Phyllodiaptomus (Phyllodiaptomus) roietensis, a new diaptomid copepod (Copepoda, Calanoida) from temporary waters in Thailand and Cambodia, with a key to the species

La-orsri Sanoamuang ${ }^{1,2}$, Santi Watiroyram ${ }^{3}$
I Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 2 International College, Khon Kaen University, Khon Kaen 40002, Thailand $\mathbf{3}$ Division of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
Corresponding author: Santi Watiroyram (santi.watiroyram@npu.ac.th)

Academic editor: K. H. George \| Received 24 July 2019 | Accepted 17 January 2020 | Published 12 February 2020
http://zoobank.org/0E3064E4-6D1E-444C-AF81-8BDA7DC4306B
Citation: Sanoamuang L, Watiroyram S (2020) Phyllodiaptomus (Phyllodiaptomus) roietensis, a new diaptomid copepod (Copepoda, Calanoida) from temporary waters in Thailand and Cambodia, with a key to the species. ZooKeys 911: 1-20. https://doi.org/10.3897/zookeys. 911.38496

Abstract

Phyllodiaptomus (Phyllodiaptomus) roietensis sp. nov. was collected from temporary water bodies in Roi Et and Nakhon Ratchasima provinces in northeastern Thailand and Kampong Thom Province in central Cambodia. The new species is closely related to Phyllodiaptomus (P.) surinensis Sanoamuang \& Yindee, 2001 in that it shares common morphological characters in the males: urosomites 2-3, P5 intercoxal sclerite, right P5 Exp-2, and left P5 Exp. Minor differences on the right antennule, right caudal ramus, P5 basis and Enp exist. The females differ in their Pdg 5, genital double-somite, and P5. An updated key to the species of the genus Phyllodiaptomus Kiefer, 1936 is provided.

Keywords

Diaptomidae, freshwater, rare species, Southeast Asia, taxonomy, temporary water bodies

[^0]
Introduction

The genus Phyllodiaptomus Kiefer, 1936, is among the most common freshwater copepods in Southeast Asia (Sanoamuang 1999). To date, eleven valid species have been recorded in Asia (Walter and Boxshall 2018): Phyllodiaptomus (Phyllodiaptomus) blanci (Guerne \& Richard, 1896) from Uzbekistan; P. (Ctenodiaptomus) annae (Apstein, 1907) from Sri Lanka; P. (P.) tunguidus Shen \& Tai, 1964 from China; P. (P.) longipes Kiefer, 1965 from Indonesia; P. (C.) sasikumari Ranga Reddy \& Venkateswarlu, 1989 and P. (C.) wellekensae Dumont \& Ranga Reddy, 1993 from India; P. (C.) praedictus Dumont \& Ranga Reddy, 1994, P. (P.) christineae Dumont, Ranga Reddy \& Sanoamuang, 1996, P. (P.) surinensis Sanoamuang \& Yindee, 2001, and P. (P.) thailandicus Sanoamuang \& Teeramaethee, 2006 from Thailand; and P. (P.) irakiensis Khalaf, 2008 from Iraq. In addition, Alekseev et al. (2013) reported P. (C.) praedictus sulawesensis as a subspecies of P. (C) praedictus from Indonesia; this subspecies was later found in the Philippines (Guinto et al. 2018).

During seasonal sampling collections of freshwater copepods from several localities in Thailand and Cambodia, we encountered another hitherto unknown species of Phyllodiaptomus. In this paper, we describe Phyllodiaptomus (P.) roietensis sp. nov. from two localities in Roi Et and Nakhon Ratchasima provinces, northeast Thailand, and two localities in Kampong Thom Province in central Cambodia (Fig. 1).

Materials and methods

Samples were collected using a plankton net with a mesh size of $60 \mu \mathrm{~m}$ and preserved immediately in 70% ethanol. Adult copepods were selected under an Olympus SZ51 stereomicroscope at 40-x magnification and placed in a mixture of glycerol and 70% ethanol (ratio $\sim 1: 10 \mathrm{v} / \mathrm{v}$). After 10 min the animals were transferred to pure glycerol. The animals were dissected and prepared in a glycerin-mounted slide under a stereomicroscope at 40-100-x magnifications. The dissected specimens were mounted in pure glycerin on a glass slide and sealed under a cover glass with transparent nail varnish. All un-dissected specimens were stored in 70% ethanol in 1.5 mL microtubes.

All appendages and body ornamentation were examined at 1000-x magnification under an Olympus CX31 compound microscope. The drawings were made using an Olympus U-DA drawing tube mounted on a compound microscope. The final versions of the drawings were made using the CORELDRAW 12.0 graphic program.

Specimens for scanning electron microscopy (SEM) were dehydrated in an ethanol series $(50 \%, 70 \%, 80 \%, 90 \%, 95 \%, 100 \%$, and 100%) for 15 min at each concentration. Specimens were dried in a critical-point dryer and were mounted on stubs using adhesive tape under a stereomicroscope. Dried specimens were coated with gold in a sputter-coater. The SEM photographs were taken using a scanning electron microscope (FEI Helios NanoLab G3 CX).

Figure I. Distribution of Phyllodiaptomus (P.) roietensis sp. nov. and $P .(P)$ surinensis. Key: black square = city, black circle $=P .(P$.$) roietensis sp. nov., black triangular =P .(P)$) surinensis, blue arrows indicate water flow direction.

Specimens were deposited at the Natural History Museum, London, United Kingdom (NHMUK) and at the Applied Taxonomic Research Center, Khon Kaen University (Thailand) (KKU).

Abbreviations used in this paper are as follows:

ae	aesthetasc;	Pdg	pediger;
Enp	endopod;	Pdg 1-5	pedigers 1-5;
Exp	exopod;	P1-P5	legs 1-5;
Exp/Enp-n	exopodal segment	sp	spine.
	n/endopodal segment n;		

The descriptive terminology follows Huys and Boxshall (1991).

Taxonomic section

Order Calanoida Sars, 1903
Family Diaptomidae Baird, 1850
Sub-family Diaptominae Kiefer, 1932
Genus Phyllodiaptomus Kiefer, 1936
Subgenus Phyllodiaptomus Dumont, Ranga Reddy \& Sanoamuang, 1996

Phyllodiaptomus (P.) roietensis sp. nov.
 http://zoobank.org/59131C6D-A0DE-4BE0-9383-20C0DA8A709D

Figs 2-8
Type locality. A pool in the rice field at Ban Nakae, Khilek Subdistrict, Pathum Rat District, Roi Et Province, northeastern Thailand; pH of water 8.6, water conductivity $126 \mu \mathrm{Sm}^{-1}$.

Type material. Holotype: one adult male completely dissected (NHMUK 2019.7, one slide), Ban Nakae ($\left.15^{\circ} 37^{\prime} 37^{\prime \prime N}, 103^{\circ} 28^{\prime} 06^{\prime \prime} E\right)$, Khilek Subdistrict, Pathum Rat District, Roi Et Province, northeastern Thailand; collected on 12 June 1999 by L. Sanoamuang. Allotype: one adult female completely dissected (NHMUK 2019.8, one slide); same data as for holotype. Paratypes: two adult females and three adult males undissected preserved in 70\% ethanol (NHMUK 2019.9-13), one adult female completely dissected (KKU-COP-2019-S-01); one adult female with eggs and three adult males undissected preserved in 70\% ethanol (KKU-COP-2019-T-01); same data as for holotype.

Other localities. (1) a temporary pond, Ban Non Lakki ($15^{\circ} 10^{\prime} 55^{\prime \prime} \mathrm{N}, 102^{\circ} 23^{\prime} 46^{\prime \prime} \mathrm{E}$), Than Lalot Subdistrict, Phimai District, Nakhon Ratchasima Province, northeastern Thailand; collected on 17 October 2017 by N. Plangklang; (2) a roadside canal, Tropeang Chouk village (no geographical co-ordinates), Baray District, Kampong Thom Province, central Cambodia; collected on 14 June 2007 by R. Chaicharoen; (3) a temporary pond, Kropeu village (no geographical co-ordinates), Steung Sen District, Kampong Thom Province, central Cambodia; collected on 14 June 2007 by R. Chaicharoen.

Description of adult female. Total body length measured from anterior margin of rostrum to posterior margin of caudal rami, $0.9-1.3 \mathrm{~mm}$. Rostrum (Fig. 3G) with bifid process in distal margin, pointed backward; each with short spine at tip. Prosome length: urosome plus caudal rami ratio about 2.6:1, ratio of width to length of prosome $=1: 2.4$, urosomites $1-3=1.3: 3.0: 1.1$, caudal ramus $=1: 1.5$. Prosome (Figs $2 \mathrm{~A}, 3 \mathrm{~A}$) ovoid, cephalosome with transversal groove in anterior part of somite length; Pdg 4 and 5 fused, partly separated laterally, with few tiny hair-like spinules scattered laterally (Fig. 3B, C). Pdg 5 (Figs 2C, E, 3C-F) with asymmetrical postero-lateral wings; right one rounded; left one longer and triangular; each wing with dorsal and posterior spines (former spine slightly larger than later one). Urosome (Figs 2A, 3A) with asymmetrical genital double-somite. Genital double-somite (Figs 2C-E, 3C-F) longer than urosomite 2, anal somite and caudal ramus combined. Left side with obvi-

Figure 2. Phyllodiaptomus (P.) roietensis sp. nov., female: \mathbf{A} habitus, dorsal view \mathbf{B} cephalosome with rostrum, lateral view \mathbf{C} lateral wings on Pdg 5 and urosome (without caudal rami), dorsal view \mathbf{D} urosome, ventral view E Pdg 5 with P5 and genital double-somite, lateral view from left side.
ously laterally dilated proximal part of genital-double segment; dilatation dorsally with large and blunt spine distally, tip of spine oriented medially. Right side with slightly dilated proximal part of genital double-somite; elongated into triangular outgrowth

Figure 3. Phyllodiaptomus (P.) roietensis sp. nov., female: A habitus, dorsal view B Pdg 4, lateral view $\mathbf{C} \operatorname{Pdg} 5$ and genital double-somite, dorsal view $\mathbf{D} \operatorname{Pdg} 5$ and genital double-somite spines, lateral view from left side E Pdg 5 and genital double-somite spines, lateral view from right side \mathbf{F} Pdg 5 and genital double-somite, lateral view \mathbf{G} rostral spines.
with blunt spine at tip; spine orientated ventro-laterally. A pair of gonopores located beneath genital operculum, at about one-half length of genital double-segment. Adult female bears one egg sac with 20-25 eggs (Fig. 2A). Urosomite 2 symmetrical, very
short. Anal somite (Figs 2C, D, 3A) as long as wide; anal operculum small, free margin convex. Caudal rami (Fig. 2A, D) symmetrical, with row of setules along inner and outer margins. Ramus with six setae (seta II-VII), subequal in length, all plumose but dorsal (VII); dorsal seta articulated, longest.

Antennule (Fig. 4A) symmetrical, 25-segmented, reaching beyond the end of caudal setae. Setal formula (Roman numerals in parentheses refer to segment number): $1+\mathrm{ae}$ (I), $3+\mathrm{ae}$ (II), $1+\mathrm{ae}$ (III), 1(IV), $1+\mathrm{ae}$ (V), 1 (VI), $1+\mathrm{ae}$ (VII), $1+\mathrm{sp}$ (VIII), 2+ae (IX), 1 (X), 1 (XI), 1+ae+sp (XII), 1 (XIII), 1+ae (XIV), 1 (XV), 1+ae (XVI), 1 (XVII), 1 (XVIII), 1 +ae (XIX), 1 (XX), 1 (XXI), 2 (XXII), 2 (XXIII), 2 (XXIV), 4+ae (XXV).

Antenna (Fig. 4B) biramous. Coxa and basis with one and two inner setae on distal corner, respectively. Exp-1-7 with 1, 3, 1, 1, 1, 1, and 1 inner seta, respectively; Exp7 with three additional apical setae. Enp-1 with two inner median setae. Enp-2 with eight inner and seven apical setae.

Mandible (Fig. 4C) with six strongly chitinized teeth and one dorsal seta on gnathobase. Basis with four inner setae. Enp-1 with four inner distal setae; Enp-2 with nine apical setae plus tiny spinules along posterior surface. Exp-1-4 with 1, 1, 1, 3 setae, respectively.

Maxillule (Fig. 4D) with 13 setae on praecoxal arthrite. Coxal endite and coxal epipodite with four and nine setae, respectively. Proximal and distal endites each with four setae; basal exite with a single seta. Enp with seven apical setae. Exp with six setae.

Maxilla (Fig. 4E) with two praecoxal and two coxal endites; each with three apical setae. Allobasis with three setae. Enp-1 and 2 with three setae each.

Maxilliped (Fig. 4F) with four endites on syncoxa, with 1, 2, 3, 4 apical setae respectively. Basis with three setae along median margin. Enp-1-6 with 2, 3, 2, 2, 2, 4 setae, respectively.

P1-P4 (Fig. 5A-D) with round and bare intercoxal sclerite. Coxa with inner seta. P1 basis with reduced outer seta. Exp longer than Enp, Exp and Enp three-segmented except P1 Enp bi-segmented. Armature formula of P1-P4 as follows (Arabic and Roman numerals indicate number of setae and spines, respectively; outer-inner or outer-apical-inner indicate seta/spine):

	Coxa	Basis	Exp					Enp
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
P1	$0-1$	$0-0$	$\mathrm{I}-1$	$0-1$	$\mathrm{I}-3-2$	$0-1$	$1-2-3$	-
P2	$0-1$	$0-0$	$\mathrm{I}-1$	$\mathrm{I}-1$	$\mathrm{I}-3-3$	$0-1$	$0-2$	$2-2-3$
P3	$0-1$	$0-0$	$\mathrm{I}-1$	$\mathrm{I}-1$	$\mathrm{I}-3-3$	$0-1$	$0-2$	$2-2-3$
P4	$0-1$	$1-0$	$\mathrm{I}-1$	$\mathrm{I}-1$	$\mathrm{I}-3-3$	$0-1$	$0-2$	$2-2-3$

P5 (Fig. 5E) asymmetrical. Coxa with blunt, stout spine on distal outer margin. Basis with thin, bare seta on distal outer margin, reaching beyond 3/4 of Exp-1. Exp-1 sub-rectangular, more than twice as long as wide, longer than Enp. Exp-2 triangular, right side stout and shorter than left one; with row of strong spinules along margins and proximolateral spine at basal Exp-3; with two longitudinal grooves on anterior

Figure 4. Phyllodiaptomus (P.) roietensis sp. nov., female: \mathbf{A} antennule \mathbf{B} antenna \mathbf{C} mandible \mathbf{D} maxillule \mathbf{E} maxilla \mathbf{F} maxilliped.
view (Fig. 5F, G). Exp-3 represented by small distal prominence produced into short distolateral spine and longer medial spine. Enp subconical, Enp-1 slightly rectangular. Enp-2 tipped with circular row of spinules.

Description of adult male. Body length (Figs 6, 7A) without caudal setae, 0.81.1 mm (mean $=1.0 \mathrm{~mm}, \mathrm{n}=5$), smaller than female. Prosome length: urosome plus caudal rami ratio about 2.1:1, ratio of width to length of prosome $=1: 2.1$, urosomites $1-5=2.3: 1.0: 1.0: 1.3: 1.0$, caudal ramus $=1: 1.9$. Prosome similar to that of female except lateral wings on Pdg 5. Lateral wings (Figs 6A, 7B-D) asymmetrical, round on right and more triangular on left side; posterior spine on right wing larger compared to left side. Urosome (Figs 6A, B, 7A) 5-segmented, asymmetrical, curved downward to right side.

Figure 5. Phyllodiaptomus (P.) roietensis sp. nov., female: A P1 B P2 C P3 D P4 E P5 F, G right and left P5 Exp-2 (black arrows indicate longtitudinal ridges) $\mathbf{A}-\mathbf{E}$ posterior view \mathbf{F}, \mathbf{G} anterior view.

Genital somite (Figs 6, 7B) dilated postero-laterally on right side, with spine at distal outer corner; longer than that on Pdg 5 wings. Genital aperture located on mid-ventral region. Urosomites 2-3 (Figs 6B, 7D) without ornamentation. Urosomite 4 (Fig. 6A, B) with

Figure 6. Phyllodiaptomus (P.) roietensis sp. nov., male: A habitus, dorsal view B urosome, ventral view \mathbf{C} right antennule, with grey objects indicating antennular spines \mathbf{D} P5, with grey and dotted objects indicating hyaline lamella and chitinous prominences respectively, posterior view.
irregularly dilated posterior margin. Anal somite (Fig. 6A, B) asymmetrical and twisted to right side. Caudal rami (Figs 6A, B, 7E, F) asymmetrical, right ramus with two triangular prominences: one proximolateral and one distoventral; setation similar to female.

Antennule (Figs 6C, 7G, H) asymmetrical, with geniculated right side. Right antennule 22-segmented, with setal formula as $1+\mathrm{ae}$ (I), 3+ae (II), 1+ae (III), 1 (IV), $1+\mathrm{ae}(\mathrm{V}), 1$ (VI), 1+ae (VII), 1+sp (VIII), 2+ae (IX), 1+sp (X), 1+sp (XI), 1+ae+sp (XII), $1+\mathrm{ae}+s p$ (XIII), $2+\mathrm{ae}+\mathrm{sp}$ (XIV), $2+\mathrm{ae}+\mathrm{sp}$ (XV), $2+\mathrm{ae}+s p$ (XVI), $1+s p$ (XVII), $1+s p$ (XVIII), $2+\mathrm{ae}+\mathrm{sp}$ (XIX), $3+\mathrm{sp}$ (XX), 2 (XXI), 4+ae (XXII); geniculated between
segments 18 and 19; segment 20 (antepenultimate) with serrated process distally (3-4 teeth), and with longitudinal hyaline membrane along outer margin.

Left antennule, antenna, mouthparts, and P1-P4 as in female.
P5 (Figs 6D, 8A, G) intercoxal sclerite with rounded lobe on free margin. Right P5: coxa with acute, stout spine on posterior lobe. Basis (Fig. 8B, G) with large proximomedial triangular lamella at one-fourth length of inner margin; with large three-lobed chitinous medial prominence on posterior surface; distal outer margin with long, thin seta, slightly extending beyond Exp-1. Enp (Fig. 8B, H, G) with bi-lobed distal margin, tipped with spinules and hyaline lamella on inner and outer lobes, respectively; reaching downward to approximately one-third of Exp-2. Exp-1 (Fig. 8A, B, H) with semi-circular knob on distomedial margin; distolateral margin with small acute process. Exp-2 (Fig. 8C, H) elliptic, with three accessory lateral spines, one proximal, middle, and distal on lateral margin. Principal lateral spine articulated, located at two-third length of Exp-2, flat, thick, digitiform, with sharp tip; long, with approximately half of segment bearing it; slightly twisted in posterolateral direction. End claw (Figs 6D, 8A) medially sickle-shaped, slender towards tip, more than 1.5 times as long as Exp-2; medial margin serrated with row of tiny spinules.

Left P5 (Figs 6D, 8D): coxa with moderate strong seta inserted on posterior lobe at distal inner corner, slightly shorter than distal margin of basis. Basis with flap of longitudinal hyaline lamella at medial margin; with long, thin seta at posterolateral margin, extending to approximately half of Exp-1. Exp-1 (Fig. 8F) tapering towards posterior margin, medial margin concave, with field of setules and tiny spinules. Exp-2 smaller than Exp-1, conical; with large seta at mid-length of medial margin, as long as Exp-2 and apical process combined; with few setules proximally and widespread with spinules distally along inner margin, thickness of spinules increased from proximal to distal; apical process stout, bare, and blunt-tip. Enp (Fig. 8F, J) bi-segmented, longer than Exp-1, Enp-2 tipped with row of spinules distally.

Differential diagnosis. Phyllodiaptomus (P.) roietensis sp. nov. with the male P5 Exp-2 displays an affinity to the subgenus Phyllodiaptomus sensu Dumont et al. (1996): the lateral side of the right Exp-2, medially concave in posterior view, principal lateral spine inserted on distal to mid-outer margin and three accessary spines arranged from proximal, middle, and distal, respectively; the left Exp-2 with patch of strong spinules along medial margin.

The male of the new species has serrated outgrowth on the antepenultimate segment of the right antennule. The right caudal ramus with small chitinous spine near distal margin on ventral side and triangular prominence along proximal one-third length of outer margin. The P5 intercoxal sclerite produced, with convex distal margin. The right P5 with (1) short, strong spine on posterior lobe of coxa, (2) triangular hyaline lamella on proximal inner margin and large chitinous outgrowth on posterior surface of basis, (3) acute distal outer corner of Exp-1 (4) Exp-2 oval and concave, with strong, flat, curved principal spine and three accessary spines, and (5) bi-lobed Enp. The left P5 with long and narrow hyaline lamella along inner margin, Exp-2 with patch of strong spinules along medial margin, and bi-segmented Enp.

Figure 7. Phyllodiaptomus (P.) roietensis sp. nov., male: A habitus, dorsal view B Pdg 5 and genital somite, dorsal view C Pdg 5 lateral wing, left view D Pdg 5, genital somite and urosomites 2 and 3, ventrolateral view \mathbf{E}, \mathbf{F} right caudal ramus in dorsal (\mathbf{E}) and ventral (\mathbf{F}) views \mathbf{G}, \mathbf{H} right antennule (white arrows indicate spines on segments $8,10-18,20$.

Figure 8. Phyllodiaptomus (P.) roietensis sp. nov., SEM photographs, male: A P5 in posterior view \mathbf{B} right P5 basis, Exp-1 and Enp, posterior view \mathbf{C} right P5 Exp-2 in posterior view (white arrows indicate accessory spines) \mathbf{D} left lobe of P5, posterior view E left P5 Exp-2 and Enp, posterior view \mathbf{F} left P5 Enp, posterior view G P5, anterior view H right P5 Exp-1-2 and Enp, anterior view I left P5 basis, Exp and Enp, anterior view J left P5 Enp (white arrow indicates Enp segmented point), anterior view.

Female with asymmetrical Pdg 5 wings, left wing more elongated in posterio-lateral direction; posterior and dorsal spines short and strong. Genital double-somite with posterolateral directed process on right side. One pair of genital spines on lateral side slightly symmetrical and strong. P5 Exp-2 with conveyor canal on anterior surface. P5 with bi-segmented Enp.

Etymology. The specific name roietensis is taken after the type locality, Roi Et Province. The name with the Latin suffix "-ensis" is the adjective for a location.

Distribution. Known only from four temporary water bodies from Roi Et and Nakhon Ratchasima provinces, Thailand and Kampong Thom Province, Cambodia (Fig. 1). Presence of specimens was recorded in early monsoon period. The new species is rare, as it was found in 0.4% of all the localities sampled in Cambodia. The new species was found together with six diaptomids including Dentodiaptomus javanus (Grochmalicki, 1915), Eodiaptomus sanoamuangae Ranga Reddy \& Dumont, 1998, Mongolodiaptomus calcarus (Shen \& Tai, 1965), M. malaindosinensis (Lai \& Fernando, 1978), Neodiaptomus laii Kiefer, 1974, and Phyllodiaptomus (Phyllodiaptomus) christineae Dumont, Ranga Reddy \& Sanoamuang, 1996.

Discussion

To date, the genus Phyllodiaptomus has been recorded in Asia, including south China, Turkey, Israel, Uzbekistan, Iran, Iraq, India, Sri Lanka, Nepal, Indonesia, Thailand, Laos, Philippines and Cambodia (Dumont and Ranga Reddy 1993; Ranga Reddy 1994; Dumont et al. 1996; Ranga Reddy et al. 1998; Sanoamuang 1999; Sanoamuang and Yindee 2001; Sanoamuang and Teeramaethee 2006; Khalaf 2008; Alekseev et al. 2013, 2016; Marrone et al. 2014; Bekleyen et al. 2017; Guinto et al. 2018; Sanoamuang and Watiroyram 2018). Most species are considered endemic to specific countries. Three species (P. (C.) annae, P. (C.) wellekensae, and P. (C.) sasikumari) are endemic to India; two species (P. (P.) thailandicus and P. (P.) surinensis) are endemic to Thailand; P (P.) tunguidus, P. (P.) irakiensis, and P. (P.) longipes are endemic to China, Iraq, and Indonesia, respectively. Only P. (P.) blanci is widely distributed, extending across many countries. Five species have been recorded in Thailand, namely P. (C.) praedictus, P (P.) christineae, P. (P.) thailandicus, P (P.) surinensis, and P. (P.) roietensis sp. nov. (Sanoamuang 2002; this study). Among the Thai sister species, P. (P.) surinensis and P. (P.) roietensis sp. nov. are rare. In 3,000 samples collected within Thailand, each has been recorded in only two localities in the northeast. This is in contrast to another endemic Thai species, P. (P.) thailandicus, which is widely distributed in both temporary and permanent water bodies in the east and south of Thailand (Sanoamuang 2002).

The right antennule is mainly used as a clasping organ in all males of the family Diaptomidae, and it normally bears spines or spinous processes on segments $8,10-16$, and 20 (Kulkarni et al. 2018). However, P. (P.) roietensis sp. nov., Mongolodiaptomus loeiensis Watiroyram \& Sanoamuang, 2017, and Mongolodiaptomus mekongensis Sanoamuang \& Watiroyram, 2018 differ from P. (P.) surinensis and other diaptomids
by having additional spines on segments 17-19 (see Figs 5C, 6H; Watiroyram and Sanoamuang 2017: fig. 4F; Sanoamuang and Watiroyram 2018: fig. 6D). The males of these species may manage to mate more easily with females using the unique ornamentation of antennule and caudal ramus. In females, Pdg 5 wings and genital double-somites are probably important for species recognition and mating behavior of their males (Ohtsuka and Huys 2001; Ali et al. 2014). Although the male morphological features of the two parapatric Phyllodiaptomus are different, they are able to differentiate their conspecific females during mating, as the females of the new species can be distinguished from its congeners by the presence of posterolateral process on both sides of genital double-somite, which are absent in other congeners except P. (P.) thailandicus. However, the characteristic that differentiates the new diaptomid from P. $(P$.$) thailandicus is the presence of a single process on each side of the genital double-$ somite; P. (P.) thailandicus has two processes only on the right side (Figs 2C-E, 3C-F; Sanoamuang and Teeramathee 2006: figs 1, 24). In contrast to their males, the new species and P. (P.) surinensis have unique females which can be easily differentiated. The female P5 Exp-2 of the new species is obviously asymmetrical compared with that of P. (P.) surinensis which has a slightly asymmetrical P5 Exp-2. Dumont and Ranga Reddy (1993) observed that the conveyor canal on the P5 Exp-2 in females is species-specific and unique to the genus Phyllodiaptomus: the new species has two longitudinal ridges on the anterior surface versus multi-longitudinal ridges in P. (P.) surinensis (Fig. 5F, G; Sanoamuang and Yindee 2001: fig. 39). The clasping site on the genital double-somite of the new species is wider than those in P. (P.) surinensis. The new species has substantial left genital double-somite proximal bulging versus only slight asymmetry in P. (P.) surinensis. The genital double-somite of P. (P.) surinensis has a bi-lobed hyaline outgrowth ventrally, which is absent in the new species. The genital spines in the female of the new species are oriented to a posterolateral direction in dorsal view, whereas they are pointed to the lateral direction in P. (P.) surinensis. The new species has tiny spinules on Pdg 4-5 laterally; these are present dorsally in P. (P.) surinensis (Fig. 3B; Sanoamuang and Yindee 2001: fig. 2).

