Schneider C, Porco D, Deharveng L (2016) Two new Megalothorax species of the minimus group (Collembola, Neelidae). ZooKeys 554: 37-68. doi: 10.3897/zookeys.554.6069

\begin{abstract}
Two new Megalothorax species, M. potapovi sp. n. from the Russian Far East and M. sanguineus sp. n. from the French Pyrénées are described. The two new species have a set of morphological characters (including a smooth mucro) that places them among the minimus group sensu Schneider and D'Haese (2013). Megalothorax potapovi characteristics include dorsal protuberance on forehead, peculiar chaetotaxy of antenna III and strong lanceolate chaetae on body. Megalothorax sanguineus characteristics include strong red pigmentation, large network of integumentary channels on head and elongated apex of the two posterodistal spines of dens. The DNA barcodes (cytochrome oxidase subunit I-COI) of the two species are also provided and analyzed among a broader sampling of the genus in order to support further their specific status. A special focus is given to the labral morphological characteristics. Pseudopores-like elements are reported for the first time in the genus. Positions of the \(\tau\)-chaetae near the dorsal sensory field of thorax II are compared for several species of the genus.
\end{abstract}

\section*{Keywords}

Springtails, Neelipleona, description, chaetotaxy, taxonomy, DNA barcodes, labrum

\footnotetext{
Copyright Clément Schneider et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
}

\section*{Introduction}

During an expedition organized by Mikhail Potapov in Primorye (Russian Far East) in 2004, a large number of samples yielded a huge diversity of Collembola. Several of the most remarkable taxa collected have been recently described, like the new genus Sensillonychiurus with three new species (Pomorski and Sveenkova 2006), a genus that was subsequently retrieved in Northeastern China (Sun et al. 2013) and in other regions of northern Russia (Babenko et al. 2011). The Sino-Korean subfamily Caputanurininae was also reported for the first time for Russia (Deharveng et al. 2010) with two new species. Here, we report a morphologically remarkable new species of the genus Megalothorax Willem, 1900 (Neelidae, Neelipleona): Megalothorax potapovi \(\mathrm{sp} . \mathrm{n}\). On the other end of the Palaearctis, the faunistical survey of the Pyrenean peatland of Bernadouze yielded another new species of Megalothorax, M. sanguineus sp. n. The two new species are described in the present paper, along with their barcode sequences (COI-mitochondrial cytochrome oxidase subunit I). Their genetic divergence levels with other Megalothorax molecular operational taxonomic units (MOTUs) are assessed and discussed. A special focus is given to the labral morphological characteristics. Pseudopores-like elements are reported for the first time in the genus. Positions of the \(\tau\)-chaetae near the dorsal sensory field of Th. II are compared for several species of the genus.

\section*{Material and methods}

\section*{Sampling}

Megalothorax potapovi sp. n. The specimens were obtained from a \(2000 \mathrm{~cm}^{3}\) sample of forest litter from Primorye, that were processed for fauna extraction in a field laboratory of Anisimovka. The litter sample was dried for 8 days on a Berlese funnel without heating.

Megalothorax sanguineus sp . n . The two sampled sites are located at medium elevation in Ariège Pyrenees (France): in very humid mossy habitats near the peat-bog of Bernadouze, and from humid litter at Osque du Couret. Samples were processed in the lab on Berlese funnels in the same conditions as above.

\section*{Morphology}

Specimens were preserved in \(95 \%\) ethanol then cleared in lactic acid and finally mounted on microscope slides in Marc André II medium. They were examined using a Leica DMLB compound microscope with differential phase contrast optics at magnifications ranging from 250 to 1000 . Drawings were made with a drawing tube and vectorized with Inkscape. For Scanning Electronic Microscope (SEM) observations, specimens were dehydrated in \(100 \%\) ethanol, before critical point drying (Emitech

K850) and gold coating (Jeol JFC-1200) and observations were performed with a SEM Jeol 840A. Megalothorax sanguineus sp. n. was not observed with SEM, however we were able to locate all the positions of the \(\tau\)-chaetae (trichobothria) with the optical microscope.

\section*{DNA barcode}

The standard DNA barcode (658bp of the COI-mitochondrial cytochrome oxidase subunit I gene, Hebert et al. 2003) was sequenced for the 2 new species (Table 4).

DNA was extracted from entire specimens in \(30 \mu \mathrm{l}\) of lysis buffer (http://www. ccdb.ca/docs/CCDB_DNA_Extraction.pdf) and proteinase K incubated at \(56{ }^{\circ} \mathrm{C}\) overnight. DNA extraction followed a standard automated protocol using 96-well glass fibre plates (Ivanova et al. 2006). Specimens were recovered after DNA extraction using a specially designed work flow allowing their morphological examination (Porco et al. 2010). The 5' region of COI used as a standard DNA barcode was amplified using M13 tailed primers LCO1490 and HCO2198 (Folmer et al. 1994). Samples that failed to generate an amplicon were subsequently amplified with a pair of internal primers combined with full length ones (C_LepFolF/C_LepFolR) (Ivanova - published on http://www.boldsystems.org). The standard PCR reaction protocol of the Canadian Center for DNA Barcoding was used for amplifications (http://www. dnabarcodes2011.org/conference/preconference/CCDB-Amplification-animals.pdf), and products were checked on a \(2 \%\) E-gel 96Agarose (Invitrogen). Unpurified PCR amplicons were sequenced in both directions using M13 tailed primers, with products subsequently purified using Agencourt CleanSEQ protocol and processed using BigDye version 3.1 on an ABI 3730 DNA Analyzer (Applied Biosystems). Sequences were assembled and edited with Sequencher 4.5 (GeneCode Corporation, Ann Arbor, MI, USA). The alignment was obtained using BIOEDIT version 7.0.5.3 (Hall 1999). Sequences are publicly available on GenBank (JN298074-JN298078, JN970909JN970929, KC900191-KC900205, KR736063-KR736070) and on BOLD at the following doi: \(10.5883 /\) DS-MEGAMIN (Table 4).

\section*{Data analyses}

Forty-nine specimens of Megalothorax dataset representing 14 morphologically recognized species were selected, 36 from Schneider et al. 2011, Schneider and D'Haese 2013 and 13 specimens belonging to the two new species (Table 4).

Distance analyses were performed with MEGA6 (Tamura et al. 2013), utilizing a Neighbor-Joining (Saitou and Nei 1987) algorithm with the Kimura-2 parameter model (Kimura 1980) to estimate genetic distances. The robustness of nodes was evaluated through bootstrap re-analysis of 1000 pseudoreplicates. Molecular Operational Taxonomic Units (MOTUs) were defined with the software 'mothur' (Schloss et al. 2009).

\section*{Terminology}

A nomenclature for the integumentary crests on the labrum is introduced (Fig. 13A-F). Crests are defined as integumentary processes with an apical line of primary grains. The longitudinal crests separating the m-row of chaetae are named \(m l 1-3\), when present the transversal crests in posterior position to a chaetae of the m-row are named \(m t\) and numbered after the chaetae position (\(m t 2\) posterior to chaeta \(m 2\)), the antero-median transversal crest separating the m-row from the a-row is named amt, and can be further separated in amt0-2 numbered after the chaetae of m-row position. The longitudinal anterior crests separating the a-row are named all-3. The transversal crest anterior to the a-row is named at-theoretically with the subdivisions at0, at1, at2 though we could only observe the at 2 region in \(M\). minimus Willem, 1900.

Head chaetotaxy (Fig. 14) and antenna chaetotaxy (Fig. 15) follow Schneider (in press), trunk chaetotaxy (Fig. 16) follows Schneider and D'Haese (2013). The four swollen chaetae of Ant. III sensory organ are named S1-S4 after Deharveng (1978). We avoid to use the term 'sensilla' to designate some chaetae with peculiar shape and light refraction (e.g. Massoud and Ellis 1977), and use instead the following categories defined by Schneider (in press): (i) s-chaetae for the short swollen chaetae of the trunk; (ii) \(\tau\)-chaetae for the long and thin chaetae of the trunk (shaped as trichobothria in Megalothorax); (iii) S-chaetae for the swollen chaetae of the antenna; (iv) neosminthuroid chaetae for the special chaetae of Abd. IV sternum as defined in Richards (1968), Betsch (1980) and Schneider and D'Haese (2013). Ordinary chaetae are simply referred as chaetae. Nomenclature of the claw follows Schneider (in press), based on Denis (1948) and Schneider and D'Haese (2013). The presence or absence of specific chaetae is described in reference of the chaetotaxic pattern of M. minimus. Reference to M. minimus in this work is always sensu Schneider and D'Haese (2013).

\section*{Abbreviations and symbols in text and figures}

Crests on the anterior process of the labrum: al2, 3 = anterior longitudinal, \(m l 1-3\) = posterior longitudinal, \(a m t 0-2=\) antero-median transversal, \(m t 2=\) posterior transversal. Antenna: Ant. I-IV = antennomere I to IV, S1-S4 = S-chaetae of Ant. III; or = Ant. IV organite; \(S, S x, S y=\) S-chaetae of Ant. IV. Trunk: Th. I-III = thoracic segment I to III; Abd. I-VI = abdominal segment I to VI; \(a v=\) chaetae of anal valve; \(s 1, s 2=s\) chaetae; \(s m=\) special chaetae of male Abd. VI sternum; \(\tau=\tau\)-chaetae; \(w r c 1-w r c 8=\) free wax rod secretory element 1 to 8 . Claw: \(l a, l p, B a, B p=\) auxiliary lamellae and crest of unguis; \(C a, C p=\) anterior and posterior crests of unguiculal lamella. Misc: \(\mathrm{dp}=\mathrm{dens}\) proximal, \(\mathrm{dd}=\) dens distal, \(s f 1-6=\) sensory field 1 to 6 .

\section*{Taxonomy}

\section*{Megalothorax potapovi sp. n.}
http://zoobank.org/4E6BA360-2EDF-49F3-AF77-54B250A9C490
Figs \(1-7,13 \mathrm{~A}-\mathrm{C}, 14 \mathrm{~A}, \mathrm{~B}, 15,16 \mathrm{~A}\)
Material examined. Holotype: male on slide (MNHN-EA040223), Russia: Primorye: south of Posyet: peninsula facing to the town; \(130.8034^{\circ} \mathrm{E}, 42.5709^{\circ} \mathrm{N}\); alt \(=30 \mathrm{~m}\); 28.ix.2004; Berlese extraction, forest litter; Louis Deharveng and Anne Bedos leg (RU120) [MNHN]. Paratypes: 2 males and 5 females on slides (MNHN-EA040224-229), same data as the holotype [MNHN]; 1 specimen (sex unknown) on mount for SEM (MNHN-EA041012), same data as the holotype [MNHN].

Diagnosis. Whitish in alcohol. Presence of median integumentary protuberance in front of chaeta \(a 0\) on forehead. Presence of chaeta \(X\) on Ant. IV. Labium: basomedian fields with \(3+3\) chaetae, basolateral fields with \(1+1\) chaetae. Integumentary channels as a paired tree on posterior part of the head, absent on anterior part, connection of channels with linea ventralis circular. Some chaetae enlarged and lanceolate, of which \(5+5\) dorsal, posterior on head and \(2+2\) on Th. II tergum. Inner chaeta of sensory field 2 slender with blunt apex, all inner chaetae of sensory fields 3-6 short flam-shaped. Dorsal abdominal s-chaetae s2 globular, absence of dorsal abdominal \(s\)-chaetae \(s 3\). Abd. I to V terga with \(18+18\) ordinary chaetae. Each claw of ordinary morphology, subequal. Tenaculum with \(3+3\) teeth. Abd. IV sternum with \(2+2\) chaetae. Mucro lamellae smooth, thin.

Description. General aspect. Habitus and segmentation typical of the genus (Fig. 1A). Length from labrum to anus: \(\sim 380 \mu \mathrm{~m}\). Specimens whitish in alcohol. Body chaetotaxy sparse including chaetae, \(s\)-chaetae, \(\tau\)-chaetae as trichobothria, neosminthuroid chaetae, wax rod secretory elements and special swollen chaetae within sf2-6. Length of chaetae ranging from microchaetae \([5-9 \mu \mathrm{~m}\)] to mesochaetae \([10-14 \mu \mathrm{~m}\)] and macrochaetae \([15-24 \mu \mathrm{~m}]\). Shape of chaetae ranging from simple to lanceolate. Greatest chaetae being macrochaetae \(a 4\) and \(a 7\) on Th. II tergum (\(24 \mu \mathrm{~m}\); Fig. 5F, G).

Integument. Secondary granulation made of the usual dorsal rough granules (e.g. Fig. 2A, B) and of smooth and flat irregular discoid granules near the ventral, postlabial chaetae of head. Integumentary channels extending laterally and dorsally in posterior part of head. Those channels as a pair of trees with five terminal branches (Figs \(1 \mathrm{~A}, \mathrm{~B}, 3 \mathrm{~A}, \mathrm{~B}, 14 \mathrm{~A}\)). Cephalic channels connection with linea ventralis circular (Figs 3B, 14B). Thoracic channels simple, restricted to ventral part.

Sensory fields and wax rods. A total of \(14+14\) wax rod secretory crypts \((2+2\) on head, \(12+12\) on body), including the ones inserted in each \(6+6\) sensory fields (Figs \(3 \mathrm{~A}, 4,14 \mathrm{~A}, 16 \mathrm{~A}\)). sfl without inner chaeta (Figs 1B, 3A). sf2 with one rather slender, curved inner chaeta with blunt apex (Figs 1B, 5E). Each inner chaeta of \(s f 3-6\) short, flam-shaped and curved (Figs 2A, B, 5F-I). sf3 with three inner chaetae (Figs 2A, 5F). sf4 and 5 each with two inner chaetae (Figs 2B, 5G, H). sf6 with one inner chaeta, inner chaeta length : \(s f 6\) diameter \(<0.5\) (Fig. 5I). wrc5 adjoining \(s f 5\) border (Figs 2B, 5H).

Labrum. Chaetae (Figs 1D, 3E, F): \(a\) - and \(m\)-row with rather slender mesochaetae, a2 slightly thicker and longer than \(m 0-2 ; m 0-2\) apparently smooth, \(a 1,2\) with one external teeth and with inward tip; \(m 0\) almost on the same level than \(m 1\). Integumentary crests (Figs 1D, 13A-C): \(m\)-row distinctly separated from \(a\)-row by the anteromedian transversal crest \((a m t)\); longitudinal crest \(m l 2\) projecting anteriorly, cutting the transversal integumentary crest in two part (amt0, amt2); mtO distinctly concave; absence of transversal crest posterior to chaetae \(m 2\) (pt2); asymmetry present on an least one specimen: \(m l 3\) strong and projecting anteriorly on one side, \(m l 3\) feeble and not reaching amt2 on the other side. Anterior side of the anterior process with \(3+3\) and one axial integumentary bulge (Fig. 3E). Labrum ridge with two small pikes (Fig. 3E).

Other mouth parts. Oral fold with \(2+2\) mesochaetae. Maxillary outer lobe: palp with subapical mesochaeta and apical papillate macrochaeta, edge of apical papilla with three strong integumentary lobes (Figs 3E, F); sublobal plate with one strong hair (7 \(\mu \mathrm{m}\); Fig. 3E). Basomedian fields of labium with \(3+3\) mesochaetae (Fig. 3B), basolateral fields with \(1+1\) mesochaetae on tubercle. Labial palp chaetal equipment typical of the genus, guard hairs strong in regard of papillate chaetae, hypostomal papillate chaeta flattened laterally in apical part, with subapical enlargement and acuminate apex (Figs 3G-I). Maxilla as in Figs 5A, B. Mandibula each with five apical teeth, right mandibula with a strong tooth between apex and molar plate (Figs 5C, D).

Head chaetotaxy. Trend for posterior chaetae to be longer and stronger than anterior chaetae, with \(5+5\) remarkable posterior lanceolate macrochaetae (up to \(18 \mu \mathrm{~m}\), Figs 1B, 3A). Dorsal anterior area with 11 pairs of chaetae \((10+10\) mesochaetae, \(1+1\) macrochaetae) and two axial mesochaetae (Figs 3A, 14A); with an axial integumentary protuberance in front of chaeta \(a 0\), devoid of secondary granules (Figs \(1 \mathrm{~B}, \mathrm{C}, 3 \mathrm{~A}\)); with \(2+2\) indistinct pseudopore-like elements between \(s f 1\) and insertion of antenna. Lateral anterior area with \(1+1\) mesochaetae (Figs 3A, 14A). Dorsal posterior area with 11 pairs of chaetae \((5+5\) lanceolate macrochaetae, \(6+6\) thickened mesochaetae, Fig. 3A, 14A). Ventral side with three pairs of post-labial mesochaetae (Fig. 3B, 14B).

Antennal chaetotaxy. Illustrated in Figs 3C, D, pattern diagram in Fig. 15 and summarized in Table 1. Ant. I with one mesochaeta. Ant. II with four chaetae: an anterior mesochaetae and three microchaetae. Ant. III with eight chaetae (four mesochaetae, five microchaetae), two long S-chaetae (S1, S4) and two short S-chaetae (S2, \(S 3\)) in a cupule. \(S 2\) and \(S 3\) protruding from a shallow cupule but partially covered by a strong integumentary lobe. S1, S4 ornamentation unclear in light microscopy, S2, \(S 3\) ornamentation feebly visible. \(S 4\) in apical position to \(S 1\), on the same level than \(S 2\), S3. Tip of \(S 1\) rising up to Ant. IV basal whorl of S-chaetae, tip of \(S 4\) rising up to Ant. IV apical whorl of S-chaetae. Ant. IV with twelve S-chaetae (\(10 S, S y\) and \(S x\)), six microchaetae (only three chaetae in subapical group including chaeta \(X\)), a small organite (\(O r\)), two apical and subapical rods (\(a, s a\)). S-chaetae \(S\) with blunt apex.

Thoracic terga chaetotaxy. Th. II with \(12+12\) chaetae of variable length, \(1+1 \mathrm{~s}\) chaetae \(s 1\) tubular and curved and \(3+3 \tau\)-chaetae (Figs 4, 16A). Chaetae including \(3+\) 3 macrochaetae (length as \(a 4>a 7>p 8\)), \(7+7\) mesochaetae (\(a 1-3, p 1\) and \(p 2\) thickened, \(a 8\) and \(a 9\) slender), \(2+2\) microchaetae (\(p 3, p 4\)) (Figs 4, 5F, G). Chaeta \(p 4\) postero-lateral

Figure I. Megalothorax potapovi sp. n. A Whole body, lateral view B head, dorso-lateral view \(\mathbf{C}\) integumentary protuberance on forehead, dorso-lateral view D labrum, dorsal view. Scale bars: \(100 \mu \mathrm{~m}(\mathbf{A}, \mathbf{B})\); \(10 \mu \mathrm{~m}(\mathbf{C}, \mathbf{D})\).

Table I. Summary of antennal chaetotaxy.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ant. & I & II & \multicolumn{2}{|r|}{III} & \multicolumn{4}{|c|}{IV} \\
\hline & chaetae & chaetae & chaetae & S-chaetae & chaetae & S-chaetae & Organit & Sensory rods \\
\hline M. potapovi sp. n. & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{4} & 8 & \multirow[b]{2}{*}{S1-S4} & 6 (\(X\) incl.) & \multirow[t]{2}{*}{\[
\begin{gathered}
12 \\
(10 S, S x, S y)
\end{gathered}
\]} & \multirow[b]{2}{*}{Or} & \multirow[b]{2}{*}{\(2(a, s a)\)} \\
\hline M. sanguineus sp. n. & & & 9 & & 7 (\(X\) incl.) & & & \\
\hline
\end{tabular}
to \(s f 3\) (Figs 4, \(5 \mathrm{~F}, 16 \mathrm{~A}\)). Two \(\tau\)-chaetae in the periphery of \(s f 3\), one in posterior position and next to \(p 2\), one in lateral position and \(10-11\) granules far from \(p 4\) (Figs 4, 5F, 16A). Th. III with \(10+10\) chaetae, \(6+6\) free wax-rod generating crypts (wrcl-G) and \(5+5\) \(\tau\)-chaetae (Figs 4, 16A). Chaetae including \(2+2\) macrochaetae (\(a 9, p 7\)), \(7+7\) mesochaetae (a1, a5, a6, a8, p2, p3, p4) and \(1+1\) microchaetae (a3) (Figs 4, 5H, J). Chaeta \(p 4\) moved posteriorly from wrc2 (Figs 4, 16A). Chaeta \(a 6\) stronger than \(a 5\) (Figs 4, 5J).

Legs chaetotaxy. Legs with ordinary chaetae of variable size as in Fig. 6A-C and summarized in Table 2. Subcoxa 1 I with a mesochaeta, coxa I with a microchaeta. Subcoxa 1, 2 II each with a mesochaeta, coxa II with a macrochaeta. Subcoxa 1, 2 III and coxa III with respectively \(2,1,1\) macrochaetae. Anterior and posterior microchaetae present on each pretarsus.

Figure 2. Megalothorax potapovi sp. n. A sf3 on Th. II tergum, dorsal view B sf5 on Th. III tergum, lateral view \(\mathbf{C}\) neosminthuroid chaetae on Abd. IV sternum, lateral view \(\mathbf{D}\) mucro, lateral view. Scale bars: \(10 \mu \mathrm{~m}\) (A-D).

Claws. Ratio unguis length : pretarsus width on leg I-III respectively as 2.2, 2, 1.73, each claw with ordinary morphology, claw III bulkier than claw I and II (Fig. 6A-C). Each claw subequal in unguis length and in ratio unguiculus : unguis \((\sim 0.5)\) (Fig. 6A-C, F). Unguis basal and posterior auxiliary lamellae (\(l a, l p\) and \(B p\)) well developed, anterior crest (\(B a\)) clear on claw II and III, weaker on claw I (Fig. 6D-F). Each unguiculus with a well developed posterior crest \(C p\), anterior crest \(C a\) short and in basal position on claw I and II, more developed and not joining the internal border of the unguiculal lamella on claw III, basal tubercle posterior lobe not or feebly protruding (Figs 6D-H). Ratio unguis length : tibiotarsus length on leg I-III respectively as 0.54, 0.60, 0.65.

Abd. I-V terga chaetotaxy. With a total of \(18+18\) chaetae, \(1+1 \tau\)-chaetae, \(2+\) 2 free wax-rod generating crypts (\(\omega r c 7,8\)), \(1+1\) globular s-chaetae \(s 2\) (Figs 4, 16A). Chaetae including \(17+17\) mesochaetae (the longest \(\varepsilon 2, \varepsilon 3\) and \(\zeta 2\) reaching \(15 \mu \mathrm{~m}\)) and \(1+1\) macrochaetae \((\eta 3,17-18 \mu \mathrm{~m})\). Chaeta a3 close to \(w r c 7\), both clearly anterior to \(\beta 3\) (Figs 4, 16A). Chaetae \(\beta 4\) and \(\varepsilon 1\) missing.

Abd. VI and genital chaetotaxy. Abd. VI: with nine dorsal mesochaetae (Fig. 7A); each anal valve with microchaeta \(a v\) and several granular crests (Fig. 7A); with 9

Figure 3. Megalothorax potapovi sp. n. Chaetotaxy of head \(\mathbf{A}\) dorsal side \(\mathbf{B}\) ventral side; chaetotaxy of antenna \(\mathbf{C}\) anterior side \(\mathbf{D}\) posterior side; labrum and maxillary outer lobe \(\mathbf{E}\) anterior side \(\mathbf{F}\) posterior side; palp of labium \(\mathbf{G}\) focused on ventral chaetae \(\mathbf{H}\) focused on distal chaetae I hypostomal papillate chaeta. * indicates a supplementary chaeta, absent in other specimens.
+9 ventral chaetae (Fig. 7A), male with \(1+1\) additional ventral cylindrical swollen chaetae \(\operatorname{sm}\) (Fig. 7B, C). Genital plate: female with \(2+2\) microchaetae (Fig. 7A); male with \(10+10\) microchaetae (Fig. 7B, C).

Abd. IV sternum and furca. Abd. IV sternum with \(2+2\) neosminthuroid chaetae (Figs 2C, 7A) and \(2+2\) posterior mesochaetae (Fig. 7A). Manubrium with \(2+2\)

Figure 4. Megalothorax potapovi sp. n. Chaetotaxy of trunk, dorsal side.
posterior chaetae. Proximal subsegment of dens with one posterior chaeta (Fig. 7E); distal subsegment posteriorly with two basal spines, one median chaeta and two apical spines, anteriorly with three apical spines, spines without elongated apex (Fig. 7D, E). Mucro with a sharp narrowing in the apical 2/5, lamellae edges smooth (Figs 2D, 7D, E). Ratio dp : dd : mucro \(=0.75: 1: 0.88\); ratio mucro width : mucro length \(\sim 0.16\).

Tenaculum and ventral tube. Tenaculum with \(3+3\) hook-like teeth (Fig. 7F). Ventral tube with two apical pairs of mesochaetae (Fig. 7G).

Affinities. Megalothorax potapovisp. n. has the characteristics of the minimus group species (Schneider and D’Haese 2013; Papáč and Kováč 2013). Within this group, it shares with M. sanctistephani Christian, 1998 a median integumentary structure on forehead but differs from it by the presence of the median chaeta \(a 0\), the presence of the chaeta \(X\) on Ant. IV, the presence of strong lanceolate macrochaetae on head and thorax and the integumentary channels pattern. The absence of \(a 5\) on Ant. III and of abdominal pair of chaetae \(\varepsilon 1\) is a similitude with M. svalbardensis Schneider and D'Haese, 2013 and M. tatrensis Papáč \& Kováč, 2013.

The integumentary structure on forehead and the lanceolate macrochaetae clearly separate M. potapovi sp. n. from M. minimus, M. aquaticus Stach, 1951, M. svalbardensis, M. willemi Schneider and D'Haese, 2013, M. tuberculatus Deharveng and Beruete, 1993, M. carpaticus Papáč \& Kováč, 2013 and M. tatrensis. Other peculiar characteristics of the species are shape of hypostomal papillate chaeta, presence of a strong lobe protecting S2, S3 on Ant. III, and S4 in apical position on Ant. III. On the basis of

H

\(\qquad\)

Figure 5. Megalothorax potapovi sp. n. Maxilla A dorsal side B ventral side; mandibula C right mandibula \(\mathbf{D}\) left mandibula; sensory fields \(\mathbf{E} s f 2\) on head \(\mathbf{F} s f 3\) on Th. II \(\mathbf{G} s f 4\) on Th. II \(\mathbf{H} s f 5\) on Th. III \(\mathbf{I} s f \sigma\) on abdomen J wrc3, 4 and chaetae \(a 5,6\) on Th. III.
labral features M. minimus (Fig. 13D-F) differs from M. potapovi sp. n. (Fig. 13A-C) by undivided amt, \(m / 2\) not joining amt, presence of \(m t 2\). A similar asymmetry was observed in both species (\(\mathrm{m} / 3\) joining amt on one side, not joining amt on the other side). The morphology of the anterior crests (forming the anterior papillae) could not be comprehensively studied.

Ecology and distribution. The species was collected in lowland forest litter, and only found so far in the southern part of Primorye.

Figure 6. Megalothorax potapovi sp. n. Legs chaetotaxy, A leg IB leg II C leg III; claws D claw I posterior side \(\mathbf{E}\) claw II anterior side \(\mathbf{F}\) claw III posterior side; unguiculus III \(\mathbf{G}\) anterior side \(\mathbf{H}\) posterior side.

Etymology. Megalothorax potapovi sp. n. is dedicated to Mikhail Potapov, who led the 2004 field trip in Primorye which allowed to discover the new species.

DNA barcode. A 658bp fragment of the COI gene was amplified and sequenced from paratype (MNHN-EA040229, voucher 00620C05) and seven other specimens (type locality, specimens lost). 251 bases in 5' were not readable, thus a final sequence of 407 bp is available. The sequences are identical. The sequence is deposited into the GenBank database under accession number KR736069. The base composition of the sequence is \(\mathrm{A}=26 \%, \mathrm{C}=23.1 \%, \mathrm{G}=13.5 \%, \mathrm{~T}=37.4 \%(\mathrm{~A}+\mathrm{T}=63.4 \%)\).

5'- TAAGTTTTTGAСТТСТТССАССТТСТСТСАСССТТСТАСТТТСАА-GAGGTCTAGCAGAATCAGGTGCTGGAACAGGTTGAACTGTTTATCCTC-СТТТАТСТТСАAATATTTCCCATGCAGGAGCCTCTGTCGACTTAAC-TATTTTCAGTTTACATTTAGCTGGTATGTCATCAATTTTAGGAGCTAT-TAATTTTATTACAACTATCTTTAACATACGATCCCCAGGAATAACAT-GAGATCAAACTTCACTATTTATTTGATCTGTTTTAATTACATCAATTT-ТАСТТСТСТТGТСТСТТССАGTTCTAGCAGGAGСТАТСАССАТАСТТТ-TAACCGACCGAAATTTAAATACTTCATTTTTTGACCCCGCTGGGGGTG-GTGACCCAATTTTATACCAACACCTATTC-3'

Figure 7. Megalothorax potapovi sp. n. A Abd. VI and genital plate, female (B, C) genital plate, male; furca \(\mathbf{D}\) anterior side \(\mathbf{E}\) posterior side \(\mathbf{F}\) tenaculum \(\mathbf{G}\) ventral tube posterior side.

Table 2. Summary of leg chaetotaxy.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Leg & \multicolumn{6}{|c|}{I} & \multicolumn{6}{|c|}{II} & \multicolumn{6}{|c|}{III} \\
\hline Segment & Sc1 & Sc2 & Cx & Tr & Fe & Ti & Sc1 & Sc2 & Cx & Tr & Fe & Ti & Sc1 & Sc2 & Cx & Tr & Fe & Ti \\
\hline \begin{tabular}{l}
M. potapovi sp. n. \\
M. sanguineus sp. n.
\end{tabular} & 1 & 0 & 1 & 3 & 8 & 12 & 1 & 1 & 1 & 3 & 8 & 12 & 2 & 1 & 1 & 4 & 8 & 11 \\
\hline
\end{tabular}

\section*{Megalothorax sanguineus sp. n.}
http://zoobank.org/DD7E3CB4-26AF-4B47-9788-65E2C11F17F4
Figs \(8-12,14 \mathrm{C}, \mathrm{D}, 15,16 \mathrm{~B}\)

Material examined. Type material. Holotype: female on slide (MNHN-EA040230), France: Midi-Pyrénées: Ariège: Suc-et-Sentenac: Vicdessos: on the edge of the Bernadouze peat-bog, mosses at a spring to the west under beech; lon \(=1.4220^{\circ} \mathrm{E}\); lat \(=42.8024^{\circ} \mathrm{N}\); alt \(=1360 \mathrm{~m}\); 13.vi.2013; Berlese extraction, mosses, Lorène Marchal and Anne Bedos leg (09-BDZ1306-G03M) [MNHN]. Paratypes: 2 males and 4 females on slides (MNHN-EA040231-236), same data as the holotype [MNHN].

Other material. 4 females on slides (MNHN-EA040237-239]), France: Mi-di-Pyrénées: Ariège: Saint-Lary: Osque du Couret, forest litter on humid slopes; lon=0.8548; lat=42.8891; alt=1150 m; 28.vii.2010; Berlese extraction, litter, Louis Deharveng and Anne Bedos leg (09-761) [MNHN].

Diagnosis. Reddish in alcohol. Absence of median integumentary protuberance in front of chaeta \(a 0\) on forehead. Presence of chaeta \(X\) on Ant. IV. Labium: basomedian fields with \(3+3\) chaetae, basolateral fields with \(1+1\) chaetae. Integumentary channels as a paired network on posterior part of the head and a simple channel on anterior part, connection of channels with linea ventralis circular. Chaetae on head and trunk with ordinary shape. All inner chaetae of sensory fields 2-6 short flam-shaped. Dorsal abdominal s-chaetae \(s 2\) bean-shaped, absence of dorsal abdominal s-chaetae s3. Abd. I to V terga with \(20+20\) ordinary chaetae. Slightly elongated claws. Tenaculum with \(3+3\) teeth. Abd. IV sternum with \(2+2\) chaetae. Mucro lamellae smooth, moderately enlarged.

Description. General aspect. Habitus and segmentation typical of the genus. Length from labrum to anus: \(-500 \mu \mathrm{~m}\). Specimens with pale to deep red pigmentation in alcohol. Body chaetotaxy sparse including chaetae, \(s\)-chaetae, \(\tau\)-chaetae as trichobothria, neosminthuroid chaetae, wax rod secretory elements and special swollen chaetae within \(s f 2-6\). Length of chaetae ranging from microchaetae \([<6 \mu \mathrm{~m}\)] to mesochaetae [\(6-10 \mu \mathrm{~m}\)] and macrochaetae [11-15 \(\mu \mathrm{m}\)]. Chaetae simple, without any remarkable development.

Integument. Secondary granulation made of the usual dorsal rough granules (Fig. 9) and of smooth and flat irregular discoid granules near the ventral, post-labial chaetae of head (Fig. 8C). Integumentary channels extending laterally and dorsally in anterior and posterior part of head (Fig. 8A, B). Posterior channels as a pair of well developed network. The most detailed observation allowed recognition of at least 10 cycles and 11 terminal branches with unclear tips (Fig. 8A). Anterior channel as a simple branch ending near the lateral edge of \(s f 1\), touching lateral chaeta of pra.a-row (Figs 8B, 14C). Cephalic channels connection with linea ventralis circular (Figs 8C, 14D). Thoracic channels simple, restricted to ventral part.

Sensory fields and wax rods. A total of \(14+14\) wax rod secretory crypts \((2+2\) on head, \(12+12\) on body), including the ones inserted in each \(6+6\) sensory fields (Figs 8A, B, 9, 14C, 16B). sf1 without inner chaeta (Fig. 8B). Each inner chaeta of
sf2-6 flam-shaped and curved (Figs 8A, 9), the biggest in sf6 (Fig. 9). Inner chaeta of \(s f 6\) length : \(s f 6\) diameter \(<0.5\). sf2, 6 with one inner chaeta. \(s f 3\) with three inner chaetae (Fig. 9). sf4, 5 each with two inner chaetae (Fig. 9). wrc5 adjoining \(s f 5\) borders (Fig. 9).

Labrum. Chaetae (Fig. 8D, E): a1, 2 much thicker and longer than chaetae \(m 0-2\); \(m 0-2\) smooth, \(a 2\) with three-four external slender teeth and with inward tip, \(a 1\) with three feeble blunt teeth and with outward, flattened tip; \(m 0\) almost on the same level than \(m 1\). Integumentary crests: \(m\)-row distinctly separated from \(a\)-row by the anteromedian transversal crest (amt); longitudinal crest \(m l 2\) apparently not projecting anteriorly. Anterior side of the anterior process with \(3+3\) clear integumentary bulges and one axial, short bulge (Fig. 8E). Anterior process of the labrum not further studied. Ridge of the labrum with three pikes (Fig. 8E).

Other mouth parts. Oral fold with \(2+2\) mesochaetae (Fig. 8C). Maxillary outer lobe: palp with subapical mesochaeta and apical papillate macrochaeta (Fig. 8F, G), edge of apical papilla with weak lobes, sublobal plate with two short hairs (Fig. 8F, G). Basomedian fields of labium with \(3+3\) mesochaetae, basolateral fields of labium with \(1+1\) mesochaetae on tubercle (Fig. 8C, H). Labial palp chaetal equipment typical of the genus, guard hairs strong in regard of papillate chaetae (Fig. 8H-J). Maxilla as in Fig. 10A, B. Left mandibula with five apical teeth (Fig. 10C), right mandibula with six apical teeth and a double tooth between apex and molar plate (Fig. 10D).

Head chaetotaxy. Dorsally and laterally with mesochaetae, posterior and anterior mesochaetae subequal with a slight trend for posterior chaetae to be stronger than anterior chaetae (Fig. 8A, B). Dorsal anterior area with 11 pairs of chaetae and two axial chaetae (Figs 8B, 14C); with \(2+2\) pseudopore-like elements as ovoid, clear rings between \(s f 1\) and insertion of antenna (Figs 8B, 14C). Lateral anterior area with \(1+1\) chaetae (Figs 8B, 14C). Dorsal posterior area with 11 pairs of chaetae (Figs 8A, 14C). Ventral side with three pairs of post-labial macrochaetae (Figs 8C, 14D).

Antennal chaetotaxy. Illustrated in Fig. 10E, F, pattern diagram in Fig. 15 and summarized in Table 1. Ant. I with one mesochaeta. Ant. II with four mesochaetae, anterior chaeta longer than the other. Ant. III with nine mesochaetae, two long Schaetae \((S 1, S 4)\) and two short S-chaetae \((S 2, S 3)\) in a cupule. \(S 2\) and \(S 3\) clearly protruding from a shallow cupule, only weakly covered by a feeble integumentary lobe. S1-S4 ornamentation unclear in light microscopy. Tip of S1 rising slightly above Ant. IV basal whorl of S-chaetae, tip of \(S 4\) rising up to Ant. IV basal whorl of S-chaetae. Ant. IV with twelve S-chaetae (\(10 S, S y\) and \(S x\)), seven ordinary microchaetae, a small organite (\(O r\)) apically flared, two apical and subapical rods (\(a\), sa). S-chaetae \(S\) with blunt apex, rather short \((5-6 \mu \mathrm{~m})\).

Thoracic terga chaetotaxy. Th. II with \(12+12\) chaetae of variable length, \(1+1\) \(s\)-chaetae \(s 1\) tubular and curved and \(3+3 \tau\)-chaetae (Figs 9, 16B). Chaetae including \(5+5\) macrochaetae (\(a 4, a 7, a 8, p 1, p 8\)), \(5+5\) mesochaetae (\(a 1, a 2, a 3, a 9, p 2\)) and 2 +2 microchaetae (\(p 3, p 4\)) (Fig. 9). Chaeta \(p 4\) postero-lateral to \(s f 3\) (Figs 9, 16B). Two \(\tau\)-chaetae in the periphery of \(s f 3\), one in posterior position next to \(p 2\), one in lateral position and 5-6 granules far from \(p 4\) (Figs 9, 16B). Th. III area with \(10+10\) chaetae, 5 \(+5 \tau\)-chaetae and \(6+6\) free wax-rod generating crypts (wrcl-6; Figs 9, 16B). Chaetae

Figure 8. Megalothorax sanguineus sp. n. Chaetotaxy of head \(\mathbf{A}\) dorso-posterior side \(\mathbf{B}\) dorso-anterior side \(\mathbf{C}\) ventral side; anterior process of labrum \(\mathbf{D}\) posterior side \(\mathbf{E}\) anterior side; maxillary outer lobe \(\mathbf{F}\) dorsal side \(\mathbf{G}\) ventral side; labium \(\mathbf{H}\) focused on ventral chaetae and basolateral field \(\mathbf{I}\) focused on distal chaetae J hypostomal papilla. Legend: blf = basolateral field of labium, of \(=\) oral fold.
including \(4+4\) macrochaetae (\(a 6, a 8, a 9, p 7\)), \(4+4\) mesochaetae (\(a 5, p 2, p 3, p 4\)) and \(2+2\) microchaetae (a1, a3) (Fig. 9). Chaeta \(p 4\) moved posteriorly from wrc2 (Figs 9, 16B). Chaeta \(a 6\) slightly bigger than \(a 5\) (Fig. 9).

Figure 9. Megalothorax sanguineus sp. n. Chaetotaxy of trunk, lateral side. Representation of the granulation limited to the sensory fields area.

Legs chaetotaxy. Legs with ordinary chaetae of variable size as in Fig. 11A-C and summarized in Table 2. Subcoxa 1 I with a mesochaeta, coxa I with a microchaeta. Subcoxa 1, 2 II each with a mesochaeta, coxa II with a macrochaeta. Subcoxa 1, 2 III and coxa III with respectively \(2,1,1\) macrochaetae. Anterior and posterior microchaetae present on each pretarsus.

Claws. Ratio unguis length : pretarsus width on leg I-III respectively as 3.2, 2, 1.87, claw I with rather slender morphology, claw III bulkier than claw I and II. Claw I with longer unguis and each claw with subequal length of unguiculus, ratio unguiculus : unguis for claw I, II, III as \(\sim 0.43,0.5,0.5\) (Fig. 11D-I). Unguis basal and posterior auxiliary lamellae (\(l a, l p\) and \(B p\)) well developed, anterior crest \((B a)\) clear on claw II and III (Fig. 11F, H), hardly perceptible on claw I. Each unguiculus with a posterior crest \(C p\), anterior crest \(C a\) short and in basal position on each claw, joining the internal border of the unguiculal lamella on claw III, basal tubercle with posterior lobe not or weakly protruding (Fig. 11D-J). Ratio unguis length : tibiotarsus length on leg I-III respectively as \(1.85,1.43,1.47\).

Abd. I-V terga chaetotaxy. With a total of \(20+20\) chaetae, \(1+1 \tau\)-chaetae, \(2+\) 2 free wax-rod generating crypts (\(\omega r c 7,8\)), \(1+1\) s-chaetae \(s 2\) shaped as a bean (Figs 9, 16B). Chaetae including \(15+15\) chaetae rather small and thin \((5-7 \mu \mathrm{~m}), 5+5\) stronger chaetae (macrochaetae \(\varepsilon 2, \varepsilon 3=11-12 \mu \mathrm{~m}\), mesochaetae \(\zeta 2, \eta 2, \eta 3=9-10\) \(\mu \mathrm{m})\). Chaeta a3 close to \(\omega r c 7\), both clearly anterior to \(\beta 3\) and \(\beta 4\) (Figs 9, 16B).

Figure 10. Megalothorax sanguineus sp. n. Maxilla \(\mathbf{A}\) dorsal side \(\mathbf{B}\) ventral side; mandibula \(\mathbf{C}\) left mandibula \(\mathbf{D}\) right mandibula; chaetotaxy of antenna \(\mathbf{E}\) ventral side \(\mathbf{F}\) dorsal side.

Abd. VI and genital chaetotaxy. Abd. VI: with nine dorsal chaetae (\(6-7 \mu \mathrm{~m}\)) (Fig. 12A); each anal valve with microchaeta \(a v\) and several granular crests (four paired plus one axial on dorsal valve, four on each ventral valve); with \(7+7\) ventral chaetae (\(4-8 \mu \mathrm{~m}\); Fig. 12A), male with \(1+1\) additional ventral cylindrical swollen chaetae \(s m\) (Fig. 12E). Genital plate: female with \(2+2\) microchaetae ; male with \(9+9\) microchaetae (Fig. 12E, F).

Abd. IV sternum and furca. Abd. IV sternum with \(2+2\) neosminthuroid chaetae and \(2+2\) posterior mesochaetae (Fig. 12A). Manubrium with \(2+2\) posterior chaetae (Fig. 12A). Proximal subsegment of dens with one posterior chaeta (Fig. 12A); distal subsegment posteriorly with two basal spines, one median chaeta and two apical spines, anteriorly with three apical spines, basal spines without elongated apex, apical spines with elongated apex (longer in posterior spines) (Fig. 12A). Mucro lamellae well developed conferring a slight elliptical shape to the mucro in lateral and dorsal view, with a gradual narrowing in the apical \(1 / 5\) (Fig. 12A). Lamellae edges smooth. Ratio dp : dd : mucro \(=0.69: 1: 75\); ratio mucro width : mucro length \(\sim 0.23\).

Tenaculum and ventral tube. Tenaculum with \(3+3\) hook-like teeth (Fig. 12B-D). Ventral tube with two apical pairs of mesochaetae (Fig. 12B).

Figure II. Megalothorax sanguineus sp. n. Chaetotaxy of legs A leg I B leg II C leg III; claws D claw I anterior side \(\mathbf{E}\) posterior side \(\mathbf{F}\) claw II anterior side \(\mathbf{G}\) posterior side \(\mathbf{H}\) claw III anterior side I claw III posterior side J unguiculus III interno-posterior side.

Affinities. Megalothorax sanguineus sp. n. has the characteristics of the minimus group species (Schneider and D’Haese 2013; Papáč and Kováč 2013). Within this group, it differs clearly from M. sanctistephani and M. potapovi sp. n. by the absence of a median integumentary structure on forehead. M. sanguineus is similar to M. minimus in terms of chaetotaxic pattern on antenna, legs, and trunk terga (without differences in absence/presence of chaetae). It differs from \(M\). minimus by the shape of the inner

Figure 12. Megalothorax sanguineus sp. n. A Chaetotaxy of Abd. IV and Abd. VI sterna with furca, female \(\mathbf{B}\) ventral tube and tenaculum, lateral side \(\mathbf{C}\) focus on tenaculum \(\mathbf{D}\) focus on tenaculum axial lobes \(\mathbf{E}\) chaetotaxy of Abd. IV-VI sterna, male \(\mathbf{F}\) focus on genital plate and Abd. IV posterior chaetae, male.
chaetae of \(s f 3-7\) (some T-shaped in \(M\). minimus, always flam-shaped in M. sanguineus sp. n.), the morphology of chaetae in the dorsal posterior area of head, the integumentary pattern, the morphology of labral chaetae, claw and mucro. The deep red pigmentation of M. sanguineus sp. n. might be similar to that of M. rubidus (Salmon, 1946),

Figure 13. Diagram of the labrum anterior process. Megalothorax potapovisp. n. A dorsal view B frontal view \(\mathbf{C}\) dorso-lateral view; Megalothorax minimus \(\mathbf{D}\) dorsal view \(\mathbf{E}\) frontal view \(\mathbf{F}\) lateral view. In gray integumentary crests, dotted lines indicate areas not clearly observed.
but the two species differ in dental spines morphology (the four posterior spines with elongated apex in M. rubidus). Megalothorax sanguineus sp. n. shares morphological trends with M. aquaticus and M. granulosus Schneider \& D'Haese, 2013: enlargement of mucro lamellae, developed network of integumentary channels on head and elongation of dental spines apex (Stach 1957, Schneider and D'Haese 2013 and pers. obs.). In term of unguis I length : pretarsus I width ratio, it is surpassed by M. aquaticus (epigeic hygrophilous mountains) and M. draco Papáć \& Kováč, 2013 (troglobiontic), comparable to M. massoudi Deharveng, 1978 (troglobiontic) and M. nigropunctatus Schneider and D'Haese, 2013 (epigeic, deadwood dwelling); it surpasses slightly M.

o chaeta; o lanceolate chaeta; © pseudopore like element; \(\theta\) wax rod secretory element; ? integumentary channel
Figure 14. Diagram of the chaetotaxy and integumentary channels network of the head. Megalothorax potapovi sp. n. A dorsal side (pseudopores not represented) B ventral side; Megalothorax sanguineus sp. n. \(\mathbf{C}\) dorsal side \(\mathbf{D}\) ventral side.
granulosus (epigeic hygrophilous) and more significantly M. tuberculatus, M. hipmani Papáč and Kováč 2013 and M. carpaticus (troglobiontic). In term of absolute size of the unguis I, it is similar to the two later species, surpasses \(M\). granulosus and is clearly surpassed by \(M\). nigropunctatus, \(M\). tuberculatus and \(M\). massoudi sp. n.

Ecology and distribution. The species is known from humid micro-habitats in Pyrenees, though it was absent from the Bernadouze peat-bog itself. Other Megalothorax found in moist mosses in mountains are M. aquaticus (1750m in High Tatras Mountains) (Stach 1957) and M. minimus (up to 1500 m in Pyrenees Mountains) (pers. obs.). The combination of morphological features shared with Megalothorax aquaticus seems to be related to hygrophilous ecology. In that regard, M. sanguineus sp. n. would remain less morphologically specialized than \(M\). aquaticus but more than M. minimus. "Red" Megalothorax are present across the whole Pyrenean range (pers. obs.), and might be \(M\). sanguineus sp. n., but identification has only been confirmed so far for Ariège and Pyrénées-Atlantique specimens.

Figure 15. Diagram of antennal III and IV chaetotaxy. Megalothorax potapovi sp. n., Megalothorax sanguineus sp. n. Alternative hypothesis of homology is indicated in parenthesis.

Etymology. Megalothorax sanguineus sp. n. is named after the deep red pigmentation of the species.

DNA barcode. A 658bp fragment of the COI gene was amplified and sequenced from five specimens from the Saint-Lary locality. Specimens were unfortunately lost, sequences identification is based on consistency between: the peculiar pigmentation of the species observed on specimens before destruction, the genetic similarity of the five specimens and the morphological identification of four other specimens with the same pigmentation from the same sample. The sequences are deposited into the GenBank database under accession numbers JN298074-JN298078.

Four sequences are identical (JN298074-JN298077, provided below), base composition is \(\mathrm{A}=29.6 \%, \mathrm{C}=17.5 \%, \mathrm{G}=15.8 \%, \mathrm{~T}=37.1 \%(\mathrm{~A}+\mathrm{T}=66.7 \%)\). The fifth sequence (JN298078) differs in 11 sites (\(=98.3 \%\) pairwise identity), base composition is \(\mathrm{A}=29.5 \%, \mathrm{C}=17.6 \%, \mathrm{G}=15.7 \%, \mathrm{~T}=37.2 \%(\mathrm{~A}+\mathrm{T}=66.7 \%)\).

5’-AACCTTATATTTAATTTTTGGAGTATGATCTGCTATAGTTG-GAACAGCATTTAGAGTTTTAATTCGGTTAGAATTAGGACACCCAG-GAAGCTTAATTGGAAACGATCAAATCTATAATGTAATAGTTACGGC-CCATGCATTTGTAATAATTTTTTTTATAGTAATACCAATAATAATTG-GAGGCTTTGGTAATTGATTAGTACCTTTAATAATTGGAGCACCTGA-TATAGCATTTCCTCGAATAAACAATTTAAGATTCTGACTTTTACCAC-
Table 3. Intra and inter MOTUs genetic distances estimated by Neighbor-Joining with Kimura-2 parameter model.
\begin{tabular}{|c|}
\hline & Intra-MOTU distances & & & & & & & & & & & & & & & & & & & \\
\hline Megalothorax cf. interruptus L1 & 10,70 & & & & & & & & & & & & & & & & & & & \\
\hline Megalothorax cf. interruptus L2 & - & 22,98 & & & & & & & & & & & & & & & & & & \\
\hline Megalothorax granulosus & - & 30,02 & 27,10 & & & & & & & & & & & & & & & & & \\
\hline Megalothorax minimus & 3,22 & 38,58 & 36,01 & 34,99 & & & & & & & & & & & & & & & & \\
\hline Megalothorax nigropunctatus & 2,31 & 28,97 & 26,91 & 31,34 & 29,01 & & & & & & & & & & & & & & & \\
\hline Megalothorax perspicillum & 0,00 & 31,11 & 30,23 & 24,91 & 31,72 & 26,11 & & & & & & & & & & & & & & \\
\hline Megalothorax potapovi sp. n. & 0,00 & 29,66 & 22,89 & 29,02 & 27,19 & 27,91 & 29,10 & & & & & & & & & & & & & \\
\hline Megalothorax sanguineus sp. n. & 0,95 & 29,87 & 23,49 & 28,96 & 33,90 & 28,19 & 27,25 & 25,79 & & & & & & & & & & & & \\
\hline Megalothorax sp1 & 3,75 & 35,18 & 27,46 & 30,39 & 25,25 & 27,74 & 30,40 & 23,39 & 23,36 & & & & & & & & & & & \\
\hline Megalothorax sp2 & - & 31,42 & 26,42 & 26,02 & 32,87 & 29,78 & 31,61 & 31,92 & 32,21 & 30,97 & & & & & & & & & & \\
\hline Megalothorax sp3 & - & 29,17 & 27,52 & 31,81 & 32,61 & 31,16 & 27,84 & 27,62 & 27,21 & 29,64 & 30,30 & & & & & & & & & \\
\hline Megalothorax sp4 & - & 28,74 & 27,23 & 25,65 & 27,20 & 21,90 & 23,31 & 24,78 & 28,56 & 26,25 & 23,93 & 29,61 & & & & & & & & \\
\hline Megalothorax svalbardensis & - & 28,61 & 26,08 & 26,72 & 29,39 & 26,47 & 25,67 & 19,36 & 22,00 & 23,83 & 28,43 & 29,10 & 28,38 & & & & & & & \\
\hline Megalothorax willemi L1 & 0,00 & 27,39 & 28,66 & 26,36 & 27,88 & 26,69 & 28,63 & 22,84 & 26,89 & 22,87 & 32,22 & 32,80 & 26,58 & 23,49 & & & & & & \\
\hline Megalothorax willemi L2 & 0,00 & 33,34 & 32,28 & 32,22 & 29,68 & 32,97 & 27,64 & 29,27 & 29,17 & 23,80 & 34,81 & 33,19 & 28,69 & 26,29 & 21,89 & & & & & \\
\hline Megalothorax willemi L3 & 0,52 & 34,70 & 35,89 & 34,40 & 26,48 & 31,97 & 29,36 & 27,97 & 34,84 & 30,04 & 32,00 & 37,62 & 26,26 & 29,31 & 24,15 & 25,08 & & & & \\
\hline Megalothorax willemi L4 & - & 35,46 & 28,38 & 37,99 & 28,84 & 30,68 & 32,34 & 26,23 & 30,68 & 24,34 & 35,00 & 34,42 & 27,54 & 30,71 & 25,13 & 24,26 & 25,45 & & & \\
\hline Megalothorax willemi L5 & - & 30,24 & 31,81 & 32,52 & 27,27 & 33,44 & 29,24 & 26,12 & 31,69 & 26,56 & 35,48 & 29,72 & 30,02 & 26,05 & 23,31 & 26,32 & 27,08 & 28,17 & & \\
\hline Megalothorax willemi L6 & 0,56 & 30,64 & 29,85 & 28,76 & 25,65 & 26,88 & 26,02 & 22,39 & 28,10 & 21,84 & 30,24 & 31,64 & 27,26 & 25,06 & 20,80 & 25,99 & 24,20 & 22,98 & 20,99 & \\
\hline Megalothorax willemi L7 & - & 32,26 & 33,03 & 34,25 & 26,14 & 30,37 & 31,42 & 23,60 & 31,72 & 21,83 & 31,09 & 29,61 & 27,70 & 26,98 & 23,08 & 27,64 & 26,01 & 26,68 & 23,68 & 20,67 \\
\hline
\end{tabular}

Figure 16. Diagram of the chaetotaxy of the trunk. A Megalothorax potapovi sp. n. B Megalothorax sanguineus sp. n.

Table 4. GenBank accession number.
\begin{tabular}{|c|c|c|}
\hline Specimen & MOTU name & Barcode GenBank accession number \\
\hline Megalothorax potapovi 10770C01 RU120 & Megalothorax potapovi sp. n. & KR736064 \\
\hline Megalothorax potapovi 10770C02 RU120 & Megalothorax potapovi sp. n. & KR736063 \\
\hline Megalothorax potapovi 00620C03 RU120 & Megalothorax potapovi sp. n. & KR736067 \\
\hline Megalothorax potapovi 00620C04 RU120 & Megalothorax potapovi sp. n. & KR736070 \\
\hline Megalothorax potapovi 00620C05 RU120 & Megalothorax potapovi sp. n. & KR736069 \\
\hline Megalothorax potapovi 00620C06 RU120 & Megalothorax potapovi sp. n. & KR736068 \\
\hline Megalothorax potapovi 00620C07 RU120 & Megalothorax potapovi sp. n. & KR736065 \\
\hline Megalothorax potapovi 00620C08 RU120 & Megalothorax potapovi sp. n. & KR736066 \\
\hline Megalothorax sanguineus 6139D02 09761 & Megalothorax sanguineus sp. n. & JN298074 \\
\hline Megalothorax sanguineus 6139D03 09761 & Megalothorax sanguineus sp. n. & JN298075 \\
\hline Megalothorax sanguineus 6139D04 09761 & Megalothorax sanguineus sp. n. & JN298076 \\
\hline Megalothorax sanguineus 6139D05 09761 & Megalothorax sanguineus sp. n. & JN298077 \\
\hline Megalothorax sanguineus 6139D06 09761 & Megalothorax sanguineus sp. n. & JN298078 \\
\hline Megalothorax cf. interruptus GUF 1 & Megalothorax cf. interruptus L1 & JN970929 \\
\hline Megalothorax cf. interruptus GUF 2 & Megalothorax cf. interruptus L1 & JN970928 \\
\hline Megalothorax cf. interruptus GUF 3 & Megalothorax cf. interruptus L2 & JN970910 \\
\hline Megalothorax granulosus cs110_CHL021 & Megalothorax granulosus & KC900204 \\
\hline Megalothorax minimus BEL 1 & Megalothorax minimus & JN970925 \\
\hline Megalothorax minimus cs70_Be001 & Megalothorax minimus & KC900191 \\
\hline Megalothorax minimus cs71_Be001 & Megalothorax minimus & KC900192 \\
\hline Megalothorax minimus cs93_Fr38 & Megalothorax minimus & KC900195 \\
\hline Megalothorax nigropunctatus cd345c & Megalothorax nigropunctatus & KC900196 \\
\hline Megalothorax nigropunctatus cs104_CHL102 & Megalothorax nigropunctatus & KC900197 \\
\hline Megalothorax nigropunctatus cs1 18_CHL033 & Megalothorax nigropunctatus & KC900198 \\
\hline Megalothorax nigropunctatus cs119_CHL205 & Megalothorax nigropunctatus & KC900199 \\
\hline Megalothorax perspicillum cs121_Fr114 & Megalothorax perspicillum & KС900200 \\
\hline Megalothorax perspicillum cs 122_Fr 114 & Megalothorax perspicillum & KC900201 \\
\hline Megalothorax perspicillum cs123_Fr 114 & Megalothorax perspicillum & KC900202 \\
\hline Megalothorax perspicillum cs124_Fr114 & Megalothorax perspicillum & KC900203 \\
\hline Megalothorax sp. ARG 1 & Megalothorax sp2 & JN970916 \\
\hline Megalothorax sp. ARG 2 & Megalothorax sp1 & JN970926 \\
\hline Megalothorax sp. CHL 1 & Megalothorax sp1 & JN970927 \\
\hline Megalothorax sp. FRA 8 & Megalothorax sp4 & JN970913 \\
\hline Megalothorax sp. USA 1 & Megalothorax sp3 & JN970909 \\
\hline Megalothorax svalbardensis cs40_sva19 & Megalothorax svalbardensis & KC900205 \\
\hline Megalothorax willemi ARG 3 & Megalothorax willemi L6 & JN970918 \\
\hline Megalothorax willemi ARG 4 & Megalothorax willemi L6 & JN970919 \\
\hline Megalothorax willemi cs91_Be005 & Megalothorax willemi L6 & KC900193 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline \multicolumn{1}{c|}{ Specimen } & MOTU name & \begin{tabular}{c}
Barcode GenBank \\
accession number
\end{tabular} \\
\hline Megalothorax willemi cs92_Be005 & Megalothorax willemi L4 & KC900194 \\
\hline Megalothorax willemi FRA 1 & Megalothorax willemi L5 & JN970912 \\
\hline Megalothorax willemi FRA 2 & Megalothorax willemi L6 & JN970917 \\
\hline Megalothorax willemi FRA 3 & Megalothorax willemi L1 & JN970911 \\
\hline Megalothorax willemi FRA 4 & Megalothorax willemi L3 & JN970920 \\
\hline Megalothorax willemi FRA 5 & Megalothorax willemi L3 & JN970921 \\
\hline Megalothorax willemi FRA 6 & Megalothorax willemi L3 & JN970922 \\
\hline Megalothorax willemi FRA 7 & Megalothorax willemi L4 & JN970915 \\
\hline Megalothorax willemi FRA 9 & Megalothorax willemi L2 & JN970924 \\
\hline Megalothorax willemi FRA 10 & Megalothorax willemi L2 & JN970923 \\
\hline Megalothorax willemi FRA 11 & Megalothorax willemi L7 & JN970914 \\
\hline
\end{tabular}

Figure 17. Tree inferred from the COI barcode by Neighbor-Joining with Kimura-2 parameter model. Robustness supports (bootstrap) are reported next to the nodes.

CATCTTTAATCTTATTACTATCCAGAGGGTTAGTTGAAACTGGTGCTG-GCACAGGATGAACAGTATATCCCССТСТАTCGTCTAATATTTCTCATA-GAGGAGCTTCTGTAGATTTAACTATTCTTAGACTTCATTTAGCTGG-GATATCTTCTATTCTTGGGGCAATTAATTTTATTACAAСТАТТСТ-TAATATACGAATACCAGGAATAACATGAGACCAAACTTCTTTATTT-GTATGATCAGTTTTTATTACCTCAATTTTATTACTCСТСТСGСТTC-CAGTGCTTGCTGGAGCAATTACTATACTTTTAACTGACCGTAACCT-GAATACCTCATTTTTTGATCCTGCGGGAGGAGGAGACCCTATTCTA-TATCAACATTTATTT-3'.

\section*{DNA barcoding results}

Fig. 17, Table 3.
Twenty MOTUs were delineated using a conservative 19.5\% threshold based on the higher bound of the barcode gap (not shown). Over the seven species for which several specimens were sequenced, five were represented by a single MOTU (M. nigropunctatus, M. perspicillum Schneider \& D'Haese, 2013, M. minimus, M. potapovi sp. n., M. sanguineus sp. n.) and two exhibited several discrete MOTUs each (M. willemi-7 MOTUs, Megalothorax cf. interruptus-2 MOTUs). Deep genetic divergences showed among the MOTUs (Fig. 17). The mean genetic divergence among the MOTUs was \(28.27 \%\) (range: \(19.36 \%-37.99 \%\)). The mean intra-MOTU divergence was \(0.95 \%\) (range: \(0 \%-10.70 \%\)). The mean observed divergences between \(M\). potapovi sp. n., M. sanguineus sp. n. and the other MOTUs were respectively \(26.09 \%\) (range: \(19.36 \%-31.92 \%\)) and \(28.52 \%\) (range: \(22.00 \%-34.84 \%\)). These ranges of genetic divergences are comparable to those observed among Megalothorax MOTUs included in the dataset as well as with the interspecific variation found among MOTUs corresponding to monophyletic identified species (\(28.08 \%\); range: \(19.36 \%-36.47 \%\)). This supports further the validity of the specific status for the two new species.

\section*{Discussion}

\section*{DNA barcoding}

The two new species \(M\). potapovi sp. n., M. sanguineus sp. n. are both supported by differences in morphological and molecular characters. The sequencing of COI for a paratype for \(M\). potapovi sp. n . is critical as it will prevent ambiguities if a case of cryptic diversity is discovered in this species (Porco et al. 2012). Indeed, within the genus, the striking example of \(M\). willemi exhibiting a high molecular diversity in parallel with morphological stability calls for a dedicated investigation (Schneider and D'Haese 2013). A similar yet less documented diversity is observed in a new species near Megalothorax interruptus (Schneider et al. in prep.).

\section*{Morphology}

Labrum. Schneider and D'Haese (2013) pointed out the potential of the labrum morphology for taxonomy in reporting the differences between \(M\). minimus (minimus group) and M. nigropunctatus (incertus group). Here some differences are described between two species of the minimus group: M. potapovi sp. n. (Fig. 13A-C) and M. minimus (Fig. 13D-F) , and introduce a nomenclature for the integumentary crests of the anterior process of the labrum. This structure remains unpractical to describe comprehensively: in light microscopy, the integumentary crests can be distinguished but their precise development and connections to each other are hard to assess. SEM allowed the description partially and also the recognition of asymmetry, but the method suffers from several flaws: (i) lack of depth, several shots from different angles would be required; (ii) part of the labrum is generally shadowed; (iii) asymmetry being evidenced, several specimens should be observed to assess intra-specific variation. Those requirements prevent use for regular taxonomic due to the cost and availability of SEM equipment, as well as the need for a significant number of specimens.

Integument. The pairs of pseudopore-like elements at the base of antenna were never reported in the Megalothorax genus but seem to be common features of the genus. We observed them clearly on M. sanguineus sp. n. and M. carpaticus, they are visible but faint in the following Megalothorax species: potapovi sp. n., minimus, granulosus, nigropunctatus, willemi, svalbardensis and also in French specimens of M. sanctistephani. They were observed in SEM in M. perspicillum and M. aquaticus, where the dorsal one consists of a ring of primary grain and a small integumentary duct and the lateral one of a simple ring of primary grain. At the species level, those characters do not yield evident systematics value. They could not be observed in Neelus murinus and Neelides folsomi but the presence of dermastrons could blur the observation of the integument. In the state of knowledge, it is a putative apomorphy of the genus Megalothorax.
\(\tau\)-chaetae. Schneider and D'Haese (2013) used the position of the lateral \(\tau\)-chaetae guarding \(s f 3\) as a descriptor, separating M. perspicillum from M. minimus, M. nigropunctatus, M. svalbardensis and M. willemi. We now describe more precisely the position of the two \(\tau\)-chaetae guarding \(s f 3\). Position of the most dorsal \(\tau\)-chaeta: (i) between \(p 1\) and \(p 2\) and close to \(p 2\) (M. minimus, M. svalbardensis, M. willemi, M. tatrensis and the two new species); (ii) between \(p 1\) and \(p 2\) and equidistant to them (M. perspicillum, M. carpaticus); (iii) between \(p 1\) and \(p 2\) and close to \(p 1\) (\(M\). nigropunctatus); (iv) between \(p 2\) and \(p 3\) and close to \(p 2\) (\(M\). granulosus).

Position of the most lateral \(\tau\)-chaeta: (i) between \(p 2\) and \(p 3\) (M. perspicillum), (ii) in lateral position and close to \(p 4\) with 2 or less granules between the chaetae (\(M\). minimus, M. svalbardensis, M. carpaticus, M. granulosus), (iii) in lateral position and more or less far from \(p 4\) with 5 or more granules between the chaetae (the two new species and \(M\). nigropunctatus). M. draco, M. tatrensis and M. hipmani were also observed but the \(\tau\)-chaetae could not be spotted at the exception of the most dorsal \(\tau\)-chaeta in \(M\). tatrensis.

Antenna. The homology of the chaeta directly below \(S 4\) (m5) on Ant. III of \(M\). potapovi is ambiguous; an alternative hypothesis is provided in Fig. 15.

Claws. The apparent elongation of the claws in \(M\). sanguineus sp . n. called for a comparison with the other species of Megalothorax. The ratio of unguis I length : tibiotarsus I width was used by Papáč and Kováč (2013) as an indicator of troglobiontic adaptation. In practice, the tibiotarsus width is not exactly constant along its whole length and is frequently swollen in slide preparations (with dilatation of the integument). We instead estimated the ratio unguis I length : pretarsus I width and the ratio unguis I length : tibiotarsus I length.

\section*{Acknowledgements}

Special thanks to Mikhail Potapov for having organized the field trip to Primorye (Russia), and to Jacek Pomorski and Anne Bedos for their contribution to specimen collection and extraction. The study on the Bernadouze peat-bog (France) was supported by grants of the LABEX DRIIHM - OHM Vicdessos for field trips and the laboratory work of Lorène Marchal. We are grateful to Vladimir Papáč and to anonymous reviewer for the thorough review of this manuscript and their valuable corrections and recommendations.

\section*{References}

Babenko AB, Chimotova AB, Stebaeva SK (2011) New Palaearctic species of the tribe Thalassaphorurini Pomorski, 1998 (Collembola, Onychiuridae). ZooKeys 126: 1-38. doi: 10.3897/zookeys.126.1229

Betsch J-M (1980) Éléments pour une monographie des Collemboles Symphypléones (Hexapodes, Aptérygotes). Mémoires du Muséum National d'Histoire Naturelle 116: 1-227.
Deharveng L (1978) Collemboles cavernicoles. 1. Grottes de l'Aguzou (France: Aude). Bulletin de la Société d'Histoire naturelle de Toulouse 114(3-4): 393-403.
Deharveng L, Beruete E (1993) Megalothorax tuberculatus sp. n., nouveau troglobie des Pyré-nées-Atlantiques (France) et de Navarre (Espagne) (Collembola, Neelidae). Bulletin de la Société entomologique de France 98(1): 15-18.
Deharveng L, Bedos A, Weiner WM (2010) Two new species of the genus Leenurina Najt \& Weiner, 1992 (Collembola, Neanuridae, Caputanurininae) from Primorskij Kraj (Russia). ZooKeys 115: 39-52. doi: 10.3897/zookeys.115.1464
Denis JR (1948) Collemboles d'Indochine. Notes d'Entomologie Chinoise. Musée Eude 12(17): 183-311.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit i from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.

Hall TA (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symposium Series 41: 95-98.
Hebert PDN, Cywinska AB, Shelley L, deWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B-Biological Sciences 270(1512): 313-321. doi: 10.1098/rspb.2002.2218
Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002. doi: 10.1111/j.1471-8286.2006.01428.x

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. Journal of Molecular Evolution 16: 111-120. doi: 10.1007/BF01731581
Massoud Z, Ellis W (1977) Proposition pour une classification et une nomenclature cohérente des phanères des Collemboles européens. Revue d'Ecologie et de Biologie du Sol 14(1): 163-179.
Papáč V, Kováč L' (2013) Four new troglobiotic species of the genus Megalothorax Willem, 1900 (Collembola: Neelipleona) from the Carpathian Mountains (Slovakia, Romania). Zootaxa 3737(5): 545-575. doi: 10.11646/zootaxa.3737.5.3
Pomorski R, Sveenkova Y (2006) New genus with three new species of Thalassaphorurini (Collembola: Onychiuridae) from Russian Far East. Insect Systematics \& Evolution 37(2): 191-196. doi: 10.1163/187631206788831092
Porco D, Rougerie R, Deharveng L, Hebert P (2010) Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied arthropods in a high-throughput context: The example of collembola. Molecular Ecology Resources 10: 942-945. doi: 10.1111/j.1755-0998.2010.2839.x

Porco D, Bedos A, Greenslade P, Janion C, Skarżyński D, Stevens MI, Jansen van Vuuren B, Deharveng L (2012) Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding. Invertebrate Systematics 26: 470-477. doi: 10.1071/IS12026
Richards WR (1968) Generic classification, evolution, and biogeography of the Sminthuridae of the world (Collembola). Memoirs of the Entomological Society of Canada 53: 1-54. doi: 10.4039/entm10053fv
Salmon JT (1946) Collembola - Symphypleona from the Homer district. Dominion Museum Records in Entomology 1(4): 27-61.
Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: Open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541. doi: 10.1128/AEM.01541-09
Schneider C (in press) Morphological review of the order Neelipleona (Collembola) through the redescription of the type species of Acanthoneelidus, Neelides and Neelus. Zootaxa.

Schneider C, D'Haese CA (2013) Morphological and molecular insights on Megalothorax: the largest Neelipleona genus revisited (Collembola). Invertebrate Systematics 27(3): 317-364. doi: 10.1071/IS13002
Schneider C, Cruaud C, D’Haese CA (2011) Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola). Soil Organisms 83(3): 383-398.
Sun X, Deharveng L, Wu D (2013) Broadening the definition of the genus Thalassaphorura Bagnall, 1949 (Collembola, Onychiuridae) with a new aberrant species from China. ZooKeys 364: 1-9. doi: 10.3897/zookeys.364.6332
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729. doi: 10.1093/molbev/mst197

\title{
A new, widely distributed species of the Exocelina ekari-group from West Papua (Coleoptera, Dytiscidae, Copelatinae)
}

\author{
Helena Shaverdo \({ }^{1}\), Rawati Panjaitan², Michael Balke \({ }^{3}\) \\ I Naturbistorisches Museum, Burgring 7, A-1010 Vienna, Austria 2 Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Jalan Gunung Salju Amban, Manokwari 98314, West Papua, Indonesia 3 Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247 Munich, Germany and GeoBioCenter, Ludwig-Maximilians-University, Munich, Germany
}

Corresponding author: Helena Shaverdo (shaverdo@mail.ru; helena.shaverdo@nhm-wien.ac.at)

Academic editor: Michael Ivie \| Received 28 May 2015 \| Accepted 22 November 2015 | Published 18 January 2016
http://zoobank.org/04FDA81C-59CB-4172-B3FB-FD57BFCD62E3
Citation: Shaverdo H, Panjaitan R, Balke M (2016) A new, widely distributed species of the Exocelina ekari-group from West Papua (Coleoptera, Dytiscidae, Copelatinae). ZooKeys 554: 69-85. doi: 10.3897/zookeys.554.6065

\begin{abstract}
Exocelina manokwariensis sp. n. from West Papua is placed into the E. ekari-group based on the structure of its male genitalia. The new species is described, including its three subspecies, from the mainland of West Papua, Waigeo Island, Batanta and Salawati Islands, and Bomberai peninsula. An identification key to the subspecies as well as data on species distribution are provided.
\end{abstract}

\section*{Keywords}

Coleoptera, Dytiscidae, Exocelina, new species, new subspecies, molecular phylogenetics, West Papua

\section*{Introduction}

Of the 88 species of the genus Exocelina Broun, 1886 described from New Guinea, only eight species are known from West Papua, and all of them belong to the E. ekarigroup (Balke 1998, 1999, Shaverdo and Balke 2014, Shaverdo et al. 2005, 2012, 2013, 2014). Herein, a new member of that group is described, which is widely distributed across the Bird's Head of West Papua, accounting for the geographical structure observed in the morphological characters studied by erecting four subspecies.