The male of P. (P.) roietensis sp. nov. has a number of morphological differences from other members of the blanci-species group as follows:
a) Antepenultimate segment with a serrated process versus smooth in P. (P.) longipes.
b) Urosomite(s) with a long hair or hair-like setae versus bare in P. (P.) thailandicus, P. (P.) christineae, and P. (P.) blanci.
c) Right caudal ramus with ventral prominences as in P. (P.) surinensis and P. (P.) tunguidus. However, a ventral prominence is also present on the left ramus of P. (P.) tunguidus (but is absent in the left ramus of the new species) and there are only two prominences in the new species but five in P. (P.) surinensis.
d) Intercoxal sclerite is modified distally into single lobe versus two lobes in P. (P.) irakiensis and P. (P.) thailandicus. The new species has a round or semi-circular distal margin versus triangular in P. (P.) blanci, P. (P.) christineae, P. (P.) longipes, and P. (P.) tunguidus.
e) Right P5 coxal spine is strong and acute versus rectangular in P. (P.) thailandicus and slender in P. (P.) christineae.
f) Right P5 basis with a three-lobed chitinous prominence on posterior surface versus bare in P. (P.) irakiensis and P. (P.) blanci. In addition, three species, P. (P.) longipes, P. (P.) christineae, and P. (P.) tunguidus, have a longitudinal ridge on the posterior surface, which is absent in the new species (the first one has two minute prominences on the ridge). The right P5 basis has a triangular hyaline lamella at inner margin versus elongated in P. (P.) christineae, P (P.) longipes, and P. (P.) tunguidus, and round in P. (P.) blanci. The left P5 basis has inner lamella versus bare in P (P.) irakiensis and P. (P.) longipes, digitiform in P. (P.) tunguidus, and small in P. (P.) blanci. The new species lacks any ornamentation on the anterior surface but P. (P.) surinensis has two minute lateral spines (see Sanoamuang and Yindee 2001: fig. 54).
g) Right P5 Exp-2 with three accessary lateral spines versus bare in P. (P.) tunguidus and P. (P.) blanci, and one in P. (P.) irakiensis, P. (P.) christineae, and P. (P.) longipes.
h) Right P5 Enp with a bi-lobed shape versus conical in the rest of the species except P (P.) surinensis.
i) Left P5 with bi-segmented Enp versus one-segmented in P. (P.) thailandicus, P. (P.) surinensis, P. (P.) blanci, P. (P.) christineae, and P. (P.) longipes.

With regard to the comparative morphology above, the male of the new species is most similar to those of P. (P.) surinensis. However, there are three major differences among the males, i.e. the right caudal ramus, left P5 basis, and left P5 Enp as described above. The fine detail on its inner hyaline lamella on the right P5 basis is also different: triangular in the new species versus oval bi-lobed in P (P.) surinensis.

Ranga Reddy (1994) provided the first key to species and included six species of Phyllodiaptomus (P. (P.) tunguidus, P. (P.) blanci, P. (P.) longipes, P. (C.) annae, P. (C.) wellekensae, and P. (C.) sasikumari); he also gave morphological descriptions of these six species. In this study, the key is updated as follows:

Keys to worldwide species of Phyllodiaptomus Kiefer, 1936

Males:

1 Left P5 Exp-2 with a serrate hyaline fan on inner margin
2 (subgenus Ctenodiaptomus)

- Left P5 Exp-2 with a field of spinules on inner margin

5 (subgenus Phyllodiaptomus)
2 Inner margin of P5 intercoxal sclerite with conical lobe, blunt tip
P. (C.) sasikumari

- Inner margin of P5 intercoxal sclerite with triangular lobe, acute tip........... 3

3 Right P5 Exp-1 without acute process on distal outer corner
P. (C.) wellekensae

- Right P5 Exp-1 with acute process on distal outer corner 4
4 Right P5 Exp-2 without hyaline lobe on distal outer corner
P. (C.) praedictus
- Right P5 Exp-2 with hyaline lobe on distal outer corner..........P. (C.) annae
5 Antepenultimate segment with smooth process......................P. (P.) longipes
- Antepenultimate segment with serrated process .. 6
6 Urosomite $2-3$ or only 2 with hair or hair-like setae 7
- Urosomite 2-3 without hair or hair-like setae.. 9
7 Inner margin of P5 intercoxal sclerite with two lobes..... P. (P.) thailandicus
- Inner margin of P5 intercoxal sclerite with triangular lobe........................... 8
8 Right P5 Exp-2 with slender principal spine P. (P.) christineae
- Right P5 Exp-2 with thick principal spine
$\boldsymbol{P}(\boldsymbol{P})$ blanci
9 Inner margin of P5 intercoxal sclerite with two lobes P. (P.) irakiensis
- Inner margin of P5 intercoxal sclerite with single lobe 10
10 Right P5 Exp-1 without acute process on distal outer corner
P. (P.) tunguidus
- Right P5 Exp-1 with acute process on distal outer corner 11
11 Right P5 basis with one-lobed hyaline lamella on inner margin
P. (P.) roietensis sp. nov.
Right P5 basis with two-lobed hyaline lamella on inner margin
P. (P.) surinensis

Females:

1 Genital double-somite with postero-laterally oriented outgrowth................. 2

- Genital double-somite without postero-laterally oriented outgrowth 3

2 Genital double-somite with two postero-laterally oriented outgrowths on right side
P. (P.) thailandicus

- Genital double-somite with single postero-laterally oriented outgrowth on right side
P. (P.) roietensis sp. nov.

P5 Enp one-segmented
P. (P.) longipes

P5 Enp two-segmented ... 4
4 Pdg 5 left wing bi-lobed... 5

- Pdg 5 left wing round or triangular. 6
- Pdg 5 right wing bi-lobed ... 8

7 Genital double-somite with ventral hyaline outgrowth........P. (P.) surinensis

- Genital double-somite without ventral hyaline outgrowth \boldsymbol{P}. (P.) christineae

8 Genital double-somite dilated at the proximal left side 9

- Genital double-somite non-dilated at the proximal left side 10

9 Genital double-somite dilated at the middle of right sideP. (C.) praedictus

- Genital double-somite non-dilated at the middle of right side
$10 \quad$ Genital double-somite dilated at the middle of right side..........P. (P.) blanci
11 P 5 basis with short lateral seta, not reaching over Exp-1P. (C.) annae
- P5 basis with long lateral seta, reaching over Exp-1..........P. (C.) sasikumari

Acknowledgements

This research was supported by a grant from the Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission, Thailand (Project BDC-PG2-161003). The authors would like to thank Ratchada Chaicharoen and Nattaporn Plangklang for assistance in the field.

References

Alekseev VR, Haffner DG, Vaillant JJ, Yusoff FM (2013) Cyclopoid and calanoid copepod biodiversity in Indonesia. Journal of Limnology 72: 245-274. https://doi.org/10.4081/ jlimnol.2013.s2.e12
Alekseev VR, Yusoff FM, Fefilova EB (2016) Continental copepod biodiversity in North-Eastern Borneo, Malaysia. Arthropoda Selecta 25: 187-197. https://doi.org/10.15298/arthsel.25.2.05 Ali AK, Primicerio R, Folstad I (2014) Female morphology and male mating success in the calanoid copepod, Eudiaptomus graciloides. Journal of Plankton Research 36(5): 1216-1223. https://doi.org/10.1093/plankt/fbu061
Apstein C (1907) Das plankton im colombo-see auf Ceylon. Zoologische Jahrbücher, Abteilung für Systematik 25: 201-244. https://doi.org/10.5962/bhl.part. 11957
Baird W (1850) The natural history of the British Entomostraca: I-VII. The Ray Society, London, 364 pp. https://doi.org/10.5962/bhl.title. 1807
Bekleyen A, Gokot B, Varol M (2017) First Record of the Genus Phyllodiaptomus Kiefer (Copepoda, Calanoida, Diaptomidae) from Turkey. Turkish Journal of Fisheries and Aquatics Sciences 17: 445-447. https://doi.org/10.4194/1303-2712-v17_2_24
Dumont HJ, Ranga Reddy Y (1993) A reappraisal of the genus Phyllodiaptomus Kiefer, 1936, with the description of P. wellekensae n . sp. from India, and a redescription of P. tunguidus Shen \& Tai, 1964 from China (Copepoda, Calanoida). Hydrobiologia 263: 65-93. https://doi.org/10.1007/BF00006205
Dumont HJ, Ranga Reddy Y (1994) Phyllodiaptomus praedictus n. sp. (Copepoda, Calanoida) from Thailand. Hydrobiologia 273: 101-110. https://doi.org/10.1007/BF00006852
Dumont HJ, Ranga Reddy Y, Sanoamuang L (1996) Description of Phyllodiaptomus christineaen. sp. from Thailand, and distinction of two subgenera within Phyllodiaptomus Kiefer, 1936 (Copepoda, Calanoida). Hydrobiologia, 323: 139-148. https://doi.org/10.1007/BF00017591
Grochmalicki J (1915) Beitrag zur Kenntnis der süsswassefauna Javas: Phyllopoda, Copepoda und Ostracoda. Bulletin International de l'Académie des Sciences de Cracovie, Classe des Sciences Mathématiques et Naturelles, Serie B: Sciences Naturelles 1915: 217-242.

Guerne J, Richard J (1896) Diaptomus blanci, Copépode nouveau recueilli par M. Edouard Blanc à Boukhara (Turkestan). Bulletin de la Société zoologique de France 21: 53-56.
Guinto SKP, Lacaba JVJB, Cuballes JKV, Igancio AA, Rizo EZC, Dumont HJ, Han BP, Papa RDS (2018) New record of Phyllodiaptomus (Ctenodiaptomus) praedictus sulawensis Alekseev \& Vaillant, 2013 (Hexanauplia, Copepoda, Calanoida, Diaptomidae) in the Philippines (Luzon Island). Philippine Journal of Systematic Biology 12(2): 13-23.
Huys R, Boxshall GA (1991) Copepod evolution. The Ray Society, London, 468 pp .
Karanovic T, Kim K, Lee W (2015) Concordance between molecular and morphology-based phylogenies of Korean Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) highlights important synapomorphies and homoplasies in this genus globally. Zootaxa 3990(4): 451-496. https://doi.org/10.11646/zootaxa.3990.4.1
Khalaf TA (2008) A new species of Phyllodiaptomus Kiefer (Copepoda, Calanoida) from the Shatt Al-Arab river, southern Iraq. Crustaceana 81(3): 257-269. https://doi. org/10.1163/156854008783564028
Kiefer F (1936) Indische ruderfusskrebse (Crustacea, Copepoda). III. Zoologischer Anzeiger 113(11/12): 321-325.
Kiefer F (1965) Beitrage zur Copepodenkunde: Eine neue Art der Gattung Phyllodiaptomus. Zoologischer Anzeiger 175: 460-465.
Kiefer F (1974) Eine neue Diaptomidenart aus Malaysia (Crustacea, Copepoda, Calanoida). Zoologischer Anzeiger 192(5/6): 420-424.
Kulkarni MR, Shaik S, Ranga Reddy Y, Pai K (2018) A new species of Megadiaptomus Kiefer, 1936 (Copepoda: Calanoida: Diaptomidae) from the Western Ghats of India, with notes on the biogeography and conservation status of the species of the genus. Journal of Crustacean Biology 38(1): 66-78. https://doi.org/10.1093/jcbiol/rux097
Lai HCL, Fernando CH (1978) The freshwater Calanoida (Crustacea, Copepoda) of Singapore and peninsular Malaysia. Hydrobiologia 61(2): 113-127. https://doi.org/10.1007/BF00018742
Lee CE (2000) Global phylogeography of a cyptic copepod species complex and reproductive isolation between genetically proximate "populations". Evolution 54(6): 2014-2027. https://doi.org/10.1111/j.0014-3820.2000.tb01245.x
Marrone F, Petrusek A, Alfonso G, Arculeo M (2014) The diaptomid fauna of Israel (Copepoda, Calanoida, Diaptomidae), with notes on the systematics of Arctodiaptomus similis (Baird, 1859) and Arctodiaptomus irregularis Dimentman \& Por, 1985 stat. rev. Zoological Studies 53(74): 1-12. https://doi.org/10.1186/s40555-014-0074-7
Ohtsuka S, Huys R (2001) Sexual dimorphism in calanoid copepods: morphology and function. Hydrobiologia 453/454: 441-466. https://doi.org/10.1023/A:1013162605809
Ranga Reddy Y (1994) Copepoda: Calanoida: Diaptomidae. Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. In: Dumont HJF (Ed.) Guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic Publishing, The Netherlands, 221 pp .
Ranga Reddy Y, Dumont HJ (1998) A review of the genus Eodiaptomus Kiefer, 1932, with the description of E. sanuamuangae n . sp. from Thailand, and a redescription of E. lumboltzi (Sars, 1889) from Australia (Copepoda, Calanoida). Hydrobiologia 361: 169-189. https:// doi.org/10.1023/A:1003145526468

Ranga Reddy Y, Sanoamuang L, Dumont HJ (1998) A note on the Diaptomidae of Thailand, including redescription of three species and description of a new species (Copepoda, Calanoida). Hydrobiologia 361: 201-223. https://doi.org/10.1023/A:1003135200559
Ranga Reddy Y, Venkateswarlu S (1989) A new species of Phyllodiaptomus Kiefer (Copepoda Calanoida) from south India. Hydrobiologia 184: 133-142. https://doi.org/10.1007/ BF00014308
Sanoamuang L (1999) Species composition and distribution of freshwater Calanoida and Cyclopoida (Copepoda) of north-east Thailand. In: Schram FR, Klein JVC (Eds) Crustaceans and Biodiversity Crisis. Brill Academic Publishers, Leiden, 217-230.
Sanoamuang L (2002) Freshwater Zooplankton: Calanoid Copepods in Thailand. Klangnanatham Publishers (Khon Kaen), Thailand, 159 pp.
Sanoamuang L, Teeramaethee J (2006) Phyllodiaptomus thailandicus, a new freshwater copepod (Copepoda, Calanoida, Diaptomidae) from Thailand. Crustaceana 79: 475-487. https:// doi.org/10.1163/156854006777554802
Sanoamuang L, Watiroyram S (2018) Mongolodiaptomus mekongensis, a new species of copepod (Copepoda, Calanoida, Diaptomidae) from temporary waters in the floodplain of the lower Mekong River Basin. Raffles Bulletin of Zoology 66: 782-796.
Sanoamuang L, Yindee W (2001) A new species of Phyllodiaptomus (Copepoda, Diaptomudae) from northeast Thailand. Crustaceana 75(5): 435-448. https://doi. org/10.1163/156854001750243027
Sars GO (1903) An account of the Crustacea of Norway, with short descriptions and figures of all the species: IV. Copepoda Calanoida. Bergen Museum, Bergen, 171 pp.
Shen CJ, Tai AY (1964) Description of eight new species of freshwater Copepoda (Calanoida) from the delta of the Pearl River, south China. Acta Zoologica Sinica 16: 232-246. [in Chinese; English summary]
Walter TC, Boxshall G (2018) World of Copepods database. Phyllodiaptomus Kiefer, 1936. http:// www.marinespecies.org/copepoda/aphia.php?p=taxdetails\&id=34778 [accessed 20 Feb 2019]
Watiroyram S, Sanoamuang L (2017) A new species of Mongolodiaptomus Kiefer, 1938 from northeast Thailand and a key to the species (Crustacea: Copepoda, Calanoida, Diaptomidae). ZooKeys 710: 15-32. https://doi.org/10.3897/zookeys.710.13941

New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico)

Dorottya Angyal ${ }^{1,2}$, Efraín M. Chávez-Solís ${ }^{1,3}$, Luis A. Liévano-Beltrán ${ }^{1,4}$, Benjamín Magaña', Nuno Simoes ${ }^{1,5,6}$, Maite Mascaró ${ }^{1,5}$
I Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo S/N, C.P. 97356, Sisal, Yucatan, Mexico 2 Department of Zoology, Hungarian Natural History Museum, Baross u. 13, 1088 Budapest, Hungary 3 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco-Universidad, Ciudad de México 04510, México 4 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco-Universidad, Ciudad de México 04510, México 5 Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales (LANRESC), CONACYT, Puerto de abrigo S/N, C.P. 97356, Sisal, Yucatan, Mexico 6 International Chair for Ocean and Coastal Studies, Harte Research Institute, Texas A $\preccurlyeq M$ at Corpus Christi, Texas, USA

Corresponding author: Maite Mascaró (mmm@ciencias.unam.mx)

[^1]http://zoobank.org|491BA314-A203-4D45-B9DF-CDA9398CA0AO
Citation: Angyal D, Chávez-Solís EM, Liévano-Beltrán LA, Magaña B, Simoes N, Mascaró M (2020) New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911: 21-49. https://doi. org/10.3897/zookeys. 911.47694

Abstract

New records of 14 stygobiont crustacean species pertaining to six Malacostraca orders from 32 cenotes are presented, with their associated caves of the state of Yucatan, Mexico, together with an individual account for each species. Species composition of most of the investigated cenotes is examined for the first time. A thermosbaenacean and two amphipod species were not formally recorded to the cenote ecosystems of the state of Yucatan prior to our research. Distribution data of a cirolanid isopod previously known only from its type locality is also provided. Barcodes of mitochondrial cytochrome c oxidase subunit I for the reported peracarid species previously lacking this information have been included in present study as tools for species identification and a baseline of further molecular genetic analyses.

Keywords

anchialine ecosystems, barcode sequences, biodiversity, endemic, Eucarida, Peracarida, stygobiont, Yucatan Peninsula

Introduction

'Cenotes' (the local name for water-filled sinkholes) are typical karst features of the Yucatan Peninsula in Mexico. In many cases, far-reaching networks of submerged subterranean cave passages extend from them (Mercado-Salas et al. 2013). Due to the mixing of fresh and saline water, a distinct stratification can be observed inside these anchialine systems (Bishop et al. 2015). Intrusion of saline water is found deeper as the distance from the coastline increases (Bauer-Gottwein et al. 2011). Therefore, most inland cenotes within the state of Yucatan are exclusively freshwater systems, except for a few rather deep ones with haloclines below 50 m in depth, and those located near the northern coastline of the Peninsula (Álvarez et al. 2005; Angyal et al. 2018).

Anchialine ecosystems in Yucatan contain a crustacean-dominated fauna that is adapted to hypogene conditions, such as the lack of sunlight and the low food resource availability (Mejía-Ortíz et al. 2013). Stygobiont species are restricted to aquatic subterranean habitats (Botosaneanu 1986), and often exhibit conspicuous morphological adaptations to hypogene life, known as troglomorphisms. Such adaptations include structural reductions (e.g., loss of visual organs and pigmentation) or extensions (e.g., lengthening of appendages and complexity of sense organs) (Mejía-Ortíz et al. 2006; González et al. 2018) and physiological modifications (e.g., reduced metabolic rates and starvation resistance) (Hervant et al. 1999, 2001; Bishop and Iliffe 2009). In 2016, prior to our systematic sampling, 47 stygobiotic crustacean species had been reported from anchialine ecosystems of the Mexican federal states of the Yucatan Peninsula, of which 22 were known from cenotes and submerged caves of the state of Yucatan (e.g., Holsinger 1977; Kallmeyer and Carpenter 1996; Álvarez et al. 2005; Suárez-Morales et al. 2006). Fourteen percent of these species belong to the subclass Copepoda (9 spp.), while the remainder belong to the orders Mysida (1 sp.), Stygiomysida (2 spp.), Amphipoda (1 sp.), Isopoda (5 spp.), and Decapoda (4 spp.).

According to the database of the Secretaría de Desarrollo Sustentable (SDS Yucatan), there are more than 3,000 registered cenotes and caves within this state. Current efforts are being directed to complete the descriptions of all registered cenotes, despite that only a small fraction of them have been biologically investigated to date. Ongoing research and explorations are necessary to describe the true biodiversity of these subterranean habitats, their geographical patterns, and changes in time. Thus, our aim was to improve our knowledge on the distribution and ecology of the stygobiotic crustacean fauna of the cenotes and their associated cave passages in the state of Yucatan. We aimed to provide data from cenotes that had never been investigated from a zoological point of view in order to extend the geographical range of crustacean species distribution and contribute to a precise biodiversity mapping of stygofauna in Yucatan. Additionally, we intended to collect samples for molecular and morphological studies so as to gain and make available to the public mitochondrial cytochrome c oxidase subunit I sequences (COI) of species that were lacking barcode information, setting the standard for studies and tools for species identification.

Materials and methods

Sampling sites and sampling

We collected stygobiotic macro-crustaceans from 32 cenotes between May 2016 and January 2018 in cenotes of the state of Yucatan (shorter form: Yucatan) (Figure 1, Table 1). Most of the cenotes studied are several kilometers away from the coast and contain only freshwater. In contrast, some cenotes near the coast have a halocline that divides the cave into freshwater and saline water habitats. Some of the cenotes studied belong to the 'Ring of Cenotes', a fracture zone with high density of sinkholes identified as the outer rim of the crater where the famous asteroid impacted Chicxulub 66 million years ago (González-Herrera et al. 2002; Bauer-Gottwein et al. 2011) (Figure 1). Macro-crustaceans were collected during scientific cave dives using 50 ml sample

Table I. Location data and identification codes of the studied cenotes.

Cenote nr. (see Figure 1 map)	Cenote name	CenoteAndo cenote code	Municipality	Settlement	Coordinates latitude	Coordinates longitude
1	Ayun-Nah	01980007Y_	Cacalchen	Cacalchen	2058'49.6"N	89¹4'39.4"W
2	Bebelchen	00028064YC	Uman	Sanahcat	$20^{\circ} 44^{\prime} 11.4{ }^{\prime \prime} \mathrm{N}$	89² 43 '55.4"W
3	Cervera	00090028YC	Dzilam de Bravo	Yalsihom	$21^{\circ} 22^{\prime} 29.5$ "N	$88^{\circ} 50$ '01.8"W
4	Chihuo Hol	00080001 YC	Abala	Mucuyche	$20^{\circ} 38^{\prime} 06.1^{\prime \prime} \mathrm{N}$	$89^{\circ} 36^{\prime} 42.3$ "W
5	Dzalbay	00585085YC	Temozon	Dzalbay	$20^{\circ} 49^{\prime} 53.4$ "N	$88^{\circ} 03^{\prime} 23.0^{\prime \prime} \mathrm{W}$
6	Dzonbakal	00125101YC	Uman	San Antonio Mulix	$20^{\circ} 40^{\prime} 11.4{ }^{\prime \prime} \mathrm{N}$	8946'43.9"W
7	Dzonotila	00168001YC	Abala	Mucuyche	$20^{\circ} 37^{\prime} 44.0$ " N	89³9'33.0"W
8	Flor de Liz	-	Tixkokob	Tixkokob	$21^{\circ} 00^{\prime} 16.0$ " N	$89^{\circ} 23^{\prime} 33.0$ "W
9	Ixim Ha	00164037YC	Tixkakal	Tixkakal	$20^{\circ} 37^{\prime} 49.0{ }^{\prime \prime} \mathrm{N}$	$89^{\circ} 06^{\prime} 40.0$ "W
10	Kakuel	00142001YC	Abala	Mucuyche	$20^{\circ} 37^{\prime} 40.3^{\prime \prime} \mathrm{N}$	$89^{\circ} 34^{\prime} 26.8{ }^{\prime \prime} \mathrm{W}$
11	Kampepen	00042076YC	Tecoh	Chinquila	$20^{\circ} 42^{\prime} 00.8{ }^{\prime \prime} \mathrm{N}$	$89^{\circ} 22^{\prime} 41.6 \mathrm{WW}$
12	Kankirixche	00002001YC	Abala	Mucuyche	$20^{\circ} 38^{\prime} 13.88^{\prime \prime} \mathrm{N}$	$89^{\circ} 37^{\prime} 58.8{ }^{\prime \prime} \mathrm{W}$
13	Kankal	-	Homun	Homun	$20^{\circ} 39^{\prime} 38.3$ "N	$89^{\circ} 16^{\prime} 42.5{ }^{\prime \prime} \mathrm{W}$
14	Kanun	01730036Y_	Homun	Homun	$20^{\circ} 44^{\prime} 44.2{ }^{\prime \prime} \mathrm{N}$	89 ${ }^{\circ} 14^{\prime} 40.7{ }^{\prime \prime} \mathrm{W}$
15	Nayah	00009076YC	Tecoh	Pixyah	$20^{\circ} 38^{\prime} 47.5^{\prime \prime} \mathrm{N}$	$89^{\circ} 24^{\prime} 16.9^{\prime \prime} \mathrm{W}$
16	Noh'Chunck	00229011 YC	Chunchumil	Celestun	$20^{\circ} 48^{\prime} 48.5{ }^{\prime \prime} \mathrm{N}$	$90^{\circ} 11^{\prime} 47.8^{\prime \prime} \mathrm{W}$
17	Nohmozon	00010076YC	Tecoh	Pixyah	$20^{\circ} 62^{\prime} 32.5$ " N	$89^{\circ} 38^{\prime} 42.0$ "W
18	Pixton	00064064 YC	Huhi	Huhi	$20^{\circ} 43^{\prime} 13.3$ "N	$89^{\circ} 10^{\prime} 08.5{ }^{\prime \prime} \mathrm{W}$
19	Pol Box	00321023YC	Chochola	Chochola	$20^{\circ} 41^{\prime} 24.3$ "N	$89^{\circ} 48^{\prime} 54.5$ "W
20	Sabtun 1	00230011 YC	Chunchumil	Celestun	$20^{\circ} 51^{\prime} 00.7^{\prime \prime} \mathrm{N}$	$90^{\circ} 14^{\prime} 08.1^{\prime \prime} \mathrm{N}$
21	San Elias	01171036Y_	Homun	Homun	$20^{\circ} 41^{\prime} 21.0^{\prime \prime} \mathrm{N}$	$89^{\circ} 14^{\prime} 19.0{ }^{\prime \prime} \mathrm{W}$
22	San Juan	00063036YC	Homun	Homun	$20^{\circ} 44^{\prime} 02.6 \mathrm{~N} \mathrm{~N}$	$89^{\circ} 17^{\prime} 18.6$ "W
23	Santito	00108045YC	Kopoma	Kopoma	20³8'58.1"N	$89^{\circ} 53^{\prime} 44.3$ "W
24	El Virgen	-	Sotuta	Sotuta	20³2'01.9"N	$89^{\circ} 02^{\prime} 19.4$ "W
25	Tres Oches	-	Homun	Homun	$20^{\circ} 43^{\prime} 55.7^{\prime \prime} \mathrm{N}$	$89^{\circ} 16^{\prime} 20.0^{\prime \prime} \mathrm{W}$
26	Tza Itza	00050076YC	Tecoh	Tecoh	$20^{\circ} 43^{\prime} 49.1$ "N	$89^{\circ} 27^{\prime} 57.9^{\prime \prime} \mathrm{W}$
27	Xaan	00423036YC	Homun	Homun	$20^{\circ} 433^{\prime} 39.3$ "N	$89^{\circ} 15^{\prime} 24.6$ "W
28	X'baba	00162023YC	Chochola	Chochola	$20^{\circ} 40^{\prime} 42.5{ }^{\prime \prime} \mathrm{N}$	$89^{\circ} 49^{\prime} 00.7{ }^{\prime \prime} \mathrm{W}$
29	X-Batun	00005023YC	Uman	San Antonio Mulix	$20^{\circ} 40^{\prime} 23.8$ " N	$89^{\circ} 46{ }^{\prime} 22.8$ "W
30	X'kokob	00650093YC	Ekmul	Ekmul	$20^{\circ} 56^{\prime} 51.0$ "N	$89^{\circ} 20^{\prime} 41.0{ }^{\prime \prime} \mathrm{W}$
31	Yaal Utsil	00003001YC	Abala	Mucuyche	$20^{\circ} 37^{\prime} 26.0^{\prime \prime} \mathrm{N}$	$89^{\circ} 36^{\prime} 24.0$ "W
32	Yax-Kis	00091001 YC	Abala	Mucuyche	20³7'33.7"N	$89^{\circ} 35^{\prime} 35.7$ "W

Figure I. Map of the state of Yucatan and location of the 32 investigated cenotes. Details of the numbered cenotes can be found in Table 1. The light area represents the Geohydrological Reserve in Yucatan, while the dark area depicts the urban extension of the city of Merida.
tubes and 10 cm diameter hand nets. Habitat data (e.g., depth, temperature, collected in cavern or cave, position relative to halocline) at the collection site of each individual was recorded along with photographs and video-recordings of the observed crustaceans and their habitats. All crustaceans were individually placed into 70 or 96% ethanol containing tubes immediately after collection. All specimens were collected under the permits of the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT/ SPGA/DGVS/05263/14; SEMARNAT/SPGA/DGVS/02068/17). The collected material was deposited in the Yucatán Collección de Crustáceos, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México in Sisal (UNAM UMDI-Sisal), the Collección Nacional de Crustáceos, Instituto de Biología, UNAM in Mexico City, or in the Collection of Crustaceans of the Hungarian Natural History Museum (HNHM), Budapest.

Morphological analysis

Individuals were examined using a stereo-microscope. Specimens of thermosbaenaceans, stygiomysids, mysids, and amphipods were studied as follows: cleared and stained exoskeletons were dissected under a Leica M125 stereo microscope. The dissections were then mounted on slides and examined using a Leica DM 1000 compound light microscope (Fišer et al. 2009; Angyal et al. 2015). For the identification of the collected material the following publications were used: Álvarez et al. 2005; Álvarez and Iliffe 2008; Angyal et al. 2018; Botosaneanu and Iliffe 1999, 2000, 2002, 2006; Bowman 1966, 1977; Bruce 1986; Creaser 1936; Hobbs and Hobbs 1976; Hobbs et al. 1977; Hobbs 1979; Holsinger 1977, 1990; Horwitz et al. 1995; Kallmeyer and Carpenter 1996; Lowry and Myers 2013; Meland et al. 2015; Pérez-Aranda 1983a, 1983b, 1984a, 1984b; Tinnizi and Quddusi 1993; Wagner 1994. Photographs were made using an OMAX 14 OMP digital USB microscope camera, a Nikon D5300, and a Nikon D7000 with 60 mm macro lens.

Molecular studies (COI barcode sequences)

DNA extraction of the peracarids studied was performed using QIAamp DNA Microkit (QIAGEN), following the manufacturer's instructions. A few pereopods of each animal provided the necessary material to extract DNA. For PCR amplification of mitochondrial COI, we used the primer pair LCO 1490 and HCO 2198 (Folmer et al. 1994). PCR reactions $(25 \mu \mathrm{l})$ contained $13.85 \mu \mathrm{lmQ}$ water, $2.5 \mu \mathrm{l} 10 \times$ PCR buffer, $2.5 \mu \mathrm{l}$ dNTP mix $(2 \mathrm{mM}), 1.5 \mu \mathrm{l}$ of each primers $(5 \mu \mathrm{M}), 0.15 \mu \mathrm{l}$ Fermentas Dream Taq (5U/ $\mu \mathrm{l}$), and $3 \mu \mathrm{l}$ DNA extract. PCR temperature conditions were set as follows: initial denaturation for 3 min at $94^{\circ} \mathrm{C}$, denaturation for 45 sec at $94^{\circ} \mathrm{C}$, hybridization for 45 sec at $48^{\circ} \mathrm{C}$, and polymerization for 1 min at $72^{\circ} \mathrm{C}$. After thirty cycles, a final extension for 3 min at $72^{\circ} \mathrm{C}$ was performed. PCR products were purified using Exo SAP-IT Express PCR Product Cleanup (Affymetrix) according to the manufacturer's instructions. The fragments were sequenced in both directions using PCR amplification primers with an ABI 3130 sequencer. Contigs were assembled and sequences were edited using BioEdit 7.1.11 sequence alignment editor software (Hall 1999): chromatograms of complement reverse and forward strings were compared, gaps were eliminated, while indels and stop codons were checked. 605-651 bp COI barcode sequences have been uploaded to the NCBI GenBank database. Accession numbers and localities are listed in Table 2.

Results

A total of 14 stygobiont crustacean species, belonging to six Malacostraca orders, was collected (Figures 2, 3). New records of each species at each cenote were assessed after an exhaustive literature investigation (Table 3). This evaluation was based only on the

Table 2. Locality data and GenBank accession number of COI gene fragments of one individual of each newly collected stygobiotic peracarid species.

Taxon	Locality (cenote)	Voucher	GenBank accession nr.	Cited in
Tulumella unidens (Thermosbaenacea)	Sabtun 1	YUC-CC-255-11-004-656	MK900685	present study
Stygiomysis cokei (Stygiomysida)	Dzonotila	YUC-CC-255-11-004-638	MK900690	present study
Stygiomysis cf. holthuisi (Stygiomysida)	Kankal	YUC-CC-255-11-004-621	MK900689	present study
Antromysis cenotensis (Mysida)	Pol Box	YUC-CC-255-11-004-694	MK981568	present study
Mayaweckelia troglomorpha (Amphipoda)	Dzonbakal	CNR 34392	MF589977	Angyal et al. 2018
Mayaweckelia cenoticola (Amphipoda)	Ayun-Nah	YUC-CC-255-11-003923	MF589975	Angyal et al. 2018
Tuluweckelia cernua (Amphipoda)	Kankirixche	YUC-CC-255-11-003924	MF589983	Angyal et al. 2018
Creaseriella anops (Isopoda)	Tza Itza	HNHM-YUC_Isopoda-01	MK900687	present study
Yucatalana robustispina (Isopoda)	Kankirixche	YUC-CC-255-11-004-715	MK900686	present study
Cirolana yunca (Isopoda)	Tres Oches	HNHM-YUC-Isopoda-02	MK900688	present study

Table 3. Records of stygobiotic crustacean species collected between May 2016 and January 2018 in 32 cenotes of Yucatan. Bold-faced locality names represent new records for the cenote, while bold-faced locality names with an asterisk (*) represent new records for the state of Yucatan.

Taxon	Cenote
THERMOSBAENACEA	
Tulumella unidens Bowman \& Iliffe, 1988	Cervera*, Sabtun 1*
STYGIOMYSIDA	
Stygiomysis cokei Kallmeyer \& Carpenther, 1996	Tres Oches, San Elias, Dzonotila, Yax-Kis
Stygiomysis cf. holthuisi (Gordon, 1958)	Tres Oches, Tza Itza, X-Batun, Kanun, Kankirixche, Kakuel, Santito, Pol Box, Kankal, Flor de Liz, Bebelchen, Chihuo Hol, Yax Kis
MYSIDA	
Antromysis cenotensis Creaser, 1936	Tza Itza, Dzonbakal, Nayah, Kampepen, Kanun, Xaan, Kakuel, Kankirixche, Santito, Pol Box, Kankal, Dzonotila, Ixim Ha, Noh'Chunck, X'kokob, Flor de Liz, Pixton, Bebelchen, El Virgen, Chihuo Hol
AMPHIPODA	
Mayaweckelia cenoticola Holsinger, 1977	Ayun-Nah, Dzonotila, Ixim Ha, Bebelchen
Mayaweckelia troglomorpha Angyal, 2018	Dzonbakal ${ }^{*}$, Kanun*, Xaan ${ }^{*}$, Kankirixche ${ }^{*}$, Dzonotila*, X'kokob*, Chihuo Hol*, Yax-Kis*
Tuluweckelia cernua Holsinger, 1990	San Juan*, Dzonbakal*, Tres Oches*, Xaan*, Kakuel*, Kankirixche*, Santito*, X'baba*, Sabtun 1*, Pixton*, Yax-Kis*
ISOPODA	
Creaseriella anops (Creaser, 1936)	San Juan, Cervera, Tza Itza, Tres Oches, Kankirixche, Chihuo Hol
Yucatalana robustispina Botosaneanu \& Iliffe, 1999	Xaan, Kakuel, Kankirixche, Yaal Utsil, Tza Itza, Pol Box, Dzonotila, X'baba, El Virgen, Chihuo Hol, Yax Kis
Cirolana yunca (Botosaneanu \& Iliffe, 2000)	Tres Oches, X'baba, Chihuo Hol
DECAPODA	
Typhlatya dzilamensis Alvarez, Iliffe \& Villalobos, 2005	Cervera, Sabtun 1
Typhlatya mitchelli Hobbs \& Hobbs, 1976	San Juan, Tza Itza, Dzonbakal, Kampepen, Ayun-Nah, Tres Oches, Kakuel, Kankirixche, Sabtun 1, Bebelchen, El Virgen, Chihuo Hol
Typhlatya pearsei Creaser, 1936	Tres Oches, Xaan, Kankirixche, Nohmozon
Creaseria morleyi (Creaser, 1936)	Tza Itza, Kampepen, Kakuel, Kankirixche, Santito, Kankal, Bebelchen, El Virgen, Dzalbay

collected material that has been deposited in scientific collections. Additional data based on observations, however, are mentioned in the "Remarks" section in each case. An individual account for each species is subsequently discussed. 605-651 base-pair COI barcode sequences of the analyzed species (Table 2) were obtained and uploaded to NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/).

Subphylum: Crustacea

Class: Malacostraca
Superorder: Peracarida
Order: Thermosbaenacea
Family: Tulumellidae

Tulumella unidens Bowman \& Iliffe, 1988

Figure 2A
Material examined. 4 individuals; Cenote Cervera, depth 25.6-26.2 m, cave, in hydrogen sulfide layer, around and below halocline, $26^{\circ} \mathrm{C}$, Yalsihom, Yucatan, Mexico; 8 May 2016; colls. D. Angyal \& E. Chávez Solís. 4 individuals; Cenote Sabtun 1, depth 24.0-25.0 m, cavern, above and around halocline, $25^{\circ} \mathrm{C}$, Chunchumil, Yucatan, Mexico; 10 December 2017; colls. D. Angyal, E. Chávez Solís, S. Drs, Q. Hernández $\&$ S. Reyes.

Previous distribution. Iliffe 1992; Iliffe 1993; Bowman and Iliffe 1988; Rocha et al. 1998; Pohlman et al. 2000; Pesce and Iliffe 2002; Álvarez et al. 2015; Olesen et al 2015; Benítez et al. 2019.

Type locality is Cenote Naharon (Cristal) in Quintana Roo. This species had only been reported from Quintana Roo from cenotes Calavera (Temple of Doom), Mayan Blue, Actun Ha (Carwash), Muknal, Na’ach Wennen Ha, Bang, Odyssey, Tabano, and Quebrada.

Remarks. Our findings extend the distribution area of this thermosbaenacean, previously endemic to Quintana Roo, to the cenotes located in the coastal areas north of Dzilam de Bravo and the east of Celestun. It is most likely that this species has a coastal distribution along the anchialine systems of the Yucatan Peninsula. Previous records were reported from cenotes located 2-10 km from the coastline near Tulum, where they occurred mostly above and at the halocline (Álvarez \& Iliffe 2008; Álvarez et al. 2015; Benítez et al. 2019). In Cenote Cervera, 3.6 km inland from the northern coast of the Yucatan Peninsula, we observed individuals both above and below the halocline, as well as in the hydrogen sulfide layer.

Order: Stygiomysida
 Family: Stygiomysidae

Stygiomysis cokei Kallmeyer \& Carpenther, 1996
Figure 2B

Material examined. 1 individual; Cenote Tres Oches, depth 21.6 m , cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals, Cenote San Elias, depth 28.2 m and 32.0 m, cavern, freshwater, 26

Figure 2. A Tulumella unidens (Thermosbaenacea) B Stygiomysis cokei (Stygiomysida) C Stygiomysis cf. holthuisi (Stygiomysida) D Antromysis cenotensis (Mysida) E Mayaweckelia troglomorpha (Amphipoda) F Mayaweckelia cenoticola (Amphipoda) G Tuluweckelia cernua (Amphipoda). Scale bars: $1 \mathrm{~mm}(\mathbf{A}, \mathbf{C}$, $\mathbf{D}, \mathbf{F}, \mathbf{G}) ; 10 \mathrm{~mm}(\mathbf{B}, \mathbf{E})$.
${ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 19 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& L. Liévano. 2 individuals; Dzonotila, depth 20.8 m and 28.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 20 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& B. Magaña. 1 individual; Yax-Kis, depth 12.1 m and 27.0 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 27 January 2018; colls. D. Angyal, S. Drs \& L. Liévano.

Previous distribution. Kallmeyer and Carpenter 1996; Pesce and Iliffe 2002; Álvarez and Iliffe 2008; Álvarez et al. 2015; Benítez et al. 2019.

Type locality is Cenote Calavera (Temple of Doom) in Quintana Roo. Further known localities in Quintana Roo are cenotes Mayan Blue, Naharon (Cristal), Escondido, Actun Ha (Carwash), Actun Ko, Na’ach Wennen Ha, Muknal and Tabano. From Yucatan the species was known from cenotes Papakal, San Eduardo, Kankirixche, Yaal Utsil and Dzonotila.

Remarks. Our records show that this species is distributed in cenotes of central Yucatan and along the Ring of Cenotes. Among the two Stygiomysis species of the region, S. cokei proved to be rarer than Stygiomysis cf. holthuisi. New occurrences were recoded between 12-32 m deep in freshwater. In cenotes San Elias, Dzonotila and Yax-Kis it cooccurred with S. cf. holthuisi. Previously the species had also been reported in brackish habitats (Álvarez and Iliffe 2008; Álvarez et al. 2015).

Stygiomysis cf. holthuisi (Gordon, 1958)

Figure 2C
Material examined. 2 individuals; Cenote Tres Oches, depth 21.6 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Tza Itza, depth 18.9 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Tecoh, Yucatan, Mexico; 10 May 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote XBatun, depth 19.3 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 14 May 2016; colls. R. Acosta, D. Angyal, J. Baduy \& S. Reyes. 3 individuals; Cenote Kanun, depth 10.9-13.0 m, cave, freshwater, $26{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 4 June 2016; colls. R. Acosta, D. Angyal, J. Baduy, B. Magaña \& S. Reyes. 1 individual; Cenote Kakuel, depth 29.8 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 3 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Santito, depth 5.4 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Kopoma, Yucatan, Mexico; 10 November 2017; colls. D. Angyal, D. Drs \& L. Liévano. 1 individual; Cenote Pol Box, depth 3.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 12 November 2017; colls. D. Angyal, S. Drs, L. Liévano \& E. Sosa. 4 individuals; Cenote Kankal, depth 6.0-27.0 m, cavern, freshwater, $25^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 12 November 2017; colls. D. Angyal, S. Drs, L. Liévano \& E. Sosa. 2 individuals; Cenote Flor de Liz, depth 3.0 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Tixkokob, Yucatan, Mexico; 17 December 2017; colls. D. Angyal,
S. Drs, L. Liévano \& S. Reyes. 1 individual; Cenote Bebelchen, depth 30.0 m, cavern, freshwater, $25^{\circ} \mathrm{C}$, Sanahcat, Yucatan, Mexico; 18 December 2017; colls. D. Angyal, S. Drs, L. Liévano \& S. Reyes. 2 individuals; Cenote Chihuo Hol, depth 16.0 and 25.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano, B. Magaña \& N. Simoes. 3 individuals; Yax Kis, depth 9.0-25.0 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 27 January 2018; colls. D. Angyal, S. Drs \& L. Liévano.

Previous distribution. Gordon 1958; Botosaneanu 1980; Bowman et al. 1984; Pesce and Iliffe 2002; Álvarez and Iliffe 2008, Álvarez et al. 2015, Benítez et al. 2019.

Type locality is Devil's Hole, St. Martin, Lesser Antilles (France). The species is known from the Bahamas, Anguilla, Puerto Rico, and the Yucatan Peninsula. In Quintana Roo S. cf. holthuisi was recorded from cenotes Mayan Blue, Casa Cenote, Na’ach Wennen Ha, Bang, Odyssey, Muknal, and Tabano. From Yucatan the species was previously known only from a single locality, Cenote Mucuyche.

Remarks. We have also recorded the species from cenotes Yaal Utsil, San Elias, and Dzonotila in freshwater bodies in both cavern and cave sections, between 3 and 30 m deep. Álvarez and Iliffe (2008) and Álvarez et al. (2015) reported observations in both freshwater and around the halocline from cenotes in Quintana Roo.

Order: Mysida
 Family: Mysidae

Antromysis cenotensis Creaser, 1936

Figure 2D

Material examined. 21 individuals; Cenote Tza Itza, depth 12.7-13.5 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Tecoh, Yucatan, Mexico; 10 May 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Dzonbakal, depth 25.3 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 14 May 2016; colls. R. Acosta, D. Angyal, J. Baduy \& S. Reyes. 1 individual; Cenote Nayah, depth 27.9 m, entrance of cave part, freshwater, $26^{\circ} \mathrm{C}$, Pixyah, Yucatan, Mexico; 17 May 2016; colls. D. Angyal \& B. Magaña. 3 individuals; Cenote Kampepen, depth 9.3-12.5 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Chinquila, Yucatan, Mexico; 17 May 2016; colls. D. Angyal \& B. Magaña. 4 individuals; Cenote Kanun, depth 0.5 m , cenote entrance, freshwater, $26^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 4 June 2016; colls. R. Acosta, D. Angyal, J. Baduy, B. Magaña \& S. Reyes. 4 individuals; Cenote Xaan, depth 22.2-24.2 m, cavern and cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 9 June 2016; colls. D. Angyal \& E. Chávez Solís. 15 individuals; Cenote Kakuel, depth 7.2-10.8 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 9.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016;
colls. D. Angyal \& E. Chávez Solís. 4 individuals; Cenote Kankirixche, depth 10.025.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 25 January 2018; colls. D. Angyal, S. Drs, B. Magaña \& L. Liévano. 18 individuals; Cenote Santito, depth 0.2-1.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Kopoma, Yucatan, Mexico; 10 November 2017; colls. D. Angyal, S. Drs \& L. Liévano. 17 individuals; Cenote Pol Box, depth 5.2-9.3 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 12 November 2017; colls. D. Angyal, S. Drs, L. Liévano \& E. Sosa. 1 individual; Cenote Kankal, depth 24.6 m, cavern, freshwater, $25^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 18 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& L. Liévano. 21 individuals; Dzonotila, depth 3.027.0 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 20 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& B. Magaña. 5 individuals; Cenote Ixim Ha, depth 10.0 m , cavern, freshwater, $25^{\circ} \mathrm{C}$, Tixkakal, Yucatan, Mexico; 25 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs, L. Liévano \& E. Sosa. 1 individual; Cenote Noh'Chunck, depth 12.0 m , cavern, freshwater, $25^{\circ} \mathrm{C}$, Chunchumil, Yucatan, Mexico; 25 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs, Q. Hernández \& S. Reyes. 11 individuals; Cenote X'kokob, depth 1.0-4.0 m, cavern, freshwater, 25 ${ }^{\circ}$ C, Ekmul, Yucatan, Mexico; 17 December 2017; colls. D. Angyal, S. Drs, L. Liévano \& S. Reyes. 14 individuals; Cenote Flor de Liz, depth 0.3-3.0 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Tixkokob, Yucatan, Mexico; 17 December 2017; colls. D. Angyal, S. Drs, L. Liévano \& S. Reyes. 19 individuals; Cenote Pixton, depth 3.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Huhi, Yucatan, Mexico; 18 December 2017; colls. D. Angyal \& L. Liévano. 11 individuals; Cenote Bebelchen, depth 27.0 m , cavern, freshwater, $25^{\circ} \mathrm{C}$, Sanahcat, Yucatan, Mexico; 18 December 2017; colls. D. Angyal, L. Liévano \& S. Reyes. 6 individuals; Cenote El Virgen, depth 25.0 m , cavern, freshwater, $26^{\circ} \mathrm{C}$, Sotuta, Yucatan, Mexico; 20 December 2017; colls. L. Liévano \& N. Simoes. 3 individuals; Cenote Chihuo Hol, depth 11.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 20 December 2017; colls. D. Angyal, S. Drs, B. Magaña, L. Liévano \& N. Simoes.

Previous distribution. Creaser 1936, 1938; Nicholas 1962; Bowman 1977; Reddell 1977, 1981; Holsinger 1990; Iliffe 1992, 1993; Fiers et al. 1996; Rocha et al. 1998, 2000; Suárez-Morales and Rivera Arriaga 1998; Pohlman et al. 2000; Pesce and Iliffe 2002; Schmitter-Soto et al. 2002; Álvarez and Iliffe 2008; Álvarez et al. 2015; Benítez et al. 2019.

Type locality is Grutas de Balankanche (Yucatan). Widely distributed in the central and northern parts of the Yucatan Peninsula, known from several wells, cenotes and caves of Quintana Roo and Yucatan.

Remarks. Antromysis cenotensis was present in all the cenotes studied, except for Cenote Cervera. Álvarez et al. (2015) mentions that A. cenotensis occurs mostly above or occasionally below the halocline up to a depth of 16 m . In the present study, the species was only observed in freshwater habitats, in some cases as deep as the scope of the survey. Our findings prove this species as a common representative of the stygofauna of Yucatan, as it was found in more than 95% of the visited sites. Antromysis cenotensis is listed as "threatened" in the Mexican Red List of Threatened Species (NOM-059 SEMARNAT 2010).

Order: Amphipoda

Family: Hadziidae

Mayaweckelia troglomorpha Angyal, 2018

Figure 2E
Material examined. 2 individuals; Dzonbakal, depth 26.3 and 26.5 m, cave, freshwater, $27{ }^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 14 May 2016; colls. R. Acosta, D. Angyal, J. Baduy \& S. Reyes. 1 individual; Cenote Kanun, depth 24.3 m, cave, freshwater, $26^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 4 June 2016; colls. R. Acosta, D. Angyal, J. Baduy, B. Magaña \& S. Reyes. 1 individual; Cenote Xaan, depth 25.4 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 9 June 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Kankirixche, depth 20.4 and 33.3 m, cavern and cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 5 individuals; Dzonotila, depth 11.0-17.7 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 20 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& B. Magaña. 2 individuals; Cenote X'kokob, depth 4.0-10.0 m, cavern, freshwater, $26^{\circ} \mathrm{C}$, Ekmul, Yucatan, Mexico; 17 December 2017; colls. D. Angyal, E. Chávez Solís, S. Drs \& B. Magaña. 2 individuals; Cenote Chihuo Hol, depth 8.027.2 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano, B. Magaña \& N. Simoes. 1 individual; Cenote Yax-Kis, depth 8.0 m , cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 27 January 2018; colls. D. Angyal, S. Drs \& L. Liévano.

Previous distribution. Angyal et al. 2018. Type locality is Dzonbakal (Yucatan. Allotype female is from Cenote Kankirixche, paratypes are from Dzonbakal and cenotes Kanun, Xaan and Kankirixche (all in Yucatan).

Remarks. At present, collected material is available from eight localities and a small M. troglomorpha population was also observed in Cenote San Elias. All the individuals were found in freshwater habitats, both in cave and cavern sections, where water temperature was between 26 and $27^{\circ} \mathrm{C}$. In cenote Kankirixche, some individuals were observed below 45 meters in depth. As a species recently described by our research group, one of the outcomes of present expeditions. As M. troglomorpha was found in approximately 30% of the visited sites, it does not appear to be a rare freshwater stygobiotic element in the Yucatan cenotes.

Mayaweckelia cenoticola Holsinger, 1977

Figure 2F
Material examined. 1 individual; Cenote Ayun-Nah, depth 14.0 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Cacalchen, Yucatan, Mexico; 22 May 2016; colls. D. Angyal, B. Magaña \& E. Sosa Rodríguez. 1 individual; Dzonotila, depth 18.0 m , cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 20 November 2017; colls. D. Angyal. E. Chávez Solís, S.

Drs \& B. Magaña. 1 individual; Cenote Ixim Ha, depth 4.7 m, cavern, freshwater, 25 ${ }^{\circ}$ C, Tixkakal, Yucatan, Mexico; 25 November 2017; colls. D. Angyal, E. Chávez Solís, S. Drs, L. Liévano \& E. Sosa. 3 individuals; Cenote Bebelchen, depth 0.5-7.3 m, cavern, freshwater, in water column and in roots at cavern entrance, $25^{\circ} \mathrm{C}$, Sanahcat, Yucatan, Mexico; 18 December 2017; colls. D. Angyal, S. Drs, L. Liévano \& S. Reyes.