\section*{Material and methods}

The present work is based on the material from the following collections:
\begin{tabular}{ll}
MZB & Museum Zoologicum Bogoriense, Cibinong, Indonesia \\
NHMW & Naturhistorisches Museum Wien, Vienna, Austria \\
ZSM & Zoologische Staatsammlung München, Munich, Germany
\end{tabular}

All specimen data are quoted as they appear on the labels attached to the specimens. Label text is cited using quotation marks. Comments in square brackets are ours. All types of the herein described specimens are provided with red labels. Female specimens, identification of which is difficult or sometimes impossible, were included in the type series only when they were collected with males of respective species and did not show external morphological differences from them. If two or more morphologically similar species were collected together (i.e., males found together), their females were not included in the type series but were instead mentioned under additional material. Species descriptions are based on the whole type series.

Measurements were taken with a Wild M10 stereomicroscope. The following abbreviations were used: TL (total body length), TL-H (total body length without head), MW (maximum body width), and hw (handwritten). Number of the ventral setae of the male protarsomere 5 is given only for one specimen of each species, which was mounted on a glass slide (see below) for drawing. This character was found to be of limited practical use for species identification since it is possible to make a general statement on the setation pattern (short/long, dense/sparse) but not to count them with certainty at the magnification of normal dissecting microscopes. The potential phylogenetic information content of this character will be studied in a further work.

Drawings were made with the aid of a camera lucida attached to a Leica DM 2500 microscope. For detailed study and drawing, antennae, protarsi, and genitalia were removed and mounted on glass slides with DMHF (dimethyl hydantoin formaldehyde) as temporary preparations. The drawings were scanned and edited, using the software Adobe Illustrator CS5.1.

The terminology to denote the orientation of the genitalia (ventral for median lobe and dorsal and external for paramere) follows Miller and Nilsson (2003). The terminology on the structure of the prosternum follows Larson et al. (2000). Administrative divisions of Indonesia follow information from Wikipedia (2015).

\section*{Systematics}

\section*{Exocelina manokwariensis sp. n.}
http://zoobank.org/77D1CC24-24BC-4BE1-AC1F-CBAEA851B583
Figs 1, 2

Type locality. Indonesia: West Papua Province: Manokwari Regency, Road Manokwari - Mokwam, 01º0.60'S; 13353.92'E.

Type material. Holotype: male "Indonesia: Papua, Road Manokwari - Mokwam, 320m, 25./27.i.1990, 01.00.596S 133.53.921E, Balke (BH 01)" (MZB). Paratypes: Manokwari: 12 males, 8 females with the same label as the holotype, two males additionally with green labels "M.Balke 1267", "M.Balke 1282" (MZB, NHMW, ZSM). 6 males, 5 females "Indonesia: Papua, Ransiki - Anggi, 1160m, 30.i.1990, 01.25.536S 134.02.456E, Balke (BH 03)", one male additionally with a green label "M.Balke 1270" (NHMW, ZSM). 2 males, 5 females "IRIAN JAYA, Manokwari Rasiki, Mayuby - Benyas ca. 300-400m, 27.-28.IX.1990, leg. A. Riedel" (NHMW, ZSM). 121 males, 94 females "Indonesia: Papua Barat, Manokwari, Maripi, creek white pebbles, 135m, -0.907576 133.9214718 (BH039)" (MZB, NHMW, ZSM). 2 males "IN: West Papua: Manokwari Reg., on road Manokwari-Kebar, near Munbrani vill., \(66 \mathrm{~m}, 8 . \mathrm{V}\)., \(00^{\circ} 46^{\prime} 21^{\prime \prime} \mathrm{S}, 133^{\circ} 22^{\prime} 53^{\prime \prime} \mathrm{E}\), roadside ditch (2015-WP36)" (NHMW, ZSM). 1 male "Indonesia: Papua Barat, Manokwari to Kebar, forest stream, 302m, -0.80058566 133.33216397 (BH023)", one male additionally with a label "M.Balke 6187" (ZSM). 36 males "Indonesia: Papua Barat, Kebar to Aibogar, slow forest stream, 503m, \(-0,86241595132,82993928\) (BH025)", one male additionally with a label "M.Balke 6190" (MZB, NHMW, ZSM). 2 males, 4 females "Indonesia: Papua Barat, Kebar to Aibogar, forest stream, \(942 \mathrm{~m},-0,89933965132,7221734\) (BH026)", one male additionally with a label "M.Balke 6192" (ZSM). 38 males, 26 females "Indonesia: Papua Barat, Fumato, forest stream, 820m, -0.90427148 132.71981431 (BH027)", four males additionally with labels "M.Balke 6201", "M.Balke 6202", "M.Balke 6203", "M.Balke 6204" (MZB, NHMW, ZSM). 31 males, 22 females "Indonesia: Papua Barat, Fumato to Kebar, forest stream, 674m, -0.88384738 132.73705681 (BH028)" (MZB, NHMW, ZSM). 11 males, 7 females "Indonesia: Papua Barat, Tamrau Mts. N of Kebar, forest stream, 750m, -0,783199 133,072143 (BH033)" (ZSM). 75 males, 154 females "Indonesia: Papua Barat, Tamrau Mts. N of Kebar, forest stream, puddles, 1050m, -0.774519 133.069929 (BH034)" (MZB, NHMW, ZSM). Sorong: 6 males, 9 females "Indonesia: Papua Barat, Sorong-Sausapor, 300m, -0.7629653 131.6177023 (BH041)" (ZSM). 18 males, 21 females "Indonesia: Papua Barat, Sau-sapor-Fef, \(157 \mathrm{~m},-0.6975004132 .072253\) (BH044)" (MZB, NHMW, ZSM).

Additional material. 1 female "Indonesia: Papua Barat, Tamrau Mts. N of Kebar, sandy sunny riverbank", "758m, -0,78387424 133,07218533 (BH032)" (ZSM). 78 females "Indonesia: Papua Barat, Kebar to Aibogar, slow forest stream, 503m, \(-0,86241595132,82993928(\mathrm{BH} 025)\) ", the females are a mixture of \(E\). manokwariensis sp. n. and E. polita (Sharp, 1882) (MZB, NHMW, ZSM).

Figure I. Habitus and coloration of Exocelina manokwariensis sp. n.

Diagnosis. Beetle small, brown to blackish brown, usually with paler clypeus and pronotal sides or head and pronotum, shiny, with almost invisible dorsal punctation; pronotum with distinct lateral bead; male antennomeres 3-4 strongly enlarged and triangular (3 distinctly larger than 4), 5 distinctly enlarged, 6-8 somewhat enlarged; male

Figure 2. Exocelina manokwariensis sp. n. A male antenna B male protarsomeres 4-5 in ventral view \(\mathbf{C}\) median lobe in ventral view \(\mathbf{D}\) median lobe in lateral view \(\mathbf{E}\) paramere in external view.
protarsomere 4 with medium-sized, slender, evidently curved anterolateral hook-like seta; median lobe with strong submedian constriction in ventral view, apex of median lobe truncate; paramere with notch on dorsal side and subdistal part short and small, with relatively short, thick, and flattened setae.

Description. Size and shape: Beetle small (TL-H 3.2-3.75 mm, TL 3.45-4.15 mm, MW 1.7-2.05 mm; holotype: TL-H 3.3 mm , TL 3.7 mm , MW 1.75 mm), with oblong-oval habitus, broadest at elytral middle.

Coloration: Head reddish brown to blackish brown, paler on clypeus and vertex; pronotum reddish brown to blackish brown, with paler sides and darker disc; elytra brown to blackish brown, sometimes with brown sutural lines; head appendages and legs yellowish to yellowish red, legs darker distally (Fig. 1). Teneral specimens paler.

Surface sculpture: Head with relatively dense punctation (spaces between punctures 1-3 times size of punctures), evidently finer and sparser anteriorly; diameter of punctures smaller than diameter of cells of microreticulation. Pronotum with extremely sparse and fine punctation, almost invisible. Elytra with punctation finer than on pronotum, indistinct. Pronotum and elytra with weakly impressed microreticulation, dorsal surface shiny. Head with microreticulation stronger. Metaventrite and metacoxa distinctly microreticulate, metacoxal plates with longitudinal strioles and transverse wrinkles. Abdominal ventrites with distinct microreticulation, strioles, and extremely fine, sparse punctation, almost invisible, only slightly coarser and denser on two last abdominal ventrites.

Structures: Pronotum with distinct lateral bead. Base of prosternum and neck of prosternal process with distinct ridge, less rounded and smooth anteriorly, without
anterolateral extensions. Blade of prosternal process lanceolate, relatively elongate, convex, with distinct lateral bead and few setae; neck and blade of prosternal process evenly jointed. Abdominal ventrite 6 broadly rounded or slightly truncate apically.

Male: Antennomeres 3-4 strongly enlarged and triangular (3 distinctly larger than 4), 5 distinctly enlarged, 6-8 somewhat enlarged (Fig. 2A); antennomeres 3-7 rugose ventrally. Protarsomere 4 with medium-sized, slender, evidently curved anterolateral hook-like seta. Protarsomere 5 ventrally with anterior row of 12 and posterior row 6 short setae (Fig. 2B). Abdominal ventrite 6 with 8-16 lateral striae on each side, slightly truncate apically. Median lobe with strong submedian constriction in ventral view, apex of median lobe truncate, with relatively short tip in lateral view and relatively asymmetric in ventral view (Fig. 2C, D). Paramere with notch on dorsal side and subdistal part short and small, with numerous, relatively short, thick, and flattened setae (Fig. 2E).

Female: Antennae simple, abdominal ventrite 6 broadly rounded apically, without striae.
Variability. The species has three subspecies, which are isolated geographically, occurring in restricted regions (Fig. 9). They are very similar morphologically and show (at least on material we have) no much variability in their morphology. Comparisons are given as separate notes after the descriptions.

Here, we discuss the variability of the nominative subspecies, which is more widely distributed (Fig. 9). This subspecies demonstrates variability mainly in shape of the apex of median lobe and setation of the subdistal part of the paramere. The truncate margin of the median lobe apex varies from almost straight (especially specimens from Manokwari) to slightly concave (especially specimens from Kedar, Fumato, Sorong) in lateral view. This variability is observed within and among the populations. Also, number of the subdistal flattened setae of the paramere varies thought it is not possible to estimate that quantitatively, since they are numerous and densely attached. The specimens from western populations have less numerous subdistal flattened setae then specimens from Manokwari.

Comparative notes. In the E. ekari-group, the new species is similar to the species of the E. polita-complex: E. polita (Sharp, 1882), E. alexanderi Shaverdo, Hendrich \& Balke, 2012, E. anggiensis Shaverdo, Hendrich \& Balke, 2012, and E. arfakensis Shaverdo, Hendrich \& Balke, 2012; see descriptions and illustrations in Shaverdo et al. 2012. From all these species, E. manokwariensis sp. n. can be distinguished by its smaller size (TL-H: 3.1-3.85 mm, MW: 1.65-2.1 mm; for E. polita-complex: TL-H: 3.7-4.3 mm, MW: 2.05-2.3 mm) and apex of the median lobe almost truncate in lateral view (elongate for \(E\). polita-complex, if slightly truncate (in E. alexanderi), then anntenomeres 3 and 4 of almost equal size). With its very fine dorsal punctation, the new species particularly resembles \(E\). alexanderi, which also has a slightly truncate apex of the median lobe in lateral view, but differs from it by the smaller size and distinctly different shape of the male antennomeres 3 and 4. Exocelina polita also has fine dorsal punctation and it was found together with the new species in two localities. From E. polita, E. manokwariensis sp . n . can be separated by its smaller size, truncate apex of the median lobe in lateral view, and slightly different shape of the male antennomeres 3 and 4.

The nominative subspecies can be distinguished from all the other subspecies by more numerous flattened setae on the subdistal part of the paramere, the slightly shorter median lobe, and the prosternal ridge being less rounded anteriorly. From \(E\). \(m\). batanta ssp. n. and E. m. nokensis ssp. n., it can be also separated by slightly darker coloration and the stronger dorsal microreticulation. From E. m. batanta ssp. n. and E. \(m\). hendrichi ssp. n., by the more asymmetric apex of the median lobe in ventral view and the smaller subdistal part of the paramere.

Distribution. Indonesia: West Papua Province: Sorong and Manokwari Regencies (Fig. 9).

Etymology. The species is named after Manokwari Regency where it is occur. The name is an adjective in the nominative singular.

Ecology. The species was collected in localities BH 023 and BH 025 together with E. polita in ratios 1:4 and 1:1, respectively.

\section*{Exocelina manokwariensis batanta ssp. n .}
http://zoobank.org/047A24B7-0ED0-491E-BF10-B69C103B2236
Figs 3, 4
Exocelina undescribed sp. MB1277: Toussaint et al. 2014: Supplementary figs 1-4, tab. 2.

Type locality. Indonesia: West Papua Province: Raja Ampat Regency, Batana Utara, approximately \(00^{\circ} 50.13^{\prime} \mathrm{S} ; 130^{\circ} 42.86^{\prime} \mathrm{E}\).

Type material. Holotype: male "Indonesia: Papua, Batanta Utara, 180 m , above 00.50 .125 S 130.42 .856 E (BH 13)" (MZB). Paratype: 16 males, 14 females with the same label as the holotype, two males additionally with green labels "M.Balke 1277", "M.Balke 1278" (MZB, NHMW, ZSM). 3 males, 4 females "Indonesia: Papua, Batanta Selatan, Wailebet, 280 m , inland 00.53 .957 S 130.39 .951 E , (BH 16)", one male additionally with a green label "M.Balke 1280" (NHMW, ZSM). 2 males, 2 females "Indonesia: Papua, Salawatti Utara, 100-250m, inland 00.57.954S 130.40.531E (BH 18)", one male additionally with a green label "M.Balke 1281" (NHMW, ZSM).

Description. As nominative subspecies, except for the following characters.
Size: TL-H 3.2-3.6 mm, TL 3.65-3.95 mm, MW 1.75-1.9 mm; holotype: TL-H 3.5 mm , TL 3.85 mm , MW 1.85 mm .

Coloration: Head reddish brown to dark brown, paler on clypeus and vertex; pronotum reddish brown to dark brown, with paler sides and darker disc; elytra brown to blackish brown, usually with reddish brown sutural lines (Fig. 3).

Surface sculpture: Dorsal microreticulation, especially on head and pronotum, slightly weaker.

Structures: Base of prosternum and neck of prosternal process with distinct ridge, rounded and smooth anteriorly, with few transverse lines.

Figure 3. Habitus and coloration of Exocelina manokwariensis batanta ssp. n.

Male: Antennomeres 3-4 strongly enlarged and triangular (3 distinctly larger than 4), 5-6 distinctly enlarged, 7-8 somewhat enlarged (Fig. A). Protarsomere 5 ventrally with anterior row of 11 and posterior row 5 short setae (Fig. 4B). Abdominal ventrite 6 with 6-8 lateral striae on each side. Median lobe larger. Its apex strongly concave and symmetric in ventral view and with truncate margin more strongly curved in lateral

Figure 4. Exocelina manokwariensis batanta ssp. n. A male antenna (antennomere 1 not shown) B male protarsomeres \(4-5\) in ventral view \(\mathbf{C}\) median lobe in ventral view \(\mathbf{D}\) median lobe in lateral view \(\mathbf{E}\) paramere in external view.
view (Fig. 4C, D). Subdistal part of paramere larger, with flattened setae thinner and less numerous (Fig. 4E).

Female: Antennae simple, abdominal ventrite 6 broadly rounded apically, without striae.
Comparation with the other subspecies. Exocelina m. batanta ssp. n. can be separated from all other subspecies by its less numerous and thinner flattened setae of the subdistal part of the paramere and the apex of the median lobe being strongly concave and symmetric in ventral view.

Distribution. Indonesia: West Papua Province: Raja Ampat Regency, Batanta Island and the northern part of Salawati Island (misspelled as Salawatti on labels) (Fig. 9). Exocelina m. batanta ssp. n. is the only known Exocelina species in these islands.

Etymology. The species is named for the Batanta Island, where it was discovered. The name is a noun in the nominative singular standing in apposition.

\section*{Exocelina manokwariensis hendrichi ssp. n.}
http://zoobank.org/4EC8EF55-8ED9-40CC-A6C4-DBC1CDA45F8E
Figs 5, 6
Exocelina undescribed sp. MB1321: Toussaint et al. 2014: Supplementary figs 1-4, tab. 2.

Type locality. Indonesia: West Papua Province: Fak-Fak Regency, Kalimati, 4 km N Fak-Fak, approximately \(02^{\circ} 53.76^{\prime} \mathrm{S}\); \(132^{\circ} 18.07^{\prime} \mathrm{E}\).

Figure 5. Habitus and coloration of Exocelina manokwariensis hendrichi ssp. n.

Type material. Holotype: male "IRIAN JAYA: Fak-Fak Kalimati, 4 km N Fak-Fak \(260 \mathrm{~m}, 8-9.8 .1991\) Balke \& Hendrich (IR 27)" (MZB). Paratype: 26 males, 22 females with the same label as the holotype, one female additionally with a green label "M.Balke 3261 " (MZB, NHMW, ZSM). 6 males "IR 27-W.New Guinea, Fak-Fak, Kali Mati 4km

Figure 6. Exocelina manokwariensis hendrichi ssp. n. A male antenna B male protarsomeres \(4-5\) in ventral view \(\mathbf{C}\) median lobe in ventral view \(\mathbf{D}\) median lobe in lateral view \(\mathbf{E}\) paramere in external view.

N F.-F., 260 m, 8.-9.viii. 1991 Balke \& Hendrich leg." ((NHMW, ZSM). 44 males, 31 females "West New Guinea/Fak-Fak/IR27 Kali Mati, 4 km N of Fak-Fak 260 m, 8. \& 9.8.1991 leg: Balke \& Hendrich" (NHMW, ZSM). 2 males, 1 female "Indonesia: Irian Jaya Barat, Fak Fak, 310m, 23.ii.2006, Tindige", with green labels "M.Balke 1321", "M.Balke 4190", "M.Balke 4191" respectively (ZSM). 1 female "Indonesia: Irian Jaya Barat, Fak Fak, 310m, 23.ii.2006, 2 53.756S 132 18.07E, Tindige (Fak-Fak)" (ZSM).

Description. As nominative subspecies, except for the following characters.
Size: TL-H 3.3-3.85 mm, TL 3.75-4.45 mm, MW 1.75-2.1 mm; holotype: TL-H 3.75 mm , TL 4.3 mm , MW 2 mm .

Coloration: Dorsal surface more or less uniform reddish brown to dark brown, paler on clypeus, pronotal sides, along elytral suture, and sometimes on vertex (Fig. 5).

Structures: Base of prosternum and neck of prosternal process with distinct ridge, rounded and smooth anteriorly.

Male: Antennomeres 3-4 strongly enlarged and triangular (3 distinctly larger than 4), 5 distinctly enlarged, 6-7 somewhat enlarged (Fig. 6A). Protarsomere 5 ventrally with anterior row of 10 and posterior row 6 short setae (Fig. 6B). Abdominal ventrite 6 with \(7-9\) lateral striae on each side, slightly truncate apically. Median lobe larger. Its apex slightly asymmetric in ventral view and concave, with relatively long tip in lateral view (Fig. 6C, D). Subdistal part of paramere larger, with more or less numerous, thick flattened setae (Fig. 6E).

Female: Antennae simple, abdominal ventrite 6 broadly rounded apically, without striae.
Comparation with the other subspecies. Exocelina m. hendrichi ssp. n. can be separated from all other subspecies by the shape of the apex of its median lobe: slightly asymmetric in ventral view and concave, with relatively long tip in lateral view.

Distribution. Indonesia: West Papua Province: Fak-Fak Regency (Fig. 9). Exocelina \(m\). hendrichi ssp. \(n\). is the only known Exocelina species in this region.

Etymology. The species is named for our colleague and friend Lars Hendrich who collected this species. The species name is a noun in the genitive case.

\section*{Exocelina manokwariensis nokensis ssp. n.}
http://zoobank.org/9F65FAC4-58E8-4667-9C12-236CB7F46016
Figs 7, 8
Exocelina undescribed sp. MB1275: Toussaint et al. 2014: Supplementary figs 1-4, tab. 2.

Type locality. Indonesia: West Papua Province: Raja Ampat Regency, Waigeo Island, Waifoi, Mountain Nok, \(00^{\circ} 05.08^{\prime} \mathrm{S}\); \(130^{\circ} 44.59^{\prime} \mathrm{E}\).

Type material. Holotype: male "Indonesia: Papua, Waigeo, Waifoi, Mt. Nok, 500m, 00.05.076S 130.44.586E (BH 11)" (MZB). Paratypes: 25 males, 39 females with the same labels as the holotype, one male additionally with a green label "M.Balke 1275" (MZB, NHMW, ZSM). 1 male "Indonesia: Papua, Waigeo, Waifoi, <50m, 00.06.088S 130.42.855E, Balke (BH 10)", "M.Balke 1274 " [green] (ZSM). 23 males "N.DUTCH NEW GUINEA: Waigeu. Camp Nok. 2,500 ft. iv.1938. L.E.Cheesman. B.M.1938-593.", one of them additionally with labels "collection 28", "measured J.Parkin 78" (BMNH). 5 males "N.DUTCH NEW GUINEA: Waigeu.Camp 1.Mt. Nok. 2,500 ft. v.1938. L.E.Cheesman. B.M.1938-593." (BMNH).

Additional material. 27 females "N.DUTCH NEW GUINEA: Waigeu. Camp Nok. 2,500 ft. iv.1938. L.E.Cheesman. B.M.1938-593.", one of them additionally with labels "collection 27", "measured J.Parkin 76" (BMNH). 6 females "N.DUTCH NEW GUINEA: Waigeu.Camp 1.Mt.Nok. 2,500 ft. v.1938. L.E.Cheesman. B.M.1938-593." (BMNH). These females might belong to two species: E. m. nokensis ssp. n. and E. waigeoensis Shaverdo, Hendrich \& Balke, 2012.

Description. As nominative subspecies, except for the following characters.
Size: TL-H 3.1-3.6 mm, TL 3.45-4.0 mm, MW 1.65-1.9 mm; holotype: TL-H 3.4 mm , TL 3.75 mm , MW 1.8 mm (Fig. 7).

Surface sculpture: Dorsal microreticulation, especially on head and pronotum, slightly weaker.

Structures: Base of prosternum and neck of prosternal process with distinct ridge, less rounded, smooth or with few transverse lines anteriorly.

Male: Protarsomere 5 ventrally with anterior row of 9 and posterior row 4 short setae (Fig. 8B). Abdominal ventrite 6 with 3-6 lateral striae on each side. Median lobe slightly larger and somehow more slender. Its apex with relatively short tip and truncate margin almost straight in lateral view and asymmetric in ventral view (Fig. 8C, D). Subdistal part of paramere with less numerous, thick flattened setae (Fig. 8E).

Female: Antennae simple, abdominal ventrite 6 broadly rounded apically, without striae.

Figure 7. Habitus and coloration of Exocelina manokwariensis nokensis ssp. n.

Comparation with the other subspecies and co-inhabiting species. Although widely separated geographically, E. m. nokensis ssp. n. is very similar to the nominative subspecies, from which can be separated by the larger and somehow more slender median lobe, less numerous flattened setae on the paramere, and its finer dorsal

Figure 8. Exocelina manokwariensis nokensis ssp. n. A male antenna B male protarsomeres 4-5 in ventral view \(\mathbf{C}\) median lobe in ventral view \(\mathbf{D}\) median lobe in lateral view \(\mathbf{E}\) paramere in external view.

Figure 9. Map of the western part of New Guinea showing distribution of subspecies of Exocelina manokwariensis sp. n. and co-occurring species.
microreticulation. This subspecies was collected together with two other species of the E. ekari-group: E. evelyncheesmanae Shaverdo, Hendrich \& Balke, 2012 and E. waigeoensis Shaverdo, Hendrich \& Balke, 2012; see descriptions and illustrations in Shaverdo et al. 2012. From the former (both males and females), it can be easily separated by its smaller size and distinctly modified male antennae (TL-H: 3.75-4.1 mm , MW: 1.9-2.2 mm and slightly modified male antennae: antennomeres 3-7 very slightly enlarged, antennomere 3 slightly more triangular than other antennomeres, in E. evelyncheesmanae). From the latter, males can be distinguished by their distinctly modified antennae and the shapes of the median lobes (slightly modified antennae and apex of the median lobe elongate in lateral view in \(E\). waigeoensis).

Distribution. Indonesia: West Papua Province: Raja Ampat Regency, Waigeo Island (Fig. 9).

Etymology. The species is named after Nok Mountain, the type locality of the species. The name is an adjective in the nominative singular.

Ecology. The species was collected in two localities on Nok Mountain together with \(E\). evelyncheesmanae and \(E\). waigeoensis and in one locality together with \(E\). evelyncheesmanae in ration ca. 1:1.

\section*{Key to subspecies of the Exocelina manokwariensis sp. n.}

This key is a modified part of the key to species of the E. ekari-group from Shaverdo et al. (2014). It is based mostly on male characters. In many cases, females cannot be assigned to species due to similarity of their external and internal structures (for female genitalia, see figs 17a and 17b in Shaverdo et al. (2005) and fig. 7C in Shaverdo et al. (2013)).

27 Male antennomere 3 much larger than other antennomeres, triangular; beetle larger, TL-H: 3.8-4.8 mm, MW: \(2.0-2.55 \mathrm{~mm}\); male protarsomere 4 with anterolateral hook very small (smaller than more laterally situated large seta), thin, and slightly curved;paramere distinctly longer than median lobe, without notch on dorsal side, with dense, thin setae subdistally and sparse, thin setae and spines proximally 28
- Male antennomeres 3 and 4 much larger than other antennomeres, triangular; beetle smaller, TL-H: 3.1-4.3 mm, MW: \(1.65-2.3 \mathrm{~mm}\); male protarsomere 4 with anterolateral hook thin or thick, slightly curved but larger than more laterally situated large seta; paramere equal or shorter than median lobe, with notch on dorsal side, setae of subdistal part thick and flattened, proximally setae dense and thinner, no spines. 29A
29A Beetle larger, TL-H: 3.7-4.3 mm, MW: 2.05-2.3 mm; dorsal punctation very fine to dense and coarse; apex of median lobe elongate in lateral view (figs \(9-11\) in Shaverdo et al. (2012)); if almost truncate, E. alexanderi, antennomeres 3 and 4 larger, triangular but elongated due to external margin strongly expanded (figs 8A, D in Shaverdo et al. (2012))
- Beetle smaller, TL-H: 3.1-3.85 mm, MW: \(1.65-2.1 \mathrm{~mm}\); dorsal punctation very fine; apex of median lobe almost truncate in lateral view (Figs 2D, 4D, 6D, 8D); male antennomeres 3 and 4 evidently smaller, more distinctly triangular, not elongated due to external margin only slightly expanded (Figs 2A, 4A, 6A, 8A)
manokwariensis sp. n. 32A
32A Apex of median lobe more strongly concave, with tip distinctly longer in lateral view (Fig. 6A, D) m. hendrichi ssp. n .
- Apex of median lobe not concave or slightly concave, with tip shorter in lateral view (Figs 2A, 4A, 8A) 32B
32B Apex of median lobe with truncate margin more strongly curved in lateral view and symmetrical in ventral view; subdistal part of paramere larger, with flattened setae less numerous and thinner (Fig. 4C-E).....m. batanta ssp. n.
- Apex of median lobe with truncate margin almost straight in lateral view and asymmetrical in ventral view; subdistal part of paramere smaller, with flattened setae more numerous and thicker 32C
32C Median lobe longer, somehow more slender, subdistal part of paramere with less numerous flattened setae (Fig. 8C-E) m. nokensis ssp. n.
- Median lobe shorter and more robust, subdistal part of paramere with more numerous flattened setae (Fig. 2C-E) m. manokwariensis ssp. n.

\section*{Acknowledgements}

We are grateful Dr. H. Schillhammer (Vienna) for the habitus photos and Prof. D. Bilton (Plymouth) for a linguistic review of the manuscript.

Recent fieldwork in West Papua was conducted by the University of Papua (Manokwari, West Papua). Permission to conduct fieldwork was provided by Department of Forestry/Nature Conservation in Manokwari, e.g., with permit number SI.79IV18/ KSDA.PB-4/2015, and transferred to MZB in Cibinong, West Java with permission as well, e.g., S. 5 245/IV18/KSDA.PB-4/IPNBP /2014.

Financial support for the study was provided by the FWF (Fonds zur Förderung der wissenschaftlichen Forschung - the Austrian Science Fund) through a project P 24312-B17 to the senior author. Michael Balke was supported by the UK Darwin Initiative and the German Science Foundation (DFG).

\section*{References}

Balke M (1998) Revision of New Guinea Copelatus Erichson, 1832 (Insecta: Coleoptera: Dytiscidae): The running water species, Part I. Annalen des Naturhistorischen Museum Wien 100B: 301-341.
Balke M (1999) Two new species of the genus Copelatus Erichson, 1832, subgenus Papuadytes Balke, 1998, from Papua New Guinea (Insecta: Coleoptera: Dytiscidae). Annalen des Naturhistorischen Museum Wien 101B: 273-276.
Broun T (1886) Manual of the New Zealand Coleoptera (III and IV). Government Printer, Wellington, 817-973.
Larson DJ, Alarie Y, Roughley RE (2000) Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa, Ontario, Canada, 982 pp.
Miller KB, Nilsson AN (2003) Homology and terminology: communicating information about rotated structures in water beetles. Latissimus 17: 1-4.
Shaverdo HV, Balke M (2014) Exocelina kinibeli sp.n. from Papua New Guinea, a new species of the E. ullrichi-group (Coleoptera: Dytiscidae). Koleopterologische Rundschau 84: 31-40.
Shaverdo HV, Sagata K, Balke M (2005) Five new species of the genus Papuadytes Balke, 1998 from New Guinea (Coleoptera: Dytiscidae). Aquatic Insects 27(4): 269-280. doi: 10.1080/01650420500290169

Shaverdo HV, Surbakti S, Hendrich L, Balke M (2012) Introduction of the Exocelina ekarigroup with descriptions of 22 new species from New Guinea (Coleoptera, Dytiscidae, Copelatinae). ZooKeys 250: 1-76. doi: 10.3897/zookeys.250.3715
Shaverdo HV, Hendrich L, Balke M (2013) Exocelina baliem sp. n., the only known pond species of New Guinea Exocelina Broun, 1886 (Coleoptera, Dytiscidae, Copelatinae). ZooKeys 304: 83-99. doi: 10.3897/zookeys.304.4852
Shaverdo H, Sagata K, Panjaitan R, Menufandu H, Balke M (2014) Description of 23 new species of the Exocelina ekari-group from New Guinea, with a key to all representatives of the group (Coleoptera, Dytiscidae, Copelatinae). ZooKeys 468: 1-83. doi: 10.3897/ zookeys. 468.8506
Toussaint EFA, Hall R, Monaghan MT, Sagata K, Ibalim S, Shaverdo HV, Vogler AP, Pons J, Balke M (2014) The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications 1:1-10. doi: \(10.1038 /\) ncomms5001
Wikipedia (2015) West Papua (province). http://en.wikipedia.org/wiki/West_Papua_(province)

\title{
A new genus and nine new species of Eugnomini (Coleoptera, Curculionidae) from New Caledonia
}

\author{
Miłosz A. Mazur \({ }^{1}\) \\ I Center for Biodiversity Studies, Department of Biosystematics, Opole University, Oleska 22; 45-052 Opole, Poland \\ Corresponding author: Mitosz A. Mazur (milosz@uni.opole.pl)
}

Academic editor:M.Alonso-Zarazaga | Received 13 July 2015 | Accepted 21 November 2015 | Published 18 January 2016
http://zoobank.org/5EB5939E-125F-461A-9504-078E5A7B5235
Citation: Mazur MA (2016) A new genus and nine new species of Eugnomini (Coleoptera, Curculionidae) from New Caledonia. ZooKeys 554: 87-118. doi: 10.3897/zookeys.554.6120

\begin{abstract}
The genus Rasilinus gen. \(\mathbf{n}\). is described (type species Rasilinus tchambicus sp. n.). Nine new species: Rasilinus bicolor sp. n., R. bifurcatus sp. n., R. bimaculatus sp. n., \(R\). grandidens sp. n., R. longulus sp. n., \(R\). subgemellus sp. n., \(R\). subnodulus sp. n., \(R\). tchambicus sp. n., R. virgatus sp. n. are described from New Caledonia. Illustrations of the external morphology, male and female terminalia, dorsal habitus colour photographs of the adults, key to species and distribution map of the new genus Rasilinus are provided.
\end{abstract}

\section*{Keywords}

Coleoptera, Curculionidae, Curculioninae, Eugnomini, Rasilinus, new genus, new species, New Caledonia, distribution, key to species

\section*{Introduction}

The Eugnomini is a small, poorly studied tribe of the speciose family Curculionidae. The classification, biogeography, and biology of most species are poorly known. Currently, Eugnomini comprises about 200 known species included in 28 genera and is primarily an Old World group occurring in New Zealand (19 genera), Australia (five), New Caledonia (three) and New Guinea (one) (Zimmerman 1994; AlonsoZarazaga and Lyal 1999; Macfarlane et al. 2011; Kuschel 2014; Mazur 2014a, b). In the

New World the tribe is represented by four genera known from South America; only one genus, Rhopalomerus Blanchard, occurs both in the New and Old Worlds (AlonsoZarazaga and Lyal 1999). More detailed study about the tribe with general diagnosis and systematic background were presented last time by Cawthra (1966). The newest checklist of all known genera, data on their distribution and comments on the current classification of the Eugnomini were presented by Mazur (2014b). Detailed summary history of New Caledonian fauna with zoogeographic and evolutionary implications, based on apionid weevils (Coleoptera: Curculionoidea: Apionidae), were presented by Wanat (2001).

This paper presents descriptions of a new genus and nine species of Eugnomini from New Caledonia along with a key to all new species.

\section*{Materials and methods}

This study is based on 37 specimens. Holotypes are deposited in the Muséum National d'Histoire Naturelle, Paris (MNHN). Paratypes are deposited in institutions abbreviated below. Abbreviations are used throughout the paper:
\begin{tabular}{ll}
DBUO & Department of Biosystematics, Opole University, Poland \\
MNHW & Museum of Natural History, University of Wrocław, Poland \\
NZAC & New Zealand Arthropod Collection, Lincoln, New Zealand \\
QM & Queensland Museum, Australia \\
USMB & Natural History Department of Upper Silesian Museum, Bytom, Poland
\end{tabular}

Measurements were taken using a calibrated stereomicroscopic grid eyepiece (C W10xB/22) and stereomicroscope NIKON SMZ-800. Genitalia preparations were made according to the standard method of macerating the separated abdomen for \(5-10\) minutes in a hot KOH solution. Photographs were taken using the camera a CANON Power Shot A640 camera connected with the stereomicroscope and processed using the Helicon Focus v. 4.50 and PhotoFiltre v. 6.1 software programmes.

The nomenclature of the male terminalia and abbreviations of particular measurements (partly modified) follows Wanat (2001) (alphabetical order):
apw pronotum width at anterior margin;
arw width of rostrum apex;
bew width of elytral base (measured through the middle of humeral calli);
bpw pronotum width at the base;
el elytra length, measured in top view in a position when the base and apex of elytra are at the same level;
eyl eye length, measured in top view, when the head is positioned horizontally;
frw minimum frons width;
hl head length;
hw head width, measured across the middle of the eyes;
lb length of body exclusive of rostrum;
mew maximum elytra width;
mith minimum height of tooth on hind femur, measured from basal part of femur (shorter edge);
mpw maximum pronotal width;
pl pronotum length;
ptbl protibia length;
ptbmw maximum width of fore tibia;
mth maximum height of tooth on hind femur; measurement from apex of femur (longer edge);
rl rostrum length, measured in top of view, when base and apex of rostrum are in the same level;
scl antennal scape length.

The nomenclature of antennal parts follows Lyal (http://weevil.info/glossary-weevilcharacters).

All dimensions are given in millimetres.

\section*{Taxonomic treatment}

\section*{Rasilinus gen. n.}
http://zoobank.org/E5E03CF2-1CB8-4854-9455-72E4E80B3C62

Type species. Rasilinus tchambicus sp. n. Gender masculine.
Diagnosis. Body massive; elytra narrowed, smooth, without any tubercles or spines, not covered with adjacent scales, sculpture of elytra clearly visible; hind femora stout, strongly clavate with large tooth, their basal part stout.

Description. Size \(2.5-3.6 \mathrm{~mm}\). Body stout, distinctly convex transversally. Rostrum dorsoventrally flattened, as long as head or slightly longer; dorsal surface covered with white, more or less protruding, elongate scales, sometimes mixed with additional white scales which are suboval and adjoining. Antennae inserted on apical part of rostrum; funicle with seven antennomeres; scape reaching posterior margin of eye. Scrobe deep in lateral view with sharp edges; partly visible in dorsal view of rostrum; not passing along ventral part and not reaching front margin of eyes. Eyes weakly to strongly convex. Frons narrower than base of rostrum. Pronotum subquadrate. Elytra widest at basal half, distinctly and regularly narrowed to apex; apically truncate or rounded; humeral calli weakly or strongly prominent, posterior calli absent. Surface of elytra glabrous, more or less shining; intervals wider than striae with single line of short, protruding, inclined backward setae; entire surface in some species covered with extremely small, hardly visible, piliform setae. Second pair of wings well developed. Front coxae contiguous. Trochanters small, fusiform. Posterior margin of metaventrite
with distinct line of dense, closely adjoining, white scales. All femora covered with sparse, elongate scales. Outer margin of tibiae covered with white, elongate scales. Hind femora broadened, clavate with enlarged tooth; dorsal surface with contrasting, transverse stripe of white scales (except \(R\). subnodulus \(\mathrm{sp} . \mathrm{n}\).); posterior margin of tooth on hind femora with two types of piliform setae: one short and straight and other elongate and hooked apically. Hind tibiae strongly curved. Segments of front and middle tarsi similar in length; first tarsal segment of hind tarsi elongate, as long as \(2+3\) or longer. Male pygidium (tergite VIII) with two narrow processes on ventral side. Tegmen with elongate or very short parameres. Penis well sclerotised, most species with fully sclerotised base of pedon (here, basal part of pedon is the anterior ventral margin of the penis body between the apodemes) and variable, well visible structures in internal sac.

Etymology. The generic name is derived from the Latin adjective rasilis (smooth) and refers to the elytral sculpture. Gender masculine.

Distribution. New Caledonia (main island), only \(R\). subgemellus \(\mathrm{sp} . \mathrm{n}\). is known from Lifou Island (Map 1).

Biology. Detailed biology unknown. Other members of Eugnomini have been reared from dead wood, subcortical tissues, live stems, galls, leaves or fruits of many species of plants in different families (e.g. May 1987).

\section*{Rasilinus tchambicus sp. n.}
http://zoobank.org/27621B98-059F-4457-B97D-A2221039B182
Figs 8, 17, 26, 35, 44, 70-73, 84, 91, 98, 105, 112, 119, 125, 130, 135

Diagnosis. One of the smallest members of new genus. The following combination of characters allows this species to be distinguished from its congeners: rostrum short and relatively thin with compare to its congeners, almost as long as head; pronotum wider than long; elytra weakly narrowed; minute tooth on fore and middle femora; apodemes much longer than aedegal pedon; tegmen with completely separated parameroid lobes.

Description. Body length (lb) ca. 2.50 mm .
Body colour and vestiture (Fig. 8). Colour of body variable, from uniformly light brown to almost black. Elytra, pronotum and head usually dark brown, except for lighter rostrum and legs. Legs with three possible types of coloration: i) dark femora with lighter tibiae, ii) light femora (sometimes with darkening base) with darker tibiae (sometimes only apical part darkening), iii) femora and tibiae with the same colour. Rostrum and frons covered with two kinds of white scales: one suboval and recumbent and other elongate, protruding. Outer margin of tibiae with white, elongate, protruding scales. Elytral intervals with single line of protruding, elongate scales with variable colour, from dark on basal to bright on apical part of elytra. Entire surface of elytra covered with additional minute, hardly visible, short, piliform, recumbent scales.

Head, rostrum and antennae (Figs 26, 35, 44). Head elongate (hw/hl 1.30-1.45). Forehead flat. Eyes distinctly convex laterally; protruding above margin of head in

Map I. Distribution of species from genus Rasilinus gen. n. in New Caledonia.
lateral view; longer than half length of head (eyl/hl 0.63-0.70). Lateral margin of head narrowed from its base to hind margin of eyes. Vertex strongly scabrous, matt. Rostrum longer than width at apex (rl/arw 1.20-1.40), almost straight. Funicle much shorter than scape; first desmomere as long as 2 and 3 combined; desmomeres \(4-7\) subcircular, wider than long. Club \(c a .2 \times\) as long as its wide, longer than desmomeres 2-7.

Pronotum (Figs 17, 26). Wider than long (mpw/pl 1.15-1.27). Laterally slightly narrowed near base; strongly narrowed subapically. Apical margin straight; base slightly bisinuate. Surface distinctly rough, matt.

Elytra (Figs 17, 26). Elongate (el/mew 1.35-1.45), widest across humeral calli, weakly narrowed to apex. Striae with suboval, distinct punctures, at apical part of elytra punctures evanescent, forming indistinct line. Intervals glabrous, shining, weakly convex.

Legs (Figs 70-73, 84). Front and middle femora robust, with small teeth beyond middle; tibiae robust, front slightly sinuate, middle straight. Hind femora slightly narrowed beyond base; tibiae regularly curved, narrowed subapically. Claws regularly curved, distinctly broadened basally.

Abdomen (Fig. 91). Short, \(1.08 \times\) longer than wide. First suture obsolete at middle of length. Sutures between ventrites \(2-5\) distinct, depressed. Last ventrite trapezoidal, almost \(2 \times\) as wide as long, apical margin almost straight. Pygidium of male subquadrate; apical margin almost straight with numerous, elongate setae; lobed middle part small with single setae.

Male terminalia (Figs 105, 112, 119). Aedegal pedon shorter than apodemes; basal part sclerotised, slightly extended; lateral margins equilateral at basal half, from middle to apex distinctly narrowed; apex widely rounded. From lateral view distinctly, regularly curved with upturned apex. Endophallus not projecting outside pedon, internal structure not visible. Parameroid lobes of tegmen strongly elongate, thin, completely separated, of similar length to tegminal apodeme. Sternite VIII with bifurcate basal part; laterally flattened, apodeme slightly curved apically with thin apical keel; hemisternites on sternite IX subtriangular, clearly visible.

Female (Figs 98, 125, 130, 135). Similar to male in body shape but slightly larger. Elytra stout, widest beyond humeral calli, near middle. Apodeme of sternite VIII elongate, base bifurcate, irregular. Gonocoxite thin, elongate, more than \(4 \times\) as long as its wide; stylus minute with few setae. Spermatheca stout, distinctive curved. Abdominal tergite VIII more than \(2 \times\) wider than long; widely rounded apically; basally with slightly narrowed angles; surface with sparse punctation and few setae on apical margin.

Measurements. Holotype, \({ }^{\top}\) : apw 0.45 ; arw 0.25 ; bew 1.10 ; bpw 0.60 ; el 1.50 ; eyl 0.25 ; frw 0.15 ; hl 0.35 ; hw 0.45 ; lb 2.45 ; mew 1.10 ; mith 0.15 ; mpw 0.60 ; mth 0.30 ; pl 0.50; ptbl 0.55; ptbmw 0.10; rl 0.35; scl 0.45 .

Paratypes, đ̋/Q: apw 0.45-0.50/0.55; arw 0.25-0.30/0.30; bew 1.10-1.25/1.301.35 ; bpw \(0.60-0.70 / 0.70-0.75\); el \(1.50-1.80 / 1.90-2.00\); eyl \(0.25 / 0.25\); frw \(0.15 / 0.15\); hl 0.35-0.40/0.35; hw 0.35-0.45/0.45-0.50; lb 2.45-2.80/2.75-2.90; mew 1.10-1.25/1.35-1.45; mith 0.15-0.20/0.20; mpw 0.60-0.70/0.70-0.75; mth \(0.30-0.40 / 0.35\); pl \(0.50-0.55 / 0.60-0.65\); ptbl \(0.55-0.70 / 0.65\); ptbmw \(0.10-\) 0.15/0.15; rl 0.35/0.40; scl 0.45-0.55/0.55.

Type material. Holotype, \(\begin{gathered}\text { § } \\ -21.58536 / 165.79319, ~ C o l ~ d ' A m i e u ~ \\ 500 \mathrm{~m} \\ \text { (} 3,0 \mathrm{~km}\end{gathered}\) to gate), 16.11.2008, leg. M. Wanat (MNHN).

Paratypes: \(1 \widehat{\delta}-21037.632\) 'S 165045.830 'E, Farino env. Les Grandes Fougéres, rainforest, netting, biting, 12.03.2008 467m, leg. R. Dobosz \& T. Blaik; 5915/11630 (BMNH); \(1 \delta, 1 q-21.61176 / 165.75406\), Farino, Parc des Grandes Fougéres, 400m Camp de la Houe, 13.11.2008, leg. M. Wanat (MNHW); 1q-21035.1'S 16504’, Col d'Amieu 490 m (\(3,5 \mathrm{~km}\) from gate), 6-7.01.2007 (loc 3), leg. M. Wanat (MNHW); \(1 \widehat{o}^{\top}--21.58536 / 165.79319\), Col d'Amieu 500 m , (\(3,0 \mathrm{~km}\) to gate), 16.11 .2008 , leg. M. Wanat (MNHW); 1q-Col d'Amieu, Forestry Station, 18-21 Oct 1978, J.S. Dougdale; malaise trap; N.Z. Arthropod Collection NZAC, Private Bag 92170, Auckland, New Zealand (NZAC); 1q-21011'S 165016'E, Aoupinié 950-1000m, meteo st.summit, 8.02 .2004 , leg. M. Wanat (MNHW); 1 q-Tchamba (Wâo Uni), at day, rainforest, 1.04 .2008 , leg. T. Blaik (DBUO); 1 §'-21000.2'S/16504.6'E, Tchamba (Wâo Uni), 16.01.2007 500-530m, forest, old northern road, leg. M. Wanat (MNHW); \(1 \widehat{\sigma}^{\lambda}-M t\). Rembai, \(700 \mathrm{~m}, 18\) Oct 1978, J.C. Watt; beating logging area at nigth; N.Z. Arthropod Collection NZAC, Private Bag 92170, Auckland, New Zealand (NZAC).

Etymology. A toponymical adjective, after Tchamba, where some of the paratypes were collected.

Distribution. New Caledonia (main island, north and south provinces).

Figures I-9. Dorsal habitus colour photographs of New Caledonian species from the genus Rasilinus gen. n. I Rasilinus bicolor sp. n., paratype, \(\uparrow\), Mandjélia (MNHW) \(\mathbf{2}\) R. bifurcatus sp. n., holotype, \({ }^{\imath}\), Auopinié, (MNHN) 3 R. bimaculatus sp. n., holotype, ô, Mandjélia (MNHN) 4 R. grandidens sp. n., holotype, ô, Auopinié (MNHN) 5 R. longulus sp. n., paratype, \(\varphi\), Pic d'Amoa (QM) 6 . subgemellus sp. n. holotype, \({ }^{\lambda}\), Lifou Is. (MNHN) 7 R. subnodulus sp. n., holotype, \({ }^{\lambda}\), Auopinié (MNHN) \(8 R\). tchambicus sp. n., paratype, \(\varphi\), Tchamba (DBUO) 9 R. virgatus sp. n., holotype, \({ }^{\hat{N}}\), Dzumac Mts. (MNHN).

\section*{Rasilinus bicolor sp. n.}
http://zoobank.org/3100327F-A4EC-49E3-8D7D-7A0BEAAAED40
Figs \(1,10,19,28,37,49-51,77,86,89,94,100,107,114,121,126,131\)
Diagnosis. Distinguished by the bicolored body with pronotum and basal part of elytra reddish and remaining parts of body black. Pronotal disc with subtriangular mark composed of white scales. Humeral calli strongly prominent.

Description. Body length (lb) 2.55-2.90 mm.
Body colour and vestiture (Fig. 1). Head and rostrum dark brown to black covered with white, suboval (adjoining) and elongate (protruding) scales. Scape orange, darkening to apex; funicle and club darker. Pronotum reddish with subtriangular spot composed of white scales. Elytra bicolored, anterior half reddish, posterior half dark brown to black; intervals with single, protruding, elongate, dark (lighter-colored at apical part) scales. Elytra medially with two small spots on third interval composed of white suboval scales (sometimes hardly visible). Legs dark brown; fore and middle femora with single, white, protruding scales, hind femora with transverse stripe of small, suboval, white scales. Front and middle tibiae with elongate, protruding scales, these are brown on basal part and white on apical two thirds. Tarsi orange.

Head, rostrum and antennae (Figs 19, 28, 37). Head capsule transverse (hw/ \(\mathrm{hl} c a .1 .30)\). Forehead between eyes flat; eye protruding in dorsal view. Vertex distinctly convex, strongly rough. Eyes rounded, convex, slightly protruding beyond the head outline; longer than half length of head (eyl/hl ca. 0.70). Rostrum weakly curved, much longer than wide at apex (rl/arw ca. 1.60). Funicle shorter than scape; desmomere 1 elongate, as long as \(2+3\); 2 elongate, almost as long as \(3+4\); desmomeres \(3-7\) slightly longer than wide. Club elongate, \(c a .2 \times\) longer than wide, as long as last five desmomeres of funicle, compact.

Pronotum (Figs 10, 19). Campaniform with weakly rounded apical margin, basal margin slightly medially extended onto scutellum, widely rounded. Widest at base, \(\mathrm{bpw} / \mathrm{pl}\) ca. 1.20. Pronotal disc flat in lateral view, with fine depression near apex. Surface with dense punctation, rough; space between punctures matt.

Elytra (Figs 10, 19). Widest across humeral calli (el/mew ca. 1.50); distinctly narrowed behind humerus, slightly broadened medially, strongly narrowed to apex. Dorsal surface glabrous, shining. Striae with subcircular, well isolated punctures, these becoming less numerous towards apex. Intervals flat, glabrous, with single line of short, protruding scales in two colours: brown on basal four fifths and white on apical fifth.

Legs (Figs 49-51). Front and middle legs robust; tibiae bisinuate, short and wide (ptbl/ptbmw ca. 4.00); hind tibiae with arched inner margin, distinctly narrowed before apex. Femora with rough surface and distinct, transverse corrugation. Front and middle femora stout with small ventral tooth, surface between tooth and apex with semicircular, deep cavity. Base of hind femora distinctly compressed, slightly twisted. Corrugation on flattened, basal part of legs deeper and parallel horizontally. Claws toothed.

Abdomen (Fig. 86). Weakly narrowed, almost as long as maximal width at base. Suture between ventrites 1 and 2 depressed laterally; medially not depressed, only as thin

Figures I0-I8. Elytra and pronotum, dorsal view: IO Rasilinus bicolor sp. n. II R. bifurcatus sp. n. 12 R. bimaculatus sp. n. 13 . grandidens sp. n. 14 R. longulus sp. n. 15 R. subgemellus sp. n. 16 R. subnodulus sp. n. 17 R. tchambicus sp. n. 18 . virgatus sp. n.
line; sutures between ventrites \(2-5\) wide, strongly depressed. Last ventrite with widely rounded posterior margin; \(2 \times\) as wide as long. Entirely covered with deep punctation and piliform, white setae; surface glabrous, shining. Pygidium of male subquadrate, dorsal surface with sparse punctures. Ventral processes elongate with single, short setae.

Male terminalia (Figs 100, 107, 114). Tegminal apodeme short and narrowed. Pedon slightly, regularly tapering toward rounded apex; base fully sclerotized; in lateral view distinctly curved with upturned apex. Basal part of sternite VIII apodeme extended into pair of elongate, slightly curved and tapering processes; Sternite IX with two small, subtriangular sclerites situated at apical part of divided appendices. Tegmen with parameres fused over basal third of length, without intervening membrane.

Female (Figs 94, 121, 126, 131). Similar to male in measurements and proportion of body, but slightly larger. Subtriangular white mark on pronotum smaller; two white spots at the middle of elytra absent. Fore tibiae more slender than those of male; subapical part of femora less concave; tooth on fore and middle femora minute. Abdominal tergite VIII subcircular with small punctures at lateral margin; apically with elongate setae some of which are slightly broadened basally. Gonocoxite as in Fig. 121, elongate, slightly constricted medially. Spermatheca stout, short, weakly concave. Apodeme of sternite VIII long, base split into pair of short, acute processes; apical lobe irregular, furnished with elongate setae at anterior angle.

Measurements. Holotype, \(\delta /\) paratype, \(q\) : apw \(0.50 / 0.55\); arw \(0.25 / 0.30\); bew 1.15/1.35; bpw 0.65/0.75; el 1.75/2.00; eyl 0.25/0.30; frw 0.15/0.15; hl 0.35/0.40; hw 0.25/0.30; lb 2.55/2.90; mew 1.15/1.35; mith \(0.20 / 0.25\); mpw \(0.65 / 0.75\); mth \(0.30 / 0.35\); pl 0.55/0.60; ptbl 0.60/0.70; ptbmw 0.15/0.15; rl 0.40/0.45; scl 0.55/0.55.

Type material. Holotype, \(\widehat{\delta}^{\lambda}-20^{\circ} 33^{\prime} \mathrm{S} / 164^{\circ} 48^{\prime} \mathrm{E}, 20-50 \mathrm{~m}\)., Cascade de Tao, humid forest along stream, 01.02. 2004, leg. M. Wanat (MNHN).

Paratypes: \(1 q-20^{\circ} 23.9^{\prime} \mathrm{S} / 164^{\circ} 31.9^{\prime} \mathrm{E}\), Mandjélia (summit), 12.01.2007, 750780 m , beating, montane forest, leg. M. Wanat \& R. Dobosz (MNHW); 1q\(20^{\circ} 33^{\prime} \mathrm{S} / 164^{\circ} 46^{\prime} \mathrm{E}\), Mt. Panié, \(500-1000 \mathrm{~m}\), E track, humid forest, 03.02.2004, leg. M. Wanat (MNHW).

Etymology. This specific epithet is derived from the Latin prefix \(b i-\) (two), and noun color (color, pigment) and refers to the bicolored body. A noun in apposition.

Distribution. New Caledonia (main island, north province).

\section*{Rasilinus bifurcatus sp. n.}
http://zoobank.org/B42F2DD0-A97C-4E1E-B773-CCB252CC9B7B
Figs 2, 11, 20, 29, 38, 52-54, 78, 87, 99, 101, 108, 115

Diagnosis. The species can be distinguished from other species by the following combination of features: rostrum short and wide; eyes strongly convex laterally; lateral line of temples longer than length of eyes, distinctly divergent. Last abdominal ventrite apically with two shallow grooves bearing elongate setae. Parameroid lobes of tegmen separate to base. Internal sac of aedeagus with two, elongate, sclerites. Most similar to

Figures 19-27. General habitus, lateral view: 19 Rasilinus bicolor sp. n. \(\mathbf{2 0} R\). bifurcatus sp. n. \(\mathbf{2 1} R\). \(b i-\) maculatus sp. n. \(\mathbf{2 2}\) R. grandidens sp. n. \(\mathbf{2 3}\) R. longulus sp. n. \(\mathbf{2 4} R\). subgemellus sp. n. \(\mathbf{2 5} R\). subnodulus sp. n. \(26 R\). tchambicus sp. n. \(27 R\). virgatus sp. n.
R. longulus sp. n. but can be easily distinguished by toothed tarsal claw (unarmed in R. longulus sp. n.), stronger convex eyes \(-\mathrm{hw} / \mathrm{hl}=1.00(\) R. longulus sp. \(\mathrm{n} .-\mathrm{hw} / \mathrm{hl}=c a\). 1.20) and shorter rostrum-rl/arw \(=1.50(\) R. longulus sp. \(\mathrm{n} .-\mathrm{rl} / \mathrm{arw}=1.70\)).

Description. Body length (lb) ca. 3.20 mm .
Body colour and vestiture (Fig. 2). Head, pronotum and elytra dark brown to black; rostrum and legs reddish, apex dark; apical part of tibiae darkening. Antennal scape orange; funicle and club darker. Dorsal surface of rostrum covered with suboval, white scales, middle of rostrum with asetose line. Ventral side of rostrum at base and prosternum covered densely with suboval, white scales. Legs with mixed dark and white elongate scales; hind femora with indistinct transverse stripe composed of small, suboval, white scales.

Head, rostrum and antennae (Figs 20, 29, 38). Head capsule subquadrate (hw/hl ca. 1.00). Forehead flat. Eyes convex, strongly protruding dorsally, shorter than half length of head (eyl/hl ca. 0.45). Rostrum weakly curved; longer than wide at apex (rl/ arw \(c a .1 .50\)). Funicle shorter than scape; desmomere 1 strongly broadened, \(c a .2 \times\) as long as maximal width, as long as 2+3; 2 elongate, longer than 3; 3 longer than wide; \(4-7\) subquadrate. Club elongate, more than \(2 \times\) longer than wide, almost as long as desmomeres 2-7; compact.

Pronotum (Figs 11, 20). Shorter than wide (mpw/pl ca. 1.20); apical margin straight; base weakly rounded. Widest at middle; anterior half narrower than base. Pronotal disc, when viewed laterally, more sloping towards head than elytra. Surface strongly rough with dense punctation, space between punctures with microsculpture, matt.

Elytra (Figs 11, 20). Widest behind humeral calli, elongate (el/mew ca. 1.60), from middle of length strongly narrowed to apex. Dorsal surface slightly shining. Striae with suboval, well isolated punctures, in distal two-thirds of length becoming less numerous towards apex. Intervals weakly convex across whole length.

Legs (Figs 52-54, 78). Front and middle legs elongate; tibiae straight, slender (ptbl/ptbmw ca. 5.30). Hind tibiae slender, regularly curved. Front femora glabrous, without tooth; middle femora with small tooth. Claws with obtuse teeth.

Abdomen (Fig. 87, 99). Weakly narrowed, slightly longer than wide at base. Sutures between ventrites \(2-5\) wide and strongly depressed. Last ventrite almost \(2 \times\) wider than long; surface with sparse punctures and elongate setae; lateral margin along two-thirds of length with distinctive, sharp edges, apically with two shallow grooves, each bearing few elongate setae; apical margin widely rounded. Pygidium of male subquadrate, dorsal surface with single, sparse punctures. Ventral processes broad, stout, subquadrate with concentration of elongate setae in the middle and on apical margin.

Male terminalia (Figs 101, 108, 115). Aedegal pedon almost as long as apodemes; regularly narrowed, strongly constricted apically with rounded apex; basal part of pedon completely sclerotised. In lateral view regularly curved with slightly upturned apex. Internal sac with irregular transfer apparatus and two elongate, acute processes. Tegmen with parameroid lobes shorter than apodeme; parameroid lobes completely bilobed, entirely surrounded by membrane; apical part of membrane with distinct, elongate setae. Sternite VIII with elongate, stout apodeme; basal part of apodeme enlarged. Sternite IX with two highly visible, irregular sclerites.

Female. Unknown

34

Figures 28-36. Head and rostrum, dorsal view: 28 Rasilinus bicolor sp. n. 29 R. bifurcatus sp. n. 30 R. bimaculatus sp. n. 31 R. grandidens sp. n. \(\mathbf{3 2}\) R. longulus sp. n. \(\mathbf{3 3} R\). subgemellus sp. n. \(\mathbf{3 4}\) R. subnodulus sp. n. 35 R. tchambicus sp. n. 36 R. virgatus sp. n.

Measurements. Holotype, \(\widehat{\delta}\) : apw 0.60 ; arw 0.30 ; bew 1.30 ; bpw 0.75 ; el 2.15; eyl 0.25 ; frw 0.20 ; hl 0.55 ; hw 0.55 ; lb 3.20 ; mew 1.35 ; mith 0.25 ; mpw 0.80 ; mth 0.50 ; pl 0.65; ptbl 0.80; ptbmw 0.15 ; rl 0.45 ; scl 0.60 .

Type material. Holotype, \(\widehat{\delta}-22^{\circ} 11.0^{\prime} \mathrm{S} / 165^{\circ} 17.6^{\prime} \mathrm{E}\), Auopinié, \(850-900 \mathrm{~m}\)., 18.01.2007, forest, leg. M. Wanat \& R. Dobosz (MNHN).

Etymology. From the Latin prefix \(b i-\) (two), and noun furca (fork, two-pronged), refers to the two characteristic, elongate sclerites in the internal sac of aedeagus. An adjective.

Distribution. New Caledonia (main island, north province).

\section*{Rasilinus bimaculatus sp. n.}
http://zoobank.org/1C320791-3DE2-4EA7-89F1-58FACEC1E9B3
Figs 3, 12, 21, 30, 39, 46, 55-57, 79, 88, 102, 109, 116

Diagnosis. It differs from other members of the new genus in having two characteristic spots in the middle of elytra. Body elongate; head behind eyes wide and stout with parallel lateral margin of vertex, eyes hardly concave; claws strongly curved with prominent, acute basal tooth.

Description. Body length (lb) ca. 3.30 mm .
Body colour and vestiture (Fig. 3). Pronotum and elytra dark brown; dorsal surface of rostrum covered with suboval, white scales, middle of rostrum with asetose line; underside of rostrum with white, elongate scales. Pair of white spots at the middle of elytra (at third intervals) composed of small, strongly imbricate, suboval, white scales; intervals with line of protruding, elongate, dark and white scales. Femora brown with darker base; tibiae and tarsi dark orange. Antennae uniformly brown with brighter club. Hind femora with distinct transverse stripe composed of small, suboval, white scales.

Head, rostrum and antennae (Figs 21, 30, 39). Head capsule subquadrate (hw/ hl ca. 1.00). Forehead flat. Eyes strongly convex, distinctly protruding above margin of head in dorsal and lateral views; half as long as head (eyl/hl ca. 0.50). Vertex with distinctly, well isolated punctures. Rostrum short (rl/arw ca. 1.30), weakly curved. Funicle shorter than scape; desmomere 1 elongate, almost as long as \(2-4 ; 2\) slightly longer than 3 ; 3 subquadrate; \(4-7\) wider than long. Club more than \(2 \times\) longer than wide; as long as desmomeres \(2-7\).

Pronotum (Figs 12, 21). Slightly shorter than wide (mpw/pl ca. 1.15); sides parallel, apically strongly narrowed; base bisinuate. Pronotal disc, when viewed laterally, more sloping towards head than elytra. Surface strongly rough with dense punctation, space between punctures with microsculpture, matt.

Elytra (Figs 12, 21). Widest across weakly protruding humeral calli, distinctly elongate (el/mew ca. 1.75), apical two thirds regularly tapering to apex. Dorsal surface glabrous, shining. Striae with suboval, well-isolated punctures, from one third of length becoming less numerous towards apex. Intervals flat across entire length.

Legs (Figs 55-57, 79). Front and middle femora stout, weakly narrowed basally; fore femora with very small, middle with distinct tooth on ventral margin. Tooth on hind femora sharp and narrow. Front tibiae bisinuate, broadened apically; middle tibiae elongate, weakly bisinuate, not broadened apically; hind tibiae regular curved, slightly narrowed apically. Claws strongly curved with prominent, acute, basal tooth.

Figures 37-48. Antennae (37-45) and abdominal sternites (46-48): 37 Rasilinus bicolor sp. n . 38 R. bifurcatus sp. n. 39 R. bimaculatus sp. n. 40 R. grandidens sp. n. 41 R. longulus sp. n. 42 R. subgemellus sp. n. 43 . subnodulus sp. n. \(44 R\). tchambicus sp. n. \(45 R\). virgatus sp. n. \(46 R\). bimaculatus sp. n. \(47 R\). subgemellus sp. n. \(48 R\). subnodulus sp. n.

Abdomen (Fig. 46, 88). Weakly longer than maximal width, strongly narrowed to apex. First suture obsolete medially; sutures between ventrites \(2-5\) wide and strongly depressed. Last ventrite almost \(2 \times\) as wide as long with distinct, suboval cavity at middle; margin of cavity at anterior half with strongly elongate, bright setae, similar setae (but more sparse) on whole apical margin of last ventrite. Pygidium of male longer than wide, dorsal surface with sparse punctation; apical margin with elongate setae; ventral processes suboval with elongate setae at basal part and apical margin.

Male terminalia (Figs 102, 109, 116). Aedegal pedon shorter than apodemes, basally fully sclerotised and broadened, medially slightly narrowed; apex truncate, widely rounded. From lateral view distinctly broadened medially. Internal sac with single kidney shaped sclerite. Apodeme of sternite VIII strongly broadened and curved apically in lateral view, basal part arrow shaped; sternite IX with pair of clearly visible, subtriangular sclerites. Apodeme of tegmen broadened apically, longer than parameroid lobe, which is not completely divided.

Female. Unknown
Measurements. Holotype, \(\widehat{J}^{\lambda}\) : apw 0.60; arw 0.35; bew 1.35; bpw 0.85; el 2.30; eyl 0.25 ; frw 0.20 ; hl 0.50 ; hw 0.55 ; lb 3.35 ; mew 1.35 ; mith 0.25 ; mpw 0.80 ; mth 0.45 ; pl 0.70; ptbl 0.75; ptbmw 0.15; rl 0.45; scl 0.60.

Type material. Holotype, \(\widehat{o}^{\top}-\) No. \(1194,22^{\circ} 24.0^{\prime} \mathrm{S} \times 164^{\circ} 31^{\prime} \mathrm{E}\), 580 m ., Mandjelia, lower creek, 12-13 Dec 2004, rainforest, leg. G.B. Monteith, beating (MNHN).

Etymology. From the Latin prefix \(b i-\) (two), and noun macula (spot), refers to the two characteristic spots in the middle of the elytra. An adjective.

Distribution. New Caledonia (main island, north province).

\section*{Rasilinus grandidens sp. \(\mathbf{n}\).}
http://zoobank.org/60A7AAB7-49DD-4195-B585-E09B08AF96E5
Figs \(4,13,22,31,40,57-60,80,93,95,117,122,127,132\)
Diagnosis. This species is unique among members of the genus in having a blunt, large tooth on the basal part of the tarsal claws. Forehead and basal part of rostrum with suboval, white scales. Elytral striae composed of irregular punctures, from third striae outwards punctures fused into irregular line. Apical part of suture with stripe composed of fine, pale scales.

Description. Body length (lb) ca. 2.60 mm .
Body colour and vestiture (Fig. 4). Body generally blackish; legs dark brown; antennal scape orange, darkening toward apex; funicle and club dark brown. Elytral intervals with line of protruding, elongate, dark scales. First interval apically with indistinct line composed of white, minute, suboval scales. Hind femora with distinct transverse stripe composed of small, suboval, white scales.

Head, rostrum and antennae (Figs 22, 31, 40). Head transverse (hw/hl ca. 1.50). Forehead flat. Eyes convex, weakly protruding above margin of head in lateral and dorsal views, longer than half total length of head (eyl/hl ca. 0.80). Vertex without punc-

Figures 49-66. Legs: Rasilinus bicolor sp. n.: \(\mathbf{4 9}\) front leg \(\mathbf{5 0}\) middle leg \(\mathbf{5 I}\) hind leg R. bifurcatus sp. n.: 52 front leg \(\mathbf{5 3}\)-middle leg \(\mathbf{5 4}\) hind leg \(R\). bimaculatus sp. n.: \(\mathbf{5 5}\) front leg (minute tooth marked by arrow) \(\mathbf{5 6}\) middle leg \(\mathbf{5 7}\) hind leg R. grandidens sp. n.: \(\mathbf{5 8}\) front leg \(\mathbf{5 9}\) middle leg \(\mathbf{6 0}\) hind leg \(R\). longulus sp. n.: \(\mathbf{6 1}\) front leg \(\mathbf{6 2}\) middle leg \(\mathbf{6 3}\) hind leg \(R\). subgemellus sp. n ,: \(\mathbf{6 4}\) front leg \(\mathbf{6 5}\)-middle leg \(\mathbf{6 6}\) hind leg.
tures, rough, matt. Rostrum less than twice its apical width (rl/arw \(c a .1 .60\)), weakly curved; dorsal part with two types of scales: one short and adjacent and other elongate, strongly protruding. Funicle shorter than scape; desmomere 1 enlarged, elongate, as long as \(2-4 ; 2\) longer than \(3 ; 3-5\) subquadrate; \(6-7\) wider than long. Club \(2 \times\) as long as wide, as long as desmomeres \(2-7\).

Pronotum (Figs 13, 22). Subisodiametric (mpw/pl ca. 1.10); slightly broadened to base, apically distinctly narrowed; base slightly bisinuate. Surface distinctly rough, matt, with short scales directed forwards.

Elytra (Figs 13, 22). Elongate (el/mew ca. 1.70), widest at about one-third of length, slightly tapering toward apex. Striae with subcircular, distinctive punctures, those of striae 1-2 fused into irregular line on their apical two thirds; striae 3-10 without distinctive punctures formed by shallow line. Intervals convex.

Legs (Figs 57-60, 80). Femora slender, fore unarmed, middle with small tooth, hind with relatively small and narrowed tooth. Tibiae elongate, slender, fore and middle straight, hind tibiae distinctive curved and slender, narrowed subapically. Claws strongly curved with broadened, acute basal tooth.

Abdomen (Fig. 93). Elongate, \(1.30 \times\) longer than wide. First suture obsolete along entire length, visible as thin line. Sutures between ventrites \(2-5\) distinctive, visible as strongly depressed line. Last ventrite subtriangular, widely rounded apically. Pygidium of female subtriangular, rounded apically; surface asetose with sparse punctures.

Female terminalia (Figs 95, 122, 127, 132). Sternite VIII with bifurcate base and pair of subquadrate lobes; apodeme strongly elongate. Abdominal tergite VIII subquadrate with parallel lateral margin. Apical margin widely rounded with very long, acute setae. Surface with sparse punctures. Ovipositor as in Fig. 122. Spermatheca as in Fig. 127.

Male. Unknown.
Measurements. Holotype, \(q\) : apw 0.50; arw 0.25; bew 1.05; bpw 0.60; el 1.75; eyl 0.25 ; frw 0.15 ; hl 0.30 ; hw 0.45 ; lb 2.60 ; mew 1.05 ; mith 0.20 ; mpw 0.60 ; mth 0.25 ; pl 0.55; ptbl 0.60; ptbmw 0.10; rl 0.40; scl 0.45 .

Type material. Holotype, \(q-22^{\circ} 11^{\prime} \mathrm{S} / 165^{\circ} 17^{\prime} \mathrm{E}\), Aoupinie, \(900-950 \mathrm{~m}\). , gatemeteo st., 8.02.2004, leg. M. Wanat (MNHN).