Previous distribution. Holsinger 1977, 1990; Reddell 1981; Álvarez and Iliffe 2008, Álvarez et al. 2015, Angyal et al. 2018, Benítez et al. 2019.

Type locality is Cenote Xtacabiha (Yucatan). From Yucatan the species was also known from Cueva de Orizaba, Cenote Nohchen, Grutas de Tzab-Nah and Grutas de Santa Maria. From Quintana Roo there were records from Cenote Actun Ha (Carwash), Cenote de las Ruinas, Cenote de San Martin, Cenote de Santo Domingo, Cueva de Tancah, Odyssey, Bang and Tabano. From the state of Campeche, the species was known from the Volcán de los Murciélagos cave.

Remarks. Mayaweckelia cenoticola proved to be rarer than M. troglomorpha, since it was recorded from only four cenotes. In Cenote Bebelchen we found some individuals in the roots of trees near the surface at the entrance region. Holsinger (1990) found that the species is associated mainly with freshwater habitats, with few populations occurring in weak brackish water. Individuals found in the Ox Bel Ha System (Quintana Roo) by Álvarez et al. (2015) and Benítez et al. (2019) also occurred in freshwater.

Tuluweckelia cernua Holsinger, 1990

Figure 2G

Material examined. 3 individuals; Cenote San Juan, depth 27.0-27.1 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 7 May 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Dzonbakal, depth 29.0 m, cave, freshwater, $27^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 22 May 2016; colls. D. Angyal, J. Baduy \& B. Magaña. 10 individuals; Cenote Tres Oches, depth 15.8-22.9 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 3 individuals; Cenote Xaan, depth 22.7-26.6 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 9 June 2016; colls. D. Angyal \& E. Chávez Solís. 3 individuals; Cenote Kakuel, depth 32.2-38 m, cave, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 3 individuals; Cenote Kankirixche, depth 20.4-49.6 m, cavern and cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Santito, depth 5.3-6.0 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Kopoma, Yucatan, Mexico; 10 November 2017; colls. D. Angyal, S. Drs \& L. Liévano. 1 individual; Cenote X’baba, depth 26.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 26 November 2017; colls. S. Drs, L. Liévano \& E. Sosa. 1 individual; Cenote Sabtun 1, depth 25.0 m, cavern, above the halocline, $25^{\circ} \mathrm{C}$, Chunchumil, Yucatan, Mexico; 10 December 2017; colls. D. Angyal, S. Drs, E. Chávez Solís, Q. Hernández \& S. Reyes. 1 individual; Cenote Pixton, depth 7.0 m , cavern, freshwater, $26^{\circ} \mathrm{C}$, Huhi, Yucatan, Mexico; 18 December

2017; colls. D. Angyal \& L. Liévano. 3 individuals; Cenote Yax-Kis, depth 23.4-32.0 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 27 January 2018; colls. D. Angyal, S. Drs \& L. Liévano.

Previous distribution. Holsinger 1990; Álvarez and Iliffe 2008; Álvarez et al. 2015; Angyal et al. 2018; Benítez et al. 2019.

Type locality is Cenote Calavera (Temple of Doom) in Quintana Roo. This species was known only from coastal caves of Quintana Roo: Mayan Blue, Actun Ha (Carwash), Mojara, Naharon (Cristal), Na’ach Wennen Ha, Bang, Muknal, Odyssey, and Tabano.

Remarks. Tuluweckelia cernua was both the most frequent and abundant stygobiotic amphipod in the present study. Additional observations were from cenotes Yaal Utsil, El Virgen, and Dzalbay. In contrast with previous reports (e.g. Holsinger 1990), T. cernua always occurred in freshwater habitats. Individuals were collected between depths of 5-50 m. The species co-occurred with M. troglomorpha in five cenotes. These are the first distributional records of T. cernua for the state of Yucatan. Known localities of this species have almost tripled, increasing its distribution range into the Yucatan inland area.

Order: Isopoda
 Family: Cirolanidae
 Creaseriella anops (Creaser, 1936)

Figure 3A

Material examined. 3 individuals; Cenote San Juan, depth 20.0-28.0 m, cavern and cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 7 May 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Cervera, depth 24.0 m , cave, below halocline, $26^{\circ} \mathrm{C}$, Yalsihom, Yucatan, Mexico; 8 May 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Tza Itza, depth $12.5-13.5 \mathrm{~m}$, cavern, freshwater, $27^{\circ} \mathrm{C}$, Te coh, Yucatan, Mexico; 10 May 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Tres Oches, depth 18.2-21.7 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 3.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Chihuo Hol, depth 15.0 m , cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano, B. Magańa \& N. Simoes.

Previous distribution. Creaser 1936, 1938; Nicholas 1962; Reddell 1977, 1981; Holsinger 1990; Iliffe 1992, 1993; Fiers et al. 1996; Rocha et al. 1998; Botosaneanu and Iliffe 1999, 2002; Álvarez et al. 2005; Iliffe and Botosaneanu 2006; Álvarez and Iliffe 2008; Sánchez-Rodríguez 2008; Ruíz-Cancino et al. 2013; Álvarez et al. 2015; Ortiz and Chazaro-Olvera 2015; Benítez et al. 2019.

Type locality is Cenote Sambula (Motul, Yucatan). Known from numerous caves and cenotes in Quintana Roo and Yucatan, and a well in Campeche.

Remarks. The species was also observed in cenotes Yaal Utsil, Pol Box, X'kokob, Bebelchen, Kankal, San Elias, Dzonotila, Yax-Kis, Xaan and X’baba. Creaseriella anops was found both in cavern and cave sections, between 3 and 40 m deep. Our observations generally agree with the records of Iliffe and Botosanenau (2006) and Álvarez et al. (2015) as a freshwater species. However, as Benítez et al. (2019) reported, we also observed individuals around or below the halocline. Creaseriella anops is listed as "threatened" in the Mexican Red List of Threatened Species (NOM-059-SEMARNAT 2010).

Yucatalana robustispina Botosaneanu \& Iliffe, 1999

Figure 3B

Material examined. 1 individual; Cenote Xaan, depth 27.6 m, cave, freshwater, 27 ${ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 9 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kakuel, depth 19.9 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 5 individuals; Cenote Kankirixche, depth 20-49.3 m, cavern and cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 3 individuals; Cenote Kankirixche, depth 10.0-27.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano \& B. Magańa. 1 individual; Cenote Yaal Utsil, depth 35.5 m , cave, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 3 November 2017; colls. D. Angyal, S. Drs \& E. Chávez Solís. 1 individual; Cenote Tza Itza, depth 15.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Tecoh, Yucatan, Mexico; 3 November 2017; colls. D. Angyal, S. Drs \& L. Liévano. 1 individual; Cenote Pol Box, depth 3.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 12 November 2017; colls. D. Angyal, S. Drs, L. Liévano \& E. Sosa. 2 individuals; Dzonotila, depth 14.0 and 16.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 12 November 2017; colls. D. Angyal, S. Drs, E. Chávez Solís \& B. Magaña. 1 individual; Cenote X'baba, depth 12.0 m , cave, freshwater, $25^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 12 November 2017; colls. S. Drs, L. Liévano \& E. Sosa. 1 individual; Cenote El Virgen, depth 12.6 m , cavern, freshwater, $26^{\circ} \mathrm{C}$, Sotuta, Yucatan, Mexico; 20 December 2017; colls. L. Liévano \& N. Simoes. 1 individual; Cenote Chihuo Hol, depth 20.6 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano, B Magaña \& N. Simoes. 3 individuals; Cenote Yax Kis, depth 12.0-33.0 m, cave, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 27 January 2018; colls. D. Angyal, S. Drs \& L. Liévano.

Previous distribution. Botosaneanu and Iliffe 1999, 2002, 2006; Álvarez and Iliffe 2008.

Type locality is Cenote Pabakal (Papakal), Yucatan. It was also found in cenotes Kankirixche, Kakuel, Chuih-Hol Dos, Xacha, and San Geronimo (all in Yucatan).

Figure 3. A Creaseriella anops (Isopoda) B Yucatalana robustispina (Isopoda); C Cirolana yunca (Isopoda) D Typhlatya dzilamensis (Decapoda) E Typhlatya mitchelli (Decapoda) F Typhlatya pearsei (Decapoda) G Creaseria morleyi (Decapoda). Scale bars: $1 \mathrm{~mm}(\mathbf{B}, \mathbf{C}, \mathbf{F}) ; 10 \mathrm{~mm}(\mathbf{A}, \mathbf{D}, \mathbf{E}, \mathbf{G})$.

Remarks. Individuals of Y. robustispina were collected in a third of all localities visited, where it occurred in freshwater between 3 and 49 m in depth. In eight cenotes Y. robustispina co-occurred with the isopod C. anops. Agreeing with our observations, previous records referred specimens caught in freshwater between $5-50 \mathrm{~m}$ in depth (Botosaneanu and Iliffe 1999, 2002, 2006). Known localities of this species have been doubled.

Cirolana yunca (Botosaneanu \& Iliffe, 2000)

Figure 3C

Material examined. 1 individual; Cenote Tres Oches, depth 22.4 m , cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote X'baba, depth 25.0 m , cave, freshwater, $25^{\circ} \mathrm{C}$, Chochola, Yucatan, Mexico; 26 November 2016; colls. S. Drs, L. Liévano \& E. Sosa. 1 individual; Cenote Chihuo Hol, depth 19.0 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, L. Liévano, B Magaña \& N. Simoes. 1 individual.

Previous distribution. Botosaneanu and Iliffe 2000, 2006; Álvarez and Iliffe 2008; Rocha-Ramírez et al. 2009.

Type locality is Cenote Sabak Ha (Yucatan). This species had only been collected from its type locality until our expeditions.

Remarks. We here provide the first records after the original description, which was based on a single specimen collected at 60 m in depth near the halocline at a salinity of $1.4 \mathrm{~g} / \mathrm{l}$ (Botosaneanu and Iliffe 2000, 2006). The three newly collected individuals were found in freshwater habitats, both in cavern and cave zones below 19 m in depth. The species was found in approximately 10% of the studied cenotes always as solitary individuals. Therefore, C. yunca seems to be a rare element of the Yucatan freshwater cenote ecosystems.

Superorder: Eucarida
 Order: Decapoda
 Family: Atydae

Typhlatya dzilamensis Álvarez, Iliffe \& Villalobos, 2005

Figure 3D

Material examined. 1 individual; Cenote Cervera, depth 27.4 m, cave, below halocline, $27^{\circ} \mathrm{C}$, Yalsihom, Yucatan, Mexico; 8 May 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Sabtun 1, depth 28 m , cavern, below halocline, $26{ }^{\circ} \mathrm{C}$, Chunchumil, Yucatan, Mexico; 10 Dec 2017; colls. D. Angyal \& E. Chávez.

Previous distribution. Álvarez et al. 2005, 2015; Álvarez and Iliffe 2008; Benítez et al. 2019; Espinasa et al. 2019.

Type locality is Buya Uno, allotype was collected from Cenote Cervera and paratypes from Dzilamway, all cenotes in Dzilam de Bravo region (Yucatan north coast). This species was recently recorded at the Ox Bel Ha system south of Tulum (Benítez et al. 2019) and the Ponderosa system north of Tulum (Espinasa et al. 2019).

Remarks. In accordance with previous records by Álvarez et al. (2005, 2015), our specimens were also collected in fully marine water. Recent observations of this species increase the expected distribution, suggesting an underground coastal and saline habitat that could extend from the south of Quintana Roo (Ox Bel Ha) to the west coast of Yucatan (Sabtun 1).

Typhlatya mitchelli Hobbs \& Hobbs, 1976

Figure 3E
Material examined. 3 individuals; Cenote San Juan, depth 4.3-9.1 m, cave and cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 7 May 2016; colls. D. Angyal \& E. Chávez Solís. 11 individuals; Cenote Tza Itza, depth 4.3-16.5 m, cave, freshwater, $27{ }^{\circ} \mathrm{C}$, Tecoh, Yucatan, Mexico; 10 May 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Dzonbakal, depth 9.3 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 14 May 2016; colls. R. Acosta, D. Angyal, J. Baduy \& S. Reyes. 1 individual; 1 individual; Cenote Dzonbakal, depth 14 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, San Antonio Mulix, Yucatan, Mexico; 29 May 2016; colls. D. Angyal, J. Baduy \& B. Magaña. 5 individuals; Cenote Kampepen, depth 10.1 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Chinquila, Yucatan, Mexico; 17 May 2016; colls. D. Angyal \& B. Magaña. 2 individuals; Cenote Ayun-Nah, depth 9 m , cave, freshwater, $27^{\circ} \mathrm{C}$, Cacalchen, Yucatan, Mexico; 22 May 2016; colls. D. Angyal, B. Magaña \& E. Sosa Rodríguez. Cenote Tres Oches, depth 8.1-22 m, cave, freshwater, $27^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 5 June 2016; colls. D. Angyal \& E. Chávez Solís. 7 individuals; Cenote Kakuel, depth $5-25.8 \mathrm{~m}$, cave and cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 30.2 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 December 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Sabtun 1, depth 24.0 and 25.0 m , cavern, above the halocline, $25^{\circ} \mathrm{C}$, Chunchumil, Yucatan, Mexico; 10 December 2017; colls. D. Angyal, E. Chávez Solís, S. Drs, Q. Hernández \& S. Reyes. 1 individual; Cenote Bebelchen, depth 34.0 m, cavern, freshwater, $25^{\circ} \mathrm{C}$, Sanahcat, Yucatan, Mexico; 18 December 2017; colls. D. Angyal, S. Drs, L. Liévano \& S. Reyes. 1 individual; Cenote El Virgen, depth 19.9 m, cavern, freshwater, $26^{\circ} \mathrm{C}$, Sotuta, Yucatan, Mexico; 20 December 2017; colls. L. Liévano \& N. Simoes. 1 individual; Cenote Chihuo Hol, depth 26.0 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 26 January 2018; colls. D. Angyal, S. Drs, B. Magaña, L. Liévano \& N. Simoes.

Previous distribution. Hobbs and Hobbs 1976; Hobbs et al. 1977; Hobbs 1979; Reddell 1977, 1981; Iliffe 1992; Rocha et al. 1998; Webb 2003; Botello and Álvarez 2013; Benítez 2014; Álvarez et al. 2015; Chávez Solís 2015; Benítez et al. 2019.

Type locality is Cenote Kabahchen (Yucatan). The species occurs in numerous caves and cenotes throughout the peninsula in Quintana Roo and Yucatan.

Remarks. Our findings corroborate that T. mitchelli is a widespread common crustacean in the freshwater cenotes of Yucatan. This species was caught from the shallow zones to 34 m in depth, indicating a wide vertical range as well as a wide geographical range. The species was also observed (but not collected) in cenotes Yaal Utsil, Santito, Pol Box, Kankal, San Elias, Dzonotila, X'baba, X'kokob, Pixton, Dzalbay, and YaxKis. Typhlatya mitchelli is listed as "least concern" in the IUCN Red List (De Grave et al. 2013a) and as "threatened" in the Mexican Red List of Threatened Species (NOM-059-SEMARNAT 2010).

Typhlatya pearsei Creaser, 1936

Figure 3F
Material examined. 1 individual; Cenote Tres Oches, depth 21.6 m, cave, freshwater, $27{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 6 June 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Xaan, depth 25.8 and 26.1 m , cave, freshwater, $27{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 9 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 3 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. Cenote Nohmozon, depth 12.2 m, cavern, freshwater, $25{ }^{\circ} \mathrm{C}$, Pixyah, Tecoh, Yucatan, Mexico; 11 March 2016; colls. E. Chávez Solís.

Previous distribution. Creaser 1936; Nicholas 1962; Hobbs et al. 1977; Holthuis 1977; Hobbs 1979; Reddell 1977, 1981; Pérez-Aranda 1983a; Holsinger 1990; Iliffe 1992; Webb 2003; Hunter et al. 2007; Yager and Madden 2010; Botello and Álvarez 2013; Mejía-Ortíz et al. 2013; Benítez 2014; Pakes et al. 2014; Álvarez et al. 2015; Chávez Solís 2015; Benítez et al. 2019.

Type locality is 'Balam Canche Cave' (Grutas de Balankanche, Yucatan). The species is widely distributed within the northern part of the Yucatan Peninsula; it occurs in Quintana Roo, Yucatan, and Campeche.

Remarks. Despite previous studies stating that T. pearsei has the largest of Typhlatya's distribution range in the Yucatan Peninsula (Âlvarez et al. 2015), we only collected individuals in a few localities, where it occurred in freshwater, both near the surface in open cenote pools and in deeper cave passages up to 26 m in depth. This species is listed as "least concern" in the IUCN Red List (De Grave et al. 2013b) and as "threatened" in the Mexican Red List of Threatened Species (NOM-059-SEMARNAT 2010).

Family: Palaemonidae

Creaseria morleyi (Creaser, 1936)
Figure 3G
Material examined. 2 individuals; Cenote Tza Itza, depth 15.4 m , cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Tecoh, Yucatan, Mexico; 10 May 2016; colls. D. Angyal \& E. Chávez Solís. 2 individuals; Cenote Kampepen, depth 6-9.5 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Chinquila, Yucatan, Mexico; 17 May 2016; colls. D. Angyal \& B. Magaña. 2 individuals; Cenote Kakuel, depth 3 and 13.9 m, cavern, freshwater, $27{ }^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 10 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Kankirixche, depth 3.6 m , cavern, freshwater, $27^{\circ} \mathrm{C}$, Mucuyche, Yucatan, Mexico; 11 June 2016; colls. D. Angyal \& E. Chávez Solís. 1 individual; Cenote Santito, depth 4.0 m, cavern, freshwater, $27^{\circ} \mathrm{C}$, Kopoma, Yucatan, Mexico; 10 November 2017; colls. D. Angyal, S. Drs \& L. Liévano. 1 individual; Cenote Kankal, depth 0.3 m, cavern, freshwater, $25{ }^{\circ} \mathrm{C}$, Homun, Yucatan, Mexico; 18 November 2017; colls. D. Angyal, S. Drs, E. Chávez Solís \& L. Liévano. 1 individual; Cenote Bebelchen, depth 30.0 m, cavern, freshwater, $25^{\circ} \mathrm{C}$, Sanahcat, Yucatan, Mexico; 18 December 2017; colls. D. Angyal, L. Liévano \& S. Reyes. 1 individual; Cenote El Virgen, depth 25.0 m, cavern, freshwater, $26^{\circ} \mathrm{C}$, Sotuta, Yucatan, Mexico; 20 December 2017; colls. L. Liévano \& N. Simoes. 1 individual; Cenote Dzalbay, depth 4.3 m , cavern, freshwater, $23^{\circ} \mathrm{C}$, Sotuta, Yucatan, Mexico; 20 December 2017; colls. D. Angyal \& L. Liévano.

Previous distribution. Creaser 1938; Hobbs and Hobbs 1976; Holthuis 1977; Hobbs et al. 1977; Reddell 1977, 1981; Hobbs 1979; Pérez-Aranda 1983b; Iliffe 1992; Botello and Álvarez 2006; Botello and Álvarez 2010; Benítez 2014; Álvarez et al. 2015; Chávez Solís 2015; Chávez Solís et al. 2017; Benítez et al. 2019.

Type locality is San Isidro Cave (Yucatan). Widely distributed in cenotes and caves of Yucatan, Campeche, and Quintana Roo.

Remarks. Reddell (1981) mentions the species as an "ever-present element of fauna of pools and lakes in caves in the Yucatan Peninsula". In addition to the above listed localities, we also observed the species in cenotes Yaal Utsil, Pol Box, San Elias, Dzonotila, Flor de Liz, X'baba, Chihuo Hol, and Yax-Kis. Specimens were recorded in both cave and cavern sections, up to 38 m in depth. Benítez et al. (2019) also found individuals around and below the halocline in cenotes belonging to the Ox Bel Ha system. Creaseria morleyi is listed as "threatened" in the Mexican Red List of Threatened Species (NOM-059-SEMARNAT 2010) and as "least concern" in the IUCN Red List (De Grave et al. 2013c).

Discussion

While there are more than 3,000 registered cenotes in the state of Yucatan (SDS Yucatan census), less than five percent have been zoologically investigated. Results herein confirm that the region deserves more attention and that the geographical, bathymet-
ric, and fresh/salt water distribution of stygobiotic species is far from being fully understood. In order to contribute to the management of the vulnerable cenote ecosystems and their highly specialized endemic stygofauna, collecting as much information as possible about the biology of Yucatan aquifers would be paramount. This data should include reports on the species' distribution, density and rarity, taxonomy, ecology, as well as characteristics of their habitats related to their biology, such as the amount of epigean originated organic sources or the degree of anthropogenic pollution in cenotes.

Prior to this study, the amphipod T. cernua was only known from Quintana Roo, mostly associated with saltwater habitats in anchialine cenotes near the northeastern coastline of the Peninsula (Holsinger 1990; Rocha et al. 1998; Álvarez and Iliffe 2008; Álvarez et al. 2015). Contrary to previous findings, all individuals were found in freshwater habitats during our study (Angyal et al. 2018). Rocha et al. (1998) and Pesce and Iliffe (2002) mentioned observation records of 'thermosbaenaceans' from cenotes Yuncu, Mucuyche, Pabakal (Papakal), and Grutas de Tzab-Nah (all in Yucatan). However, these individuals had never been identified at the species level and it seems no voucher information of the potentially collected specimens is available. The present study confirms first records for T. cernua and T. unidens in the state of Yucatan. Together with the amphipod M. troglomorpha, which was discovered and described within the frame of herein presented expeditions (Angyal et al. 2018) and the new cave isopod Curassanthura yucatanensis Álvarez, Benítez, Iliffe \& Villalobos, 2019 (Álvarez et al. 2019), the list of stygobiotic crustaceans recorded for the state of Yucatan raised from 22 (in 2016) to 26. In addition, the cirolanid isopod C. yunca was only known from its type locality, but we now provide distribution data for this species in three other localities. Our results show that the stygiomysid S. cf. holthuisi has historically been unrecognized, unsampled or ignored. This specific contribution proves that inland cenotes have been understudied and distribution patterns of stygofauna are still unknown. Due to the previously lacking zoological information for the vast majority of the cenotes investigated in our study, most of the distribution records presented here are new.

A closer morphological and molecular analysis of the Typhlatya species in Yucatan is recommended in order to distinguish cryptic species that may be causing confounding biodiversity and ecological patterns in the Yucatan Peninsula.

Among the 14 crustacean species listed, prior to this study, cytochrome c oxidase subunit I sequences were publicly available only for the decapods T. mitchelli, T. pearsei, T. dzilamensis, and C. morleyi. The currently published COI barcode gene fragments can aid future molecular research on the peracarid fauna of Yucatan's cenote ecosystems by facilitating their identification, as well as in the recognition of cryptic species.

The mysid A. cenotensis, the atyid shrimps T. mitchelli and T. pearsei and the palaemonid shrimp C. morleyi are listed in the Mexican and IUCN red lists of threatened species (SEMARNAT 2010; De Grave et al. 2013a, b, c). These species are present in most cenotes throughout the Yucatan Peninsula and can be considered a selected group of species whose protection will act as an umbrella in protecting other less common ones. On the other hand, there are rare species with an extremely narrow distribution range, which are not yet under legal protection. This makes these species even more vulnerable to urbanization and environment deterioration. Therefore, we suggest the
inclusion of narrow endemic species into the national and international protection lists, such as the isopod C. yunca or the atyid shrimp T. dzilamensis.

The number of new records provided in this work shows a historic lack of biodiversity surveys in underwater caves of inland cenotes of the state of Yucatan. Most of the biodiversity and its distribution patterns are currently biased towards large populations, easily accessible sites, and touristic attractions. Our efforts yield a greater understanding of the distribution patterns of stygofauna in Yucatan cenotes.

Acknowledgements

We are grateful to Sophia Drs (Van Hall Larenstein University of Applied Sciences) for her support during the field trips and for her contribution in compiling cenote biodiversity databases. Silvia Reyes, Quetzali Hernández, Juan Baduy Infante, Rafael Acosta, Cristian Selún, Nori Velázquez Juárez, Jonathan Mondragón, Ricardo Riestra, Lorenzo Ortiz, Erick Sosa Rodríguez, and the Ecologistas sub-acuáticos de Yucatán (Subaquatic Ecologists of Yucatan) are greatly acknowledged for their assistance during the field trips and cave dives. Isaac Chacón and Ricardo Riestra (UNAM) are acknowledged for the information collected in the cenote databases. We thank Sergio Rodríguez Morales (UNAM) for providing facilities of the Chemistry Laboratory during the pretreatment of the dissected individuals. Virág Krízsik (HNHM, Laboratory of Molecular Taxonomy) is acknowledged for her professional help provided in molecular studies. We are grateful to Alberto Guerra (Nature Art) for making the photo tables. We thank László Dányi (HNHM, Department of Zoology) for the photograph of C. yunca. We would like to express our deep gratitude to the reviewers Thomas Iliffe (Texas A\&M University of Galveston) and Alejandro Martínez (Italian National Research Council) for their useful suggestions, which helped us to improve the manuscript. DA is thankful for the scholarship received from "DGAPA-UNAM Programa de Becas Posdoctorales en la UNAM, 2019". ECS is grateful for the scholarship received from CONACyT 545277/294499 through "Posgrado en Ciencias Biológicas" of the UNAM. LLB gratefully acknowledges the scholarship provided by CONACyT 864025/628560 through "Posgrado en Ciencias del Mar y Limnología" of the UNAM. Financial support was provided by project PAPIIT IN222716 "Biodiversidad y Ecología de la fauna de cenotes de Yucatán" and "Hacía un mapa de biodiversidad acuática de cenotes de la Península de Yucatán", DGAPA-PAPIIT 2019 - IN228319 to NS.