Etymology. The specific epithet derived from the Latin adjective grandis (big, large) and the noun dens (a tooth) and refers to the distinctly toothed claws. A noun in apposition.

Distribution. New Caledonia (main island, north province).

\section*{Rasilinus longulus sp. n.}
http://zoobank.org/A456689F-20D7-4475-968F-274CE3101AE9
Figs 5, 14, 23, 32, 41, 61-63, 81, 96, 123, 128, 133

Diagnosis. The following combination of characters allows this species to be distinguished from its congeners: rostrum elongate, distinctly curved laterally; ventral margin

Figures 67-85. Legs (67-75) and tarsal claws (77-85): Rasilinus subnodulus sp. n.: \(\mathbf{6 7}\) front leg \(\mathbf{6 8}\) middle leg \(\mathbf{6 9}\) hind leg \(R\). tchambicus sp. n.: \(\mathbf{7 0}\) front leg \(\mathbf{7 I}\) middle leg \(\mathbf{7 2}\) hind leg \(R\). virgatus sp. n.: 73 front leg \(\mathbf{7 4}\) middle leg \(\mathbf{7 5}\) hind leg \(\mathbf{7 6}\) hind femora, dorsal view of: a -Pactola (Pasc.) and b-Rasilinus gen. n. \(\mathbf{7 7} R\). bicolor sp. n. \(\mathbf{7 8} R\). bifurcatus sp. n. \(\mathbf{7 9} R\). bimaculatus sp. n. \(\mathbf{8 0} R\). grandidens sp. n. \(81 R\). longulus sp. n. \(\mathbf{8 2}\) R. subgemellus sp. n. \(\mathbf{8 3}\) R. subnodulus sp. n. \(\mathbf{8 4}\) R. tchambicus sp. n. \(\mathbf{8 5} R\). virgatus sp. n.
of fore and middle femora glabrous, without teeth; tarsal claws untoothed; base of sternite VIII in female as enlarged plate with distinctive, deep recess.

Description. Body length (lb) ca. 3.50 mm .
Body colour and vestiture (Fig. 5). Pronotum and elytra dark brown to blackish; head, rostrum and legs brighter; scape yellowish, funicle and club darker, brown. Dorsal surface of rostrum and outer margin of fore and middle tibiae with elongate, white scales. Hind femora with distinct transverse stripe composed of small, suboval, white scales. Pronotum entirely covered with short, indistinct, brown scales. Elytral intervals with line of protruding, elongate, dark scales.

Head, rostrum and antennae (Figs 23, 32, 41). Head subquadrate (hw/hl 0.901.00). Forehead flat. Eyes weakly convex laterally; protruding above margin of head in lateral view; half as long as head (eyl/hl; ca. 0.50); lateral margin of head strongly narrowed from base to hind margin of eyes. Vertex with sparse punctation, space between punctures rough, matt. Rostrum with length nearly \(2 \times\) its apical width (rl/arw ca. 1.70), curved laterally; dorsal part with two types of scale: one short and adjacent and other elongate, strongly protruding; middle of rostrum with asetose longitudinal line. Funicle shorter than scape; desmomere 1 ca . \(1.50 \times\) as long as \(2 ; 2\) almost \(2 \times\) longer than 3; 3-7 slightly longer than wide. Club \(2 \times\) as long as it is wide, as long as desmomeres 3-7.

Pronotum (Figs 14, 23). Slightly longer than wide (mpw/pl ca. 1.15); side almost parallel, subapically distinctly narrowed; base and apical margin straight. Surface distinctly rough, matt.

Elytra (Figs 14, 23). Elongate (el/mew ca. 1.65), widest at about one-third of length; distinctly narrowed to apex. Striae with small, elongate punctures; apically with punctures disappearing, forming indistinct line. Intervals rugose, flat.

Legs (Figs 61-63, 81). Femora robust; front and middle with ventral margin glabrous, without tooth. Tibiae elongate, slender; fore and middle straight, hind regularly curved. Claws untoothed, only broadened basally.

Abdomen. Elongate, ca. \(1.20 \times\) longer than wide. First suture obsolete along whole length. Sutures between ventrites \(2-5\) strongly depressed medially. Last ventrite subtriangular, widely rounded apically.

Female terminalia (Figs 96, 123, 128, 133). Abdominal tergite VIII massive, distinctly longer than wide; apex widely rounded, covered with long setae. Ovipositor slender, almost straight. Spermatheca L-shaped. Sternite VIII with long, thin apodeme; base with enlarged, suboval plate, deeply recessed medially.

Male. Unknown.
Measurements. Holotype, \(q\) /paratypes, \(\mathcal{Q}\) : apw 0.65/0.60-0.65; arw 0.35/0.300.35 ; bew \(1.50 / 1.45-1.50\); bpw \(0.85 / 0.80-0.85\); el \(2.40 / 2.30-2.35\); eyl \(0.25 / 0.25\); frw \(0.15 / 0.15\); hl \(0.50 / 0.50-0.55\); hw \(0.50 / 0.45-0.50\); lb 3.50/3.55-3.60; mew \(1.50 / 1.45-1.50\); mith \(0.25 / 0.25\); mpw \(0.85 / 0.80-0.85\); mth \(0.45 / 0.45\); pl \(0.75 / 0.75\); ptbl 0.80/0.80; ptbmw 0.10/0.10; rl 0.60/0.60; scl 0.65/0.60-0.65.

Type material. Holotype, \(q-21^{\circ} 11^{\prime} \mathrm{S} / 165^{\circ} 17^{\prime} \mathrm{E}\), Aoupinie, \(850-900 \mathrm{~m}\), 18.01.2007, forest, leg. M. Wanat \& R. Dobosz (MNHN).

Figures 86-99. Terminalia. Male pygidium, ventral view (86-92), female pygidium, dorsal view (93), female abdominal tergite VIII, dorsal view (94-98) and last ventrite of male (99): \(\mathbf{8 6}\) Rasilinus bicolor sp. n. \(87 R\). bifurcatus sp. n. \(88 R\). bimaculatus sp. n. \(89 R\). subgemellus sp. n. \(\mathbf{9 0} R\). subnodulus sp. n. \(91 R\). tchambicus sp. n. 92 R. virgatus sp. n. 93 R. grandidens sp. n. 94 R. bicolor sp. n. \(95 R\). grandidens sp. n. 96 R. longulus sp. n. 97 R. subnodulus sp. n. 98 R. tchambicus sp. n. 99 R. bifurcatus sp.n.

Paratype: 1 早, No. \(8683,20^{\circ} 58^{\prime} \mathrm{S} \times 165^{\circ} 17\) 'E, 500 m , Pic d'Amoa, N slopes, \(10-\) 24 Nov. 2001, leg C. Burwell \& G. Monteith, malaise trap (QM); 1q, No. 12003, \(21^{\circ} 35^{\prime} \mathrm{S} \times 165^{\circ} 51^{\prime} \mathrm{E}, 780 \mathrm{~m}, \mathrm{Mt}\). Rembai, top junction, 19 Dec 2004, leg. G. Monteith, beating, rainforest (QM).

Etymology. The specific epithet is derived from the Latin adjective longus (long) and diminutive ending -ulus and refers to the elongate rostrum.

Distribution. New Caledonia (main island, north and south provinces).

\section*{Rasilinus subgemellus sp. n .}
http://zoobank.org/F4F6F30A-9F12-4744-ADA4-FB99D222770B
Figs 6, 15, 24, 33, 42, 47, 64-66, 82, 89, 103, 110, 117
Diagnosis. The species is unique within the genus in having a pair of small nodules at the middle of the first ventrite of male; rostrum with distinct median keel; regularly rounded lateral margin of pronotum and parameroid lobes of tegmen with a pair of very short, sclerotised processes.

Description. Body length (lb) ca. 3.60 mm .
Body colour and vestiture (Fig. 6). Pronotum, elytra and tibiae dark brown to blackish; femora brown with darker base and apex. Scape of antennae orange, funicle and club darker. Dorsal part of rostrum covered with white, suboval scales. Tarsus with strongly elongated, white scales, sometimes much longer than length of tarsomeres. Hind femora with distinct, transverse, wide stripe composed of small, suboval, white scales. Intervals with line of elongate, strongly protruding, dark scales. Abdomen dark orange, apical margins of ventrites and pair of nodules much darker.

Head, rostrum and antennae (Figs 24, 33, 42). Head subquadrate (hw/hl ca. 1.10). Forehead slightly concave. Eyes relatively small, weakly convex laterally; slightly protruding above margin of head in lateral view; approximately as long as half-length of head (eyl/hl ca. 0.40). Vertex distinctly convex, with irregular, dense punctation, strongly scabrous; lateral margin broadened, widely rounded near base. Rostrum almost as long as it is double width at apex (rl/arw ca. 1.85), as long as head, weakly curved laterally; medially with distinct, protruding keel. Funicle shorter than scape; desmomere 1 strongly elongate, as long as \(2-4\) taken together; 2 slightly longer than 3; 3-7 slightly longer than wide. Club \(2 \times\) than wide, as long as desmomeres 3-7.

Pronotum (Figs 15, 24). Distinctly wider than long (mpw/pl ca. 1.25); laterally regularly rounded, narrowed subapically. Surface strongly rough, matt.

Elytra (Figs 15, 24). Elongate (el/mew ca. 1.55), widest across humeral calli, weakly narrowed to middle of length, strongest apically. Striae narrow, composed of small punctures, slightly concave only at apical part. Intervals wide, flat, strongly rugose, shining.

Legs (Figs 64-66, 82). Fore and middle legs elongate, slender; femora with tooth at ventral side; tibiae slightly bisinuate, narrowed subapically. Hind tibiae regularly curved. Claws untoothed, basally distinctly, regularly broadened.

Figures 100-II3. Male terminalia. Aedeagus, dorsal and lateral view (\(\mathbf{I O 0}-\mathbf{I O 6}\)) spiculum gastrale,
 linus bicolor sp. n. 101 R. bifurcatus sp. n. (e-endophallus with characteristic sclerites) \(\mathbf{1 0 2}\) R. bimaculatus sp. n. \(103 R\). subgemellus sp. n. \(104 R\). subnodulus sp. n. \(105 R\). tchambicus sp. n. \(106 R\). virgatus sp. n. \(\mathbf{1 0 7} R\). bicolor sp. n. \(\mathbf{1 0 8} R\). bifurcatus sp. n. \(\mathbf{1 0 9} R\). bimaculatus sp. n. \(\boldsymbol{I} \mathbf{0} R\). subgemellus sp. n. III \(R\). subnodulus sp. n. II2 R. tchambicus sp. n. II3 R. virgatus sp. n.

Abdomen (Fig. 47, 89). Slightly longer than wide. First ventrite with two distinct nodules; suture distinct laterally, medially obsolete. Sutures between ventrites \(2-5\) strongly depressed. Last ventrite wider than long; apical margin straight. Pygidium of male subquadrate, dorsal surface with sparse punctation. Apical margin with elongate setae. Ventral processes relatively small; with few, sparse setae.

Male terminalia (Figs 103, 110, 117). Aedegal pedon longer than apodemes, basal part unsclerotised, extended into pair of processes; apex strongly narrowed, acuminate. From lateral view curved irregularly with slightly upturned apex. Tegmen with subcircular tegminal ring; tegminal apodeme thin and short; parameroid lobes indistinct, composed of two fully separated, short processes, each surrounded by thin membrane. Basal part of sternite VIII irregularly bifurcate; hemisternites on sternite IX irregular, well visible.

Female. Unknown.
Measurements. Holotype, \({ }^{\lambda}\) : apw 0.70; arw 0.35; bew 1.60; bpw 0.95; el 2.50; eyl 0.30 ; frw 0.20 ; hl 0.65 ; hw 0.60 ; lb 3.60; mew 1.60 ; mith 0.25 ; mpw 1.00 ; mth 0.35 ; pl 0.80; ptbl 0.85; ptbmw 0.15; rl 0.65; scl 0.70.

Type material. Holotype, \(\widehat{0}-\) Loyality Is., Lifu, nr. We(Oue), 2-35m, 26-28. III.1968; T.C. Maa, Collector, Bishop; N.Z. Arthropod Collection, private bag 92170, Auckland, New Zealand (MNHN).

Etymology. The specific epithet is derived from the Latin prefix sub- (on the lower side, beneath) and Latin adjective gemellus (paired, double) and refers to the pair of nodules situated on the first segment of the male abdomen.

Distribution. New Caledonia (Lifou Island).

\section*{Rasilinus subnodulus sp. \(\mathbf{n}\).}
http://zoobank.org/B1AE3E3A-E2E7-402C-AE85-C7E66FD52DF9
Figs 7, 16, 25, 34, 43, 48, 67-69, 83, 90, 97, 104, 111, 118, 124, 129, 134

Diagnosis. The species is unique within the genus in having a strongly convex pronotum and elytral disc; large tubercle in the middle of first ventrite in male; internal sac with characteristic sclerite with two elongate lobes; tegmen with parameroid lobes completely divided into two, thin parameres. Spermatheca of female slender and strongly curved; apex of sternite VIII T-shaped with well-developed, split almost to base, hemisternites.

Description. Body length (lb) 3.20-3.60 mm.
Body colour and vestiture (Fig. 7). Head, pronotum and elytra dark brown to blackish ventrally and dorsally. Legs varying from uniformly reddish to blackish with lighter medial part of femora or blackish basal part. Scape of antennae orange, funicle and club darker. Tarsi same colour as tibiae, sometimes last tarsomere lighter.

Head, rostrum and antennae (Figs 25, 34, 43). Head subquadrate (hw/hl ca 1.10). Forehead flat, wide (frw/hw ca. 0.45). Eyes distinctly convex laterally; length approximately half length of head (eyl/hl ca. 0.45). Vertex with distinctive, deep punctation, surface rough. Rostrum as long as head or longer (rl/hl 1.00-1.20), distinctly curved,

Figures II4-I30. Terminalia. Male tegmen (II4-I20), female ovipositor (I2I-I25) and spermatheca (I26-I30) : II4 Rasilinus bicolor sp. n. II5 R. bifurcatus sp. n. II6 R. bimaculatus sp. n. II7 R. subgemellus sp. n. II8 \(R\). subnodulus sp. n. II9 \(R\). tchambicus sp . n . I 20 . virgatus sp . n . I2I R. bicolor sp. n. I22 R. grandidens sp. n. \(\boldsymbol{I} 23\). longulus sp. n. \(\boldsymbol{I} 24 R\). subnodulus sp. n. I 25 . tchambicus sp. n. 126 . bicolor sp. n. 127 R. grandidens sp. n. \(\mathbf{I} \mathbf{2 8}\) R. longulus sp. n. 129 R. subnodulus sp. n . \(\boldsymbol{I} \mathbf{3 0}\) R. tchambicus sp. n.
punctures only laterally, glabrous medially and matt on apical third. Funicle as long as scape; desmomere 1 as long as \(1-2\) taken together; 2 longer than \(3 ; 3-7\) subquadrate. Club \(2 \times\) than wide, as long as desmomeres 3-7.

Pronotum (Figs 16, 25). Subquadrate (\(\mathrm{mpw} / \mathrm{pl}=1.00-1.07\)); dorsally equilateral at base, strongly narrowed at apical half. Disc distinctly convex. Surface distinctly rough, densely punctate, matt.

Elytra (Figs 16, 25). Elongate (el/mew \(=1.40-1.58\)), widest across humeral calli, regularly narrowed from base to apex. In lateral view distinctly convex. Striae narrow, composed of small punctures, becoming evidently smaller to obsolescent from middle of disc towards apex. Intervals wide, flat, glabrous, slightly shining.

Legs (Figs 67-69, 83). Fore tibiae distinctly narrowed apically; femora with minute tooth near midlength. Mid legs similar, tibiae weakly narrowed apically; femora with distinct tooth beyond midlength. Hind tibiae regularly curved. Claws weakly curved, basally with broadly rounded tooth and two pairs of elongate setae: one on bottom and second on upper side of the claw.

Abdomen (Figs 48, 90). Elongate, ca. \(1.20 \times\) as long as maximum width at base. First ventrite with one distinct median nodule. Sutures between ventrites \(2-5\) strongly depressed. Last ventrite wider than long, slightly narrowed apically. Pygidium of male longer than wide, apical margin straight with elongate setae; inner folds distinct, asetose.

Male terminalia (Figs 104, 111, 118). Aedegal pedon longer than apodemes; lateral margins parallel with weak concavity at middle of length; apex widely rounded. In lateral view nearly straight basally, curved more strongly distally, slightly narrowed apically; basal part sclerotised, narrowed, extended into prominent, acute process. Endophallus with well visible transfer apparatus with pair of prominent process. Tegmen well sclerotised, incised to the base parameroid lobes; tegminal apodeme stout, broadened apically, as long as diameter of tegminal ring. Basal part of sternite VIII arrow-shaped, hemisternites on sternite IX elongate, well visible.

Female (Figs 97, 124, 129, 134). Similar to male body shape but slightly larger. Rostrum more elongate than in male (rl/arw 1.50-1.70, in male \(c a .1 .40\)). First ventrite of abdomen without nodule, glabrous; last ventrite widely rounded. Abdominal tergite VIII wider than long with incrassate outer margin and elongate setae; surface sparsely punctate and with isolated short setae; apical margin rounded. Spermatheca strongly curved. Gonocoxite stout, conical. Apodeme of sternite VIII split into pair of short, acute processes connected with well-developed hemisternites.

Measurements. Holotype, \(\delta^{\lambda}\) : apw 0.65 ; arw 0.35 ; bew 1.45 ; bpw 0.80 ;el 2.20 ; eyl 0.25 ; frw 0.25 ; hl 0.50 ; hw 0.55 ; lb 3.50 ; mew 1.45 ; mith 0.25 ; mpw 0.80 ; mth 0.40 ; pl 0.75; ptbl 0.90; ptbmw 0.15; rl 0.50; scl 0.60.

Paratypes, đ/q: apw 0.65-0.70/0.75; arw 0.35/0.35-0.40; bew 1.45-1.60/1.601.65; bpw 0.80-0.90/0.90-1.00; el 2.20-2.40/2.25-2.60; eyl 0.25/0.25-0.30; frw \(0.25 / 0.20-0.25\); hl \(0.40-0.55 / 0.50-0.60\); hw \(0.55-0.60 / 0.55-0.60\); lb \(3.25-\) 3.50/3.50-3.60; mew 1.45-1.60/1.60-1.65; mith 0.25/0.25; mpw 0.80-0.90/0.901.00; mth \(0.40-0.45 / 0.40-0.45 ; \mathrm{pl} 0.75-0.90 / 0.75-0.80\); ptbl \(0.80-1.00 / 0.95-1.00\); ptbmw 0.150.20/0.15-0.20; rl 0.45-0.50/0.60-0.65; scl 0.55-0.65/0.65-0.70.

Figures I3I-I35. Terminalia. Female, apex of sternite VIII: I3I Rasilinus bicolor sp. n. I32 R. grandidens sp. n. \(\mathbf{I} 33\) R. longulus sp. n. \(\mathbf{I} 34\) R. subnodulus sp. n. \(\mathbf{1 3 5}\) R. tchambicus sp. n.

Type material. Holotype, \(\widehat{\sigma}-21^{\circ} 11.0^{\prime} \mathrm{S} 165^{\circ} 17.6^{\prime} \mathrm{E}\); Aoupinié, \(700-900 \mathrm{~m}\); 18.01.2007, forest; leg. R. Dobosz \& M. Wanat (MNHN).

Paratypes: 1 Q-No. \(11975 ; 20^{\circ} 58^{\prime} \mathrm{S} \times 165^{\circ} 17^{\prime}\) E, 480 m .; Pic d'Amoa, north slope; 3 Jan 2005, rainforest; G. Monteith, beating (QM); 1 Q-No. 11986; \(21^{\circ} 09^{\prime} \mathrm{S} \times 165^{\circ} 19^{\prime} \mathrm{E}\), 500m.; Aoupinié, lower east road; 17Dec2004; G. Monteith, beating, rainforest (QM); 1 Q-No. \(11984 ; 21^{\circ} 09^{\prime} S \times 165^{\circ} 19^{\prime} \mathrm{E}, 500 \mathrm{~m}\).; Aoupinié, sawmill; 2 Jan 2005; G. Monteith, beating, rainforest (QM); \(19-N o .11981 ; 21^{\circ} 09^{\prime} \mathrm{S} \times 165^{\circ} 19^{\prime} \mathrm{E}, 500 \mathrm{~m}\). ; Aoupinié, sawmill; 17 Dec 2004; G. Monteith, MV light, rainforest (QM); 1q-450550 m., 5.2.63, Kuschel leg.; Col. d.Rousseltes (NZAC); \(2 q\) q \(q-21^{\circ} 00.3^{\prime} \mathrm{S} 165^{\circ} 14.9^{\prime} \mathrm{E}\); Tchamba (Wâo Uni); 15.01.2007, refuge, 400 m. ; night coll. (lamp \& beating) leg. M. Wanat \& R. Dobosz (MNHW); 1 q-21¹0.8'S \(165^{\circ} 18.1^{\prime} \mathrm{E}\); Aoupinié, 650 m.; 18.01.2007, night beating; leg. M. Wanat (MNHW); 3 \({ }^{\text {ふ }} 0^{\text {® }}-21^{\circ} 11.0^{\prime} \mathrm{S} 165^{\circ} 17.6^{\prime} \mathrm{E}\); Aoupinié, 700-900 m.; 18.01.2007, forest; leg. R. Dobosz \& M. Wanat (MNHW); 1 Q-21.14890/165.32348; Aoupinié (refuge), 400 m .; beating rainforest; 29.11.2008; leg. M. Wanat (MNHW); 1q-20.95280/165.29135; Pic d'Amoa (Povila), 400 m., rainforest; 22.11.2008; leg. M. Wanat (MNHW); 1 \(\widehat{\sigma}^{\top}-21^{\circ} 00.3^{\prime} \mathrm{S} 165^{\circ} 14.9^{\prime} \mathrm{E}\); Tchamba (Wâo Uni); 1.04.2008, day, rainforest; leg. T. Blaik (DBUO).

Etymology. The specific epithet is derived from the Latin prefix sub- (on the lower side, beneath) and Latin noun nodulus (knob, tubercle) and refers to the distinct nodule situated on the first segment of the male abdomen. A noun in apposition.

Distribution. New Caledonia (main island, north province).

\section*{Rasilinus virgatus sp. n.}
http://zoobank.org/37FD7535-D457-46C2-8508-4DB6070BFF02
Figs 9, 18, 27, 36, 45, 73-75, 85, 92, 106, 113, 120
Diagnosis. The following combination of characters allows this species to be distinguished from its congeners: head capsule almost quadrate; rostrum small, shorter than head capsule; elytra with stripe composed of pale scales at apical part of suture; tegmen with membranous parameroid lobes and dorsal part of tegminal ring bearing a pair of short, broadly rounded sclerotised lobes; aedeagus with complex transfer apparatus in endophallus; male pygidium with enlarged ventral lobes, occupying almost half area of inner part of pygidium.

Description. Body length (lb) ca. 3.00 mm .
Body colour and vestiture (Fig. 9). Pronotum and elytra dark brown to blackish, head and rostrum lighter in colour. Legs uniformly brown with brighter tarsal claws. Rostrum covered with pale, suboval scales. Antennae with light brown scape and darkening funicle and club. Elytra with single line of erect, elongate, dark scale on each interval, additional surface entirely covered with minute, hardly visible, short, piliform, recumbent scales.

Head, rostrum and antennae (Figs 27, 36, 45). Head almost subquadrate (hw/hl ca. 1.10). Forehead flat. Eyes distinctly protruding above margin of head in lateral view; more than half as long as head (eyl/hl 0.67). Lateral margin of head slightly broadened to base. Vertex rough dorsally, with distinct punctation laterally. Rostrum short and robust, slightly shorter than head capsule (\(\mathrm{rl} / \mathrm{hl} c a .0 .90\)), ca. \(1.60 \times\) longer than maximum width (rl/arw), distinctly curved. Scape almost as long as funicle and club combined; first desmomere elongate, as long as 2-4; desmomere 2 broadened apically, longer than 3; desmomeres 3-7 subcircular, wider than long. Club ca. \(2.0 \times\) as long as its wide, longer than last six desmomeres.

Pronotum (Figs 18, 27). Wider than long (mpw/pl ca. 1.35). Strongly narrowed subapically, lateral margin almost entirely distinctly narrowed, broadened only on apical part. Basal margin weakly rounded, apical margin almost straight. Surface with irregular, deep punctures, rough, matt.

Elytra (Figs 18, 27). Elongate (el/mew ca. 1.55), widest in basal half; humerus not projecting; lateral margins in basal half subparallel, curving and converging apically, apices separate. Striae with suboval, distinct punctures in basal half, apical half with punctures much smaller. Intervals flat, shining, with minute nodules, each bearing elongate, erected seta.

Legs (Figs 73-75, 85). Front and middle legs slender; front femora with minute teeth beyond middle, middle femora with tooth more elongate, and hind femora with
enlarged tooth with sharp edge; hind femora regularly tapering toward base, fusiform. Front and middle tibiae almost straight, slightly narrowed subapically; hind tibiae regularly curved, narrowed near base. Claws regularly curved, distinctly broadened near base; tooth not developed.

Abdomen (Fig. 92). Short, almost as long as its maximum width at base. First suture clearly visible along entire length; sutures 2-4 depressed. Middle area at basal part of first ventrite distinctly depressed. Surface glabrous, shining. Last ventrite subtriangular, almost \(2 \times\) wider than long; apical margin regularly rounded. Pygidium of male elongate, ca. \(1.30 \times\) longer than wide; apical margin straight with numerous elongate setae; ventral lobes enlarged, subquadrate with few, short setae only at apical angles.

Male terminalia (Figs 106, 113, 120). Aedeagal pedon as long as apodemes; basal part unsclerotised, extended; lateral margins slightly narrowed; apex with short, prominent process, in lateral view regularly curved. Endophallus with complex apparatus and few free sclerites. Tegminal apodeme broadened apically; dorsal part of tegminal ring with pair of short, broadly rounded processes between the parameroid lobes; parameroid lobes shorter than tegminal apodeme, weakly sclerotised with few, sparse setae. Basal part of sternite VIII with pair of broad, short processes; apodeme elongate, laterally flattened with broadened apex and acute, short teeth beyond middle of length connected with short membrane; hemisternites clearly visible, subcircular.

Female. Unknown.
Measurements. Holotype, male: apw 0.55 ; arw 0.25 ; bew 1.30 ; bpw 0.75 ; el 2.00; eyl 0.30 ; frw 0.15 ; hl 0.45 ; hw 0.50 ; lb 3.00 ; mew 1.30 ; mith 0.20 ; mpw 0.75 ; mth 0.50 ; pl 0.55; ptbl 0.70; ptbmw 0.15; rl 0.40; scl 0.50 .

Type material. Holotype, \(\widehat{\sigma}--22.03188 / 166.46738\), Dzumac Mts 900m, Mt Ouin road junction, night beating, 29.10.2008, leg. M. Wanat (MNHN).

Etymology. The specific epithet is the Latin adjective virgatus (striped) and refers to the stripe of pale scales at the apical part of the suture.

Distribution. New Caledonia (main island, south province).

\section*{Key to species}

The known species of the new genus Rasilinus can be separated as follows:
1 Body bicoloured, apical part of elytra, legs and head dark brown to black; base of elytra and pronotum reddish (Fig. 1)
R. bicolor
- Elytra and pronotum uniformly brown to almost black (Figs 2-9) 2

2 Elytra with pair of white spots medially (Figs 3, 12, 21) R. bimaculatus
- Elytra without any spots ... 3

3 Apical part of elytral suture with a stripe composed of fine, white scales differing from those on elytral disc (Figs 13, 18)4
- Apical part of elytral suture without distinctive scales forming a stripe 5

4 Elytra ca. \(1.70 \times\) as long as wide; tarsal claws strongly curved with broadened, stout, basal tooth (Fig. 80)
R. grandidens
- Elytra ca. \(1.50 \times\) as long as wide; tarsal claws weakly curved, distinctly broadened near base, without tooth (Fig. 85)
R. virgatus

5 Ventral margin of front femora with tooth ... 6
- Ventral margin of front femora unarmed.. 8

6 Rostrum elongate (rl/arw ca. 1.85); median keel on rostrum present (Fig. 33); first abdominal ventrite of male with pair of small, median tubercles (Fig. 47).....
R. subgemellus
- \(\quad\) Rostrum shorter (\(\mathrm{rl} /\) arw \(=1.20-1.60\)); median keel on rostrum absent (Figs 34, 35); first abdominal ventrite of male without median tubercles or with a single large one .7
\(7 \quad\) Larger species (\(\mathrm{lb}=3,25-3.60\)); pronotum subquadrate (\(\mathrm{mpw} / \mathrm{pl}=1.00-1.07\)); first abdominal ventrite of male with a large median tubercle (Fig. 48).
R. subnodulus
- \(\quad\) Smaller species (\(\mathrm{lb}=2.45-2.90\)); pronotum transverse (\(\mathrm{mpw} / \mathrm{pl}=1.15-1.27\)); first abdominal ventrite of male without median tubercle R. tchambicus

8 Middle femora with small tooth (Fig. 53); eyes strongly convex; rostrum stout, shorter than \(2 \times\) its maximum wide (Fig. 29); claws with obtuse tooth (Fig. 78)
Middle femora unarmed (Fig. 62); eyes weakly convex; rostrum elongate, longer than \(2 \times\) its maximum width (Fig. 32); claws only enlarged at base (Fig. 81)
R. longulus

\section*{Discussion}

The new genus Rasilinus is superficially similar to the genus Koghicola Mazur, 2014 but can be easily distinguished by the absence of the prominent processes at the apex of the elytra and normal (not enlarged) trochanters (see Fig. 4 in Mazur 2014b). The new genus, together with genus Pactola Pascoe, 1876 and Koghicola, has a very characteristic form of the hind legs with strongly broadened femora and curved tibiae. However, the new genus can be easily distinguished from both other genera by the distinctive shape of the femora (clearly visible in dorsal view) (Fig. 76). In Pactola the hind femora have a very thin and strongly curved basal half (see Figs 17a-20c in Mazur 2014a), whereas Koghicold and Rasilinus gen. n. display a weakly curved and more massive base of the hind femora (see Figs 10-12 in Mazur 2014b). Additionally, in Rasilinus gen. n. the basal part of the hind femora at its inner side is clearly compressed.

Most known species from the tribe Eugnomini that have been described so far come from New Zealand. From New Caledonia only two genera have been known for many years-the monotypic genus Callistomorphus Perroud, 1865 and three species from the genus Pactola Pascoe, 1876 (describe at the time as Macropoda Montrouzier, 1861, see Mazur 2014a).

Fauna of New Caledonian Eugnomini have not been investigated in greater detail so far. Until now three more species of Pactola and one monotypic genus Koghicola Mazur, 2014b have been described (Mazur 2014a, b; Mazur and Jezuita 2015), while many others are in preparation (Mazur in prep. and Mazur unpublished data).

A wide distribution of the tribe (from South America to Australian region) with many endemic genera and extremely intra- and interspecies variability causes many problems with redefinition of the tribe. Furthermore, many genera have not been described so far, so phylogeny, zoogeography and origin of the tribe still require further research.

\section*{Acknowledgments}

I would like to thank Geoff Monteith (QM), Leonie Clunie (NZAC), Roland Dobosz (USMB) and Marek Wanat (MNHW), who kindly loaned me the specimens used in this study. Special thanks to Andrzej Wolski (Opole University), anonymous reviewers and the editor for advice and many useful comments used during preparation of this work. I also thank Meg Harris and Łukasz Grabowski for the linguistic corrections.

\section*{References}

Alonso-Zarazaga MA, Lyal CHC (1999) A world catalogue of families and subfamilies of Curculionoidea (Insecta: Coleoptera), excepting Scolytidae and Platypodidae. Entomopraxis, Barcelona, 318 pp.
Cawthra EM (1966) A redefinition of the subfamily Eugnominae to include the Meriphinae. Transactions of the Royal Society of New Zealand: Zoology 7(12): 171-178.
Kuschel G (2014) The New Caledonian and Fijian species of Aterpini and Gonipterini (Coleoptera: Curculionidae). Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia, 133-163.
Lyal CHC (2015) Glossary of Weevil Characters. International Weevil Community Website. http://weevil.info/glossary-weevil-characters [accessed 01/11/2015]
Macfarlane RP, Maddison PA, Andrew IG, Berry JA, Johns PM, Hoare RJB, Lariviere MC, Greenslade P, Henderson RC, Smithers CN, Palma RL, Ward JB, Pilgrim RLC, Towns DR, McLellan I, Teulon DAJ, Hitchings TR, Eastop VF, Martin NA, Fletcher MJ, Stufkens MAW, Dale PJ, Burckhardt D, Buckley TR, Trewick SA (2011) Phylum ARTHROPODA subphylum Hexapoda, Protura, springtails, Diplura, and insects. In: Gordon DP (Ed.) New Zealand inventory of biodiversity. Volume 2. Kingdom Animalia. Chaetognatha, Ecdysozoa, ichnofossils. Canterbury University Press, Christchurch, 235 pp.
May BM (1987) Immature stages of Curculionoidea (Coleoptera): rearing records 1964-1986. New Zealand Entomologist 9(1): 44-56. doi: 10.1080/00779962.1987.9722492
Mazur MA (2014a) Review of the New Caledonian species of the genus Pactola Pascoe, 1876 (Coleoptera: Curculionidae: Eugnomini), with description of two new species. Zootaxa 3814(2): 202-220. doi: 10.11646/zootaxa.3814.2.3

Mazur MA (2014b) Koghicola karolinae, new genus and species of the Eugnomini from New Caledonia (Coleoptera: Curculionidae). Annales Zoologici 64(1): 9-14. doi: 10.3161/000345414X680519

Mazur MA, Jezuita A (2015) A new species of Pactola Pascoe, 1876 (Coleoptera: Curculionidae: Eugnomini) from New Caledonia. Zootaxa 3931(2): 279-285. doi: 10.11646/ zootaxa.3931.2.7
Wanat M (2001) Genera of Australo-Pacific Rhadinocybinae and Myrmacicelinae, with biogeography of the Apionidae (Coleoptera: Curculionoidea) and phylogeny of the Brentidae (s. lato). Mantis, Olsztyn, 432 pp.
Zimmerman EC (1994) Australian Weevils (Coleoptera: Curculionoidea). Vol. I. Orthoceri Anthribidae to Attelabidae, the primitive weevils. CSIRO Information Services, East Melbourne, Victoria, 741 pp.

\title{
Taxonomic review of the genus Teliphasa Moore, 1888 from China, with descriptions of four new species (Lepidoptera, Pyralidae, Epipaschiinae)
}

\author{
Linjie Liu', Yiping Wang', Houhun Li \\ I College of Life Sciences, Nankai University, Tianjin 300071, P. R. China \\ Corresponding author: Houhun Li (lihouhun@nankai.edu.cn)
}

Academic editor: M. Nuss | Received 15 August 2015 | Accepted 19 November 2015 | Published 18 January 2016
http://zoobank.org/8761B8A4-967A-4D98-84B4-6B80E31BEF8E
Citation: Liu L, Wang Y, Li H (2016) Taxonomic review of the genus Teliphasa Moore, 1888 from China, with descriptions of four new species (Lepidoptera, Pyralidae, Epipaschiinae). ZooKeys 554: 119-137. doi: 10.3897/ zookeys.554.6177

\begin{abstract}
The genus Teliphasa Moore, 1888 from China is reviewed. Nine species are treated, including descriptions of four new species: Teliphasa spinosa \(\mathrm{Li}, \mathbf{s p} . \mathbf{n}\)., T. similalbifusa \(\mathrm{Li}, \mathbf{s p} . \mathbf{n}\)., T. erythrina \(\mathrm{Li}, \mathbf{s p} . \mathbf{n}\)., and T. hamata Li, sp. n. Photographs of adults, wing venation, and both male and female genitalia are provided, along with a key for the identification of all the Chinese species.
\end{abstract}

\section*{Keywords}

Lepidoptera, Pyralidae, Epipaschiinae, Teliphasa, taxonomy, new species, China

\section*{Introduction}

The genus Teliphasa was erected by Moore (1888) to accommodate the two species, T. orbiculifer and T. nubilosa from India, with T. orbiculifer as the type. Teliphasa is closely allied to Macalla Walker, 1859, in which several Teliphasa species were once included. Janse (1931) recombined Stericta picta Warren, 1895 from Macalla to Teliphasa, which was later placed in the genus Orthaga by Shaffer et al. (1996). Mutuura (1957) transferred T. elegans (Butler, 1881) and T. amica (Butler, 1879) from Macalla
to Teliphasa. Ghesquière (1942) reported T. dibelana from Congo and Zaire, and Viette (1960) described T. andrianalis from Madagascar. Inoue and Yamanaka (1975) made a revision of the Teliphasa species in Japan, in which they transfered T. albifusa (Hampson, 1896) from Macalla to the present genus and described a new species \(T\). sakishimensis. Solis (1992) provided a list of the Old World Epipaschiinae, in which six species of Teliphasa were included. Koçak (1987) proposed a new genus Sultania with Macalla lophotalis Hampson, 1900 as the type. But currently Sultania is considered as a synonym of Teliphasa (Nuss et al. 2003-2015).