References

Álvarez F, Iliffe TM, Villalobos JL (2005) New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas and Honduras. Journal of Crustacean Biology 25(1): 81-94. https://doi.org/10.1651/C-2516

Álvarez F, Iliffe TM (2008) Fauna anquihalina de Yucatan. In: Alvarez F, Rodríguez-Almaraz R (Eds) Crustáceos de Mexico: Estado Actual de su Conocimiento. Universidad Autónoma de Nuevo León-PROMEP, 379-418.
Álvarez F, Iliffe TM, Benítez S, Brankovits D, Villalobos JL (2015) New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11(1): 1505. https://doi. org/10.15560/11.1.1505
Álvarez F, Benitez S, Iliffe TM, Villalobos JL (2019) A new species of isopod of the genus Curassanthura (Cymothoida, Anthuroide, Leptanthuridae) from anchialine caves of the Yuctan Peninsul, Mexico. Crustaceana 92(5): 545-553. https://doi.org/10.1163/1685403-00003892
Angyal D, Balázs G, Zakšek V, Krízsik V, Fišer C (2015) Redescription of two subterranean amphipods Niphargus molnari Méhely, 1927 and Niphargus gebhardti Schellenberg, 1934 (Amphipoda, Niphargidae) and their phylogenetic position. ZooKeys 509: 53-85. https:// doi.org/10.3897/zookeys. 509.9820
Angyal D, Chávez Solís EM, Magaña B, Balázs G, Simoes N (2018) Mayaweckelia troglomorpha, a new subterranean amphipod species from Yucatan State, Mexico (Amphipoda, Hadziidae). ZooKeys 735: 1-25. https://doi.org/10.3897/zookeys.735.21164
Bauer-Gottwein P, Gondwe BRN, Chauvert G, Marín LE, Rebolledo-Vieyra M, MeredizAlonso G (2011) The Yucatan Peninsula karst aquifer, Mexico. Hydrogeology Journal 19(3): 507-524. https://doi.org/10.1007/s10040-010-0699-5
Benítez SA (2014) Variación en la estructura y composición de la fauna anquihalina del sistema Ox Bel Ha (península de Yucatan) a través de un gradiente de distancia desde la zona litoral. MSc Thesis, Universidad Nacional Autónoma de Mexico, Mexico DF.
Benítez S, Iliffe TM, Quiroz-Martínez B, Álvarez F (2019) How is the anchialine fauna distributed within a cave? A study of the Ox Bel Ha System, Yucatan Peninsula, Mexico. Subterranean Biology 31: 15-28. https://doi.org/10.3897/subtbiol.31.34347
Bishop RE, Iliffe T (2009) Metabolic rates of stygobiontic invertebrates from the Tunel de la Atlantida, Lanzarote. Marine Biodiversity 39(3): 189-194. https://doi.org/10.1007/ s12526-009-0018-3
Bishop RE, Humphreys WF, Cukrov N, Zić V et al. (2015) 'Anchialine' redefined as a subterranean estuary in a crevicular or cavernous geological setting. Journal of Crustacean Biology 35(4): 511-514. https://doi.org/10.1163/1937240x-00002335
Botello A, Álvarez F (2006) Allometric growth in Creaseria morleyi (Creaser, 1936) (Decapoda: Palaemonidae), from the Yucatan Peninsula, Mexico. Caribbean Journal of Science 42: 171-179.
Botello A, Álvarez F (2010) Genetic variation in the stygobitic shrimp Creaseria morleyi (Decapoda: Palaemonidae), evidence of bottlenecks and re-invasions in the Yucatan Peninsula. Biological Journal of the Linnean Society 99(2): 315-325. https://doi.org/10.1111/ j.1095-8312.2009.01355.x

Botello A, Álvarez F (2013) Phylogenetic relationships among the freshwater genera of palaemonid shrimps (Crustacea: Decapoda) from Mexico, evidence of multiple invasions. Latin American Journal of Aquatic Research 41(4): 773-780. https://doi.10.3856/vol41-issue4-fulltext-14

Botosaneanu L (1980) Stygiomysis holthuisi found on Anguilla (Crustacea: Mysidacea). Studies on the Fauna of Curaacao and other Caribbean Islands 61(190): 128-132.
Botosaneanu L (1986) Stygofauna mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fauna inhabiting Subterranean Waters. Journal of Crustacean Biology 7(1): 203. https://doi.org/10.2307/1548640
Botosaneanu L, Iliffe TM (1999) On four new stygobitic cirolanids (Isopoda: Cirolanidae) and several already described species from Mexico and the Bahamas. Bulletin de l'Institute Royal des Sciences Naturelles de Belgique, Biologie 69: 93-123.
Botosaneanu L, Iliffe TM (2000) Two new stygobitic species of Cirolanidae (Isopoda) from deep cenotes in Yucatan. Bulletin de l'Institute Royal des Sciences Naturelles de Belgique, Biologie 70: 149-161. https://www.biotaxa.org/Zootaxa/article/view/zootaxa.1823.1.4
Botosaneanu L, Iliffe TM (2002) Stygobitic isopod crustaceans, already described or new, from Bermuda, the Bahamas, and Mexico. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie 72: 101-111. https://www.tamug.edu/cavebiology/reprints/Reprint-139.pdf
Botosaneanu L, Iliffe TM (2006) The remarkable diversity of subterranean Cirolanidae (Crustacea: Isopoda) int he peri-Carribean and Mexican Realm. Bulletin de l'Institute Royal des Sciences Naturelles de Belgique, Biologie 76: 5-26. http://biblio.naturalsciences.be/rbins-publications/bulletin-of-the-royal-belgian-institute-of-natural-sciences-biologie/76-2006/ biologie-2006-76_5-26.pdf
Bowman TE (1966) Cirolana trichostoma, a new genus and species of troglobitic cirolanid isopod from Cuba. International Journal of Speleology 2: 105-108. https://doi. org/10.5038/1827-806X.2.1.8
Bowman TE (1977) A review of the genus Antromysis (Crustacea: Mysidacea), including new species from Jamaica and Oaxaca, Mexico, and a redescription and new records for A. cenotensis. In: Reddell J (Ed) Studies on the caves and cave fauna of the Yucatan Peninsula. Association for Mexican Cave Studies Bulletin 6: 27-38.
Bowman TE, Iliffe TM, Yager J (1984) New records of the troglobitic mysid genus Stygiomysis: S. clarkei, new species, from the Caicos Islands, and S. holthuisi (Gordon) from Grand Bahama Island (Crustacea: Mysidacea). Proceedings of the Biological Society of Washington 97: 637-644. https://biodiversitylibrary.org/page/34642466
Bowman TE, Iliffe TM (1988) Tulumella unidens, a new genus and species of thermosbaenacean crustacean from the Yucatan Peninsula, Mexico. Proceedings of the Biological Society of Washington 101: 221-226. http://biodiversitylibrary.org/page/34645902
Bruce NL (1986) Cirolanidae (Crustacea: Isopoda) of Australia. Records of the Australian Museum, Supplement 6. The Australian Museum, Sydney, 239 pp. https://journals.australian-museum.net.au/bruce-1986-rec-aust-mus-suppl-6-1239/
Chávez Solí́ EM (2015) Aspectos ecológicos y etológicos de decápodos estigobios (Creaseria morleyi y Typhlatya spp.) en cenotes de Yucatan: utilizatción espaciotemporal, cambios anuales y relaciones interespecíficas. MSc Thesis, Mexico D. F., Mexico: Universidad Nacional Autónoma de Mexico.
Chávez Solís EM, Mejía-Ortíz L, Simoes N (2017) Predatory behavior of the cave shrimp Creaseria morleyi(Creaser, 1936) (Caridea: Palaemonidae), the blind hunter of the Yucatan cenotes, Mexico. Journal of Crustacean Biology. 38. https://doi.org/10.1093/jcbiol/rux098

Creaser EP (1936) Crustaceans from Yucatan, In: Pearse AS, Creaser EP, Hall FG (Eds): The Cenotes of Yucatan. Carnegie Institute of, Washington Publications 457: 117-132.
Creaser EP (1938) Larger cave crustacea of the Yucatan Peninsula. Carnegie Institute of Washington Publications 491: 159-164.
De Grave S, Álvarez F, Villalobos J (2013a) Typhlatya mitchelli. The IUCN Red List of Threatened Species 2013: e.T197618A2493242. https://doi.org/10.2305/IUCN.UK.2013-1. RLTS.T197618A2493242.en [Downloaded on 23 December 2019]
De Grave S, Villalobos J, Álvarez F (2013b) Typhlatya pearsei. The IUCN Red List of Threatened Species 2013: e.T197616A2493158. https://doi.org/10.2305/IUCN.UK.2013-1. RLTS.T197616A2493158.en [Downloaded on 23 December 2019]
De Grave S, Álvarez F, Villalobos J (2013c) Creaseria morleyi. The IUCN Red List of Threatened Species 2013: e.T198148A2513584. https://doi.org/10.2305/IUCN.UK.2013-1. RLTS.T198148A2513584.en [Downloaded on 23 December 2019]
Espinasa L, Chávez Solís EM, Mascaró M, Rosas C, Violette G (2019) A new locality and phylogeny of the stygobitic Typhlatya shrimps for the Yucatan Peninsula. Speleobiology Notes 10: 19-27. https://doi.org/10.5563/spbn.v10i0.91
Fiers F, Reid JW, Iliffe TM, Suárez-Morales E (1996) New hypogean cyclopoid copepods (Crustacea) from the Yucatan Peninsula, Mexico. Contributions to Zoology 66(2): 65102. https://doi.org/10.1163/26660644-06602001

Fišer C, Trontelj P, Luštrik R, Sket B (2009) Towards a unified taxonomy of Niphargus (Crustacea: Amphipoda): a review of morphological variability. Zootaxa 2061: 1-22.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
González-Herrera R, Sanchez-Pinto I, Gamboa-Vargas J (2002) Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeology Journal 10(5): 539-552. https://doi. org/10.1007/s10040-002-0216-6
González BC, Worsaae K, Fontaneto D (2018) Anophthalmia and elongation of body appendages in cave scale worms (Annelida: Aphroditiformia). Zoologica Scripta 47(1):106-121. https://doi.org/10.1111/2sc. 12258
Gordon I (1958) A new subterranean crustacean from the West Indies. Nature 181: 15521553. https://doi.org/10.1038/1811552a0

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. https://doi. org/10.4236/sgr2.2015.64887
Hervant F, Mathieu J, Barré H (1999) Comparative study on the metabolic responses of subterranean and surface-dwelling amphipods to long-term starvation and subsequent refeeding. Journal of Experimental Biology 202: 3587-3595. https://jeb.biologists.org/content/202/24/3587
Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. Journal of Experimental Biology 204: 269281. https://jeb.biologists.org/content/204/2/269

Hobbs HH III, Hobbs HH Jr (1976) On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). Smithsonian Contributions to Zoology 240: 1-23. https://doi.org/10.5479/si.00810282.240
Hobbs HH III, Hobbs HH Jr, Daniel MA (1977) A review of the troglobic decapod crustaceans of the Americas. Smithsonian Contributions to Zoology Number 244, Washington, 196 pp. https://doi.org/10.5479/si.00810282.244
Hobbs HH III (1979) Additional notes on cave shrimps (Crustacea: Atydae and Palaemonidae) from the Yucatan Peninsula, Mexico. Proceedings of the Biological Society of Washington 92(3): 618-633.
Holsinger JR (1977) A new genus and two new species of subterranean amphipod crustaceans (Gammaridae s. lat.) from the Yucatan Peninsula in Mexico. Association for Mexican Cave Studies, Bulletin 6: 15-25.
Holsinger JR (1990) Tuluweckelia cernua, a new genus and species of stygobiont amphipod crustacean (Hadziidae) from anchialine caves on the Yucatan Peninsula in Mexico. Beaufortia 41: 97-107.
Holthuis LB (1977) Cave shrimps (Crustacea: Decapoda, Natantia) from Mexico. Accademia Nazionale dei Lincei Quaderno 171: 173-195.
Horwitz P, Knott B, Williams WD (1995) A preliminary key to the malacostracan families (Crustacea) found in Australian inland waters. Research Centre for Freshwater Ecology Identification Guide No. 4.Albury, 38 pp.
Hunter RL, Webb MS, Iliffe TM, Bremer JRA (2007): Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atydae) in the Caribbean Sea and western Atlantic. Journal of Biogeography. https://doi.org/10.1111/j.13652699.2007.01767.x

Iliffe TM (1992) An annotated list of the troglobitic, anchialine and freshwater cave fauna of Quintana Roo. In: Navarro D, Suárez-Morales E (Eds) Diversidad Biológica en la Reserva de la Biosfera de Sian Ka’an, Quintana Roo, Mexico, Vol. II. CIQRO, Chetumal, Mexico, 197-215. https://www.academia.edu/5416051/An_annotated_list_of_the_troglobitic_ anchialine_and_freshwater_fauna_of_Quintana_Roo
Iliffe TM (1993) Fauna troglobia acuatica de la Peninsula de Yucatan. pp. 673-686 in: Biodiversidad marina y costera de Mexico. S.I. Salazar-Vallejo \& N.E. González (eds.) Comision National para el Conocimiento y Uso de la Biodiversidad y CIQRO, México, 865 pp .
Iliffe TM, Botosaneanu L (2006) The remarkable diversity of subterranean Cirolanidae (Crustacea: Isopoda) in the peri-Caribbean and Mexican realm. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique. Biologie 76: 5-26. https://dare.uva.nl/ search?identifier $=51551 \mathrm{~d} 10-097 \mathrm{~d}-4609-832 \mathrm{f}-74 \mathrm{bde6066add}$
Kallmeyer DE, Carpenter JH (1996) Stygiomysis cokei, new species, a troglobitic mysid from Quintana Roo, Mexico (Mysidacea: Stygiomysidae). Journal of Crustacean Biology 16: 418-427. https://doi.org/10.2307/1548897
Lowry JK, Myers AA (2013) A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610(1): 1-80. https://doi.org/10.11646/ zootaxa.3610.1.1

Mejía-Ortíz LM, Hartnoll RG, López-Mejía M (2006) Progressive troglomorphism of ambulatory and sensory appendages in three Mexican cave decapods. Journal of Natural History 40(5-6): 255-264. https://doi.org/10.1080/00222930600628382
Mejía-Ortíz LM, López-Mejía M, Pakes J, Hartnoll G, Zarza-González E (2013) Morphological adaptations to anchialine environments in species of five shrimp families (Barbouria yanezi, Agostocris bozanici, Procaris mexicana, Calliasmata nohochi and Typhlatya pearsei). Crustaceana 86(5): 578-593. https://doi.org/10.1163/15685403-00003197
Mercado-Salas NF, Morales-Vela B, Suárez-Morales E, Iliffe T (2013) Conservation status of the inland aquatic crustaceans in the Yucatan Peninsula, Mexico: shortcomings of a protection strategy. Aquatic conservation: Marine and freshwater ecosystems. Wiley Online Library. https://doi.org/10.1002/aqc. 2350
Meland K, Mees J, Porter M, Wittmann KJ (2015) Taxonomic Review of the orders Mysida and Stygiomysida (Crustacea, Peracarida). PLoS ONE 10(4): e0124656. https://doi. org/10.1371/journal.pone. 0124656
Nicholas G (1962) Checklist of troglobitic organisms of Middle America. American Midland Naturalist 68(1): 165-188. https://doi.org/10.2307/2422643
Olesen J, Boesgaard T, Iliffe TM (2015) The unique dorsal Brood pouch of Thermosbaenacea (Crustacea, Malacostraca) and description of an advanced developmental stage of Tulumella unidens from the Yucatan Peninsula (Mexico), with a discussion of mouth part homologies to other Malacostraca. PLoS ONE 10(4): e0122463. https://doi.org/10.1371/ journal.pone. 0122463
Ortiz M, Cházaro-Olvera S (2015) A new species of cirolanoid isopod (Peracarida, Isopoda) collected from cenote Aerolito, Cozumel Island, Northwestern Caribbean. Crustaceana 88(2): 152-163. https://doi.org/10.1163/15685403-00003402
Pakes MJ, Weis AK, Mejía-Ortiz L (2014) Arthropods host intracellular chemosynthetic symbionts, too: cave study reveals an unusual form of symbiosis. Journal of Crustacean Biology 34(3): 334-341. https://doi.org/10.1163/1937240X-00002238
Pérez-Aranda L (1983a) Atyidae: Typhlatya pearsei. Fauna de los cenotes de Yucatán 3. Universidad de Yucatan, Mérida, 11 pp .
Pérez-Aranda L (1983b) Palaemonidae: Creaseria morleyi. Fauna de los cenotes de Yucatan 1. Universidad de Yucatan, Mérida, 11 pp.
Pérez-Aranda L (1984a) Atyidae: Typhlatya mitchelli. Fauna de los cenotes de Yucatan 5. Universidad de Yucatan, Mérida, 14 pp .
Pérez-Aranda L (1984b) Cirolanidae: Cirolana anops. Fauna de los cenotes de Yucatan 7. Universidad de Yucatan, Mérida, 13 pp .
Pesce GL, Iliffe TM (2002) New records of cave-dwelling mysids from the Bahamas and Mexico with description of Palaumysis bahamensis n. sp. (Crustacea: Mysidacea). Journal of Natural History 36(3): 265-278. https://doi.org/10.1080/00222930010005033
Pohlman JW, Cifuentes LA, Iliffe TM (2000) Food web dynamics and biogeochemistry of anchialine caves: a stable isotope approach. In: Wilkens H, Culver DC, Humphreys WF (Eds) Ecosystems of the World. 30. Subterranean Ecosystems.: Elsevier Science, Amsterdam, 345-357.

Reddell JR (1977) A preliminary survey of the caves of the Yucatan Peninsula. In: Reddell JR (Ed.) Survey of the caves and cave fauna of the Yucatan Peninsula. Association for Mexican Cave Studies, Bulletin 6: 215-296.
Reddell JR (1981) A review of the cavernicole fauna of Mexico, Guatemala, and Belize. Texas Memorial Museum, The University of Texas at Austin, Bulletin 27, 327 pp. https://www. mexicancaves.org/other/TMM_B27.pdf
Rocha CEF, Iliffe TM, Reid JW, Suárez-Morales E (1998) A new species of Halicyclops (Copepoda, Cyclopoida, Cyclopidae) from cenotes of the Yucatan Peninsula, Mexico, with an identification key for the species of the genus from the Caribbean region and adjacent areas. Sarsia 83: 387-399. https://doi.org/10.1080/00364827.1998.10413698
Rocha CEF, Iliffe TM, Reid JW, Suárez-Morales E (2000) Prehendocyclops, a new genus of the subfamily Halicyclopinae (Copepoda, Cyclopoida, Cyclopidae) from cenotes of the Yucatan Peninsula, Mexico. Sarsia 85: 119-140. https://doi.org/10.1080/00364827.200 0.10414562

Rocha-Ramírez A, Álvarez F, Alcocer J, Chávez-López R, Escobar-Briones E (2009) Annotated list of the aquatic epicontinental isopods of Mexico (Crustacea: Isopoda). Revista Mexicana de Biodiversidad 80: 615-631. https://doi.org/10.22201/ib.20078706e.2009.003.159
Ruíz-Cancino G, Mejía-Ortíz LM, Lozano-Álvarez E (2013) Dinámica poblacional de Creaseriella anops (Crustacea: Isopoda) en cenotes dulceacuícolas de Quintana Roo. In: LópezMejía M, Mejía-Ortíz LM (Eds) La carcinología en México: El legado del Dr. Alejandro Villalobos 30 años después. Universidad de Quintana Roo, México DF, 180 pp.
Sánchez-Rodríguez G (2008) Distribución de la abundancia del isópodo Creaseriella anops (Creaser, 1936) en sistemas anquihalinos de Quintana Roo, México. BSc Tesis, Universidad Nacional Autónoma de México, Facultad de Ciencia, 68 pp.
Schmitter-Soto JJ, Comin FA, Escobar-Briones E, Herrera-Silveira J, Alcocer J, Suárez-Morales E, Elías-Gutiérrez M, Díaz-Arce V, Marín LE, Steinich (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467: 215-228. https://doi.org/10.1007/978-94-010-0415-2_19
SEMARNAT (2010) Norma Oficial Mexicana Nom-059-Semarnat-2010, Protección ambi-ental- Especies nativas de Mexico de flora y fauna silvestres- Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio- Lista de especies en riesgo. Diario Oficial, 30 de diciembre de 2010. https://www.dof.gob.mx/normasOficiales/4254/semarnat/ semarnat.htm
Suárez-Morales E, Rivera Arriaga E (1998) Hidrología y fauna acuática de los cenotes de la Península de Yucatan. Revista de la Sociedad Mexicana de Historia Natural 48: 37-47. http://bibliotecasibe.ecosur.mx/sibe/book/000054250
Suárez-Morales E, Ferrari FD, Iliffe TM (2006) A new epacteriscid copepod (Calanoida: Epacteriscidae) from the Yucatan Peninsula, Mexico, with comments on the biogeography of the family. Proceedings of the Biological Society of Washington 119(2): 222-238. https://doi.org/10.2988/0006-324X(2006)119[222:ANECCE]2.0.CO;2
Tinnizi NM, Quddusi BK (1993) An illustrated key to Malacostraca (Crustacea) of the Northern Arabian Sea. Pakistan Journal of Marine Sciences 2(1): 49-66. https://aquaticcommons.org/16058/1/PJMS2.1_049.pdf

Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). A study on their morphology, taxonomy, phylogeny and biogeography. Zoologische Verhandelingen 291(3): 1-338. https://www.jstor.org/stable/20088754
Webb MS (2003) Intraspecific relationships among the stygobitic shrimp Typhlatya mitchelli, by analyzing sequence data from mitochondrial DNA. MSc Thesis, Texas, United States of America: Texas A\&M University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1 .1.174.684\&rep=rep $1 \&$ type=pdf
Yager J, Madden ME (2010) Preliminary analysis of the ecology of a cenote in Quintana Roo, Mexico, characterized by its extraordinary quantities of remipedes. Karst Frontiers, Karst Water Institute Special Publication 7: 138-140.

Four new species of the primitively segmented spider genus Qiongthela from Hainan Island, China (Mesothelae, Liphistiidae)

Li Yu', Fengxiang Liu ${ }^{2}$, Zengtao Zhang ${ }^{2}$, Yan Wang ${ }^{3}$, Daiqin Li^{4}, Xin Xu ${ }^{1,2}$
I College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan Province, China 2 State Key Laboratory of Biocatalysis and Enzyme Engineering, and Centre for Behavioural Ecology and Evolution (CBEE), School of Life Sciences, Hubei University, 368 Youyi Road, Wuhan 430062, Hubei Province, China 3 Yinggeling Nature Reserve, Baisha Li Autonomous County, 572800, China 4 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore

Corresponding author: Xin Xu (xuxin_09@163.com), Daiqin Li (dbslidq@nus.edu.sg)

Academic editor: Jeremy Miller \| Received 23 November 2019 | Accepted 7 January 2020 | Published 12 February 2020
http://zoobank.org/37716531-5DC8-498E-A635-8C128EB345AA
Citation: Yu L, Liu F, Zhang Z, Wang Y, Li D, Xu X (2020) Four new species of the primitively segmented spider genus Qiongthela from Hainan Island, China (Mesothelae, Liphistiidae). ZooKeys 911: 51-66. https://doi.org/10.3897/ zookeys.911.48703

Abstract

The primitively segmented spider genus Qiongthela Xu \& Kuntner, 2015 consists of seven species that are distributed in Hainan Island, China and southern Vietnam. Of the seven species, five are known from Hainan Island. In this study, four more Qiongthela species collected from Hainan Island are diagnosed and described as new to science based on morphological characters: Q. baoting sp. nov. (ôq), Q. qiongzhong GenBank accession codes of the DNA barcode gene, cytochrome c oxidase subunit I (COI), for all the type specimens are also provided.

Keywords

Abdominal tergites, COI, genital morphology, taxonomy, trapdoor spiders

[^2]
Introduction

As the sole extant lineage of the suborder Mesothelae, the primitively segmented spider family Liphistiidae is unique in having segmented plates on the abdomen (i.e., abdominal tergites) and in bearing spinnerets centrally on the ventral abdomen (Pocock 1892; Platnick and Gertsch 1976; Coddington and Levi 1991; Haupt 2003; Xu et al. 2015a, b). Its members live in underground burrows with a trapdoor, are long-lived, and have a limited dispersal ability (Bristowe 1976; Coddington and Levi 1991; Haupt 2003; Xu et al. 2015a, b). Liphistiidae is relatively species-poor, currently containing 131 described species in eight genera of two subfamilies, Liphistiinae Thorell, 1869 and Heptathelinae Kishida, 1923. It is constrained to East (China and Japan) and Southeast (Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand, and Vietnam) Asia (Xu et al. 2015a, b, 2016; World Spider Catalog 2020). The subfamily Heptathelinae contains seven genera: Ganthela Xu \& Kuntner, 2015 and Sinothela Haupt, 2003 limited to China only, Heptathela Kishida, 1923 and Ryuthela Haupt, 1982 restricted to Japan only, and the other three genera (Qiongthela Xu \& Kuntner, 2015, Songthela Ono, 2000, and Vinathela Ono, 2000) occur in both China and Vietnam (Xu et al. 2015a, b, c, 2016, 2017a, b; World Spider Catalog 2020).

The genus Qiongthela was established by Xu and Kuntner in 2015 based on both morphological and molecular characters (Xu et al. 2015a, b). Until now, there are only seven named species, five of which are known from Hainan Island, China: Q. baishensis Xu, 2015, Q. bawang Xu, Liu, Kuntner \& Li, 2017, Q. jianfeng Xu, Liu, Kuntner $\& \mathrm{Li}, 2017$, Q. wuzhi Xu, Liu, Kuntner \& Li, 2017, and Q. yini Xu, Liu, Kuntner \& Li, 2017 (Fig. 1C); the other two of which, Q. australis (Ono, 2002) and Q. nui (Schwendinger \& Ono, 2011), are distributed in southern Vietnam (Fig. 1C) (Ono 2002; Schwendinger and Ono 2011; Xu et al. 2015a, b, 2017b; Word Spider Catalog 2020). In this study, we diagnosed and described four more new Qiongthela species collected from Hainan Island based on both male and female genital morphology. In addition, we also provided the COI sequences of the holotypes for facilitating future identification.

Materials and methods

All specimens were collected from Hainan Island, China. All the type and voucher specimens are deposited at the College of Life Sciences, Hunan Normal University (HNU), Changsha, Hunan Province, China. We collected the spiders alive and fixed them in absolute ethanol if they were adults. For juvenile/subadult males, we took them back to the laboratory and reared them until they reached adulthood. We removed the right four legs of adults, preserved them in 100% ethanol and kept at $-80^{\circ} \mathrm{C}$ for molecular work. We preserved the remains in 80% ethanol as vouchers for morphological identification and examination.

Figure I. General somatic morphology of Qiongthela baoting sp. nov. and a map showing the type localities of seven known Qiongthela species and all sites of four new Qiongthela species in southern Vietnam and Hainan Island, China. A female (XUX-2017-196) B male (XUX-2017-195) C geographical map. Seven known species are indicated in brown solid circles, and four new species are indicated in red, blue, green, and black solid circles.

We examined and dissected the specimens using an Olympus SZ51 stereomicroscope. We cleaned the female genitalia in $10 \mathrm{mg} / \mathrm{ml}$ trypsase (Bomei Biotech Company, Hefei, Anhui, China) for at least 3 hours at the room temperature to dissolve soft tissues. We took the photos under the Olympus BX53 compound microscope using a digital camera CCD, and generated compound focussed images using Helicon Focus v6.7.1. All measurements were carried out under a digital camera MC170HD mounted on stereomicroscope Leica M205C and given in millimeters. Leg and palp measurements are given in the following order: leg total length (femur + patella + tibia + metatarsus + tarsus), palp total length (femur + patella + tibia + tarsus).

Abbreviations used are as follows: ALE = anterior lateral eyes; AME = anterior median eyes; $\mathrm{BL}=$ body length; $\mathrm{CL}=$ carapace length; $\mathrm{Co}=$ conductor; $\mathrm{CT}=$ contrategulum; $\mathrm{CW}=$ carapace width; $\mathrm{E}=$ embolus; $\mathrm{OL}=$ opisthosoma length; $\mathrm{OW}=$ opisthosoma width; $\mathrm{PC}=$ paracymbium; $\mathrm{PLE}=$ posterior lateral eyes; $\mathrm{PME}=$ posterior median eyes; $\mathrm{RC}=$ receptacular cluster; $\mathrm{T}=$ tegulum.

Taxonomy

Genus Qiongthela Xu \& Kuntner, 2015

Type species. Qiongthela baishensis Xu, 2015
Diagnosis. Qiongthela males can be distinguished from those of all other Heptathelinae genera by the blade-like conductor narrowing towards the tip (Figs 2A-D, 3A-E, $4 \mathrm{~A}-\mathrm{G}, 6 \mathrm{~A}-\mathrm{E}$), and by the tegulum bearing two obvious apophyses (Figs 2A-E, 3A-E, 4A-E, 6A-E). Qiongthela females differ from those of all other Heptathelinae genera by two paired receptacular clusters with numerous granula (Fig. 5A-H) (Xu et al. 2017b).

Species composition. Q. australis (Ono, 2002), Q. baishensis Xu, 2015, Q. bawang Xu, Liu, Kuntner \& Li, 2017, Q. jianfeng Xu, Liu, Kuntner \& Li, 2017, Q. nui (Schwendinger \& Ono, 2011), Q. wuzhi Xu, Liu, Kuntner \& Li, 2017, Q. yini Xu, Liu, Kuntner \& Li, 2017.

Distribution. China (Hainan), Vietnam.

Qiongthela baoting sp. nov.

http://zoobank.org/C104261D-DBFB-4A70-84FD-5CF0BD15B82E Figure 2

Type material. Holotype: CHINA • 1 § ; Hainan Province, Baoting County, Maogan Town, Zaye Village; 18.60° N, 109.57° E; alt. 410 m; 21 August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-195 (matured on 25 August 2018 at HNU). Paratype: CHINA 1 q; same data as for holotype; XUX-2017-196.

Diagnosis. Male of Q. baoting sp. nov. can be distinguished from that of Q. baishensis, Q. jianfeng, Q. nui, Q. wuzhi, and the other three new species by the con-

Figure 2. Male and female genital anatomy of Qiongthela baoting sp. nov. A palp prolateral view \mathbf{B} palp ventral view \mathbf{C} palp retrolateral view $\mathbf{D}-\mathbf{F}$ palp distal view \mathbf{G} vulva dorsal view \mathbf{H} vulva ventral view. A-F XUX-2017-195 (holotype) G-H XUX-2017-196. Scale bars: 0.5 mm .
ductor with a pointed apex (Fig. 2A-D); from all the other Qiongthela species by the contrategulum with four edges distally (Fig. 2A, D), and by the marginal apophysis of the tegulum with a flake-like, semi-translucent apex (Fig. 2A, D, F). Female of Q. baoting sp. nov. differs from that of Q. baishensis and Q. nui by the base of the lateral receptacular clusters close to the inners, and by the genital stalks of the inners thicker than those of the laterals (Fig. 2G, H); from the other Qiongthela species by two paired receptacular clusters all along the anterior margin of the bursa copulatrix, with distinct genital stalks, and the inners larger than the laterals (Fig. 2G, H).

Description. Male (holotype, Fig. 1B). Carapace dark brown; opisthosoma light brown, with 12 dark brown tergites, close to each other, the first 2-7 larger than others, and the fourth largest; sternum narrow, much longer than wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove bearing 9 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 12.39, CL 6.17, CW 5.62, OL 6.44, OW 4.52; ALE > PLE > PME > AME; leg I 17.60 $(5.15+1.65+3.82+4.28+2.69)$, leg II $16.95(4.71+1.48+3.67+4.30+2.79)$, leg III $19.26(4.56+1.31+3.73+6.04+3.63)$, leg IV $25.77(6.52+1.61+5.32+7.68+4.64)$.

Palp. Cymbium with a short, thick projection dorsally (Fig. 2F); paracymbium unpigmented and unsclerotised prolaterally, with numerous setae at the tip (Fig. 2A, B). Contrategulum with an irregular dentate edge proximally and four edges distally: the inner edge sharp, very short; the middle two edges serrate, one towards the proximal portion of contrategulum, the other ended at the centre of the contrategulum; the outer edge short, smooth, slightly sclerotised (Fig. 2A, D, F). The marginal apophysis of tegulum long, wide basally, with a flake-like and semi-translucent apex distally (Fig. $2 \mathrm{~A}, \mathrm{D}$), a proximally directed terminal apophysis of tegulum with smooth margin, narrowing to a slightly hooked apex (Fig. 2A-E). Conductor situated ventro-proximally on embolus, basal portion fused with embolus, distal free narrowing to a pointed apex (Fig. 2A-E). Embolus largely sclerotised, with a wide, flat opening of sperm duct distally (Fig. 2A, D, E).

Female (Fig. 1A). Carapace dark brown; opisthosoma reddish brown, with 12 redbrown tergites, close to each other, the first $2-7$ larger than the others, and the fourth largest; sternum narrow, nearly twice as long as wide; a few fine pointed hairs running over the ocular area; chelicerae robust with promargin of cheliceral groove containing 10 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 16.35, CL 7.30, CW 6.12, OL 7.59, OW 6.25; ALE > PLE > PME > AME; palp $10.09(3.66+1.01+2.60+2.82)$, leg I $11.78(3.69+1.16+3.02+2.35+1.57)$, leg II $12.34(3.94+1.44+2.69+2.58+1.70)$, leg III $10.99(3.21+1.04+2.35+2.90$ + 1.47), leg IV $20.26(5.85+1.93+4.17+5.45+2.86)$.

Female genitalia. Two pairs of receptacular clusters along the anterior margin of the bursa copulatrix, close to each other, the inner ones distinctly larger than the laterals, with genital stalks thicker than those of the laterals (Fig. 2G, H).

Etymology. The species epithet, a noun in apposition, refers to the type locality.
Distribution. Hainan (Baoting), China.
GenBank accession number. Holotype (XUX-2017-195): MN911989.

Qiongthela qiongzhong sp. nov.

http://zoobank.org/09106528-8A15-461F-9042-3026C7C9E099
Figure 3
Type material. Holotype: CHINA • 1 § ; Hainan Province, Qiongzhong County, Yinggen Town, Chaocan Village; $19.08^{\circ} \mathrm{N}, 109.74^{\circ} \mathrm{E}$; alt. 440 m ; 15 August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-156 (matured on 6 November 2017 at HNU). Paratypes: CHINA • 2 ふ̃, 2 Q q; same data as for holotype; XUX-2017159, 161 ($\widehat{0}$ matured on 6 November 2017 at HNU), XUX-2017-163 (q matured on 3 June 2018 at HNU), XUX-2017-158. 6 § ; Hainan Province, Qiongzhong County, Yinggen Town, Nabai Village; $19.03^{\circ} \mathrm{N}, 109.76^{\circ} \mathrm{E}$; alt. $320 \mathrm{~m} ; 14$ August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-148, 151, 154 (matured on 6 November 2017 at HNU), XUX-2017-149, 155 (matured on 10 November 2017 at HNU), XUX-2017-150 (matured on 14 January 2018 at HNU) • 1 ; ; Hainan Province, Qiongzhong County, Hongmao Town, Caohui Village; $19.03^{\circ} \mathrm{N}, 109.65^{\circ} \mathrm{E}$; alt. 345 m; 14 August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-144 • 2 $0^{\top} 0^{\top}, 2$ O + ; same locality as for holotype; $19.08^{\circ} \mathrm{N}, 109.74^{\circ} \mathrm{E}$; alt. $420 \mathrm{~m} ; 17$ August 2019; D. Li, F.X. Liu, X. Xu and L. Yu leg.; XUX-2019-111 ($\widehat{ }$, matured on 16 October 2019 at HNU), XUX-2019-112 ($\widehat{3}$, matured on 23 October 2019 at HNU), XUX-2019-108, 109.

Diagnosis. Males of Q. qiongzhong sp. nov. resemble those of Q. yinggezui sp. nov., but can be distinguished from those of the latter by the marginal apophysis of the tegulum with a blunt apex (Fig. 3A, D); from Q. baoting sp. nov. by the tegulum marginal apophysis with a non-translucent apex (Fig. 3A, D), by the contrategulum with two edges distally (Fig. 3A, D), and by the cymbial projection long and thin (Fig. 3G); from Q. australis by the conductor with a slightly bent apex (Fig. 3C, E, G), and by the contrategulum lacking beak-like extension (Fig. 3F); from Q. jianfeng by the terminal apophysis of the tegulum abruptly narrowed distally (Fig. 3A-C); from Q. nui, Q. sanya sp. nov., and Q. wuzhi by the marginal apophysis of the tegulum with a blunt apex (Fig. 3A, D). Females of Q. qiongzhong sp. nov. can be distinguished from those of Q. bawang and Q. jianfeng by the receptacular clusters with indistinct genital stalks (Fig. 3H, J); from those of Q. baishensis, Q. baoting sp. nov., Q. nui, Q. yini, and Q. wuzhi by the similar-sized receptacular clusters or the laterals slightly larger than the inners (Fig. 3H-M).

Description. Male (holotype). In alcohol carapace light reddish brown; opisthosoma light brown, with brown 12 tergites, close to each other, the first $2-7$ larger than others, and the fourth largest; sternum narrow, nearly twice as long as wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 10 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 13.34, CL 6.13, CW 5.61, OL 7.17, OW 5.50; ALE > PLE $>$ PME $>$ AME; leg I $16.64(4.88+1.54+4.04+4.03+2.15)$, leg II $16.25(4.62+$ $1.32+3.60+4.51+2.20)$, leg III $17.39(4.57+1.34+3.48+5.32+2.68)$, leg IV $22.50(6.06+1.49+5.11+6.81+3.04)$.

Figure 3. Male and female genital anatomy of Qiongthela qiongzhong sp. nov. A palp prolateral view B palp ventral view \mathbf{C} palp retrolateral view $\mathbf{D}-\mathbf{G}$ palp distal view $\mathbf{H}-\mathbf{J}$ vulva dorsal view $\mathbf{K}-\mathbf{M}$ vulva ventral view. A-C, G XUX-2017-156 (holotype) D-F XUX-2017-159 H, K XUX-2017-158 I, L XUX-2017-144 J, M XUX-2017-163. Scale bars: 0.5 mm .

Palp. Cymbium with a long, thin projection dorsally (Fig. 3G); paracymbium unpigmented and unsclerotised prolaterally, with numerous setae at the tip (Fig. 3A, B). Contrategulum with a proximally irregular dentate edge and two distal edges: the inner one irregularly dentate, and the outer one sharp, semi-translucent (Fig. 3A, D-F). The marginal apophysis of tegulum with a blunt, slightly dentate apex distally, a proximally directed terminal apophysis of tegulum with several denticles and an abruptly narrowed and slightly hooked apex (Fig. 3A-E). Conductor situated ventro-proximally on embolus, the basal portion fused with embolus, distal free, narrowing to a slightly bent apex (Fig. 3A-C, E). Embolus largely sclerotised, retrolaterally with numerous longitudinal ribs, and with a wide, flat sperm duct opening distally (Fig. 3A, D, F).

Female (XUX-2017-158). In alcohol carapace reddish brown; opisthosoma brown; opisthosoma with 12 dark brown tergites, separated from each other, the first 2-7 larger than others, and the fourth largest; sternum narrow, nearly twice as long as wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 10 strong denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 16.59, CL 6.93, CW 6.18, OL 9.48, OW 7.83; ALE > PLE > PME > AME; palp $11.02(3.80+1.20+2.86+3.16)$, leg I $13.69(4.53+1.52$ $+2.99+2.87+1.77)$, leg II $12.61(3.80+1.39+2.77+2.78+1.87)$, leg III 12.06 $(3.71+1.04+2.46+3.27+1.58)$, leg IV $20.31(6.08+1.67+4.24+5.55+2.77)$.

Female genitalia. Two pairs of receptacular clusters along the anterior margin of the bursa copulatrix, receptacular clusters similar size or the inner ones slightly smaller than the lateral ones, with indistinct genital stalks (Fig. 3H-M).

Variation. Males and females vary in body size. The range of measurements in males $(N=11)$: BL 12.43-17.24, CL 5.99-7.80, CW 5.61-7.12, OL 6.52-9.52, OW 4.67-7.02; females ($N=5$): BL 9.93-16.59, CL 4.91-7.38, CW 4.25-6.51, OL 4.93-9.48, OW 3.48-7.83. In addition, female genitalia show considerable intraspecific variation: the receptacular clusters vary in shape: triangular (Fig. 3H, J), or oval (Fig. 3I, L); the ventral side of the bursa copulatrix with two small granula (Fig. 3K); the posterior part of genital area arched (Fig. 3I, L), or with a slightly notch in the middle (Fig. 3J, M).

Etymology. The species epithet, a noun in apposition, refers to the type locality.
Distribution. Hainan (Qiongzhong), China.
GenBank accession number. Holotype (XUX-2017-156): MN911987.

Qiongthela sanya sp. nov.

http://zoobank.org/F46F043A-D2BD-4BE0-B24D-771C53F26BDB
Figures 4, 5

Type material. Holotype: CHINA • 1 §; Hainan Province, Sanya City, Tianya District, Zhaka Village; $18.50^{\circ} \mathrm{N}, 109.41^{\circ} \mathrm{E}$; alt. 240 m ; 22 August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-219. Paratypes: CHINA • 1 q; same data as for holotype; XUX-2017-218 • 1 ; Hainan Province, Sanya City, Heshangling; $18.35^{\circ} \mathrm{N}$, 109.32° E; alt. 130 m ; 1 August 2017; D. Li, F.X. Liu, Z.T. Zhang and X. Xu leg.;

Figure 4. Male genital anatomy of Qiongthela sanya sp. nov. A palp prolateral view B palp ventral view C palp retrolateral view D-G palp distal view. A-C, G XUX-2017-219 (holotype) D-F XUX-2019134. Scale bars: 0.5 mm .

XUX-2017-025 • 1 §, 2 Q \uparrow; Hainan Province, Sanya City, Tianya District, Baoqian Village; $18.39^{\circ} \mathrm{N}, 109.42^{\circ}$ E; alt. $195 \mathrm{~m} ; 22$ August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-205 (ơ matured on 29 October 2017 at HNU), XUX-2017-202, $209 \cdot 1$ §, 10 q q; Hainan Province, Sanya City, Tianya District, Nandao Farm, Sanmudong; $18.44^{\circ} \mathrm{N}, 109.40^{\circ} \mathrm{E}$; alt. $200 \mathrm{~m} ; 21$ August 2019; D. Li, F.X. Liu, X. Xu and L. Yu leg.; XUX-2019-134 (ô matured on 2 October 2019 at HNU), XUX-2019136 to $137 \mathrm{H} \cdot 9$ q q; Hainan Province, Sanya City, Tianya District, Nandao Farm, Haiyan Group; $18.45^{\circ} \mathrm{N}, 109.40^{\circ} \mathrm{E}$; alt. $215 \mathrm{~m} ; 22$ August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-214 to 217, XUX-2017-221, 222, XUX-2017-225 to 227 - 1 ; Hainan Province, Sanya City, Tianya District, between Hongxing Farm and Zhaka Village; $18.50^{\circ} \mathrm{N}, 109.41^{\circ} \mathrm{E}$; alt. 235 m ; 22 August 2017; D. Li, F.X. Liu and X. Xu leg.; XUX-2017-220 • 1 ; ; Hainan Province, Sanya City, Tianya District, Nandao Farm, Haiying Group; $18.43^{\circ} \mathrm{N}, 109.39^{\circ}$ E; alt. $200 \mathrm{~m} ; 21$ August 2019; D. Li, F.X. Liu, X. Xu and L. Yu leg.; XUX-2019-131.

Diagnosis. Males of Q. sanya sp. nov. can be distinguished from those of Q. baoting sp. nov. by the longer tegulum marginal apophysis with a non-translucent apex (Fig. 4A, D), and by the conductor with a bent apex (Fig. 4C, E, F, G); from those of the other Qiongthela species by the conductor base with a triangular apophysis ventrally (Fig. 4A-E). Females of Q. sanya sp. nov. can be distinguished from Q. australis, Q. yini and Q. yinggezui sp. nov. by the inner receptacular clusters smaller than the lateral ones (Fig. 5A-H); from those of the other Qiongthela species by the inner receptacular clusters along the anterior margin of the bursa copulatrix, the laterals located slightly on the dorsal wall of the bursa copulatrix, and by the trapezoidal bursa copulatrix (Fig. 5A-H).

Description. Male (holotype). In alcohol carapace reddish dark; opisthosoma brown, with 12 reddish dark tergites, close to each other, the first $2-7$ larger than others, and the fourth largest; sternum narrow, nearly twice as long as wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 9 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 13.40, CL 6.47, CW 5.87, OL 6.80, OW 5.20; ALE > PLE $>$ PME > AME; leg I $22.06(6.30+1.62+5.26+5.97+2.90)$, leg II $20.17(5.16+$ $1.50+4.81+5.77+2.94)$, leg III $22.02(5.65+1.62+4.41+6.83+3.52)$, leg IV $28.13(7.15+1.87+6.00+8.93+4.17)$.

Palp. Cymbium with a short projection dorsally (Fig. 4G); prolateral side of paracymbium unpigmented and unsclerotised, with numerous setae at the tip (Fig. 4A-C). Contrategulum with two distal edges: the inner one strongly dentate, and the outer one smooth, sharp, semi-translucent (Fig. 4A, D, F). Tegulum with a long, pointed, distally directed marginal apophysis, the proximally directed terminal apophysis with a dentate margin and continuously narrowing to a rounded, hooked apex (Fig. 4A-E). Conductor situated ventro-proximally on embolus, fused with embolus at the basal portion, distal free narrowing to a bent apex (Fig. 4B, C, E-G); conductor base with a triangular apophysis ventrally (Fig. 4A-E). Embolus largely sclerotised, with a wide, flat sperm duct opening distally, retrolaterally with numerous longitudinal ribs (Fig. 4B, C, E).

Female (XUX-2017-215). In alcohol carapace reddish dark; opisthosoma dark brown, with 12 reddish dark tergites, close to each other, the first $2-7$ larger than others, and the fourth largest; sternum narrow, much longer than wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 10 strong denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 25.50, CL 11.95, CW 10.97, OL 13.00, OW 10.75; ALE > PLE > PME > AME; palp $18.86(6.35+2.20+4.73+5.58)$, leg I $23.55(8.14+3.11+5.51$ $+4.44+2.35)$, leg II $21.33(7.25+2.68+4.87+4.25+2.28)$, leg III $22.43(7.19+$ $2.50+4.99+4.98+2.78), \operatorname{leg}$ IV $34.17(10.27+3.17+7.11+9.07+4.55)$.

Female genitalia. The inner receptacular clusters along the anterior margin of the bursa copulatrix, the lateral ones located slightly on the dorsal wall of the bursa copulatrix; the inner ones smaller than the lateral ones, with short or long genital stalks. The bursa copulatrix trapezoidal (Fig. 5A-H).

Variation. Males and females vary in body size. The range of measurements in males $(N=3)$: BL 13.40-15.01, CL 6.47-7.21, CW 5.87-6.53, OL 6.16-7.53, OW

Figure 5. Female genital anatomy of Qiongthela sanya sp. nov. A, B, E, F vulva dorsal view C, D, G, H vulva ventral view. A, C XUX-2017-215 B, D XUX-2017-025 E, G XUX-2017-226 F, H XUX-2017-227. Scale bars: 0.5 mm .
4.47-5.20; females ($N=25$): BL 15.41-27.74, CL 7.32-14.14, CW 6.23-11.59, OL 7.33-13.49, OW 5.70-11.84. In addition, female genitalia show intraspecific variation: the inner pair of the receptacular clusters along the anterior margin of the bursa copulatrix upward, with short or long genital stalks (Fig. 5A-E, G), or clusters toward the dorsal margin (Fig. 5F, H).

Etymology. The species epithet, a noun in apposition, refers to the type locality.
Distribution. Hainan (Sanya), China.
GenBank accession number. Holotype (XUX-2017-219): MN911990.

Qiongthela yinggezui sp. nov.

http://zoobank.org/72CEC4E7-BE97-4E42-8F90-559DAA2AC067
Figure 6

Type material. Holotype: CHINA. 1 § ; Hainan Province, Qiongzhong County, 3.7 Km to Yinggezui; $19.07^{\circ} \mathrm{N}, 109.55^{\circ}$ E; alt. 710 m; 11 August 2017; D. Li, F.X. Liu, Z.T. Zhang and X. Xu leg.; XUX-2017-114 (matured on 29 September 2017 at HNU). Paratypes: CHINA • 3 q q; same data as for holotype; XUX-2017-115, 116, 121.

Diagnosis. Male of Q. yinggezui sp. nov. differs from that of Q. australis by the conductor base wide and with a bent apex (Fig. 6A-F), and by the shorter paracymbium (Fig. 6A); from Q. nui by the embolus with a smooth surface retrolaterally (Fig. 6B, C, E); from Q. baoting sp. nov. by the cymbium with an elongated projection (Fig. 6F), and by the conductor with a bent apex (Fig. 6B-E); from Q. jianfeng, Q. qiongzhong sp. nov. and Q. sanya sp. nov. by the scutiform marginal apophysis of the tegulum thick basally and pointed distally (Fig. 6A-F), and by the embolus with a smooth surface retrolaterally (Fig. 6B, C, E). Females of Q. yinggezui sp. nov. can be distinguished from those of Q. australis by the similar-sized receptacular clusters, and the lateral ones slightly located on the dorsal wall of the bursa copulatrix (Fig. 6G); from Q. yini by the receptacular clusters with more granula (Fig. 6G, H); from Q. sanya sp. nov. by the lack of genital stalks (Fig. 6G, H); from those of the other Qiongthela species by the inner receptacular clusters situated at the anterior margin of bursa copulatrix, the lateral pair located on the dorsal wall of the bursa copulatrix (Fig. 6G, H).

Description. Male (holotype). In alcohol carapace light reddish brown; opisthosoma light brown, with 12 brown tergites, separated from each other, the first $2-7$ larger than others, and the fourth largest; sternum narrow, nearly twice as long as wide; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 9 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 13.60, CL 5.99, CW 6.30, OL 7.29, OW 5.48; ALE $>$ PLE > PME > AME; leg I $17.44(4.82+1.55+4.10+4.51+2.46)$, leg II 17.50 $(4.73+1.43+3.97+4.80+2.57)$, leg III $16.73(4.68+1.36+2.40+5.59+2.70)$, leg IV $25.19(6.52+1.62+5.28+8.00+3.77)$.

Palp. Cymbium with an elongated projection dorsally (Fig. 6F); prolateral side of paracymbium unpigmented and unsclerotised, with numerous setae at the tip (Fig. 6A, B). Contrategulum with a proximally irregular dentate edge and two distal edges: the inner one dentate, the outer one smooth, sharp, semi-translucent, fused with the inner one at the middle portion of contrategulum (Fig. 6A, D-F). The marginal apophysis of tegulum long, pointed with a sharp apex, a proximally directed terminal apophysis with finely dentate margin and continuously narrowing to a rounded, hooked apex (Fig. 6A-E). Conductor situated ventro-proximally on embolus, fused with embolus at the basal portion, distal free narrowing to a bent apex (Fig. 6A-C, E). Embolus largely sclerotised, with a wide, flat sperm duct opening, and with a smooth surface retrolaterally (Fig. 6A-E).

Figure 6. Male and female genital anatomy of Qiongthela yinggezui sp. nov. A palp prolateral view \mathbf{B} palp ventral view \mathbf{C} palp retrolateral view $\mathbf{D}-\mathbf{F}$ palp distal view \mathbf{G} vulva dorsal view \mathbf{H} vulva ventral view. A-F XUX-2017-114 (holotype) G-H XUX-2017-121. Scale bars: 0.5 mm .

Female (XUX-2017-121). In alcohol carapace reddish brown; opisthosoma brown; opisthosoma with 12 tergites, closed to each other, the first 2-7 larger than others, and the fourth largest; sternum narrow, more than twice the width; a few fine pointed hairs running over the ocular area; chelicerae with promargin of cheliceral groove containing 10 denticles of variable size; legs with firm hairs and spines; 7 spinnerets. Measurements: BL 14.76, CL 7.03, CW 6.39, OL 7.82, OW 6.03; ALE > PLE > PME > AME; palp $13.30(5.30+1.23+2.85+3.91)$, leg I $14.35(4.84+1.54$ $+3.21+2.95+1.82)$, leg II $12.72(3.54+1.24+2.97+2.99+1.98)$, leg III 13.78 $(4.20+1.28+2.60+3.71+1.99)$, leg IV $20.21(5.29+1.38+4.52+5.78+3.24)$.

Female genitalia. Two paired of the similar-sized receptacular clusters, the inner ones along the anterior margin of the bursa copulatrix, and the lateral ones located slightly on the dorsal wall of the bursa copulatrix, without genital stalks (Fig. 6G, H).

Variation. Females vary in body size. The range of measurements in females $(N=$ 3): BL 11.51-14.76, CL 4.68-7.03, CW 4.54-6.39, OL 5.54-7.82, OW 4.32-6.03.

Etymology. The species epithet, a noun in apposition, refers to the type locality.
Distribution. Hainan (Yinggezui), China.
GenBank accession number. Holotype (XUX-2017-114): MN911988.