Teliphasa comprises nine species worldwide, occurring in the Oriental, Palaearctic and Ethiopian regions. Five species were recorded in China prior to this study. The aim of the present paper is to review nine species of Teliphasa recognized in China, including descriptions of four new species.

\section*{Materials and methods}

The present study is based on the examinations of the specimens collected by light traps. Adults were examined using an Olympus SZX9 stereomicroscope. Permanent mounting methods of genitalia and venation follow the techniques introduced by Li (2002). Images of adults and genitalia were taken by using a Leica M205A stereo microscope and a Leica DM750 microscope.

All the studied specimens, including the types of the new species, are deposited in the Insect Collection of College of Life Sciences, Nankai University (NKUM), Tianjin, China.

\section*{Taxonomy}

\section*{Genus Teliphasa Moore, 1888}

Teliphasa Moore, 1888: 200. Type species: Teliphasa orbiculifer Moore, 1888. Sultania Koçak, 1987: 119. Type species: Macalla lophotalis Hampson, 1900.

Generic characters. Adult (Figs 1-4): Large sized. Head with thick chaetosema. Labial palpus in male (Fig. 1) often stronger than in female (Fig. 2), with diameter of second segment longer than three times length of female, upturned far above vertex of head, even extending back to thorax (Fig. 3), third segment thin, very short, hidden in scales of second; in some species, both male and female labial palpus slender, upturned beyond vertex of head, second segment slightly stronger than third, third segment slender. Antenna thicker in male than in female, male with a row of short cilia along anterior margin. Forewing broad; discal and discocellular spots conspicuous, bearing scale tufts; scale tuft usually set below lower margin of cell near base; antemedian line narrow; postmedian line relatively broad, usually curved outward to form an angle medially; subrectangular spots uniformly placed along inner side of terminal line, in-

Figures I-4. Morphology of Teliphasa spp. I-3 Head I T. albifusa, male \(\mathbf{2}\) T. nubilosa, female \(\mathbf{3}\) T. nubilosa, male \(\mathbf{4}\) Venation of T. albifusa, slide No. LLJ15186W. Scale bars: 2.0 mm .
terrupted by pale color at veins; hindwing broad triangular, with discocellular spot. Venations (Fig. 4): Forewing with Sc to \(2 / 3\) of costa, \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) stalked, \(\mathrm{R}_{3}\) and \(\mathrm{R}_{4}\) long stalked, \(R_{5}\) stalked with \(R_{3+4}, M_{1}\) from upper angle of cell, \(M_{2}\) and \(M_{3}\) from lower angle of cell and adjacent in basal \(1 / 4, \mathrm{CuA}_{1}, \mathrm{CuA}_{2}\) and \(\mathrm{M}_{3}\) parallel, CuP degenerated, \(1 \mathrm{~A}+2 \mathrm{~A}\) furcated basally; hindwing with \(\mathrm{Sc}+\mathrm{R}_{1}\) and Rs connected at middle of \(\mathrm{Sc}+\mathrm{R}_{1}\), \(\mathrm{M}_{2}, \mathrm{M}_{3}\) and \(\mathrm{CuA}_{1}\) from lower angle of cell, \(\mathrm{CuA}_{2}\) nearly parallel to \(\mathrm{CuA}_{1}\).

Male genitalia. Uncus various in shape. Gnathos separated, being paired long processes, lateral arms slender. Scaphium columnar, usually narrowed gradually from
base to apex. Valva extremely broad, roundly expanded, with numerous long setae. Costa well-developed, varied in shape. Transtilla banded, extending backward to base of uncus, joined medially. Sacculus narrowly banded, sometimes ill-defined. Saccus separated, broad, inverted triangular, or complete, only protruding in short triangle, or ill-defined. Phallus stout, with one or two complicated cornuti.

Female genitalia. Apophyses anteriores about same length as apophyses posteriores, occasionally longer than apophyses posteriores. Antrum usually strongly sclerotized. Ductus bursae shorter than or as long as corpus bursae. Corpus bursae pyriform or elliptical; signum paired, often ridged medially.

Diagnosis. This genus is much similar to Termioptycha Meyrick, 1889 superficially by having both discal and discocellular spots with scale tufts, the postmedian line relatively broad and curved outward to form an angle medially, and the subrectangular spots set uniformly along the inner side of the terminal line. Teliphasa can be easily separated from Termioptycha by the costa of forewing without a stigma in the median area, and the hindwing with a discocellular spot; in Termioptycha, the costa of forewing has a distinct stigma in the median area, and the hindwing lacks the discocellular spot.

Remarks. Differences within a species exist in Teliphasa, including the variations of the wing color and the degree of scale density. For example, T. elegans is divided into a blackish form and a whitish form due to such variations (Inoue and Yamanaka 1975).

\section*{Key to Chinese species of Teliphasa based on male genitalia}

1 Saccus separate; juxta not bilobed ... 2
- Saccus complete; juxta bilobed.. 7

2 Phallus with two cornuti, one protruding out from before apex of phallus.. 3
- Phallus with one cornutus.. 5

3 Gnathos hooked apically (Fig. 14)T. similalbifusa sp. n.
- Gnathos rounded apically .. 4

4 Cornutus protruding out from phallus hooked, longer than \(1 / 2\) length of phallus (Fig. 16) T. bamata sp. n.
- Cornutus protruding out from phallus horned, slightly longer than \(1 / 3\) length of phallus ...T. sakishimensis
5 Juxta with clustered spines (Fig. 13)T. spinosa sp. n.
- Juxta without spines... 6

6 Uncus trapezoidal; costa with a subtriangular process ventrally (Fig. 18)
T. albifusa
- Uncus subovate; costa without process ventrally (Fig. 19)............. T. elegans

7 Uncus triangular (Fig. 15) .. T. erythrina sp. n.
- Uncus semicircular or irregular in shape ... 8

8 Uncus semicircular; juxta laterally protruding outward semicircularly at base (Fig. 20) T. amica
- Uncus irregular in shape; juxta dilated globosely at base (Fig. 17)... T. nubilosa

\section*{Teliphasa spinosa Li, sp. n.}
http://zoobank.org/FCB51905-4D1D-4C16-9841-C1CE835CA26F
Figs 5, 13, 21
Type material. Holotype \(\widehat{\sigma}^{\lambda}\) - CHINA, Tengchong County (\(25.29^{\circ} \mathrm{N}, 98.70^{\circ} \mathrm{E}\)), Yunnan Province, 2144 m, 15.viii.2014, leg. Kaijian Teng, Shurong Liu and Hua Rong, genitalia slide No. LLJ15172.

Paratypes - \(2 \widehat{\text { § }}, 2\), Nankang, Baoshan, Yunnan Province, 2009 m, 8-10. vii.2014, other same date as holotype.

Diagnosis. This species is different from its congeners by the valva triangularly protruding dorso- and ventro-apically and the juxta with clustered spines in the male genitalia. This species is similar to \(T\). hamata sp . n. superficially, but can be differentiated by the subrhombic uncus, the approximately fan-shaped valva, and the phallus with one cornutus in the male genitalia. In T. hamata sp. n., the uncus is trapeziform, the valva is subrhombic, and the phallus has two cornuti in the male genitalia.

Description. Adult (Fig. 5): Wingspan 34.0-38.0 mm. Head brown, tinged with white scales. Labial palpus blackish brown mixed with white, white at apices of second and third segments; third segment slender, about \(1 / 3\) length of second. Maxillary palpus blackish brown, with a few white scales, short, slightly upturned. Antenna with scape brown mottled black, or blackish brown mixed with white; flagellum alternately yellowish brown and deep brown. Thorax and tegula blackish brown, with white scales. Forewing tinged with pale olive-green luster; basal area blackish brown, mixed with black and white scales, with two subrounded white spots near base; median area white, with scattered pale brown and blackish brown scales, with dense brown and blackish brown scales from costa diffused to above cell, forming a narrow elongate dark streak; distal area deep brown, with black scales; costa with a white spot at outside of postmedian line, spreading to \(\mathrm{R}_{5}\), mixed with pale brown; antemedian line black, extending from costal \(1 / 4\) obliquely inward to scale tuft near base, then obliquely outward to \(1 / 3\) on dorsum; postmedian line black, extending from costal \(2 / 3\) slightly oblique outward to \(\mathrm{R}_{5}\), then running slightly oblique inward to dorsal \(2 / 3\), its inner margin more or less serrated; discal spot almost circular, smaller than discocellular spot; discocellular spot nearly trapeziform; terminal line white, with ill-defined subrectangular black spots uniformly placed along its inner side, interrupted by grayish white mixed with blackish brown or brown scales at veins; cilia yellowish brown to brown, blackish brown along extension of veins. Hindwing with basal 3/4 white, distal 1/4 deep brown; discocellular spot pale grayish brown; cilia yellowish brown or brown. Legs brownish yellow, mixed with white, brown and black scales; tarsi with each tarsomere white apically, except black at apex of last tarsomere. Abdomen blackish brown with white, intersegment white.

Male genitalia (Fig. 13). Uncus transversally subrhombic. Gnathos slightly dilated in basal \(1 / 3\), then gradually narrowed to gently hooked apex; about \(1 / 3\) length of scaphium. Valva approximately fan-shaped, triangularly protruding dorso- and ventro-apically. Costa narrow, elongate triangular, reaching valva apically. Sacculus narrowly banded, wide basally, narrowed distally, reaching ventral \(4 / 5\) length of valva.

Figures 5-12. Adults of Teliphasa spp. 5 T. spinosa sp. n., paratype, male 6 T. similalbifusa sp. n., holotype, male \(\mathbf{7}\) T. erythrina sp. n., holotype, male 8 T. hamata sp. n., paratype, male 9 T. nubilosa, male 10 T. albifusa, male II T. elegans, male \(\mathbf{1 2}\) T. amica, male. Scale bars: 5.0 mm .

Transtilla joined medially in a knot. Juxta nearly circular, heavily sclerotized, with clustered spines. Saccus separated. Phallus curved at middle; cornutus a long plate, narrow basally, serrated along dorsal margin of distal half and on apex.

Female genitalia (Fig. 21). Papillae anales subrectangular, densely setose. Eighth tergite weakly sclerotized at middle posteriorly, with setae, anterior margin wavy, obvi-
ously concave medially; eighth sternite produced to paired triangular plates, separated medially, strongly sclerotized. Apophyses anteriores about same length as apophyses posteriores, dilated basally, gradually thinned distally, thicker than apophyses posteriores. Antrum subquadrate, slightly thicker than ductus bursae. Ductus bursae stout, strongly sclerotized, with clustered granules on inner surface; about \(2 / 5\) length of corpus bursae. Corpus bursae pyriform; signum semicircular, strongly sclerotized, with dense spines.

Distribution. China (Yunnan).
Etymology. The specific name is derived from the Latin spinosus (with many spines), in reference to the juxta with clustered spines in the male genitalia.

Remarks. The labial palpus of this species is not sexual dimorphic. The shape and pattern of wing is consistent with the diagnostic characters of Teliphasa, and the male genitalia resemble other congeners in having a paired gnathos, the roundly expanded valva, and the separated inverted triangular saccus. Therefore, we regard this species as a new species of Teliphasa and describe it here.

\section*{Teliphasa similalbifusa Li, sp. n.}
http://zoobank.org/2BC387B1-E606-4E4C-989F-7487507242CF
Figs 6, 14

Type material. Holotype \(\widehat{\sigma}^{\lambda}\) - CHINA, Mt. Daming (\(23.40^{\circ} \mathrm{N}, 108.48^{\circ} \mathrm{E}\)), Guangxi Zhuang Autonomous Region, 1250 m, 20.v.2011, leg. Linlin Yang and Yinghui Mou, genitalia slide No. LLJ13039.

Diagnosis. This species is similar to T. albifusa superficially, but can be separated from the latter by the gnathos about \(3 / 5\) the length of the scaphium, the costa without process near base on the ventral margin, and the phallus with two cornuti in the male genitalia. In T. albifusa, the gnathos is about \(3 / 4\) the length of the scaphium, the costa is protruding subtriangularly near base on the ventral margin, and the phallus has a single cornutus in the male genitalia. In addition, T. similalbifusa sp. n., T. hamata sp. n . and T. sakishimensis are much similar in the male genitalia by the subtrapeziform uncus, the approximately rhombic valva, the broadly banded transtilla, the irregularly shaped juxta, the separated saccus, and one of the paired cornuti stretching out from before the apex of the phallus. However, the gnathos is hooked apically, and the stretching out cornutus is stout and shorter than \(1 / 3\) the length of the phallus in \(T\). similalbifusa sp. n.; the gnathos is obtuse apically, and the stretching out cornutus is slender and longer than \(1 / 2\) the length of the phallus in T. hamata sp. n.; the gnathos is also obtuse apically, but the stretching out cornutus is horned and slightly longer than \(1 / 3\) the length of the phallus in \(T\). sakishimensis.

Description. Adult (Fig. 6): Wingspan 34.0 mm . Head white, mixed with yellowish brown and black scales. Male labial palpus white mixed with dense yellowish brown; second segment strong; third segment short, apex pointed. Antenna with scape white, mixed with yellowish brown and black scales; flagellum alternate-

Figures 13-20. Male genitalia of Teliphasa spp. 13 T. spinosa sp. n., holotype, slide No. LLJ15172 14 T. similalbifusa sp. n., holotype, slide No. LLJ13039 15 T. erythrina sp. n., holotype, slide No. WYP05198 16 T. hamata sp. n., holotype, slide No. LLJ15167 17 T. nubilosa, slide No. LLJ15173 18 T. albifusa, slide No. LLJ15175 19 T. elegans, slide No. LLJ13044 20 T. amica, slide No. LLJ15178. Scale bars: 2.0 mm .
ly pale yellowish brown and deep brown. Thorax white, with scattered black and brown scales. Tegula blackish brown, mixed with white scales, with long brown scales distally. Forewing with basal area pale ocherous brown, mixed with black
and white scales; median area white mixed with pale yellow and yellowish brown scales, with dense yellowish brown scales from costa scattered to above cell; distal area yellowish brown, mixed with black scales; antemedian line black, ill-defined anteriorly, extending distinctly from black scale tuft near base obliquely outward to below \(1 \mathrm{~A}+2 \mathrm{~A}\), then straightly reaching dorsal \(1 / 3\); postmedian line black, extending from costal \(3 / 4\) obliquely outward to \(M_{2}\), then arched and extending inward along \(\mathrm{CuA}_{1}\), forming a blunt angle, finally straight to dorsal \(2 / 3\), its inner margin serrated; costa with a blackish brown spot at basal \(1 / 3\) diffused to above cell, with a white spot at outside of postmedian line spreading to \(\mathrm{R}_{5}\); discal spot small, black surrounded by pale yellowish brown, with raised white scales on its outer margin; discocellular spot nearly rectangular, relatively large, surrounded by pale yellowish brown scales; terminal line yellowish white, spots ill-defined along its inner side; cilia yellowish white mixed with pale brown, blackish brown along extension of veins. Hindwing with basal \(3 / 4\) white mixed with pale yellow; distal \(1 / 4\) grayish brown, deepening from costa to dorsum; discocellular spot pale grayish brown; cilia yellowish white, blackish brown along extension of veins, with a brown line near base. Legs yellowish white, mixed with blackish brown and grayish white scales; tarsi blackish brown, white at apex of each tarsomere except black at apex of last tarsomere.

Male genitalia (Fig. 14). Uncus nearly trapeziform, rounded on posterior margin. Gnathos slightly dilated at base, gradually narrowed to hooked apex; about 3/5 length of scaphium. Valva approximately rhombic. Costa narrow, elongate triangular, smoothly arched dorsally, reaching before apex of valva. Sacculus narrowly banded, not reaching apex of valva. Transtilla joined in a semicircular protrusion. Juxta irregular in shape, heavily sclerotized. Saccus separated. Phallus dilated in basal \(1 / 5\), protruding at dorsal \(1 / 2\), relatively narrow distally; two cornuti present: one a long plate, serrated along dorsal margin distally; another stout, heavily sclerotized, stretching out of phallus from before apex, shorter than \(1 / 3\) length of phallus, narrow basally, broad distally, hooked apically.

Female unknown.
Distribution. China (Guangxi).
Etymology. The specific name is derived from the Latin simil- (similar), and the specific name of another species albifusa, in reference to the similarity of the two species in the superficial morphology.

\section*{Teliphasa erythrina Li, sp. n.}
http://zoobank.org/B721CC89-7816-44E0-9FFC-C0CFC9CF208B
Figs 7, 15

Type material. Holotype \(\widehat{\widehat{ }}\) - CHINA, Bubang, Mengla County \(\left(21.60^{\circ} \mathrm{N}\right.\), \(101.59^{\circ} \mathrm{E}\)), Yunnan Province, \(650 \mathrm{~m}, 23 . v i i i .2005\), leg. Yingdang Ren, genitalia slide No. WYP05198.

Diagnosis. This species is obviously different from its congeners by the forewing reddish brown and the hindwing deep gray tinged with pale reddish brown in the distal area. In addition, this species is distinguishable by the subtriangular uncus and the relatively narrow valva with length obviously longer than the maximum width in the male genitalia. In other Teliphasa species, the uncus is not subtriangular, and the relatively broad valva is shorter than or equal to the maximum width.

Description. Adult (Fig. 7): Wingspan 36.0 mm . Head white, mixed with pale yellow and blackish brown scales. Male labial palpus grayish white, with scattered brown scales; second segment dilated near base; third segment shorter than \(1 / 10\) length of second. Antenna with scape white, mixed with brown; flagellum alternately yellowish brown and brown. Thorax and tegula white, mixed with brownish yellow and black scales; tegula with brown long scales distally. Forewing white in basal 2/3, suffused with pale yellowish, pale brown and brownish black scales, with blackish brown scale tuft near base, mottled white; costa with brownish black scales from basal \(1 / 3\) to \(2 / 3\), diffused to above cell, with a white spot at outside of postmedian line, spreading to \(\mathrm{R}_{5}\); distal \(1 / 3\) reddish brown, tinged with white scales; antemedian line black wavy, extending from costal \(1 / 3\) obliquely outward to below cell, then obliquely inward to scale tuft near base, thereafter obliquely outward to \(1 \mathrm{~A}+2 \mathrm{~A}\), finally straight to dorsal \(1 / 3\); postmedian line black, extending from costal \(2 / 3\) obliquely outward to \(M_{3}\), then running obliquely inward to dorsal \(2 / 3\), its inner margin serrated; discal and discocellular spots brownish black, the former circular, the latter subrectangular; terminal line grayish white, with subrectangular blackish brown spots uniformly placed along its inner side, interrupted by pale brown at veins. Hindwing with basal \(2 / 3\) white mixed with grayish scales; distal \(1 / 3\) deep gray tinged with pale reddish brown, gradually paler from costa to dorsum; discocellular spot pale brown; cilia of fore- and hind-wings brownish yellow, blackish brown along extension of veins. Legs yellowish white, mixed with blackish brown and pale brown scales; tarsi blackish brown, white at apex of each tarsomere.

Male genitalia (Fig. 15). Uncus triangular, concave medially on anterior margin. Gnathos gradually narrowed to gently hooked apex; about \(3 / 5\) length of scaphium. Valva relatively narrow, length about three times width at base. Costa narrowly banded, reaching valva apically. Transtilla joined medially in a small knot. Sacculus narrowly banded, reaching \(1 / 2\) length of valva on ventral margin. Juxta bilobed, each lobe gradually narrowed distally, inner side strongly sclerotized. Saccus not separated, protruding triangularly, acute apically. Phallus slender, slightly curved at basal 1/3; cornutus broad basally, slightly curved medially, dilated distally, protruding to a stout hook laterally.

Female unknown.
Distribution. China (Yunnan).
Etymology. The specific name is derived from the Latin erythrinus (red), in reference to the forewing reddish brown in the distal area.

\section*{Teliphasa hamata Li，sp．n．}
http：／／zoobank．org／CCF9D60B－7574－46FC－8012－1EA281C2EA54
Figs 8，16， 22
Type material．Holotype \(\widehat{\sigma}^{\top}\)－CHINA，Tengchong County（ \(25.29^{\circ} \mathrm{N}, 98.70^{\circ} \mathrm{E}\) ），Yun－ nan Province， 2144 m，16．viii．2014，leg．Kaijian Teng，Shurong Liu and Hua Rong， genitalia slide No．LLJ15172．

Paratypes：2才，same data as holotype； \(1 \delta^{\lambda}, 2\) ，Wenshan County， 1105 m，xi．2003， leg．Shengxian Lu；2才，Kunming，Yunnan Province， 1900 m，29．viii．2005，leg．Ying－ dang Ren； \(1 \delta^{\lambda}\) ，Mt．Jizu，Dali，Yunnan Province， 2228 m，27．vii．2014，leg．Kaijian Teng et al．； \(1 \circlearrowleft^{\lambda}\) ，Xianfengling，Mt．Wuyi，Fujian Province， 1000 m，26．v．2004，leg． Haili Yu； \(1 \widehat{O}^{\lambda}, 1\) ，Huaping，Leyie County，Guangxi Zhuang Autonomous Region， \(1300 \mathrm{~m}, 6,8 . v i i i .2006\) ，leg．Weichun Li；3才，3q，Mt．Yuanbao，Guangxi Zhuang Autonomous Region， 700 m，11．viii．2006，leg．Weichun Li．

Diagnosis．This species is similar to T．albifusa superficially in the forewing color， but can be distinguished by the gnathos about \(2 / 3\) the length of the scaphium and the phallus with two cornuti in the male genitalia．In T．albifusa，the gnathos is about 3／4 the length of the scaphium，and the phallus has a single cornutus in the male genitalia． Moreover，T．hamata sp．n．，T．similalbifusa sp．n．，and T．sakishimensis are extremely similar in the male genitalia，and differences between them are stated under T．simila－ lbifusa sp．n．

Description．Adult（Fig．8）：Wingspan 32．0－36．0 mm．Head white，suffused with black and pale brown scales．Male labial palpus pale yellow to brownish yellow，suf－ fused with white and black scales；second segment slightly dilated in distal 2／3；third segment short，pointed at apex；female labial palpus with second segment white，mixed with yellowish brown scales on dorsal surface；third segment slender，yellowish brown with black，about \(1 / 5\) length of second．Antenna with scape white mottled blackish brown；flagellum alternately grayish brown and blackish brown．Thorax white，with brown scales．Tegula deep brown，with black and a few white scales．Forewing with ba－ sal area dark brown，mixed with black scales；median area white，with scattered brown scales；distal area ochreous brown，mixed with black and white scales；costa brown from basal \(1 / 3\) to \(2 / 3\) ，mixed with black scales，diffused to above cell，with a white spot near base and raised black scales at its outside，with a second white spot at outside of postmedian line，spreading to below \(\mathrm{R}_{5}\) ；antemedian line black，extending from costal \(1 / 4\) obliquely inward to scale tuft near base，then obliquely outward to below \(1 \mathrm{~A}+2 \mathrm{~A}\) ， finally obliquely inward to dorsal \(1 / 3\) ；postmedian line black，extending from costal \(2 / 3\) obliquely outward to \(M_{2}\) ，then curved and extending inward along \(\mathrm{Cu}_{1}\) ，forming an angle，finally straight to dorsal \(2 / 3\) ，its inner margin serrated；discal and discocellu－ lar spots black，the latter relatively large；terminal line pale yellow，with subrectangular brown or blackish brown spots uniformly placed along its inner side，interrupted by white mixed with brown at veins．Hindwing with basal \(2 / 3\) yellowish white，distal \(1 / 3\) grayish brown，becoming paler from costa to dorsum；discocellular spot pale grayish brown；cilia of fore－and hind－wings pale yellow，grayish brown to brownish yellow

Figures 2I-26. Female genitalia of Teliphasa spp. 21 T. spinosa sp. n., paratype, slide No. RH15180 22 T. hamata sp. n., paratype, slide No. WYP06011 23 T. nubilosa, slide No. LLJ15182 24 T. albifusa, slide No. LLJ15174 25 T. elegans, slide No. LLJ13038 26 T. amica, slide No. LLJ13017. Scale bars: 2.0 mm .
along extension of veins．Legs yellowish brown to blackish brown，mixed with black， brown and a few white scales；tarsi blackish brown，white at apex of each tarsomere． Abdomen white mottled black scales except first segment black．

Male genitalia（Fig．16）．Uncus broad，nearly trapeziform，rounded on poste－ rior margin．Gnathos slender，basal half thicker than distal half，apex obtuse；about 2／3 length of scaphium．Valva subrhombic，with relatively dense setae near costa． Costa elongate triangular，broad basally，gradually narrowed distally，reaching before apex of valva；distal \(1 / 4\) obviously thinned，slightly curved inward in a hook．Sac－ culus narrowly banded，reaching valva apically．Transtilla knotted medially as a sem－ ielliptical expansion．Juxta irregular in shape，heavily sclerotized．Saccus separated． Phallus protruding near dorsal \(1 / 2\) ；with two cornuti，one a long plate，serrated along dorsal margin of distal part，another slender，heavily sclerotized，protruding out from phallus near apex，longer than \(1 / 2\) length of phallus，curved medially and forming a large hook．

Female genitalia（Fig．22）．Papillae anales subtriangular，densely setose．Eighth tergite nearly rectangular，with sparse setae posteriorly；eighth sternite paired triangu－ lar plates．Apophyses anteriores about same length as apophyses posteriores；thicker than apophyses posteriores．Antrum rectangular，heavily sclerotized．Ductus bur－ sae thin，slightly longer than corpus bursae，weakly sclerotized posteriorly，with one horned plate basally．Corpus bursae pyriform；signum nearly rectangular，with clus－ tered spines．

Distribution．China（Fujian，Guangxi，Yunnan）．
Etymology．The specific name is derived from the Latin hamatus（hooked），referring to the slender hooked cornutus protruding out from the phallus in the male genitalia．

\section*{Teliphasa nubilosa Moore， 1888}

Figs 9，17， 23
Teliphasa nubilosa Moore，1888：201．Type Locality：India（Darjiling）．
Macalla formisibia Strand，1919： 50.

Material examined．CHINA：Fujian Province：9§，Xianfengling，Mt．Wuyi， 1000 m，26．v．2004，leg．Haili Yu；Guangxi Zhuang Autonomous Region：10才， 2 ， Huaping，Leyie County， 1300 m，1，8．viii．2006，leg．Weichun Li；2才，Mt．Yuanbao， 700 m，12．viii．2006，leg．Weichun Li；5ठ̊，69，Mt．Mao＇er，Guilin， 1016 m，23－24． vii．2015，leg．Mujie Qi and Shengnan Zhao；4 \({ }^{\top}\) ，Huanjiang County，Hechi， 1180 m， 23－26．vii．2015，leg．Meiqing Yang and Ga－Eun Lee；Guizhou Province： \(1 \delta^{\lambda}\) ，Liming－ guan，Libo County， 720 m，19．vii．2015，leg．Meiqing Yang and Ga－Eun Lee；Hainan Province：3 \({ }^{\top}\) ，Mt．Wuzhi， \(700 \mathrm{~m}, 19 . v .2007\) ，leg．Zhiwei Zhang and Weichun Li； 2才，Mt．Diaoluo， 940 m，31．v．2007，leg．Zhiwei Zhang and Weichun Li；2才，Yingge－ ling，Qiongzhong County， 508 m ，27．vii．2014，leg．Peixin Cong，Linjie Liu and Sha Hu；2q，Yuanmenxiang，Baisha County， 460 m，29－30．vi．2014，leg．Peixin Cong，

Linjie Liu and Sha Hu；1才，Jianfengling，Ledong County， 770 m，14．vii．2014，leg． Peixin Cong，Linjie Liu and Sha Hu；5 \({ }^{\text {J }}\) ，Mt．Limu， 607 m，25，27．vii．2014，leg． Peixin Cong，Linjie Liu and Sha Hu；50，Mt．Wuzhi， 742 m，20．V．2015，leg．Peixin Cong，Wei Guan and Sha Hu；Henan Province： \(2{ }^{\top}, 3 q\) ，Lushi County， 1560 m，19， 21．vii．2001，leg．Dandan Zhang；1 \({ }^{\top}\) ， 2 q，Mt．Baiyun，Luoyang County， 1560 m， 22－24．vii．2001，leg．Dandan Zhang；157 \(\widehat{\text { ，}}\) ， 40 ，Mt．Yuntai，Jiaozuo， 1028 m，5－12． viii．2014，leg．Peixin Cong，Linjie Liu and Sha Hu；Hubei Province： \(1 q\) ，Pingbaying， Xianfeng， 1280 m，22．vii．1999，leg．Houhun Li；Jiangxi Province：3 \({ }^{\text {J }}\) ，Mt．Jiulian， 20－21．vii．2006，leg．Weichun Li；Sichuan Province：1 §，Qingyinge，Mt．Emei， 900 m，30．iv．1957，leg．Leyi Zheng and Hanhua Cheng；3q，Mabian County， 900 m， 21．vii．2004，leg．Yingdang Ren；2才，Wenchuan County， 1557 m，9．vii．2014，leg．Kai－ jian Teng et al．； \(1 \AA^{\lambda}\) ，Wanniansi，Mt．Emei， 830 m，14．vii．2014，leg．Kaijian Teng et al．； Yunnan Province： \(1 \widehat{c}^{\top}\) ，Bubang，Mengla County， 650 m，23．viii．2005，leg．Yingdang Ren； 1 §̂，Taiyanghe，Pu＇er， 1626 m，8．vii．2013，leg．Shurong Liu，Yuqi Wang and Kai－ jian Teng；1才，Mt．Jizu，Dali， 2228 m，27．vii．2014，leg．Kaijian Teng et al．；10才，Mt． Weibao，Dali， 2205 m，30．vii．2014，leg．Kaijian Teng et al．；1 \(\widehat{ }\) ，Xiaodifang，Tengcong County， 2116 m，11．viii．2014，leg．Kaijian Teng，Shurong Liu and Hua Rong；10 \({ }^{\text {，}}\) ， Linjiapu，Tengcong County， 2144 m，16．viii．2014，leg．Kaijian Teng，Shurong Liu and Hua Rong；Zhejiang Province：5 \({ }^{\text {® }}\) ，Xianrending，Mt．Tianmu， 1500 m，25．vii．2011， leg．Xicui Du and Xiaobing Fu；1 \({ }^{\text {²，}}\) ，Laoan，Mt．Tianmu， 555 m，3．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；16才，Sanmuping，Mt．Tianmu， 789 m，13－15． vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；2才，Xiguan，Mt．Tianmu， 566 m，16，18．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；9 \({ }^{\text {d }}\) ，Mt． Longxu， 754 m，20－22．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；2才， Qingliangfeng， 1059 m，28．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang； 5才，20䛔，Sanmuping，Mt．Tianmu， 789 m，16－17．vii．2015，leg．Aihui Yin，Kang Lou and Tao Wang．

Diagnosis．This species is different from its congeners by the forewing suffused with olive－green scales in the median area，the rather thick male labial palpus extend－ ing to thorax，and the dorsal side of the labial palpus with long brownish yellow hairs in the distal \(3 / 4\) ．In addition，this species is similar to T．amica in the male genitalia （Fig．17）by the valva nearly circular，the costa narrowly banded，and the juxta with lobes．It can be distinguished by the narrow uncus irregular in shape，the juxta dilated globosely at base，the saccus ill－defined，and the cornutus about \(1 / 4\) the length of the phallus in the male genitalia；the signum set at anterior \(1 / 3\) of the corpus bursae in the female genitalia（Fig．23）．In T．amica，the uncus is semicircular，the juxta is protru－ ding semicircularly at base laterally，the distinct saccus produced in a short triangle， the cornutus is about \(1 / 2\) the length of the phallus in the male genitalia；the signum is located at posterior \(1 / 4\) of the corpus bursae in the female genitalia．

Description．Adult（Fig．9）：Wingspan 26．0－38．0 mm．
Distribution．China（Fujian，Guangxi，Guizhou，Hainan，Henan，Hubei，Jiangxi， Sichuan，Yunnan，Zhejiang，Taiwan），India．

\section*{Teliphasa albifusa（Hampson，1896）}

Figs 10，18， 24
Macalla albifusa Hampson，1896：113．Type Locality：Sikkim，Nagas．
Teliphasa albifusa（Hampson）：Inoue and Yamanaka 1975： 99.
Material examined．CHINA：Guangxi Zhuang Autonomous Region： \(1{ }^{\text {® }}, 2\) ， Mt ． Mao＇er，Guilin， \(1016 \mathrm{~m}, 23 . \mathrm{vii} .2015\) ，leg．Mujie Qi and Shengnan Zhao；2 \({ }^{\text {A }}, 1\) ㅇ， Huanjiang County，Hechi， \(1180 \mathrm{~m}, 25 . \mathrm{vii} .2015\) ，leg．Meiqing Yang and Ga－Eun Lee； \(2{ }^{\text {h }}\) ，Rongshui County，Liuzhou， \(1240 \mathrm{~m}, 27 . \mathrm{vii} .2015\) ，leg．Meiqing Yang and Ga－ Eun Lee；Hebei Province： \(10{ }^{\hat{}}, 3\) ， ，Xinglong County， \(800 \mathrm{~m}, 16-29\). vii．2011，leg． Houhun Li and Yanpeng Cai；Henan Province：1中，Mt．Baiyun，Luoyang， 1560 m， 22．vii．2001，leg．Dandan Zhang；14 \({ }^{\text {® }}\) ，8우，Linzhou， 550 m，21，23．vii．2006，leg． Hui Zhen and Denghui Kuang；\({ }^{1}{ }^{\text {T}}\) ，Mt．Guan，Hui County， 550 m，26．vii．2006， leg．Hui Zhen and Denghui Kuang；3 \({ }^{\text {® }}\) ，1q，Mt．Wangwu，Jiyuan， 800 m，28－29． vii．2006，leg．Hui Zhen and Denghui Kuang；15 \({ }^{\wedge}\) ， 4 ？ ，Mt．Yuntai，Jiaozuo， 1028 m， \(5-10\). viii．2014，leg．Peixin Cong，Linjie Liu and Sha Hu；Hubei Province：3 3 ， 3 里， Shennongjia， 15. vii． 1977 ，leg．Leyi Zheng； 5 h， 1 ㅇ，Pingbaying，Xianfeng， 1280 m ， 21－22．vii．1999，leg．Houhun Li et al．；1§，Lichuan， 700 m，28．vii．1999，leg．Houhun Li et al．；Sichuan Province： \(2{ }^{\text {§ }}\) ，Baoxing County， 900 m ，1．viii．2004，leg．Yingdang Ren； \(3{ }^{\widehat{h}}, 2\) ，Wenchuan County， 1557 m，11．vii．2014，leg．Kaijian Teng et al．；1q， Wanniansi，Mt．Emei， 830 m ，14．vii．2014，leg．Kaijian Teng et al．；Shanxi Province： \(33^{3}\) ，Manghe，Yangcheng County， \(594 \mathrm{~m}, 13\) ，16．vii．2012，leg．Wei Guan and Xiuchun Wang；Tianjin： 1 §§，Mt．Baxian， 550 m ，23．vi．2001，leg．Houhun Li et al．；9§，3？ ， Mt．Baxian， \(560 \mathrm{~m}, 14,16 . v i i .2005\) ，leg．Houhun Li et al．；2 \({ }^{\text {Th }}\) ，Mt．Baxian， 550 m ， \(24 . v i i .2015\) ，leg．Houhun Li and Peixin Cong；Yunnan Province： \(1 \delta^{\lambda}\) ，Bubang，Meng－ la County， \(650 \mathrm{~m}, 22\) ．viii．2005，leg．Yingdang Ren；1 \({ }^{\text {²，}}\) ，Yexianggu，Xishuangbannan， 762 m，19．vii． 2014 ，leg．Kaijian Teng et al．；Zhejiang Province： \(1^{\lambda}\) ，Wuyanling，Tais－ hun， \(680 \mathrm{~m}, 31 . \mathrm{vii} .2005\) ，leg．Yunli Xiao；27ô， 2 年，Laoan，Mt．Tianmu， \(555 \mathrm{~m}, 3-6\). vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；2 \({ }^{\widehat{\prime}}, 1\) ， ，Qianjiangyuan， Mt．Tianmu， 866 m，7，10．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang； \(11 \delta^{\text {h }}\) ，Xiguan，Mt．Tianmu， 566 m，16－20．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；4 \({ }^{\text {h}}\) ，Mt．Longxu， \(754 \mathrm{~m}, 20-22 . v i i .2014\) ，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；3 \({ }^{\text {J }}\) ，Mt．Longtang， \(520 \mathrm{~m}, 28,30\) ．vii．2014，leg．Aihui Yin， Xuemei Hu and Qingyun Wang；9³，Sanmuping，Mt．Tianmu， 789 m，30．viii．2014， leg．Aihui Yin，Xuemei Hu and Qingyun Wang；20§̉，16？ ，Sanmuping，Mt．Tianmu， 789 m，16－17．vii．2015，leg．Aihui Yin，Kang Lou and Tao Wang．

Diagnosis．This species is characterized by the subtrapeziform uncus，the gnathos about \(3 / 4\) the length of the scaphium，the transtilla joined medially in a semicircular knot，the juxta irregular in shape，the phallus ventrally with a short slender process distally and with a row of spines internally in the male genitalia（Fig．18）；the ductus bursae with two irregular sclerotized plates posteriorly，and the triangular signum in
the female genitalia (Fig. 24). Teliphasa albifusa is similar to T. similalbifusa \(\mathrm{sp} . \mathrm{n}\). and the whitish form of T. elegans superficially, and the differences between them are stated under T. similalbifusa sp. n. and T. elegans.