Acknowledgements

We are grateful to the Animal Nutrition and Human Health Laboratory, Mineral Nutrition Laboratory as well as Plant Development Laboratory at the College of Life Sciences, Hunan Normal University for supporting in molecular work. We thank Dengqing Li for help and/or advice on molecular resources and procedures, and Zhaoyang Chen for rearing spiders in the laboratory. This research was supported by the National Natural Sciences Foundation of China (NSFC-31601850; NSFC-31272324), the Hunan Provincial Natural Science Foundation of China (2017JJ3202), and the Singapore Ministry of Education AcRF Tier 1 grant (R-154-000-A52-114) to DL.

References

Bristowe WS (1976) A contribution to the knowledge of liphistiid spiders. Journal of Zoology, London 178: 1-6. https://doi.org/10.1111/j.1469-7998.1976.tb02260.x
Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22: 565-592. https://doi.org/10.1146/annurev. es.22.110191.003025
Haupt J (2003) The Mesothelaea - monograph of an exceptional group of spiders (Araneae: Mesothelae) (morphology, behaviour, ecology, taxonomy, distribution and phylogeny). Zoologica 154: 1-102.
Ono H (2002) Occurrence of a heptatheline spider (Araneae, Liphistiidae) in Lam Dong province, Vietnam. Bulletin of the National Museum of Nature and Science Tokyo (A) 28: 119-122.

Platnick NI, Gertsch WJ (1976) The suborders of spiders: a cladistic analysis (Arachnida, Araneae). American Museum Novitates 2607: 1-15.
Pocock RI (1892) XXXVIII. - Liphistius and its bearing upon the classification of spiders. The Annals and Magazine of Natural History Series 6(10): 306-314. https://doi. org/10.1080/00222939208677416
Schwendinger PJ, Ono H (2011) On two Heptathela species from southern Vietnam, with a discussion of copulatory organs and systematics of the Liphistiidae (Araneae: Mesothelae). Revue Suisse de Zoologie 118: 599-637. https://doi.org/10.5962/bhl.part. 117818
World Spider Catalog (2020) World Spider Catalog, Version 21.0. Natural History Museum Bern. http://wsc.nmbe.ch [access on 30 January 2020]
Xu X, Liu FX, Cheng RC, Chen J, Xu X, Zhang ZS, Ono H, Pham DS, Norma-Rashid Y, Arnedo MA, Kuntner M, Li D (2015a) Extant primitively segmented spiders have recently diversified from an ancient lineage. Proceedings of the Royal Society B: Biological Sciences 282: 20142486. https://doi.org/10.1098/rspb.2014.2486
Xu X, Liu FX, Chen J, Ono H, Li D, Kuntner M (2015b) A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae). ZooKeys 488: 121-151. https:// doi.org/10.3897/zookeys.488.8726
Xu X, Liu FX, Chen J, Li D, Kuntner M (2015c) Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology. Zoological Journal of the Linnean Society 175: 288-306. https:// doi.org/10.1111/zoj. 12280
Xu X, Liu FX, Chen J, Ono H, Li D, Kuntner M (2016) Pre-Pleistocene geological events shaping diversification and distribution of primitively segmented spiders on East Asian Margins. Journal of Biogeography 43: 1004-1019. https://doi.org/10.1111/jbi. 12687
Xu X, Liu FX, Ono H, Chen J, Kuntner M, Li D (2017a) Targeted sampling in Ryukyus facilitates species delimitation of the primitively segmented spider genus Ryuthela (Araneae: Mesothelae: Liphistiidae). Zoological Journal of the Linnean Society 181: 867-909. https://doi.org/10.1093/zoolinnean/zlx024
Xu X, Liu FX, Kuntner M, Li D (2017b) Four new species of the primitively segmented spider genus Qiongthela from Hainan island, China (Mesothelae, Liphistiidae). ZooKeys 714: 1-11. https://doi.org/10.3897/zookeys.714.19858

Asianopis gen. nov., a new genus of the spider family Deinopidae from Asia

Yejie Lin', Lili Shao ${ }^{2}$, Ambros Hänggi³ ${ }^{3}$ John T.D. Caleb ${ }^{4}$, Joseph K.H. Koh ${ }^{5}$, Peter Jäger ${ }^{6}$, Shuqiang Li^{2}
I Hebei Key Laboratory of Animal Diversity, College of Life Science, Langfang Normal University, Langfang 065000, China 2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3 Naturhistorisches Museum Basel, Augustinergasse 2, CH 4001 Basel, Switzerland 4 Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata 700053, West Bengal, India 5 National Biodiversity Centre, National Parks Board, 259598, Singapore 6 Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt a. M., Germany
Corresponding author: Shuqiang Li (lisq@ioz.ac.cn)

[^3]http://zoobank.org/12B393ED-9CB7-4642-9127-B13BA1952BD3
Citation: Lin Y, Shao L, Hänggi A, Caleb JTD, Koh JKH, Jäger P, Li S (2020) Asianopis gen. nov., a new genus of the spider family Deinopidae from Asia. ZooKeys 911: 67-99. https://doi.org/10.3897/zookeys.911.38761

Abstract

A new genus of the spider family Deinopidae C.L. Koch, 1850 is described from Asia: Asianopis Lin \& Li gen. nov., with A. zhuanghaoyuni Lin \& Li sp. nov. as the type species. The new genus is divided into two species groups, of which the liukuensis-group includes two species: A. dumogae (Merian, 1911) sp. reval. comb. nov. (ㅇ) and A. liukuensis (Yin, Griswold \& Yan, 2002) comb. nov. (${ }^{\circ}$ ㅇ) ; ; and the zhuanghaoyuni-group comprises five species: A. celebensis (Merian, 1911) comb. nov. (${ }^{\top}$), A. konplong and A. zhuanghaoyuni Lin \& Li sp. nov. All previously described species are transferred from Deinopis MacLeay, 1839. Deinopis scrubjunglei Caleb \& Mathai, 2014 is treated as a junior synonym of Asianopis liukuensis comb. nov.

Keywords

New combination, new species, species groups, systematics, taxonomy

Introduction

The spider family Deinopidae C.L. Koch, 1850 (Araneae, Deinopoidea), known as net-casting or ogre-faced spiders, is a small family that consisted of two genera and 64 species prior to the current study (World Spider Catalog 2019). The genus Deinopis was established by MacLeay (1839) based on Deinopis lamia MacLeay, 1839 (ôq) from Cuba. The other genus, Menneus, was established by Simon (1876) based on Menneus tetragnathoides Simon, 1876 (${ }^{\top}$) from Angola.

Ten species of Deinopidae were known from Asia: Deinopis aruensis Roewer, 1938 (q) and D. celebensis Merian, 1911 from Indonesia; D. fasciculigera Simon, 1909 (q) and D. konplong Logunov, 2018 ($\left.\delta^{\top}\right)$ from Vietnam; D. scrubjunglei Caleb \& Mathai, 2014 (ơq) from India; D. gubatmakiling Barrion-Dupo \& Barrion, 2018 (juvenile), D. labangan Barrion-Dupo \& Barrion, 2018 () , and D. luzonensis Barrion-Dupo \& Barrion, 2018 (q) from the Philippines; D. kollari Doleschall, 1859 ((§) from Myanmar and Malaysia; D. liukuensis Yin, Griswold \& Yan, 2002 (ot) from China. Here, we describe a new genus and three new species, and present a molecular phylogenetic analysis of these spiders.

Material and methods

All specimens were preserved in 80% ethanol. Metatarsi and tarsi were removed for preservation in 100% ethanol for subsequent molecular work. Epigynes were cleared in proteinase K at $56^{\circ} \mathrm{C}$ to dissolve non-chitinous tissues for three hours. Specimens were examined under a LEICA M205C stereomicroscope. Photomicroscope images were taken with an Olympus C7070 zoom digital camera (7.1 megapixels). Laboratory habitus photographs were taken with a Canon 5D Mark III digital camera equipped with a Canon MP-E 65 mm lens. Photos were stacked with Helicon Focus (version 6.7.1) or Zerene Stacker (version 1.04) and processed in Adobe Photoshop CC 2018. Photographs of Asianopis celebensis comb. nov. were taken by a KEYENCE. Photographs of Asianopis liukuensis comb. nov. from India (i.e., the type materials of D. scrubjunglei) were taken using a Leica DFC500 HD camera mounted on a Leica M205A stereomicroscope.

All measurements are in millimetres. Eye sizes are measured as the maximum diameter from either the dorsal or frontal view. Leg measurements are given as follows: total length (femur, patella+tibia, metatarsus, tarsus). Copulatory duct turns are defined by the number of apparent loops on the lateral margin of the copulatory/fertilization duct complex in dorsal view. The length of the embolic tip fold is measured as from the beginning of the fold to the embolic tip (Fig. 22D, E). The terminology used in the text and figures follows Coddington et al. (2012). Distribution maps were generated using ArcMap software (version 10.2).

A total of 31 specimens of Deinopidae were collected for phylogenetic analysis (Suppl. material 1: Table S1). Sequences of seven specimens were from the National Center for Biotechnology Information (NCBI) public data, and the other 24 were from recent
field collections. Whole genomic DNA was extracted from 2-4 legs using a TIANamp Genomic DNA kit (TIANGEN Inc., Beijing, China) following the manufacturer's protocol. Seven gene fragments were amplified in $20-\mu \mathrm{L}$ reactions: COI ($\sim 640 \mathrm{bp}$), 12 S ($\sim 330 \mathrm{bp}$), 16S ($\sim 470 \mathrm{bp}$), 18S ($\sim 1700 \mathrm{bp}$), 28S ($\sim 1200 \mathrm{bp}$), H3 ($\sim 310 \mathrm{bp}$) and wnt $(\sim 330 \mathrm{bp})$. Primers and PCR conditions for each locus are listed in Suppl. material 1: Table S2. Sequence chromatograms were proofed and edited using Sequencher version 4.2 Demo (Gene Codes Corporation, Ann Arbor, MI USA). The COI, H3 and wnt fragments were translated in MEGA version 7 (Kumar et al. 2016) to check for the presence of stop codons. A representative of the family Uloboridae was used as the outgroup, with the corresponding sequences downloaded from NCBI. The complete list of 32 taxa and GenBank accession numbers are provided in Suppl. material 1: Table S1.

Multiple sequence alignments were carried out with MAFFT version 7.243 (Katoh and Standley 2013). Alignments of the protein-coding COI, H3 and wnt genes were produced using the L-INS-i method. As for the highly variable ribosomal genes, the E-INS-i method was used to generate alignments of $12 \mathrm{~S}, 16 \mathrm{~S}, 18 \mathrm{~S}$, and 28 S . To exclude the ambiguously aligned regions, alignments of the ribosomal genes were processed with the program trimAl version 1.3 (Capella-Gutiérrez et al. 2009). The alignments are shown in the supplementary data.

The concatenated gene matrix was partitioned by gene using PartitionFinder version 1.1.1 (Lanfear et al. 2012). The best partitioning scheme was selected based on the Akaike information criterion (AIC) (Suppl. material 1: Table S3). Maximum likelihood (ML) analysis was performed using RAxML version 8.2.9 with a GTR + $\Gamma+$ I model applied to each partition (Stamatakis 2014). One thousand non-parametric bootstrap replicates were conducted to obtain the best-scoring ML tree.

Bayesian analysis was performed using MrBayes version 3.2.6 (Ronquist et al. 2012). Two independent runs, each with four independent chains, were carried out for $20,000,000$ generations and were sampled every 1,000 generations with a burn-in of 25%. Partitions and models followed the result of PartitionFinder. Convergence of the runs was determined with the standard deviation of split frequencies (<0.01). Effective sampling sizes (>200) of all parameters were checked in Tracer version 1.6 (Rambaut et al. 2014). A 50% majority-rule consensus tree was then constructed from the postburnin sampled trees to estimate posterior probabilities (PP).

Abbreviations

ALE	anterior lateral eye
AME	anterior median eye
CD	copulatory duct
CO	copulatory opening
E	embolus
EMA	embolic middle apophysis
EO	embolic opening

ETA embolic terminal apophysis
FD fertilization duct
MA median apophysis
MABL median apophysis-basal lobe
MADL median apophysis-distal lobe
MP median plate
PLE posterior lateral eye

PME	posterior median eye	SpD	spermathecal duct
S	spermatheca	T	tegulum.
SD	sperm duct		

Museum abbreviations

HNU Hunan Normal University, Changsha, China
IZCAS Institute of Zoology, Chinese Academy of Sciences, Beijing, China
MMUE Manchester Museum of the University of Manchester, UK
NMB Naturhistorisches Museum Basel, Basel, Switzerland
SRC-ZSI Southern Regional Centre, Zoological Survey of India, Kolkata, India

Taxonomy

Family Deinopidae C.L. Koch, 1850

Genus Asianopis Lin $\& \mathrm{Li}$, gen. nov.
 http://zoobank.org/C8CA3BB7-776C-4BB9-9E19-F819587E87AB

Type species. Asianopis zhuanghaoyuni $\mathrm{Lin} \& \mathrm{Li}$, sp. nov.
Etymology. The generic name is a combination of the word "Asia", referring to the distribution of the genus, and the generic name Deinopis. The gender is feminine.

Diagnosis. Asianopis gen. nov. can be easily distinguished from Deinopis by the following characters: a prominent setal fringe can be found above the posterior median eyes in both sexes of Asianopis species (Fig. 4A, B), which is absent in Deinopis (Coddington et al. 2012: fig. 3a); the embolic tip of male Asianopis has an embolic middle apophysis (liukuensis-group, Fig. 21A), an embolic terminal apophysis or is weakly folded apically (zhuanghaoyuni-group, Fig. 21B-E), whereas none of these characters is present in Deinopis (Coddington et al. 2012: fig. 11m); the MADL in Asianopis is small and has a basal lobe, while in Deinopis, the median apophysis is larger than the MABL and covers the entire base (Coddington et al. 2012: fig. 11m); female chelicerae with many denticles between the promarginal and retromarginal teeth (Fig. 2F) or female chelicerae without denticles (Fig. 2 H), in contrast, denticles are only at the center of any two adjoining retromarginal teeth in Deinopis (Coddington et al. 2012: fig. 5c); femora I enlarged proximally in Asianopis gen. nov. (liukuensis group, Fig. 2I) or not enlarged (zhuanghaoyuni-group, Fig. 2J), but they are enlarged distally in Deinopis (Coddington et al. 2012: fig. 3b); epigynal median plate lateral margins anchor-shaped in Asianopis gen. nov. (Figs 3A, 6A), but ellipsoid in Deinopis (Coddington et al. 2012: fig. 9b); SpD is consistently narrow in Asianopis gen. nov. (Figs 3B, 6B) but tapering in Deinopis (Coddington et al. 2012: fig. 9d).

Description. Male. Total length $12.14-16.10(n=8)$, carapace pear-shaped, yel-low-brown (liukuensis-group) or brown (zhuanghaoyuni-group) with white edge, white line extending from cephalic area to posterior margin and small spines sparsely dis-
tributed; fovea longitudinal, indistinct. Chelicerae with a promarginal tooth and one or two retromarginal teeth (liukuensis-group) or with four promarginal teeth and 2-6 retromarginal teeth (zhuanghaoyuni-group), no denticles. Endites and labium brown, distally white; sternum diamond-shaped, brown with median light band and few small spines. Legs brown, ventrally with black pattern and short spines, leg formula 1243. Opisthosoma cylindrical, brown or dark-brown with small black spots and irregular pattern. Cribellum entire, spinnerets brown (Figs 4, 10, 13, 16).

Female. Total length 14-24 $(n=13)$. Chelicerae with four promarginal teeth and seven retromarginal teeth, many denticles in between the promarginal and retromarginal teeth (liukuensis-group) or four promarginal teeth and 8-13 retromarginal teeth, without denticles (zhuanghaoyuni-group). Appearance of carapace, opisthosoma and legs as in male but femora of legs I enlarged basally (liukuensis-group) (Fig. 2I).

Male palpal tibia longer than cymbium; cymbium almost round; tegulum distinctly wider than the diameter of embolic coil (liukuensis-group) or tegulum obscured by embolic coil (zhuanghaoyuni-group) (Figs 17, 18); embolus long and strongly coiled around MA, embolic base beginning at 7-8 o'clock position, coiled 1200° (liukuensisgroup) or more than 1500° (zhuanghaoyuni-group), embolic tip straight (liukuensisgroup) or widened subapically, folded and without apophysis (zhuanghaoyuni-group); MA small, directed at 7-8 o'clock position, with two lobes, a small lobe at the base, and a narrow distal lobe with two apophyses (liukuensis-group) or large, with two lobes, a large lobe at the base and a kidney-shaped distal lobe (zhuanghaoyuni-group).

Epigyne with anchor-shaped median plate, CO distinct, CD with three turns, S oval, SpD consistently wide (liukuensis-group) or with a well-developed MP, obscuring CO, CD with 7-8 turns, S oval, SpD consistently thin (zhuanghaoyuni-group).

Molecular phylogeny. The molecular phylogenetic analysis indicates with strong support that all the species in this study do not belong to Deinopis. Based on the 4893 bp-aligned sequences of seven gene fragments, the ML and Bayesian analyses produced the same topology, showing a split of a Southwest China clade from other clades and is strongly supported (Bootstrap value: 88; PP: 0.98) (Fig. 1). Our results are consistent with the results of Chamberland et al. (2018) who conducted a global phylogenetic analysis of Deinopis. Therefore, the Southwest China clade can be classified as a new genus with strong support (Bootstrap value: 100; PP: 1). Although intraspecific support values are low in both ML and Bayesian analyses results, basal nodes are strongly supported, including the sister relationship of A. wang $i \operatorname{Lin} \& \mathrm{Li}$, sp. nov. \& A. zhuanghaoyuni Lin \& Li, sp. nov. (Bootstrap value: 95; PP: 1).

Natural habitat. All the species of Asianopis gen. nov. were collected from bushes in low-elevation forests.

Composition. This new genus comprises two species groups: the liukuensis-group with two species: A. dumogae (Merian, 1911) sp. reval. comb. nov. and A. liukuensis (Yin, Griswold \& Yan, 2002) comb. nov. and the zhuanghaoyuni-group with five species: A. celebensis (Merian, 1911) comb. nov., A. konplong (Logunov, 2018) comb. nov., A. wangi sp. nov., A. wuchaoi sp. nov., and A. zhuanghaoyuni sp. nov.

Distribution. China (Fujian, Yunnan, Hong Kong, Guangxi, Hainan), India, Indonesia, and Vietnam.

Figure I. Phylogenetic tree of Deinopidae spiders based on 31 specimens. Numbers on nodes indicate Maximum Likelihood bootstrap values and Bayesian posterior probabilities.

The liukuensis-group

Asianopis dumogae (Merian, 1911), sp. reval. comb. nov.
Fig. 3
Dinopis dumogae Merian, 1911: 171 (\uparrow only, ô mismatched).

Type material examined. $1 q$ (NMB-ARAN-00514a), "Wald bei Duluduo", Sulawesi Utara, forest near Duluduo, $00^{\circ} 31^{\prime} 33^{\prime \prime N}, 123^{\circ} 57^{\prime} 10^{\prime \prime} \mathrm{E}$, Sulawesi, Indonesia.

Diagnosis. This species can be distinguished from A. liukuensis comb. nov. by the MP nearly covering the CO, S round, and the overall equal thickness of the CD (Figs 4, 6).

Description. See Merian (1911). Photos of the epigyne of the syntype are given in Figure 6.

Distribution. Indonesia (North Sulawesi).
Comments. Merian (1911) reported D. celebensis based on three specimens from different localities in Sulawesi, Indonesia. One male (NMB-ARAN-00514b, "Zen-

Figure 2. Prosoma (frontal view, upper ${ }^{\hat{\lambda}}$, lower \uparrow) ($\mathbf{A} \mathbf{- D}$), chelicerae ($\mathbf{E - H}$) and leg I (I-J). Figures A and C modified from Coddington et al. (2012). A Deinopis spinosa B Asianopis liukuensis comb. nov. C Menneus dromedarius D Asianopis zhuanghaoyuni sp. nov. E Chelicerae of male A. liukuensis comb. nov. F Chelicerae of female A. liukuensis comb. nov. (Arrows indicate the denticles) G Chelicerae of male A. zhuanghaoyuni sp. nov. H Chelicerae of female A. zhuanghaoyuni sp. nov. I Left leg I of female A. liukuensis comb. nov. Arrow shows enlarged femur J Left leg I of female A. zhuanghaoyuni sp. nov.
tral-Celebes, nördlich vom Golf von Bone", South Sulawesi, north of the Gulf of Boni (precise locality not known), one female from North Sulawesi (NMB-ARAN00514 a , "Wald bei Duluduo", Sulawesi Utara, forest near Duluduo, $00^{\circ} 31^{\prime} 33^{\prime N} \mathrm{~N}$, $123^{\circ} 57^{\prime} 10^{\prime \prime} \mathrm{E}$ and one female from Central Sulawesi (NMB-ARAN-00514c, Larga, südlich vom Posso-See, unterhalb Patiro Rano, bei 900 m, Central Sulawesi, south of Lake Poso at an elevation of 900 m (the localities "Larga" and "Patiro Rano" could not be located on maps; the epigyne of this specimen is missing, but the specimen is clearly larger than the others).

Figure 3. Asianopis dumogae sp. reval. comb. nov., female type. A Epigyne B Vulva, dorsal view.
Merian (1911) stated that the male and the females may not represent the same species and suggested the name D. celebensis for the male, and D. dumogae for the female. According to the International Code of Zoological Nomenclature (International Commission on Zoological Nomenclature 1999: Article 11.5.1), such conditionally proposed species names are potentially available as valid names if published before 1961. The species has not been listed in any of the catalogues. We examined the types and concluded the male and the two females are indeed three different species. The palp of the male D. celebensis exhibits features of the zhuanghaoyuni group: the tegulum is obscured by the embolic coil, and the embolus is long and strongly coiled around the MA. The female from North Sulawesi (Doloduo) has features of the liukuensis group: an anchor-shaped median plate, CO distinct, CD with three turns. Thus, we revalidated the female D. dumogae as Asianopis dumogae (Merian, 1911), sp. reval. comb. nov.

Asianopis liukuensis (Yin, Griswold \& Yan, 2002), comb. nov.
Figs 2B, E, F, I, 4-8, 19, 21A, 22A, G, 23
Deinopis liukuensis Yin et al., 2002: 610, figs 1-7 (ô?)
Deinopis liukuensis Zhang \& Wang, 2017: 238 (${ }^{\top}$ O)
Deinopis scrubjunglei Caleb \& Mathai, 2014: 2, figs 1-20 (ôq) syn. nov.
Type. Holotype. \bigcirc^{λ} (HNU, no. 00-LK-1, lost), China, Yunnan Province, Liuku, Mt Gaoligong, $25^{\circ} 30^{\prime} 48^{\prime \prime} \mathrm{N}, 98^{\circ} 30^{\prime} 36^{\prime \prime} \mathrm{E}$, elevation ca $800 \mathrm{~m}, 26 . \mathrm{VI} .2000$, Heng-Mei Yan leg.

Type materials of Deinopis scrubjunglei examined. $\begin{gathered} \\ \text { (SRC-ZSI I/SP 19), Ma- }\end{gathered}$ dras Christian College, Chennai, Tamil Nadu, $12^{\circ} 55^{\prime} 12.7^{\prime \prime N}$, $80^{\circ} 07^{\prime} 24.6^{\prime \prime} \mathrm{E}$, elevation ca 32 m, 5.XII.2013, John Caleb T.D. leg.; $P_{\text {(SRC-ZSI I/SP 20), 22.IV.2014, same }}$ location, John Caleb T.D and Karthy leg.

Figure 4. Asianopis liukuensis comb. nov., male from Xishuangbanna and female from Jianfengling. A Male prosoma, frontal view B Female prosoma, frontal view C Male habitus, dorsal view D Male habitus, ventral view E Female habitus, dorsal view F Female habitus, ventral view.

Figure 5. Asianopis liukuensis comb. nov., left palp, male from Xishuangbanna. A Prolateral view B Retrolateral view.

Figure 6. Asianopis liukuensis comb. nov., female from Jianfengling. A Epigyne B Vulva, dorsal view.

Figure 7. Asianopis liukuensis comb. nov., left palp, holotype male of Deinopis scrubjunglei syn. nov. A Prolateral view B Retrolateral view.

Other material examined. $2 \widehat{\lambda}$, China, Yunnan Province, Xishuangbanna Dai Autonomous Region, rubber tree plantation near Jinghong City, 28.IV.2016, Chaotai Wei leg.; 1q, China, Hainan Island, Ledong County, Jianfengling National Park, 13.VII.2019, Zixuan Lin leg.

Diagnosis. This species can be distinguished from other congeners by the distinct female copulatory opening, oval S , and CD tapering from the copulatory opening to spermatheca (Figs 6, 8).

Description. See Yin et al. (2002) and Caleb and Mathai (2014).

Figure 8. Asianopis liukuensis comb. nov., paratype female of Deinopis scrubjunglei syn. nov. A Epigyne B Vulva, dorsal view.

Distribution. China (Yunnan, Guangxi, Hainan), India.
Comments. Type materials of D. scrubjunglei syn. nov. were examined and no differences between A. liukuensis and D. scrubjunglei were observed. Thus, we consider D. scrubjunglei to be a synonym of A. linkuensis, and the figures of D. scrubjunglei are given for comparison (Figs 7, 8, 19C).

The zhuanghaoyuni-group

Asianopis celebensis (Merian, 1911), comb. nov.
Fig. 9A-F
Dinopis celebensis Merian, 1911: 167, figs A, B (đonly, \uparrow mismatched).

Type material examined. (NMB), NMB-ARAN-00514b, "Zentral-Celebes, nördlich vom Golf von Bone", South Sulawesi, north of the Gulf of Boni (precise locality not known).

Diagnosis. The male can be distinguished from other congeners by having the distal lobe of the MA distinctly smaller than the basal lobe; in other Asianopis spp., the distal lobe is slightly smaller than the basal lobe (Fig. 9A, C).

Description. See Merian (1911). Photos of holotype male habitus and palps are shown in Fig. 9A-F.

Distribution. Indonesia (Sulawesi).
Comments. One male and two females were types for Asianopis celebensis (Merian, 1911) comb. nov. after Merian (1911). Based on the current study, one type female from North Sulawesi is Asianopis dumogae (Merian, 1911) sp. reval. comb. nov., and the other type female from South Sulawesi is a member of the zhuanghaoyuni-group, but its status at the species level is uncertain because of the missing epigyne.

Asianopis konplong (Logunov, 2018), comb. nov.