Description. Adult (Fig. 10): Wingspan 34.0-38.0 mm.
Distribution. China (Fujian, Guangxi, Hebei, Henan, Hubei, Hunan, Shanxi, Sichuan, Tianjin, Yunnan, Zhejiang, Taiwan), Japan, Korea, Sikkim, Nagas.

\section*{Teliphasa elegans (Butler, 1881)}

Figs 11, 19, 25
Locastra elegans Butler, 1881: 581. Type Locality: Japan (Yokohama).
Macalla elegans (Butler): Rebel 1901: 258.
Teliphasa elegans (Butler): Mutuura 1957: 105.
Material examined. CHINA: Guizhou Province: 2才, Suoluo, Chishui, 390 m, 27-28.V.2000, leg. Yanli Du; Hebei Province: 4 \({ }^{\lambda}\), Xinglong County, 800 m , 20.vii.2011, leg. Houhun Li and Yanpeng Cai; Heilongjiang Province: 2 中, Mt. Mao'er, 18.vii.2009, leg. Weichun Li and Jiayu Liu; Henan Province: 1q, Mt. Jigong, Xinyang, 700 m, 13.vii.2001, leg. Dandan Zhang; 1q, Shiziping, Lushi County, 1200 m, 21.vii.2001, leg. Dandan Zhang; 1ỏ, Baligou, Huixian, 780 m, 12.vii.2002, leg. Xinpu Wang; Hubei Province: 1 §', Shennongjia, 15.vii.1977, leg. Leyi Zheng; Tianjin: 3 \({ }^{\widehat{ }}\), Mt. Baxian, \(560 \mathrm{~m}, 13-14 . v i i .2005\), leg. Houhun Li et al.; 1 q, Mt. Jiulong, 10.vii. 2009, leg. Weichun Li.

Diagnosis. This species has two forms: the blackish form and the whitish from. The blackish form can be differentiated by the forewing and the distal \(2 / 3\) of hindwing blackish brown. The whitish form is similar to T. albifusa superficially, but can be separated from the latter by the uncus subovate, the costa without process ventrally, and the phallus ventrally with two short digitiform distal processes that lack spines internally in the male genitalia (Fig. 19); the ductus bursae with one sclerotized subtriangular plate posteriorly, and the signum narrow rectangular in the female genitalia (Fig. 25). Whereas in T. albifusa, the uncus is trapezoidal, the costa has a subtriangular process ventrally, and the phallus ventrally with a short slender distal process that has a row of spines internally in the male genitalia; the ductus bursae with two irregular sclerotized plates posteriorly, and the signum is subtriangular in the female genitalia.

Description. Adult (Fig. 11): Wingspan 34.0-38.0 mm.
Host plants. Glycine max (Linn.) Merr. (Song and He 1977), Cornus macrophylla Wall. (Hayashi 2006).

Distribution. China (Fujian, Guangxi, Guizhou, Hebei, Heilongjiang, Henan, Hubei, Hunan, Shaanxi, Tianjin), Korea, Japan, Ussuri.

\section*{Teliphasa amica（Butler，1879）}

Figs 12，20， 26
Locastra amica Butler，1879：447．Type Locality：Japan．
Macalla amica（Butler）：Hampson 1896： 454.
Teliphasa amica（Butler）：Mutuura 1957： 105.

Material examined．CHINA：Guangxi Zhuang Autonomous Region：1q，Huap－ ing，Leyie County， 950 m ，8．viii．2006，leg．Weichun Li；1才， 1 中，Mt．Yuanbao， 700 m，11．viii．2006，leg．Weichun Li；Hebei Province：4 \({ }^{\text {T，}} 1\) ，Xinglong County， 800 m， 20．vii．2011，leg．Houhun Li and Yanpeng Cai；Henan Province： \(1 \delta^{\top}\) ，1q，Mt．Jigong， Xinyang， 700 m，13．vii．2001，leg．Dandan Zhang；1q，Mt．Tongbai，Tongbai County， 300 m，16．vii．2001，leg．Dandan Zhang；35̊，9q，Linzhou， 550 m，21，23．vii．2006， leg．Hui Zhen and Denghui Kuang； \(4 \widehat{ }{ }^{\lambda}\) ，Mt．Guan，Hui County， 550 m，26．vii．2006， leg．Hui Zhen and Denghui Kuang； \(31 \delta^{\top}, 14\) ，Mt．Wangwu，Jiyuan， \(800 \mathrm{~m}, 28-\) 30．vii．2006，leg．Hui Zhen and Denghui Kuang；4 \({ }^{\lambda}\) ，Mt．Yuntai，Jiaozuo， 1028 m， 10．viii．2014，leg．Peixin Cong，Linjie Liu and Sha Hu；Hubei Province： \(1 \delta^{\lambda}, 1\) ，Shen－ nongjia，1977，leg．Huanguang Zou；Jiangxi Province：1q，Mt．Jiulong，10．vii．2009， leg．Weichun Li；1q，Mt．Jiulian，21．vii．2006，leg．Weichun Li；Sichuan Province： \(10^{\top}\) ， Qingyinge，Mt．Emei， 900 m，30．iv．1957，leg．Leyi Zheng and Hanhua Cheng；Tian－ jin： \(4 \widehat{\sigma}^{\lambda}\) ，Mt．Baxian， \(550 \mathrm{~m}, 23-24 . v i .2001\) ，leg．Houhun Li et al．； \(1 \widehat{\delta}^{\lambda}, 1\) ，Mt．Pan，Ji County， 170 m，20．vii．2004，leg．Houhun Li et al．；19§，6？，Mt．Baxian， \(560 \mathrm{~m}, 13\) ， 16．vii．2005，leg．Houhun Li et al．；3 \({ }^{\text {® }}, 1\) ，Mt．Baxian， \(550 \mathrm{~m}, 23-24 . v i i .2015\) ，leg． Houhun Li and Peixin Cong；Zhejiang Province：2才，Qingliangfeng，Linan， 900 m， 10，12．viii．2005，leg．Yunli Xiao；1才，Xiguan，Mt．Tianmu， 566 m，17．vii．2014，leg． Aihui Yin，Xuemei Hu and Qingyun Wang；1ठ，Yulingguan，Qingliangfeng， 220 m ， 24．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；1 \({ }^{\text {² }}\) ，Mt．Longtang， 520 m， 26．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；2§，Qianqingtang，Qingli－ angfeng， 1059 m，28．vii．2014，leg．Aihui Yin，Xuemei Hu and Qingyun Wang；2才，San－ muping，Mt．Tianmu， 789 m，8．viii．2014，leg．Aihui Yin，Qingyun Wang and Suran Li．

Diagnosis．This species is characterized by having a semicircular uncus，the gnathos about \(1 / 2\) the length of the scaphium，the transtilla medially produced to a rectangu－ lar extension，the bilobed juxta in the male genitalia（Fig．20）；the elongate rectangular antrum and the triangular signum in the female genitalia（Fig．26）．Teliphasa amica is similar to T．hamata sp．n．superficially，but distinguishable in the male genitalia by the saccus completed and the single cornutus．But in T．hamata sp．n．，the saccus is separated and the phallus has two cornuti．In addition，T．amica and T．nubilosa are also much alike in the male genitalia，and the differences between them are stated under T．nubilosa．

Description．Adult（Fig．12）：Wingspan 36．0－40．0 mm．
Distribution．China（Fujian，Guangxi，Hebei，Henan，Hubei，Jiangxi，Sichuan， Shandong，Tianjin，Yunnan，Zhejiang，Taiwan），Korea，Japan．

\section*{Teliphasa sakishimensis Inoue \& Yamanaka, 1975}

Teliphasa sakishimensis Inoue \& Yamanaka, 1975: 100. Type Locality: Japan (Mt. Banna).

Distribution. China (Hubei, Sichuan, Taiwan), Japan.
Remarks. Inoue and Yamanaka (1975) described this species from Taiwan in detail. Song and He (1977) reported this species occuring in Hubei and Sichuan provinces from Chinese Mainland. We are unable to check this species in our study, but \(T\). sakishimensis can be easily separated by having a clear thorn-like projection from the juxta (Inoue and Yamanaka, 1975).

\section*{Funds}

This study was supported by the National Natural Science Foundation of China (No. 31272356) and the Research Fund for the Doctoral Program of Higher Education (No. 20130031110008).

\section*{References}

Butler AD (1879) Descriptions of new species of Lepidoptera from Japan. Annals and Magazine of Natural History, including Zoology, Botany and Geology (London) (5) 4: 447-448.
Butler AD (1881) Descriptions of new genera and species of heterocerous Lepidoptera from Japan. Transactions of the Entomological Society of London 1881(4): 579-600.
Ghesquière J (1942) Catalogues raisonnes de la faune entomologique du Congo Belge. Annales du Musée du Congo belge (Zoologie) 7: 121-240.
Hampson GF (1896) The Fauna of British India, including Ceylon and Burma Fauna Br. India (Moths) 4: 1-594.
Hayashi E (2006) A new host plant of Teliphasa elegans (Butler) (Pyralidae). Japan Heterocerists' Journal 240: 272.
Inoue H, Yamanaka H (1975) A revision of the Japanese species formerly assigned to the genus Macalla Walker (Lepidoptera: Pyralidae). Bull. Fac. Domestic. Sci. Otsuma Woman's University 11: 95-112.
Janse AJT (1931) A contribution towards the study of genera of the Epipaschiinae (family Pyralidae). Transactions of the Entomological Society of London 79(3): 439-492. doi: 10.1111/j.1365-2311.1931.tb00712.x

Koçak AÖ (1987) Sultania lophotalis (Hampson) Koçak in Turkey, with a description of a new genus (Lepidoptera: Pyralidae). Priamus, Ankara 4: 117-120.
Li HH (2002) The Gelechiidae of China (I) (Lepidoptera: Gelechioidea). Nankai University Press, Tianjin, 504 pp.

Moore F (1888) Descriptions of Indian Lepidoptera Heterocera from the collection of the late Mr. W.S. Atkinson. (Pyralidae, Crambidae, Geometridae, Tortricidae, Tineidae) 1888(3): 199-299, pls 6-8.
Mutuura A (1957) Pyralidae. In: Esaki T, Issiki S, Inoue H, Mutuura A, Ogata M, Okagaki H (Eds) Icones Heterocerorum Japonicorum in Coloribus Naturalibus. Hoikusya, Osaka, 1: 93-147.
Rebel H (1901) Pyralidae-Micropterygidae. In: Staudinger O, Rebel H (Eds) Catalog der Lepidopteren des palaearctischen Faunengebietes 2: 1-368.
Shaffer M, Nielsen ES, Horak M (1996) Pyraloidea. In: Nielsen ES, Edwards ED, Rangsi TV (Eds) Checklist of the Lepidoptera of Australia. Monographs on Australian Lepidoptera. CSIRO Division of Entomology, Canberra, 164-199.
Solis MA (1992) Check list of the Old World Epipaschiinae and the related New World genera Macalla and Epipaschia (Pyralidae). Journal of the Lepidopterists' Society 46(4): 280-297.
Nuss M, Landry B, Mally R, Vegliante F, Tränkner A, Bauer F, Hayden J, Segerer A, Schouten R, Li H, Trofimova T, Solis MA, De Prins J, Speidel W (2003-2015) Global Information System on Pyraloidea. http://www.pyraloidea.org [accessed 08.06.2015].
Song SM, He MS (1977) Pyralididae. In: Yang XK (Ed.) Insects of the Three Gorge Reservoir Area of Yangtze River. Chongqing press, Chongqing 2: 975-1847.
Strand E (1919) Sauter's Formosa-Ausbeute: Pyralididae, Subfam. Sterictinae, En-dotrichinae, Pyralidinae und Hydrocampinae (Lep.). Entomologische Mitteilungen, Berlin-Dahlem 8: 49-135.
Viette P (1960) Pyrales nouvelles ou peu connues de Madagascar et des Comores. Annales de la Société Entomologique de France 129: 151-177.

\title{
Annotated checklist of marine fishes from the Sanctuary of Bahía Chamela, Mexico with occurrence and biogeographic data
}

\author{
Cristian Moisés Galván-Villa', Eduardo Ríos-Jara', Dafne Bastida-Izaguirre', Philip A. Hastings \({ }^{2}\), Eduardo F. Balart \({ }^{3}\) \\ I Laboratorio de Ecosistemas Marinos y Acuicultura, Departamento de Ecologia, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Zapopan, Jalisco, Mexico. 451102 Marine Biology Research Division, Scripps Institution of Oceanography, University of California. San Diego, La Jolla, CA. 92093-0208 3 Laboratorio de Necton y Ecología de Arrecifes, Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, Mexico. 23096
}

Corresponding author: Cristian Moisés Galván-Villa (gvc07765@cucba.udg.mx)

\footnotetext{
Academic editor: C. Baldwin | Received 4 July 2015 | Accepted 13 November 2015 | Published 18 January 2016
}
http://zoobank.org/B7475F63-37EF-4113-9C99-57F3F241BD15
Citation: Galván-Villa CM, Ríos-Jara E, Bastida-Izaguirre D, Hastings PA, Balart EF (2016) Annotated checklist of marine fishes from the Sanctuary of Bahía Chamela, Mexico with occurrence and biogeographic data. ZooKeys 554: 139-157. doi: 10.3897/zookeys.554.6106

\begin{abstract}
An annotated checklist of marine fishes of the Sanctuary of Islands and Islets of Bahía Chamela in the central Mexican Pacific is presented. Records of fish species were obtained by different methods including visual census, sampling with anesthetics, fisherman-nets, and trawling with a biological dredge. Additional records were obtained from natural history collections and publications. The list comprises 196 species in 64 families and 141 genera. The Carangidae is the most speciose family with 11 species, followed by the Labridae with 10 and the Pomacentridae with nine. Fourteen species are endemic in Mexican Pacific waters, but none is restricted to Bahía Chamela. The most dominant species recorded during underwater surveys were Epinephelus labriformis, Stegastes flavilatus, and Halichoeres dispilus. Most species are of tropical affinities distributed throughout the tropical eastern Pacific (123), eastern Pacific (23), and Mexican Pacific (14). Other species are known from the eastern and Indo-Pacific regions (18), eastern Pacific and western Atlantic oceans (2), and some are circumtropical (9). A new record of the Gulf Brotula Ogilbia ventralis is provided for the Bahía Chamela and its geographical distribution is extended to Mexican central Pacific.
\end{abstract}

\section*{Keywords}

Species richness, Ichthyofauna, eastern Pacific, systematic list, biogeographic affinity

\section*{Introduction}

The study of fish diversity along the Mexican Pacific coasts started two centuries ago by naturalists and scientists who studied rich collections from some now-memorable expeditions (Gilbert 1890, Jordan et al. 1895, Breder 1926, 1927, 1928, 1936, Fowler 1944). Today the estimated number of recorded marine species along these coasts is 1,121 , with the Gulf of California exhibiting the highest species richness (van der Heiden and Findley 1988, Hastings et al. 2010, Espinosa-Pérez 2014). However, there are still many areas and habitats (bays, estuaries, mangroves, reefs, littoral zones, deepwater realm) in the Mexican tropical Pacific where proper fish inventories are missing.

Fishes are an important marine group from an ecological and economic point of view. The destruction and pollution of many habitats and the overexploitation of fishes have affected marine ecosystems with the consequent loss of environmental services. For this reason, the implementation of Marine Protected Areas (MPAs) has begun to be a common practice in conservation and a useful fisheries management tool (Roberts et al. 2001, Edgar 2011). However, the design of an effective MPA requires information about the diversity of species inhabiting an area and its connectivity with other areas (Halpern and Warner 2003, Costello et al. 2010).

In the Mexican Pacific, there are some well-inventoried MPAs. For instance, there are well-documented checklists of fishes inhabiting Isla Guadalupe Biosphere Reserve (Reyes-Bonilla et al. 2010), an important area for the reproduction of the white shark off the Baja California peninsula. MPAs inside the Gulf of California include the Bahía de Los Ángeles Biosphere Reserve (Viesca-Lobatón et al. 2008, Mascareñas-Osorio et al. 2011), a seasonal sanctuary for the whale shark; Loreto Marine Park (Campos-Dávila et al. 2005, Rife et al. 2013); National Park Archipielago of Espíritu Santo (Aburto-Oropeza and Balart 2001, Arreola-Robles and Elorduy-Garay 2002, Rodríguez-Romero et al. 2005); Gulf of California Islands (Del Moral-Flores et al. 2013); Cabo Pulmo National Park (Alvarez-Filip et al. 2006), where sound management has restored the fish biomass (Aburto-Oropeza et al. 2011); Isla Isabel National Park (Galván-Villa et al. 2010); and Islas Marias Biosphere Reserve (Erisman et al. 2011). Others include the Archipielago de Revillagigedo Biosphere Reserve (Jordan and McGregor 1899, Cas-tro-Aguirre and Balart 2002, Chávez-Comparán et al. 2010), Islas Marietas National Park (Solís-Gil and Jiménez-Quiroz 2004, García-Hernández et al. 2014), and Bahías de Huatulco National Park (Ramírez-Gutiérrez et al. 2007, López-Pérez et al. 2010, Juárez-Hernández et al. 2013) in the central and southern Mexican Pacific. However, many of the MPAs from the Mexican central Pacific are lacking inventories of marine fishes. One of these is the Sanctuary of Bahía Chamela located along the coast of Jalisco; it comprises eight islands and four islets dispersed along the bay.

The Sanctuary of Bahía Chamela was the first marine sanctuary in Mexico and has been protected since 2002 (Miranda et al. 2011). This sanctuary is home to species of restricted distribution and endemic fauna and flora. However, scarce information about fish diversity of the sanctuary is available. Only two previous lists of fishes of this bay are found reporting 59 and 80 species for the mainland coastline and for the
two largest islands in the bay, respectively (Espinosa-Pérez et al. 2002, Galván-Villa 2015). In the current study, a comprehensive checklist of fish species from the Sanctuary of Bahía Chamela Islands has been compiled based on sampling work from 2007 to 2014, review of material from ichthyological collections, and critical analysis of selected references. A biogeographic and occurrence characterization of all species is also provided.

\section*{Material and methods}

Study area. The Bahía Chamela is located in the middle coastline area of Jalisco state on the central Mexican Pacific (\(19^{\circ} 32^{\prime} \mathrm{N} ; 105^{\circ} 06^{\prime} \mathrm{W}\)) (Figure 1). The bay is located between two major oceanic systems: the Gulf of Tehuantepec and the Gulf of California. The extent of the bay is 28 km from Punta Chamela to Punta Rivas (south to north). The sanctuary includes eight islands called as Pajarera, Cocinas, Mamut, Colorada, San Pedro, San Agustín, San Andrés, and La Negra, and four islets as Los Anegados, El Novillo, La Mosca, and Submarino (CONANP 2008). All of these islands and islets are included in the Marine Priority Region No. 38 of sites for conservation of the National Commission for Knowledge and Use of Biodiversity of Mexico (CONABIO). The continental coast of the bay presents sandy beaches to the northern side and shallow plains and rocky beaches to the south. The islands and islets are of continental origin with similar age and composition throughout the region (possibly from the Cretaceous) (Schaaf 2002). The two larger islands have rocky and sandy beaches, while the smaller islands and the islets have rocky intertidal zones sometimes with vertical steep slopes. The depth of the bay varies between 10 and 25 m , decreasing dramatically in the proximity of the coastline and the islands.

Sampling effort and data analysis. Records of fish species were made by visual census and obtained from analyses of collection reports and materials and available publications. Records in situ were made using underwater visual census from 2007 to 2012 according to the technique described by English et al. (1994). Each transect covered an area of \(100 \mathrm{~m}^{2}(50 \mathrm{~m} \times 2 \mathrm{~m})\) and was conducted by a single diver. Cryptic fishes and other specimens were collected from 2007 to 2015 with a \(10 \%\) anaesthetic solution of clove oil diluted in ethanol, with a fisherman-net, and with a biological dredge. All collected specimens were deposited in the fish collection of the Laboratory of Marine Ecosystems and Aquaculture (LEMA-CPE), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara (Zapopan, Mexico), except specimen of Chaenopsis sp. that was deposited in the Marine Vertebrate Collection (SIO), Scripps Institution of Oceanography, University of California (San Diego, USA). Records obtained from publications included only those that were identified to species level and excluded any questionable records that we could not confirm as species known to occur in the Mexican Pacific.

The nomenclature for species level, family designations, and systematic were updated following Eschmeyer (2015). Distributions and biogeographic affinities for species are

Figure I. Location of Bahía Chamela, Jalisco, Mexico. Black dots show the location of the sampling sites in the bay. The dotted line indicates the limits of the Marine Protected Area.
based on Thomson et al. (2000), Hastings and Springer (2009), Erisman et al. (2011), Mascareñas-Osorio et al. (2011), and Robertson and Allen (2015), using the following categories: \(\mathrm{CT}=\) Circumtropical (distributed throughout the tropics of the world), \(\mathrm{EP}=\) eastern Pacific (including tropical and temperate regions), EP + ATL \(=\) eastern Pacific and western Atlantic oceans (occurs in both oceans), \(\mathrm{EP}+\mathrm{IP}=\) eastern Pacific and Indo-Pacific regions (occurs in both regions), MEX = Mexican waters of the Pacific (including the Gulf of California and outer coast of Baja California), and TEP = tropical eastern Pacific (extends from south of Magdalena Bay, Baja California to Cabo Blanco in northern Peru, includes the Gulf of California and offshore islands as Revillagigedo, Clipperton, Cocos, Malpelo, and the Galápagos). For a description of the structure of fish assemblages, the species recorded between 2007 and 2012 through visual census were classified in five categories using the frequency of occurrence: \(\mathrm{D}=\) Dominant (\(>80 \%\) of census), A = Abundant (\(61-80 \%\)), \(\mathrm{C}=\mathrm{Common}(41-60 \%), \mathrm{U}=\mathrm{Uncommon}(21-40 \%)\), and R \(=\) Rare (\(<21 \%\)).

\section*{Results and discussion}

Species richness. A list of 196 species, 141 genera, and 64 families of marine fishes from the Bahía Chamela is presented (Table 1). In comparison with previous studies
Table I. Checklist of fishes from the Sanctuary of Bahía Chamela, Mexico. The list is arranged systematically by class, orders, and families according to Eschmeyer (2015). Record designation: \(\mathrm{V}=\) visual record (2007-2009); \(\mathrm{C}=\) collected specimen (2007-2015); \(\mathrm{SIO}=\) records of the Scripps Institution of Oceanography; R1 = Espinoza-Pérez et al. (2002); R2 = Galván-Villa (2015). Frequency of occurrence: \(\mathrm{D}=\) dominant; \(\mathrm{A}=\) abundant; \(\mathrm{C}=\) common; \(\mathrm{U}=\) uncommon; \(\mathrm{R}=\) rare. Biogeographical affinity: CT = Circumtropical; EP = Eastern Pacific; EP +ATL = Eastern Pacific and Atlantic oceans; EP \(+\mathrm{IP}=\) Eastern Pacific and Indo-Pacific; MEX = Mexican waters of the Pacific; TEP = Tropical Eastern Pacific. IUCN Categories: EN = Endangered; VU = Vulnerable; DD = Data deficient; NT = Near threatened; LC = Least concern; NE \(=\) Not evaluated. \(-=\) No data.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & \begin{tabular}{l}
IUCN \\
Categories
\end{tabular} \\
\hline \multicolumn{7}{|l|}{CHONDRICHTHYES} \\
\hline \multicolumn{7}{|l|}{Carcharhiniformes} \\
\hline Sphyrnidae & Sphyrna lewini (Griffith \& Smith, 1834) & R1 & - & - & CT & EN \\
\hline \multicolumn{7}{|l|}{Rajiformes} \\
\hline Narcinidae & Diplobatis ommata (Jordan \& Gilbert, 1890) & V & - & R & TEP & VU \\
\hline \multirow[t]{3}{*}{Rhinobatidae} & Rhinobatos glaucostigma Jordan \& Gilbert, 1883 & SIO, R1 & SIO 70-238 & - & TEP & DD \\
\hline & Rhinobatos leucorhynchus Günther, 1867 & V & & R & TEP & NT \\
\hline & Zapteryx xyster Jordan \& Evermann, 1896 & V, SIO & SIO 70-237 & R & TEP & DD \\
\hline \multicolumn{7}{|l|}{Myliobatiformes} \\
\hline Gymnuridae & Gymnura marmorata (Cooper, 1864) & R1 & - & - & TEP & LC \\
\hline Myliobatidae & Aetobatus narinari (Euphrasen, 1790) & V, R2 & - & R & CT & NT \\
\hline \multirow[t]{4}{*}{Urotrygonidae} & Urobatis concentricus Osburn \& Nichols, 1916 & V, R2 & - & R & MEX & DD \\
\hline & Urobatis halleri (Cooper, 1863) & SIO, R1 & SIO 70-237 & - & TEP & LC \\
\hline & Urotrygon munda Gill, 1863 & R1 & & - & TEP & DD \\
\hline & Urotrygon rogersi (Jordan \& Starks, 1895) & SIO & SIO 70-238 & - & TEP & DD \\
\hline \multicolumn{7}{|l|}{ACTINOPTERYGII} \\
\hline \multicolumn{7}{|l|}{Albuliformes} \\
\hline Albulidae & Albula pacifica (Beebe, 1942) \(\dagger\) & R1 & - & - & EP & NE \\
\hline \multicolumn{7}{|l|}{Anguilliformes} \\
\hline \multirow[t]{2}{*}{Congridae} & Ariosoma gilberti (Ogilby, 1898) & SIO & SIO 70-237 & - & TEP & LC \\
\hline & Paraconger californiensis Kanazawa, 1961 & V, SIO & SIO 70-235 & R & TEP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & IUCN Categories \\
\hline \multirow[t]{3}{*}{Muraenidae} & Gymnomuraena zebra (Shaw, 1797) & V, R2 & - & R & EP+IP & NE \\
\hline & Gymnothorax castaneus (Jordan \& Gilbert, 1883) & V & - & R & TEP & LC \\
\hline & Muraena lentiginosa Jenyns, 1842 & V, R2 & - & R & TEP & LC \\
\hline \multirow[t]{4}{*}{Ophichthidae} & Apterichtus equatorialis (Myers \& Wade, 1941) & C & LEMA-PE138 & - & TEP & LC \\
\hline & Myrichthys tigrinus Girard, 1859 & V, R1, R2 & - & R & TEP & LC \\
\hline & Ophichthus triserialis (Kaup, 1856) & R1 & - & - & TEP & LC \\
\hline & Quassiremus nothochir (Gilbert, 1890) & V & - & R & TEP & LC \\
\hline Clupeiformes & & & & & & \\
\hline \multirow[t]{2}{*}{Clupeidae} & Harengula thrissina (Jordan \& Gilbert, 1882) & C, R1 & LEMA-PE92 & - & EP & LC \\
\hline & Lile stolifera (Jordan \& Gilbert, 1882) & R1 & - & - & TEP & LC \\
\hline Pristigasteridae & Pliosteostoma lutipinnis (Jordan \& Gilbert, 1882) & R1 & - & - & TEP & LC \\
\hline \multirow[t]{2}{*}{Engraulidae} & Anchoa ischana (Jordan \& Gilbert, 1882) & R1 & - & - & TEP & LC \\
\hline & Anchoa scofieldi (Jordan \& Culver, 1895) & R1 & - & - & TEP & LC \\
\hline Aulopiformes & & & & & & \\
\hline \multirow[t]{4}{*}{Synodontidae} & Synodus evermanni Jordan \& Bollman, 1890 & SIO & SIO 70-237 & - & TEP & LC \\
\hline & Synodus lacertinus Gilbert, 1890 & V, C, R1 & LEMA-PE97 & R & EP & LC \\
\hline & Synodus scituliceps Jordan \& Gilbert, 1882 & SIO, R1 & SIO 70-237 & - & TEP & LC \\
\hline & Synodus sechurae Hildebrand, 1946 & SIO & SIO 70-237 & - & TEP & LC \\
\hline \multicolumn{7}{|l|}{Gadiformes} \\
\hline Bregmacerotidae & Bregmaceros bathymaster Jordan \& Bollman, 1890 & SIO & SIO 70-168 & - & TEP & LC \\
\hline \multicolumn{7}{|l|}{Ophidiiformes} \\
\hline \multirow[t]{2}{*}{Bythitidae} & Ogilbia boydwalkeri Møller, Schwarzhans \& Nielsen, 2005 & SIO & SIO 70-165 & - & TEP & LC \\
\hline & Ogilbia ventralis (Gill, 1863) & C & LEMA-PE135 & - & MEX & LC \\
\hline \multicolumn{7}{|l|}{Batrachoidiformes} \\
\hline Batrachoididae & Porichthys ephippiatus Walker \& Rosenblatt, 1988 & SIO & SIO 70-168, 235, 237, 238 & - & TEP & LC \\
\hline \multicolumn{7}{|l|}{Lophiiformes} \\
\hline \multirow[t]{2}{*}{Antennariidae} & Antennatus coccineus (Lesson, 1831) & C & LEMA-PE70, 71 & - & EP+IP & NE \\
\hline & Antennatus sanguineus (Gill, 1863) & C, SIO & \[
\begin{gathered}
\text { LEMA-PE50, } 51 \\
\text { SIO 70-167 }
\end{gathered}
\] & - & TEP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & \begin{tabular}{l}
IUCN \\
Categories
\end{tabular} \\
\hline Gobiesociformes & & & & & & \\
\hline \multirow[t]{3}{*}{Gobiesocidae} & Arcos erythrops (Jordan \& Gilbert, 1882) & C, SIO & \begin{tabular}{l}
LEMA-PE74 \\
SIO 70-167
\end{tabular} & - & MEX & LC \\
\hline & Gobiesox adustus Jordan \& Gilbert, 1882 & SIO & SIO 70-167 & - & TEP & LC \\
\hline & Gobiesox papillifer Gilbert, 1890 & C & LEMA-PE95 & - & TEP & LC \\
\hline Atheriniformes & & & & & & \\
\hline Atherinopsidae & Atherinella eriarcha Jordan \& Gilbert, 1882 & SIO, R1 & SIO 70-167 & - & TEP & LC \\
\hline Beloniformes & & & & & & \\
\hline \multirow[t]{3}{*}{Belonidae} & Ablennes hians (Valenciennes, 1846) & C, SIO & LEMA-PE60 SIO 70-166 & - & CT & NE \\
\hline & Platybelone argalus (Lesueur, 1821) & R1 & - & - & CT & LC \\
\hline & Tylosurus fodiator Jordan \& Gilbert, 1882 & R1 & - & & CT & LC \\
\hline Beryciformes & & & & & & \\
\hline \multirow[t]{2}{*}{Holocentridae} & Myripristis leiognathus Valenciennes, 1846 & V, SIO, R2 & SIO 70-167 & R & TEP & LC \\
\hline & Sargocentron suborbitalis (Gill, 1863) & V, R2 & - & U & TEP & LC \\
\hline \multicolumn{7}{|l|}{Syngnathiformes} \\
\hline Fistulariidae & Fistularia commersonii Rüppel, 1838 & V, SIO, R2 & SIO 70-167 & R & EP+IP & NE \\
\hline Syngnathidae & Hippocampus ingens Girard, 1858 & C & LEMA-PE99 & - & EP & VU \\
\hline \multicolumn{7}{|l|}{Scorpaeniformes} \\
\hline \multirow[t]{5}{*}{Scorpaenidae} & Pontinus sp. 1 \(\ddagger\) & C & LEMA-PE132 & - & - & - \\
\hline & Pontinus sp. \(2 \ddagger\) & C & LEMA-PE136 & - & - & - \\
\hline & Scorpaena mystes Jordan \& Starks, 1895 & V, C, R2 & LEMA-PE102 & R & EP & LC \\
\hline & Scorpaena sonorae Jenkins \& Evermann, 1889 & SIO & SIO 70-238 & - & MEX & LC \\
\hline & Scorpaenodes xyris (Jordan \& Gilbert, 1882) & C, SIO & LEMA-PE112, 114, 115 SIO 70-167 & - & EP & LC \\
\hline Triglidae & Prionotus stephanophrys Lockington, 1881 & SIO & SIO 70-168 & - & TEP & LC \\
\hline Perciformes & & & & & & \\
\hline \multirow[t]{3}{*}{Epinephelidae} & Alphestes immaculatus Breder, 1936 & V, R2 & - & U & TEP & LC \\
\hline & Cephalopholis panamensis (Steindachner, 1877) & V, R2 & - & C & TEP & LC \\
\hline & Dermatolepis dermatolepis (Boulenger, 1895) & V & - & R & EP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & IUCN Categories \\
\hline & Epinephelus labriformis (Jenyns, 1840) & V, SIO, R2 & SIO 70-167 & D & EP & LC \\
\hline & Paranthias colonus (Valenciennes, 1846) & V & - & R & TEP & LC \\
\hline & Rypticus bicolor Valenciennes, 1846 & V, SIO & SIO 70-167 & R & TEP & LC \\
\hline & Rypticus nigripinnis Gill, 1861 & V & - & R & TEP & LC \\
\hline Serranidae & Serranus psittacinus Valenciennes, 1846 & V, SIO, R2 & SIO 70-167 & U & TEP & LC \\
\hline \multirow[t]{2}{*}{Apogonidae} & Apogon pacificus (Herre, 1935) & V, SIO & SIO 70-167 & R & EP & LC \\
\hline & Apogon retrosella (Gill, 1862) & V, SIO, R2 & SIO 70-167 & R & TEP & LC \\
\hline \multirow[t]{11}{*}{Carangidae} & Caranx caballus Günther, 1868 & V, R2 & - & R & EP & LC \\
\hline & Caranx sexfasciatus Quoy \& Gaimard, 1825 & V, R1 & - & R & EP+IP & LC \\
\hline & Carangoides otrynter (Jordan \& Gilbert, 1883) & C & LEMA-PE56 & - & EP & LC \\
\hline & Carangoides vinctus (Jordan \& Gilbert, 1882) & R1 & - & - & TEP & LC \\
\hline & Chloroscombrus orqueta Jordan \& Gilbert, 1883 & R1 & - & - & EP & LC \\
\hline & Gnathanodon speciosus (Forsskål, 1775) & V, R1 & - & R & EP+IP & NE \\
\hline & Hemicaranx leucurus (Günther, 1864) & R1 & - & - & TEP & LC \\
\hline & Oligoplites saurus (Bloch \& Schneider, 1801) & R1 & - & - & TEP & NE \\
\hline & Selene brevoortii (Gill, 1863) & C & LEMA-PE103 & - & EP & LC \\
\hline & Trachinotus paitensis Cuvier, 1832 & R1 & - & - & TEP & LC \\
\hline & Trachinotus rhodopus Gill, 1863 & C, R1 & LEMA-PE108, 113 & - & EP & LC \\
\hline \multirow[t]{7}{*}{Lutjanidae} & Hoplopagrus guentherii Gill, 1862 & V, R1 & - & R & TEP & LC \\
\hline & Lutjanus argentiventris (Peters, 1869) & V, R1, R2 & - & U & TEP & LC \\
\hline & Lutjanus colorado Jordan \& Gilbert, 1882 & R1 & - & - & TEP & LC \\
\hline & Lutjanus guttatus (Steindachner, 1869) & V, R1, R2 & - & R & EP & LC \\
\hline & Lutjanus inermis (Peters, 1869) & V & - & R & TEP & LC \\
\hline & Lutjanus novemfasciatus Gill, 1862 & V, C, R1, R2 & LEMA-PE119, 120 & R & TEP & LC \\
\hline & Lutjanus viridis (Valenciennes, 1846) & V, R2 & - & R & TEP & LC \\
\hline \multirow[t]{4}{*}{Gerreidae} & Diapterus peruvianus (Cuvier, 1830) & R1 & - & - & TEP & LC \\
\hline & Eucinostomus dowii (Gill, 1863) & SIO & SIO 70-237 & - & TEP & LC \\
\hline & Eucinostomus gracilis (Gill, 1862) & SIO, R1 & SIO 70-237 & - & TEP & LC \\
\hline & Gerres simillimus Regan, 1907 & V, R1 & - & - & TEP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical
affinity & IUCN
Categories \\
\hline \multirow[t]{9}{*}{Haemulidae} & Anisotremus taeniatus Gill, 1861 & SIO & SIO 70-167 & - & TEP & LC \\
\hline & Haemulon flaviguttatum Gill, 1862 & \[
\underset{\text { R2 }}{\mathrm{V}, \mathrm{SIO} \text { R1, }}
\] & SIO 70-167 & U & EP & LC \\
\hline & Haemulon maculicauda (Gill, 1862) & V, SIO, R2 & SIO 70-167 & U & TEP & LC \\
\hline & Haemulon sexfasciatum Gill, 1862 & V, R2 & - & R & TEP & LC \\
\hline & Haemulon scudderii Gill, 1862 & R1 & - & - & TEP & LC \\
\hline & Haemulon steindachneri (Jordan \& Gilbert, 1882) & V, R1, R2 & - & U & TEP & LC \\
\hline & Microlepidotus brevipinnis (Steindachner, 1869) & V, SIO, R2 & SIO 70-167 & R & TEP & LC \\
\hline & Pomadays macracanthus (Günther, 1864) & R1 & - & - & TEP & LC \\
\hline & Pomadasys panamensis (Steindachner, 1876) & R1 & - & - & TEP & LC \\
\hline \multirow[t]{3}{*}{Sciaenidae} & Cynoscion nannus Castro-Aguirre \& Arvizu-Martínez, 1976 & SIO & SIO 70-168 & - & TEP & LC \\
\hline & Pareques fuscovittatus (Kendall \& Radcliffe, 1912) & V, SIO & SIO 70-167 & R & MEX & LC \\
\hline & Umbrina xanti Gill, 1862 & R1 & - & - & TEP & LC \\
\hline Polynemidae & Polydactylus approximans (Lay \& Bennett, 1839) & R1 & - & - & TEP & LC \\
\hline \multirow[t]{2}{*}{Mullidae} & Mulloidichthys dentatus (Gill, 1862) & V, R2 & - & C & TEP & LC \\
\hline & Pseudupeneus grandisquamis (Gill, 1863) & V, R1 & - & R & TEP & LC \\
\hline \multirow[t]{2}{*}{Kyphosidae} & Kyphosus vaigiensis (Quoy \& Gaimard, 1825) & V, R2 & - & R & EP & NE \\
\hline & Kyphosus elegans (Peters, 1869) & V, R1, R2 & - & R & TEP & LC \\
\hline \multirow[t]{2}{*}{Chaetodontidae} & Chaetodon humeralis Günther, 1860 & V, R1, R2 & - & A & EP & LC \\
\hline & Johnrandallia nigrirostris Gill, 1862 & V, SIO, R2 & SIO 70-167 & U & TEP & LC \\
\hline \multirow[t]{2}{*}{Pomacanthidae} & Holocanthus passer Valenciennes, 1846 & V, SIO, R2 & SIO 70-167 & C & TEP & LC \\
\hline & Pomacanthus zonipectus (Gill, 1862) & V, R2 & - & R & TEP & LC \\
\hline \multirow[t]{7}{*}{Pomacentridae} & Abudefduf declivifrons (Gill, 1862) & V & - & R & TEP & LC \\
\hline & Abudefduf troschelii (Gill, 1862) & V, R2 & - & U & TEP & LC \\
\hline & Chromis atrilobata Gill, 1862 & V, SIO, R2 & SIO 70-167 & U & TEP & LC \\
\hline & Microspathodon bairdii (Gill, 1862) & V, R2 & - & R & TEP & LC \\
\hline & Microspathodon dorsalis (Gill, 1862) & V, SIO, R2 & SIO 70-167 & A & TEP & LC \\
\hline & Stegastes acapulcoensis (Fowler, 1944) & V, R2 & - & A & TEP & LC \\
\hline & Stegastes flavilatus (Gill, 1862) & V, SIO, R2 & SIO 70-167 & D & TEP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & IUCN Categories \\
\hline & Stegastes leucorus (Gilbert, 1892) & V, R2 & - & R & MEX & VU \\
\hline & Stegastes rectifraenum (Gill, 1862) & V, R2 & - & R & TEP & LC \\
\hline \multirow[t]{2}{*}{Cirrhitidae} & Cirrhitichthys oxycephalus (Bleeker, 1855) & V & - & R & TEP & NE \\
\hline & Cirrhitus rivulatus Valenciennes, 1846 & V & - & C & TEP & LC \\
\hline \multirow[t]{2}{*}{Mugilidae} & Mugil curema Valenciennes, 1836 & V, R1, R2 & - & R & EP+ATL & NE \\
\hline & Chaenomugil proboscideus (Günther, 1861) & R1 & - & - & TEP & LC \\
\hline \multirow[t]{10}{*}{Labridae} & Bodianus diplotaenia (Gill, 1862) & V, SIO, R2 & SIO 70-167 & C & TEP & LC \\
\hline & Halichoeres chierchiae Di Caporiacco, 1948 & V, R1, R2 & - & C & TEP & LC \\
\hline & Halichoeres dispilus (Günther, 1864) & V, C, SIO, R2 & LEMA-PE93, 127, 128 SIO 70-167 & D & TEP & LC \\
\hline & Halichoeres melanotis (Gilbert, 1890) & V, R2 & - & R & TEP & LC \\
\hline & Halichoeres nicholsi (Jordan \& Gilbert, 1882) & V, SIO, R2 & SIO 70-167 & A & TEP & LC \\
\hline & Halichoeres notospilus (Günther, 1864) & V, R2 & - & U & TEP & LC \\
\hline & Iniistius pavo (Valenciennes, 1840) & C & LEMA-PE133 & - & EP+IP & LC \\
\hline & Novaculichthys taeniourus (Lacepède, 1801) & V, R2 & - & R & EP+IP & LC \\
\hline & Thalassoma grammaticum Gilbert, 1890 & V, R2 & - & R & EP+IP & LC \\
\hline & Thalassoma lucasanum (Gill, 1862) & V, R2 & - & C & TEP & LC \\
\hline \multirow[t]{3}{*}{Scaridae} & Nicholsina denticulata (Evermann \& Radcliffe, 1917) & V, R2 & - & R & EP & LC \\
\hline & Scarus ghobban Forsskål, 1775 & V, R2 & - & R & EP+IP & LC \\
\hline & Scarus perrico Jordan \& Gilbert, 1882 & V, R2 & - & R & TEP & LC \\
\hline \multirow[t]{4}{*}{Tripterygiidae} & Axoclinus storeyae (Brock, 1940) & V, C & - & R & MEX & LC \\
\hline & Enneanectes carminalis (Jordan \& Gilbert, 1882) & C, SIO & \[
\begin{aligned}
& \text { LEMA-PE121 } \\
& \text { SIO 70-167 } \\
& \hline
\end{aligned}
\] & - & TEP & LC \\
\hline & Enneanectes glendae Rosenblatt, Miller \& Hastings, 2013 & V, SIO & SIO 70-167 & R & MEX & NE \\
\hline & Enneanectes macrops Rosenblatt, Miller \& Hastings, 2013 & SIO & SIO 70-167 & - & MEX & NE \\
\hline \multirow[t]{2}{*}{Dactyloscopidae} & Dactyloscopus amnis Miller \& Briggs, 1962 & C & LEMA-PE78 & - & TEP & LC \\
\hline & Gillellus arenicola Gilbert, 1890 & C & LEMA-PE117 & - & TEP & LC \\
\hline \multirow[t]{2}{*}{Labrisomidae} & Labrisomus xanti (Gill, 1860) & V & - & R & MEX & LC \\
\hline & Malacoctenus ebisui Springer, 1959 & V, C, SIO, R2 & LEMA-PE100, 107 SIO 70-167 & R & TEP & LC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & \begin{tabular}{l}
IUCN \\
Categories
\end{tabular} \\
\hline & Malacoctenus mexicanus Springer, 1959 & C, SIO & \begin{tabular}{l}
LEMA-PE98 \\
SIO 70-167
\end{tabular} & - & TEP & LC \\
\hline & Malacoctenus polyporosus Springer, 1959 & V, C & LEMA-PE110 & R & TEP & LC \\
\hline & Malacoctenus tetranemus (Cope, 1877) & C, SIO & \begin{tabular}{l}
LEMA-PE96, 109 \\
SIO 70-167
\end{tabular} & - & TEP & LC \\
\hline & Paraclinus tanygnathus Rosenblatt \& Parr, 1969 & C & LEMA-PE101, 106, 111 & - & MEX & LC \\
\hline & Starksia spinipenis (Al-Uthman, 1960) & V, C, SIO & \[
\begin{aligned}
& \text { LEMA-PE118 } \\
& \text { SIO 70-167 }
\end{aligned}
\] & R & MEX & LC \\
\hline \multirow[t]{6}{*}{Chaenopsidae} & Acanthemblemaria macrospilus Brock, 1940 & V, C, R2 & LEMA-PE87, 134 & R & MEX & LC \\
\hline & Chaenopsis sp.§ & SIO & SIO 14-41 & - & - & - \\
\hline & Coralliozetus boehlkei Stephens, 1963 & C & LEMA-PE84,85 & - & TEP & LC \\
\hline & Ekemblemaria myersi Stephens, 1963 & C, SIO & LEMA-PE80, 86, 104 SIO 70-167 & - & TEP & LC \\
\hline & Emblemaria piratica Ginsburg, 1942 & C & LEMA-PE81 & - & TEP & LC \\
\hline & Protemblemaria bicirrus (Hildebrand, 1946) & C & LEMA-PE90, 105 & - & TEP & LC \\
\hline \multirow[t]{4}{*}{Blenniidae} & Entomacrodus chiostictus (Jordan \& Gilbert, 1882) & C & LEMA-PE137 & - & TEP & LC \\
\hline & Hypsoblennius brevipinnis (Günther, 1861) & C & LEMA-PE89 & - & TEP & LC \\
\hline & Ophioblennius steindachneri Jordan \& Evermann, 1898 & V, SIO, R2 & SIO 70-167 & U & TEP & LC \\
\hline & Plagiotremus azaleus (Jordan \& Bollman, 1890) & V, SIO, R2 & SIO 70-167 & R & EP & LC \\
\hline \multirow[t]{2}{*}{Eleotridae} & Eleotris picta Kner, 1863 & R1 & - & - & TEP & LC \\
\hline & Gobiomorus maculatus (Günther, 1859) & R1 & - & - & TEP & LC \\
\hline \multirow[t]{5}{*}{Gobiidae} & Coryphopterus urospilus Ginsburg, 1938 & V, SIO, R2 & \[
\begin{gathered}
\text { LEMA-PE94 } \\
\text { SIO 70-167 } \\
\hline
\end{gathered}
\] & R & TEP & LC \\
\hline & Ctenogobius sagittula (Günther, 1862) & C & LEMA-PE62 & - & EP & LC \\
\hline & Elacatinus puncticulatus (Ginsburg, 1938) & V, C, SIO, R2 & LEMA-PE88, 116 SIO 70-167 & R & TEP & LC \\
\hline & Gymneleotris seminuda (Günther, 1864) & V & - & R & TEP & LC \\
\hline & Tigrigobius digueti (Pellegrin, 1901) & C, SIO & \[
\begin{gathered}
\text { LEMA-PE69,83 } \\
\text { SIO 70-167 }
\end{gathered}
\] & R & MEX & NE \\
\hline \multirow[t]{2}{*}{Microdesmidae} & Microdesmus dipus Günther, 1864 & C & LEMA-PE66 & - & TEP & DD \\
\hline & Microdesmus dorsipunctatus Dawson, 1968 & C & LEMA-PE67, 82 & - & TEP & DD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical
affinity & IUCN Categories \\
\hline Ephippidae & Chaetodipterus zonatus (Girard, 1858) & R1 & - & - & EP & LC \\
\hline Zanclidae & Zanclus cornutus (Linnaeus, 1758) & V, R2 & - & R & EP+IP & NE \\
\hline \multirow[t]{2}{*}{Acanthuridae} & Acanthurus xanthopterus Valenciennes, 1835 & V, R1 & - & R & EP+IP & LC \\
\hline & Prionurus punctatus Gill, 1862 & V, R2 & - & R & TEP & LC \\
\hline Sphyraenidae & Sphyraena ensis Jordan \& Gilbert, 1882 & C, R1 & LEMA-PE129 & - & TEP & LC \\
\hline Scombridae & Euthynnus lineatus Kishinouye, 1920 & V & - & R & EP+IP & LC \\
\hline \multicolumn{7}{|l|}{Pleuronectiformes} \\
\hline \multirow[t]{6}{*}{Paralichthyidae} & Cyclopsetta sp. \(\ddagger\) & C & LEMA-PE130 & - & - & - \\
\hline & Etropus crossotus Jordan \& Gilbert, 1882 & R1 & - & - & EP+ATL & NE \\
\hline & Etropus sp. \(\ddagger\) & C & LEMA-PE123a & - & - & - \\
\hline & Syacium latifrons (Jordan \& Gilbert, 1882) & SIO & SIO 70-238 & - & TEP & LC \\
\hline & Syacium ovale (Günther, 1864) & SIO & SIO 70-237 & - & TEP & LC \\
\hline & Syacium sp. \(\ddagger\) & C & LEMA-PE124 & - & - & - \\
\hline \multirow[t]{2}{*}{Bothidae} & Bothus constellatus (Jordan, 1889) & SIO & SIO 70-237, 238 & - & EP+IP & NE \\
\hline & Monolene dubiosa Garman, 1899 & SIO & SIO 70-168 & - & TEP & LC \\
\hline \multirow[t]{4}{*}{Cynoglossidae} & Symphurus atramentatus Jordan \& Bollman, 1890 & SIO & SIO 70-237 & - & TEP & LC \\
\hline & Symphurus leei Jordan \& Bollman, 1890 & C, SIO & \[
\begin{aligned}
& \text { LEMA-PE122 } \\
& \text { SIO 70-235 } \\
& \hline
\end{aligned}
\] & - & TEP & LC \\
\hline & Symphurus melanurus Clark, 1936 & C & LEMA-PE131 & - & TEP & LC \\
\hline & Symphurus sp. \(\ddagger\) & C & LEMA-PE123b, 125, 126 & - & - & - \\
\hline Tetraodontiformes & & & & & & \\
\hline \multirow[t]{3}{*}{Balistidae} & Balistes polylepis Steindachner, 1876 & V, R2 & - & R & EP+IP & LC \\
\hline & Pseudobalistes naufragium (Jordan \& Starks, 1895) & V, R2 & - & R & TEP & LC \\
\hline & Sufflamen verres (Gilbert \& Starks, 1904) & V, R2 & - & C & TEP & LC \\
\hline Monacanthidae & Aluterus scriptus (Osbeck, 1765) & V, R2 & - & R & CT & NE \\
\hline \multirow[t]{2}{*}{Ostraciidae} & Cantherhines dumerilii (Hollard, 1854) & V & - & R & EP+IP & NE \\
\hline & Ostracion meleagris Shaw, 1796 & V, R2 & - & R & EP+IP & NE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLASS/Order/Family & Species & Record designation & Catalog number of collected specimens & Frequency of occurrence & Bio-geographical affinity & IUCN Categories \\
\hline \multirow[t]{5}{*}{Tetraodontidae} & Arothron hispidus (Linnaeus, 1758) & V & - & R & EP+IP & NE \\
\hline & Arothron meleagris (Anonymous, 1798) & V, R1, R2 & - & U & EP+IP & NE \\
\hline & Canthigaster punctatissima (Günther, 1870) & V, R2 & - & R & TEP & LC \\
\hline & Sphoeroides annulatus (Jenyns, 1842) & \[
\begin{aligned}
& \text { V, SIO, R1, } \\
& \text { R2 }
\end{aligned}
\] & SIO 70-238 & R & EP & LC \\
\hline & Sphoeroides lobatus (Steindachner, 1870) & V, SIO, R2 & SIO 70-237, 238 & R & TEP & LC \\
\hline \multirow[t]{3}{*}{Diodontidae} & Chilomycterus reticulatus Linnaeus, 1758 & V, R2 & - & R & CT & NE \\
\hline & Diodon holocanthus Linnaeus, 1758 & V, SIO, R2 & SIO 70-167 & C & CT & NE \\
\hline & Diodon hystrix Linnaeus, 1758 & V, R1, R2 & - & R & CT & NE \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Considered as Albula nemoptera by Espinoza-Pérez et al. (2002), designated as Albula pacifica by Pfeiler (2008). \(\ddagger\) These individuals represent juveniles too small to be accurately identified.
\(\$\) This individual is an undescribed species previously found in Costa Rica.
}
(Espinoza-Pérez et al. 2002, Galván-Villa 2015), the richness of the bay increased in this study by more than \(240 \%\) (by 117 species). The jacks (Carangidae) represent the most diverse family, with 11 species and 8 genera, followed by the wrasses (Labridae) with 10 species and 5 genera, and damselfishes (Pomacentridae) and grunts (Haemulidae) each with 9 species and 4 genera. Eighteen families are represented by only one species. No endemic species for Bahía Chamela were found but 14 endemic species for the Mexican Pacific are recorded here.

The fish species richness of Bahía Chamela (196 species) is greater than in other surveyed MPAs of the Mexican Pacific, including Bahía de Los Ángeles (93 species), Bahía Loreto (66), Cabo Pulmo (62), and Isla Isabel (118) in the Gulf of California (Campos-Dávila et al. 2005, Alvarez-Filip et al. 2006, Galván-Villa et al. 2010, ViescaLobaton et al. 2008, Mascareñas-Osorio et al. 2011); Islas Marietas (46) (Solís-Gil and Jiménez-Quiroz 2004) in the central Mexican Pacific; and Bahías de Huatulco (112) in the southern Mexican Pacific (López-Pérez et al. 2010). Only three species (Hippocampus ingens, Holacanthus passer, Pomacanthus zonipectus) occurring in the bay have been designated with special protection category by the Mexican Official Norm 059-ECOL-2010. Furthermore, in the red list of the International Union for Conservation of Nature (IUCN 2015) three species are assessed as vulnerable (Diplobatis ommata, H . ingens, Stegastes leucorus) and one as endangered (Sphyrna lewini) (Table 1).

Fifty-four percent of the species was recorded using visual census. The composition of the fish assemblage of the bay is characterized mainly by rare species (\(72 \%\)). Three species are categorized as dominant: Epinephelus labriformis, Stegastes flavilatus, and Halichoeres dispilus; these species are widely distributed along the Mexican Pacific and are recognized as important in the reef-fish assemblage structure for this bay and other MPAs of the Mexican Pacific because of their high abundance and biomass (GalvánVilla 2015). Another four species are categorized as abundant: Chaetodon humeralis, Microspathodon dorsalis, Stegastes acapulcoensis, and Halichoeres nicholsi; nine as common, and 13 as uncommon. The number of species inhabiting the bay may increase after checking additional details of some of the collected specimens and published records. Additions may include undescribed species, juvenile stages from different species, or records from publications with erroneous determinations. For example, a single female individual of chaenopsid pike-blenny (Chaenopsis sp.) that was collected from sandy bottom of the bay corresponds to an undescribed species distributed from Mexico to Costa Rica (Hastings pers obs). Also three individuals of Pontinus (sp. 1 and sp. 2) were collected, but due to their small size (\(<2 \mathrm{~cm}\)), the identification of species was not possible. They probably correspond to \(P\). furcirhinus or \(P\). sierra, as both species have been recorded in the area (Robertson and Allen 2015). Another five juvenile individuals of flounders (Paralichthyidae) and eight tonguefishes (Cynoglossidae) collected by the biological dredge from sandy bottoms were not identified to species level. Future careful taxonomic work on these and other specimens would increase the number of species recorded from the bay.

Biogeographic affinity. Most fish species recorded in Bahía Chamela are widely distributed in the tropical eastern Pacific (123 spp \(=66 \%\)) (Figure 2). Twenty-three

Figure 2. Map showing the number of fish species recorded in Bahía Chamela and their biogeographic affinities.
species occur in the eastern Pacific, and 18 occur in both eastern and Indo-Pacific waters. Fourteen species are endemic in Mexican waters of the Pacific. One specimen of the Gulf Brotula, Ogilbia ventralis, was collected with clove oil anesthetic from under rocks, depth 6 m at the islet Novillos (Figure 3). This record represents a southern range extension for this species, known previously from the Gulf of California and southern part of the outer Baja peninsula. Bahía Chamela is the type locality for a second Ogilbia species, O. boydwalkeri (Møller et al. 2005). The festive drum fish, Pareques fuscovitattus, is the only endemic species in the Mexican Province (Robertson and Allen 2015). Nine species are circumtropical, and another two (Mugil curema and Etropus crossotus) occur in both the eastern Pacific and western Atlantic regions. Seven undetermined or nondescribed species were excluded from the analysis of biogeographic affinity.

Previous studies considered Haemulon steindachneri (Haemulidae) to occur in both eastern Pacific and western Atlantic oceans, although recently molecular analysis found that these two populations belong to different species, so the valid distribution

Figure 3. Ogilbia ventralis. LEMA-PE135, đ̂, 56 mm SL, Pacific Mexico, Bahía Chamela. Scale 10 mm . Photo by CMGV.
of this nominal species is the TEP (Rocha et al. 2008). Future review of other species that reportedly occur in both oceans is important to define valid distributions. Finally, according to Robertson and Cramer (2009), the fish richness of Bahía Chamela is most similar to that of the Panama biogeographic province, but there is an important contribution of species from the Gulf of California and outer Baja peninsula and a few species from other oceans.

\section*{Acknowledgements}

Thanks to Cande Hernández, Cristina Zuñiga, Diego Moreno, Valentina Fernández, Abel Trejo, José L. Arreola, Arizbeth Alonso, Rafael Negrete, Néstor Ortiz, Martín Pérez, and Manuel Ayón for assistance during fieldwork. We thank Cynthia Klepadlo and H.J. Walker for helpful assistance at the Marine Vertebrate Collection at SIO (SCRIPPS), Ricardo Saldierna (CICIMAR) and Lucia Campos (CIBNOR) for their kind support identifying some juvenile specimens. Comments on manuscript from Carole Baldwin and one anonymous referee helped to substantially improve the final version. This study was supported by the CONABIO, Mexico (Project JF023). Field collection of fishes was done with the official permission of SEMARNAT (SGPA/ DGVS/05775/12).

\section*{References}

Aburto-Oropeza O, Erisman B, Galland GR, Mascareñas-Osorio I, Sala E, Ezcurra E (2011) Large recovery of fish biomass in a no-take marine reserve. PLoS ONE 6(8): e23601. doi: 10.1371/journal.pone. 0023601

Aburto-Oropeza O, Balart EF (2001) Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Marine Ecology 22: 283-305. doi: 10.1046/j.14390485.2001.01747.x

Alvarez-Filip L, Reyes-Bonilla H, Calderón-Aguilera LE (2006) Community structure of fishes in Cabo Pulmo Reef, Gulf of California. Marine Ecology 27: 253-262. doi: 10.1111/j.1439-0485.2006.00108.x

Arreola-Robles JL, Elorduy-Garay JF (2002) Reef fish diversity in the region of La Paz, Baja California Sur, Mexico. Bulletin of Marine Science 70: 1-18.
Breder CM (1926) Nemathognathi, Apodes, Isospondyli, Synentognathi, and Thoracostraci from Panama to Lower California. Bulletin of Bingham Oceanographic Collection 2(2): 1-56.
Breder CM (1927) The fishes. In: Scientific results of the first oceanographic Expedition of the "Pawnee". Bulletin of Bingham Oceanographic Collection 1(1): 1-90.
Breder CM (1928) Elasmobranchii from Panama to Lower California. Bulletin of Bingham Oceanographic Collection 2(1): 1-13.
Breder CM (1936) Heterosomata to Pediculati from Panama to Lower California. Bulletin of Bingham Oceanographic Collection 2(3): 1-56.
Campos-Dávila L, Cruz-Escalona VH, Galván-Magaña F, Abitia-Cárdenas LA, GutiérrezSánchez FJ, Balart EF (2005) Fish assemblages in a Gulf of California Marine Reserve. Bulletin of Marine Science 77: 347-362.
Castro-Aguirre JL, Balart EF (2002) The ichthyofauna of the Islas Revillagigedo and their zoogeographical relationships with comments about its origin and evolution. In: LozanoVilano ML (Ed.) Libro Jubilar en Honor al Dr. Salvador Contreras Balderas. UANL, Mexico, 153-170.
Chávez-Comparán JC, Patiño-Barragán M, Calderón-Riveroll G, Lezama-Cervantes C, LaraChávez B, Ibarra-Casillas M, Bautista-Laureano S (2010) Lista de peces generada por censos visuales submarinos en la Isla Socorro Colima, México. Revista Cubana de Investigaciones Pesqueras 27: 72-78.
Costello C, Rassweiler A, Siegel D, De Leo G, Micheli F, Rosenberg A (2010) The value of spatial information in MPA network design. Proceedings of the National Academy of Sciences 107: 18294-18299. doi: 10.1073/pnas. 0908057107
Del Moral-Flores LF, González-Acosta AF, Espinosa-Pérez H, Ruiz-Campos G, Castro-Aguirre JL (2013) Annotated checklist of the ichthyofauna from the islands of the Gulf of California, with comments on its zoogeographic affinities. Revista Mexicana de Biodiversidad 84: 184-214. doi: 10.7550/rmb. 27335

English S, Wilkinson C, Baker V (1997) Survey Manual for Tropical Marine Resources. 2nd Edition. ASEAN-Australia Marine Science Project: Living Coastal Resources. AIMS, Townsville, Australia, 390 pp.
Erisman B, Galland GR, Mascareñas I, Moxley J, Walker HJ, Aburto-Oropeza O, Hastings PA, Ezcurra E (2011) List of coastal fishes of Islas Marías archipelago, Mexico, with comments on taxonomic composition, biogeography, and abundance. Zootaxa 2985: 26-40.
Eschmeyer WN (2015) Catalog of Fishes: Genera, Species, References. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp [accessed 13 February 2015]
Espinosa-Pérez H (2014) Biodiversity of fishes in Mexico. Revista Mexicana de Biodiversidad 85: 450-459. doi: \(10.7550 / \mathrm{rmb} .32264\)
Espinosa-Pérez H, Huidobro-Campos L, Fuentes-Mata P (2002) Peces continentales de la región de Chamela. In: Noguera FA, Vega-Rivera JH, García-Aldrete AN, Quesada-

Avendaño M (Eds) Historia Natural de Chamela. Instituto de Biología, UNAM, Mexico, 245-250.
Fowler HW (1944) The fishes. Results of the Fifth George Vanderbilt Expedition (1941). Bahamas, Caribbean Sea, Panama, Galapagos Archipielago and Mexican Pacific Islands. Monograph of the Academy of Natural Science of Philadelphia 6:57-583.
Galván-Villa CM (2015) Reef fish assemblage structure of three marine protected areas from the Mexican Pacific. Ecosistemas y Recursos Agropecuarios 2(4): 69-86.
Galván-Villa CM, Arreola-Robles JL, Ríos-Jara E, Rodríguez-Zaragoza FA (2010) Reef fish assemblages and their relation with the benthic habitat of Isabel Island, Nayarit, Mexico. Revista de Biología Marina y Oceanografía 45(2): 311-324. doi: 10.4067/S071819572010000200013
Gilbert CH (1890) A preliminary report on the fishes collected by the steamer "Albatross" on the Pacific coast of North America during the year 1889, with descriptions of twelve new genera and ninety two new species. Proceedings of the US National Museum 13: 49-126. doi: 10.5479/si.00963801.13-797.49
Halpern BS, Warner RR (2003) Matching marine reserve design to reserve objectives. Proceedings of Royal Society of London B 270: 1871-1878. doi: 10.1098/rspb.2003.2405
Hastings PA, Dominici-Arosemena A (2010) Axoclinus storeyae. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org [accessed 24 February 2015]
Hastings PA, Findley LT, van der Heiden A (2010) Fishes of the Gulf of California. In: Brusca R (Ed.) Biodiversity and Conservation in the Gulf of California. ASDM Series in Natural History, University of Arizona Press, Tucson, 96-118.
Hastings PA, Springer VG (2009) Recognizing diversity in blennioid nomenclature. Zootaxa 2120: 3-14.
IUCN (2015) The IUCN Red List of Threatened Species. Version 2015-3. http://www.iucnredlist.org [accessed 9 September 2015]
Jordan DS, Starks EC, Culver GB, Williams TM (1895) The fishes of Sinaloa. Proceedings of the California Academy of Sciences 5: 377-514.
Jordan DS, McGregor RC (1899) A list of fishes collected at the Revillagigedo Archipelago and neighboring islands. Report of the U.S. Fish Commission for 1898 (1899) 24: 271-284.
Juárez-Hernández LG, Tapia-García M, Luna-Monsivais B (2013) Structure of fish communities in Maguey and Cacaluta bays, Huatulco, Oaxaca. Revista Mexicana de Biodiversidad 84: 1243-1257. doi: \(10.7550 / \mathrm{rmb} .28910\)
López-Pérez RA, Pérez-Maldonado IL, López-Ortiz AM, Barranco-Servin M, Barrientos-Villalobos J, Leyte-Morales GE (2010) Reef fishes of the Mazunte-Bahías de Huatulco reef track, Oaxaca, Mexican Pacific. Zootaxa 2422: 53-62.
Mascareñas-Osorio I, Erisman B, Moxley J, Balart EF, Aburto-Oropeza O (2011) Checklist of conspicuous reef fishes of the Bahía de los Ángeles región, Baja California Norte, México, with comments on abundance and ecological biogeography. Zootaxa 2922: 60-68.
Miranda A, Ambriz G, Valencia D, Sánchez M, Szekely A (2011) Programa de Manejo del santuario de las Islas de la Bahía de Chamela: Islas La Pajarera, Cocinas, Mamut, Colorada, San Pedro, San Agustín, San Andrés y Negrita, e islotes Los Anegados, Novillas, Mosca y Submarino, Jalisco, México. Comisión Nacional de Áreas Naturales Protegidas, Mexico, 149 pp.

Møller PR, Schwarzhans W, Nielsen JG (2005) Review of the American Dinematichthyini (Teleostei: Bythitidae). Part II. Ogilbia. Aqua 10(4): 133-207.
Pfeiler E (2008) Resurrection of the name Albula pacifica (Beebe, 1942) for the shafted bonefish (Albuliformes: Albulidae) from the eastern Pacific. Revista de Biología Tropical 56(2): 839-844.
Ramírez-Gutiérrez M, Tapia-García M, Ramos-Santiago E (2007) Fish community structure in San Agustín Bay, Huatulco, Mexico. Revista Chilena de Historia Natural 80(4): 419-430. doi: 10.4067/S0716-078X2007000400003
Rife A, Aburto-Oropeza O, Hastings PA, Erisman B, Ballantyne F, Wielgus J, Sala E, Gerber L (2013) Long-term effectiveness of a multi-use marine protected area on reef fish assemblages and fisheries landings. Journal of Environmental Management 117: 276-283. doi: 10.1016/j.jenvman.2012.12.029

Reyes-Bonilla H, Ayala-Bocos A, González-Romero S, Sánchez-Alcántara I, Walther-Mendoza M, Bedolla-Guzmán YR, Ramírez-Valdez A, Calderón-Aguilera LE, Olivares-Bañuelos NC (2010) Checklist and biogeography of fishes from Guadalupe Island, Western Mexico. CalCOFI Reports 51: 1-15.
Robertson DR, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. Version 2.0. Smithsonian Tropical Research Institute, Balboa, Panamá. http://www.stri.org/sftep [accessed 30 April 2015]
Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Marine Ecology Progress Series 380: 1-17. doi: 10.3354/meps07925
Rocha LA, Lindeman KC, Rocha CR, Lessios HA (2008) Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Molecular Phylogenetics and Evolution 48: 918-928. doi: 10.1016/j.ympev.2008.05.024
Rodríguez-Romero J, Muhlia-Melo AF, Galván-Magaña F, Gutiérrez-Sánchez FJ, Gracia-López V (2005) Fish assemblages around Espíritu Santo Island and Espíritu Santo Seamount in the Lower Gulf of California, México. Bulletin of Marine Science 64: 383-390.
Schaaf P (2002) Geología y geofísica de la costa de Jalisco. In: Noguera FA, Vega-Rivera JH, García-Aldrete AN, Quesada-Avendaño M (Eds) Historia Natural de Chamela. Instituto de Biología, UNAM, Mexico, 11-16.
Solís-Gil C, Jiménez-Quiroz MC (2004) Estructura de la comunidad de peces de arrecife de Bahía de Banderas, México (1996). In: Jiménez-Quiroz MC, Espino-Barr E (Eds) Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. SAGARPA, Instituto Nacional de la Pesca, Mexico, 166-173.
Thomson DA, Findley LT, Kerstitch AN (2000) Reef fishes of the Sea of Cortez. The University of Texas Press, Austin, 353 pp.
van der Heiden A, Findley LT (1988) Lista de los peces marinos del sur de Sinaloa, México. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México 15(2): 209-222.
Viesca-Lobatón C, Balart EF, González-Cabello A, Mascareńas-Osorio I, Aburto-Oropeza O, Reyes-Bonilla H, Torreblanca E (2008) Los peces de arrecife de Bahía de Los Ángeles, Golfo de California. In: Danemann GD, Ezcurra E (Eds) Bahía de Los Ángeles: recursos naturales y comunidad. Línea base 2007. SEMARNAT, Instituto Nacional de Ecología, Pronatura Noroeste AC, San Diego Natural History Museum, Mexico, 385-427.```

[^0]: Copyright Stefano Martellos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