Deinopis konplong Logunov, 2018: 141, figs 1-7 (\mathbf{O}^{\top}).
Type. Holotype đ (MMUE, G7579.37) from Vietnam, Kon Tum Province, Kon Plong District, 14 km north of Kon Plong, $14^{\circ} 43^{\prime} 20^{\prime \prime} \mathrm{N}, 108^{\circ} 18^{\prime} 59^{\prime \prime} \mathrm{E}$, elevation ca 1030 m, 3-12.VI.2016, A.A. Abramov leg. Not examined.

Diagnosis. This species can be distinguished from other Asianopis species by the short palp (ratio of the length of the palpal tarsus to the length of the cymbium: 1:1) and upturned embolic tip (Logunov 2018: fig. 4).

Description. See Logunov (2018).
Distribution. Vietnam (Kon Tum).

Asianopis wangi Lin $\& \mathrm{Li}$, sp. nov.

http://zoobank.org/64A4C3D1-03A5-4D7A-B2E6-E30EA28DC41C
Figs $10-12,20 B, 21 \mathrm{C}, 22 \mathrm{C}, \mathrm{D}, \mathrm{H}, 23$

Type. Holotype. 〇 (IZCAS-Ar39681), China, Hainan Province, Wuzhishan City, Wuzhishan Nature Reserve, Diewupo, 17.V.2019, Dongdong Wang leg.

Figure 9. Asianopis celebensis comb. nov., male type. A Male right palp, prolateral view B Embolic tip \mathbf{C} male left palp (embolic tip detached), retrolateral view \mathbf{D} Male prosoma, lateral view \mathbf{E} Male opisthosoma, dorsal view \mathbf{F} Male prosoma, frontal view.

Paratypes. $1 \delta^{\lambda 1} 1$ (IZCAS-Ar39682-Ar39683), same data as holotype; $1 \delta^{\lambda} 2 q$ (IZCAS-Ar39684-Ar39686) China, Hainan Province, Wuzhishan City, Nansheng Town, Maoxiang Village, 18.V.2019, Dongdong Wang leg.

Etymology. The species is named after Mr Dongdong Wang, the collector of the holotype; noun (name) in genitive case.

Diagnosis. The males resemble A. zhuanghaoyuni sp. nov. but can be distinguished from other species by the ratio of the length of the embolic opening to the length of the embolic tip fold, which is 1:6 in A. wangi sp. nov. and 1:8 in A. zhuanghaoyuni sp. nov. The fold is more developed in A. wangi sp. nov. (Fig. 21C, D). The median plate is triangular in A. wangi sp. nov. and subtriangular in A. zhuanghaoyuni sp. nov. (Figs 12, 19).

Description. Male holotype (Figs 10A, C, D, 11, 20B, 21D, 22C). Total length 15.31, carapace 6.22 long, 4.60 wide, opisthosoma 9.32 long, 2.10 wide. Eye sizes and interdistances: AME 0.30, ALE 0.38, PME 0.65, PLE 0.34, AME-AME 0.30 , AME-ALE 0.97, PME-PME 0.23, PME-PLE 0.69, AME-PME 0.24, ALE-PLE 1.82. Clypeus height 0.10 . Chelicerae with four promarginal and $10-13$ retromarginal teeth. Leg measurements: leg I: $84.08(21.13+26.50+29.53+6.92)$, leg II: 59.70 $(18.39+19.55+15.80+5.96)$, leg III: $36.14(12.05+11.79+10.26+2.04)$, leg IV: $37.23(11.92+12.37+11.28+1.66)$. Leg formula: 1243.

Male palp (Figs 11, 20B, 21D). Cymbium hemispherical; tegulum flat, obscured by embolic coils; embolus long and strongly coiled, originating at 10 o'clock and coiling 1500° around MA; embolic tip widened subapically, strongly folded and without apophysis. MA large, with two lobes.

Female paratype (Figs 10B, E, F, 12, 22D). Total length 24.04, carapace 7.56 long, 5.32 wide, opisthosoma 16.28 long, 6.86 wide. Eye sizes and interdistances: AME 0.28, ALE 0.38, PME 1.34, PLE 0.42, AME-AME 0.13, AME-ALE 1.03, PMEPME 0.39, PME-PLE 1.30, AME-PME 0.22, ALE-PLE 1.92. Clypeus height 0.34 $(n=1)$. Chelicerae with four promarginal and $8-13$ retromarginal teeth $(8(n=1), 13(n$ $=1)$). Leg measurements: Leg I: $54.24(16.22+16.83+17.63+3.56)$, leg II: 50.59 $(15.90+16.41+15.00+3.28)$, leg III: $30.84(10.96+10.38+7.88+1.62)$, leg IV: $30.28(10.13+10.58+8.27+1.30)$. Leg formula: 1234.

Epigyne (Fig. 12) with a median plate, CD with 7 or 8 turns, S oval, SpD consistently narrow.

Distribution. China (Hainan).

Asianopis wuchaoi Lin \& Li, sp. nov.

http://zoobank.org/F05E46B7-98E7-4DA1-B7DF-AD440C2E05B6
Figs 13-15, 21B, 22B, 23

Type. Holotype. ठ (IZCAS-Ar39687), China, Yunnan Province, Jinghong City, Mount Jinuo, 10.V.2019, Chao Wu leg.

Paratypes. 2 (IZCAS-Ar39688-Ar39689), China, Yunnan Province, Jinghong City, Mengla County, Mengxing Village, 16.VI.2019, Yi Li leg.; 1 q (IZCAS-

Figure 10. Asianopis wangi sp. nov., male holotype and female paratype. A Male prosoma, frontal view B Female prosoma, frontal view C Male habitus, dorsal view D Male habitus, ventral view E Female habitus, dorsal view \mathbf{F} Female habitus, ventral view.

Figure II. Asianopis wangi sp. nov., left palp, male holotype. A Prolateral view B Retrolateral view.

Ar39690), China, Yunnan Province, Jinghong City, Situlaozhai Village, 20.V.2019, Chaotai Wei leg.

Etymology. The species is named after Mr Chao Wu, the collector of the holotype male; noun (name) in genitive case.

Diagnosis. The males can be easily distinguished by the length of the palpal tibia which is almost equal to the length of the cymbium; simple embolic tip with ETA (Fig. 21B); embolus coiling almost 3300° around MA. Epigyne with a well-developed, subtriangular median plate, obscureing CO, and CD with 9 turns (Fig. 14).

Figure I2. Asianopis wangi sp. nov., female paratype. A Epigyne B Vulva, dorsal view.

Figure 13. Asianopis wuchaoi sp. nov., male holotype and female paratype. A Male prosoma, frontal view B Female prosoma, frontal view C Male habitus, dorsal view \mathbf{D} Male habitus, ventral view \mathbf{E} Female habitus, dorsal view \mathbf{F} Female habitus, ventral view.

Figure 14. Asianopis wuchaoi sp. nov., male holotype. A Right palp (flipped horizontally), prolateral view B Right palp (flipped horizontally), retrolateral view C Left palp, prolateral view D Left palp, prolateral view.

Description. Male holotype (Figs 13A, C, D, 14, 21A). Total length 12.14, carapace 4.00 long, 3.40 wide, opisthosoma 8.14 long, 2.4 wide. Eye sizes and interdistances: AME 0.15, ALE 0.26, PME 0.52, PLE 0.29, AME-AME 0.17, AME-ALE

Figure 15. Asianopis wuchaoi sp. nov., female paratype. A Epigyne B Vulva, dorsal view.
0.70, PME-PME 0.16, PME-PLE 0.61, AME-PME 0.11, ALE-PLE 0.95. Clypeus height 0.05 . Chelicerae with four promarginal and six retromarginal teeth. Leg measurements: leg I: damaged, leg II: damaged, leg III: $(6.92+6.86+?+1.44)$, leg IV: $21.82(6.91+7.18+6.35+1.38)$.

Male palp (Figs 14, 21A). Cymbium hemispherical; tegulum flat, obscured by embolic coils; embolus long and strongly coiled, originating at five o'clock and coiling 3300° around MA. MA large, with two lobes.

Female paratype (Figs 13B, E, F, 15). Total length 14.60, carapace 6.28 long, 4.10 wide, opisthosoma 9.29 long, 3.72 wide. Eye sizes and interdistances: AME 0.11, ALE 0.34, PME 0.94, PLE 0.29, AME-AME 0.30, AME-ALE 1.03, PME-PME 0.06, PME-PLE 0.64, AME-PME 0.14, ALE-PLE 1.33. Clypeus height $0.13(n=1)$. Chelicerae with four promarginal and $8-13$ retromarginal teeth $(8(n=1), 10(n=1)$, $13(n=1))$. Leg measurements: Leg I: $39.82(12.11+11.67+13.01+3.03)$, leg II: $36.81(11.47+11.79+10.83+2.72)$, leg III: $23.53(9.47+6.79+5.83+1.44)$, leg IV: $21.71(7.18+7.76+5.70+1.07)$. Leg formula: 1234.

Epigyne (Fig. 15) with a median plate, obscuring CO, CD with 9 turns, S oval, SpD is consistently thin.

Distribution. China (Yunnan).
Note. The male died during ecdysis so some legs are damaged or curled, and the palps are expanded.

Asianopis zhuanghaoyuni $\operatorname{Lin} \& \mathrm{Li}$, sp. nov.

http://zoobank.org/21A5E514-F8EE-4479-9338-51D419AA6E4A
Figs 2D, G, H, J, 16-18, 20, 21D, 22E, F, H, 23

Type. Holotype. đ (IZCAS-Ar39691), China, Fujian Province, Fuzhou City, Minhou County, Xiyuan Reservoir, $26^{\circ} 03^{\prime} 15.5^{\prime \prime} \mathrm{N}, 119^{\circ} 06^{\prime} 05.4^{\prime \prime} \mathrm{E}$, elevation ca 102 m , 25.VI.2018, Haoyun Zhuang and Zhuoheng Jiang leg.

Paratypes. 1 (IZCAS-Ar39692), same data as holotype, Haoyun Zhuang leg.; $1 \delta^{\lambda 1} 1$ (IZCAS-Ar39693-Ar39694), same locality data as holotype, but 15.V.2018, Haoyun Zhuang leg.; $1 \delta 4$ (IZCAS-Ar39695-Ar39699), same locality data as holotype, but 19.VI.2019, Haoyun Zhuang leg.; $1 \delta^{\top} 1 q$ (IZCAS-Ar39700-Ar39701), same locality data as holotype, but 26.V.2019, Haoyun Zhuang leg.

Etymology. The species is named after Mr Haoyun Zhuang, the collector of the type specimens; noun (name) in genitive case.

Diagnosis. The males resemble A. konplong (Logunov, 2018) comb. nov. but can be distinguished by the embolus originating at five o'clock in A. zhuanghaoyuni sp. nov. (9 o'clock in A. konplong (Logunov, 2018) comb. nov.); the ratio of the length of the palpal tarsus to the length of the cymbium is $11: 9$ in A. zhuanghaoyuni sp. nov., while in A. konplong (Logunov, 2018), comb. nov. it is 1:1 (Figs 18, 22A; Logunov 2018, figs 4-6).

Figure 16. Asianopis zhuanghaoyuni sp. nov., male holotype and female paratype. A Male prosoma, frontal view B Female prosoma, frontal view C Male habitus, dorsal view D Male habitus, ventral view E Female habitus, dorsal view \mathbf{F} Female habitus, ventral view.

Figure 17. Asianopis zhuanghaoyuni sp. nov., male holotype, left palp. A Prolateral view B Retrolateral view.

Description. Male holotype (Figs 2G, 16A, C, D, 17, 20A, 21E, 22E). Total length 16.54, carapace 5.58 long, 3.84 wide, opisthosoma 11.40 long, 1.90 wide. Eye sizes and interdistances: AME 0.25, ALE 0.30, PME 0.59, PLE 0.30, AME-AME 0.25 , AME-ALE 0.85 , PME-PME 0.23, PME-PLE 0.59, AME-PME 0.19, ALEPLE 1.28. Clypeus height 0.20 . Chelicerae with four promarginal teeth and a retromarginal tooth. Leg measurements: leg I: $66.35(18.50+22.55+18.95+6.35)$, leg II: $52.87(16.54+17.65+13.10+5.58)$, leg III: $30.39(10.78+10.83+7.18+1.60)$, leg IV: $30.06(10.42+11.12+7.18+1.34)$. Leg formula: 1234 .

Figure 18. Asianopis zhuanghaoyuni sp. nov., female paratype. A Epigyne B Vulva, dorsal view.

Figure 19. Asianopis liukuensis comb. nov., left palp, ventral view. A, B Male from Xishuangbanna C Male from India, type of Deinopis scrubjunglei syn. nov.

Figure 20. Ventral view of left palp, holotype males. A A. zhuanghaoyuni sp. nov. B A. wangi sp. nov.

Male palp (Figs 18, 22A). Cymbium hemispherical; tegulum flat, obscured by embolus coils; originating at five o'clock, coiling 1500° around MA, embolic tip widened subapically, folded and without apophysis. MA large, with two lobes.

Female paratype (Figs 2H, J, 16B, E, F, 18, 22F, H). Total length 22.60, carapace 5.90 long, 4.55 wide, opisthosoma 15.40 long, 5.90 wide. Eye sizes and interd-

Figure 21. Embolic tips of four species of Asianopis gen. nov. A A. liukuensis (Yin, Griswold \& Yan, 2002) comb. nov. B A. wuchaoi sp. nov. C A. zhuanghaoyuni sp. nov. D A. wangi sp. nov.
istances: AME 0.22, ALE 0.35, PME 1.08, PLE 0.33, AME-AME 0.37, AME-ALE 1.22, PME-PME 0.16, PME-PLE 0.98, AME-PME 0.081, ALE-PLE 1.61. Clypeus height 0.59. $(n=1)$. Chelicerae with four promarginal and 10 or $11(10(n=2), 11$ $(n=1))$ retromarginal teeth. Leg measurements: Leg I: $49.68(14.80+15.83+16.02+$ 3.03), leg II: $46.08(14.71+15.20+13.33+2.84)$, leg III: $27.79(9.73+9.41+7.18$ + 1.47), leg IV: $26.78(9.02+9.61+6.86+1.29)$. Leg formula: 1234.

Epigyne (Fig. 18) with a median plate, CD with $7-8$ turns, S oval, SpD consistently thin.

Distribution. China (Fujian).

Figure 22. Photos of four live spiders of Asianopis gen. nov., including webs of two species of Asianopis gen. nov. A A. liukuensis comb. nov., female B A. wuchaoi sp. nov., female $\mathbf{C} A$. wangi sp. nov., male D A. wangi sp. nov., female \mathbf{E} A. zhuanghaoyuni sp. nov., male \mathbf{F} A. zhuanghaoyuni sp. nov., female \mathbf{G} Web of A. liukuensis comb. nov. \mathbf{H} Web of A. wangi sp. nov.

Figure 23. Distribution records of seven species of Asianopis gen. nov. in Asia. I A. liukuensis comb. nov. $\mathbf{2}$ A. dumogae sp. reval. comb. nov. $\mathbf{3}$ A. celebensis comb. nov. $\mathbf{4}$ A. konplong comb. nov. $\mathbf{5} A$. wangi sp. nov. 6 A. wuchaoi sp. nov. 7 A. zhuanghaoyuni sp. nov.

Acknowledgements

The manuscript benefitted greatly from comments by Gergin Blagoev, Alireza Zamani, Marc Milne, Jie Liu, and an anonymous referee. Sarah Crews kindly checked the English of the manuscript. Jishen Wang, Chaotai Wei, Yi Li, Haoyun Zhuang, Dongdong Wang, Yuanping Wang, Chao Wu, Pinmin Li, and Qianle Lu rendered effective assistance in fieldwork. Zhuoheng Jiang, Linrui Yu and colleagues from the College of Bioscience \& Engineering of Fuzhou University helped in collecting the type materials of Asianopis zhuanghaoyuni Lin \& Li, sp. nov. Dongdong Wang, Zixuan Lin, Haoyun Zhuang, and Zhengzhong Huang took photos of the live spiders. This study was supported by the National Natural Science Foundation of China (NSFC- 31530067) to Shuqiang Li.

References

Caleb JTD, Mathai MT (2014) A new species of Deinopis MacLeay (Araneae: Deinopidae) from India. Indian Journal of Arachnology 3(1): 1-7.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973. https://doi.org/10.1093/bioinformatics/btp348
Chamberland L, McHugh A, Kechejian S, Binford GJ, Bond JE, Coddington JA, Dolman G, Hamilton CA, Harvey MS, Kuntner M, Agnarsson I (2018) From Gondwana to GAARlandia: evolutionary history and biogeography of ogre-faced spiders (Deinopis). Journal of Biogeography 45: 2442-2457. https://doi.org/10.1111/jbi. 13431
Coddington JA, Kuntner M, Opell BD (2012) Systematics of the spider family Deinopidae with a revision of the genus Menneus. Smithsonian Contributions to Zoology 636: 1-61. https://doi.org/10.5479/si.00810282.636.1
Doleschall L (1859) Tweede Bijdrage tot de kennis der Arachniden van den Indischen Archipel. Acta Societatis Scientiarum Indica-Neerlandica 5: 1-60.
Griswold CE, Ramírez MJ, Coddington JA, Platnick NI (2005) Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences 56 (Supplement II): 1-324.
Katoh K, Standley DM (2013) MAFFT. Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Phylogenetics and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695-1701. https://doi.org/10.1093/molbev/mss020
Logunov DV (2018) A new ogre-faced spider species of the genus Deinopis MacLeay, 1839 from Vietnam (Aranei: Deinopidae). Arthropoda Selecta 27(2): 139-142. https://doi. org/10.15298/arthsel.27.2.05
MacLeay WS (1839) On some new forms of Arachnida. Annals of Natural History (Series 1) 2(7): 1-14. [pls 1, 2] https://doi.org/10.1080/00222933809496646
Merian P (1911) Die Spinnenfauna von Celebes. Beiträge zur Tiergeographie im Indoaustralischen Archipel. Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 31: 165-354.
Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://tree.bio.ed.ac.uk/ software/tracer [Accessed on: 2019-12-31]
Roewer CF (1938) Araneae. Résultats scientifiques du Voyage aux indes orientales néerlandaises de la SS. AA. RR. le Prince et la Princesse Leopold de Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique 3(19): 1-94.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029

Simon E (1876) Etude sur le arachnides du Congo. Bulletin de la Société Zoologique de France 1: 12-15, 215-224.
Simon E (1909) Etude sur les arachnides du Tonkin (1re partie). Bulletin Scientifique de la France et de la Belgique 42: 69-147. https://doi.org/10.5962/bhl.part. 24151
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
World Spider Catalog (2019) World Spider Catalog, version 20.5. Natural History Museum, Bern. http://wsc.nmbe.ch [Accessed on: 2019-12-21]
Yin CM, Griswold CE, Yan HM (2002) A new ogre-faced spider (Deinopis) from the Gaoligong Mountains, Yunnan, China (Araneae, Deinopidae). Journal of Arachnology 30: 610-612. https://doi.org/10.1636/0161-8202(2002)030[0610:ANOFSD]2.0.CO;2

Supplementary material I

Asianopis gen. nov., a new genus of the spider family Deinopidae from Asia
Authors: Yejie Lin, Lili Shao, Ambros Hänggi, John T.D. Caleb, Joseph K.H. Koh, Peter Jäger, Shuqiang Li
Data type: specimen/primer/DNA sequence
Explanation note: Table S1. List of voucher information and GenBank accession numbers. Table S2. Primers and PCR conditions for the genetic markers used in this study (modified after Zhao and Li unpublished). Table S3. Sequence characteristics and models of DNA evolution selected for the seven sequence regions analyzed.References cited in supplementary tables.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.911.38761.suppl1

A new species of Astreptolabis in mid-Cretaceous amber from northern Myanmar, with the discovery of the first male of Astreptolabidinae (Dermaptera)

Yue Mao ${ }^{1,2}$, Michael S. Engel ${ }^{3,4}$, Dong Ren ${ }^{1,2}$, Taiping Gao ${ }^{1,2}$
I College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China 2 Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China 3 Division of Entomology, Natural History Museum, and Department of Ecology \& Evolutionary Biology, 1501 Crestline Drive - Suite 140, University of Kansas, Lawrence, Kansas 66045-4415, USA 4 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192, USA
Corresponding author: Taiping Gao (tpgao@cnu.edu.cn)

Academic editor: Yasen Mutafchiev \| Received 6 August 2019 \| Accepted 20 January 2020 | Published 12 February 2020
http://zoobank.org/E3C89219-8785-4C04-AE09-7119BB989A44
Citation: Mao Y, Engel MS, Ren D, Gao T (2020) A new species of Astreptolabis in mid-Cretaceous amber from northern Myanmar, with the discovery of the first male of Astreptolabidinae (Dermaptera). ZooKeys 911: 101-112. https://doi.org/10.3897/zookeys.911.38845

Abstract

A new species of one of the basal families among extant Dermaptera, Pygidicranidae, is described from mid-Cretaceous amber of Myanmar based on two females and a male. Astreptolabis laevis sp. nov., belongs to the extinct subfamily Astreptolabidinae, sharing the diagnostic combination of features typical of this group, such as the well-developed compound eyes, large pronotum, and straight and tubular cerci. The discovery of a male with its genitalia partly exerted permits characterization of traits for the subfamily and provides further information on the uniqueness and affinities of the subfamily. In addition, the extended hind wing allows for a comparison between the folding mechanism between these fossils and their modern counterparts, demonstrating considerable conservatism in hind wing evolution among Dermaptera.

Keywords

Cenomanian, earwigs, male genitalia, Neodermaptera, Pygidicranidae, taxonomy

[^4]
Introduction

Earwigs (order Dermaptera) are one of the smaller orders of insects and consist of approximately 2000 modern species segregated into 12 families (Engel and Haas 2007; Engel et al. 2016). These are characteristic insects, with their generally flattened appearances, often leathery integument, tegminized forewings, broad fan-shaped hind wings, and, most distinctive of all, the terminal forceps formed of their modified cerci (Grimaldi and Engel 2005).

Within the Dermaptera, the modern fauna falls entirely within the suborder Neodermaptera (Engel 2003; Grimaldi and Engel 2005; Engel and Haas 2007), with the most basal families falling into the infraorder Protodermaptera. Protodermaptera include the families Diplatyidae, Haplodiplatyidae, Karschiellidae, and Pygidicranidae, all of which plesiomorphically possess equal-sized ventral cervical sclerites, often carinate femora, and in the most basal members a segmented pygidium (Popham 1985; Engel 2003), among other features of the male genitalia. Presently, the earliest definitive Neodermaptera are found in the Lower Cretaceous (Engel et al. 2002, 2011; Engel and Chatzimanolis 2005; Engel and Haas 2007), and there have been 22 taxa described from Cretaceous amber. Of these 22 taxa, six are classified in the family Pygidicranidae, including four adults and two nymphs. Although the record of earwigs preserved in Cretaceous and Cenozoic amber has grown rapidly (e.g., Engel 2009, 2011, 2016, 2017; Perrichot et al. 2011; Ross and Engel 2013; Engel and Perrichot 2014; Engel and Grimaldi 2014; Engel et al. 2011, 2015, 2017; Ren et al. 2017, 2018), well-preserved specimens of adult earwigs are still rather uncommon and it remains a difficulty to associate nymphs with adults when not found as syninclusions. Moreover, the precise phylogenetic placement of many fossil earwigs continues to be poorly understood.

Herein, based on three new specimens from the Upper Cretaceous amber of northern Myanmar, a new species of the extinct pygidicranid subfamily Astreptolabidinae is described and figured. As one of the specimens is a male with its genitalia partly exerted, this discovery also permits an account of the male for the subfamily, providing new characters which emphasize the distinctiveness of this lineage. Based on the new species, the diagnosis of the subfamily is slightly emended to accommodate variations previously unknown.

Materials and methods

The three amber specimens discussed in this study were collected from mines in the Hukawng Valley of Kachin in northern Myanmar. The amber mines are located at the north end of Noije Bum that is at approximately $26.150 \mathrm{~N}, 96.340 \mathrm{E}, 18 \mathrm{~km}$ southwest of Tanai (Shi et al. 2012). The age of Burmese amber is documented as 98.79 ± 0.62 Ma (Shi et al. 2012), which places it precisely at the mid-Cretaceous, in the lowermost Cenomanian near the Albian boundary (Shi et al. 2012; Grimaldi and Ross 2017). The
type specimens are housed in the fossil insect collection of the Key Lab of Insect Evolution and Environmental Changes, College of Life Sciences, Capital Normal University, Beijing, China.

The new specimens were examined and photographed using a Leica M205C dissecting microscope with a Leica DFC450 digital camera system. The detailed and enlarged photos were taken by using a Nikon SMZ 25 microscope with a Nikon DS-Ri 2 digital camera system. Line drawings were prepared by using Adobe Illustrator CC and Adobe Photoshop CS5 graphics software. Morphological terminology and the higher classification follow those of Engel and Haas (2007), Giles (1963), and Hincks (1956). The description is based on that of the holotype female and paratype male, with differences in the paratype female discussed separately.

Taxonomy

Family Pygidicranidae Verhoeff, 1902
 Subfamily Astreptolabidinae Engel, 2011

Emended diagnosis (modified from Engel (2011)). Tiny earwigs (ca. $3.50-5.30 \mathrm{~mm}$ in length); somewhat dorsoventrally compressed, setation variable (either sparsely setose or minutely hirsute); integument somewhat matt. Head prognathous, broad, slightly broader than anterior border of pronotum, apparently mildly tumid, posterolateral corners gently curved, posterior border not concave; compound eyes well developed, prominent; ocelli absent; antenna with at least 14 antennomeres (as noted by Engel (2011)), scape stout, pedicel longer than wide, flagellomeres longer than wide, progressively more elongate from flagellomere II-X, with X-IV subequal in size. Pronotum large, anterior and posterior borders gently convex, lateral borders slightly divergent posteriorly and rounded, anteriorly slightly narrower than head, posteriorly broader than head, all borders not carinate. Tegmina present, without venation, symmetrical, elongate, outer margins convex, apex gently curved and tapering to midline (not truncate), covering first four abdominal segments; hind wings present, with squama slightly exposed from under tegmina. Femora apparently not carinate; tarsi trimerous, second tarsomere shortest or as long as third tarsomere, not extending beneath base of third tarsomere; pretarsal ungues simple; arolium vestigial. Abdomen slender, elongate (eight visible segments for females), most segments only slightly wider than long, apicalmost segment with straight apical margin, without tubercles. Cerci symmetrical, straight, tubular, gently tapering to acute apex, without tubercles, dentition, or serrations; pygidium not evident. Female valvulae scarcely evident apically, largely hidden; male with stout parameres, apically pointed, without accessory teeth or incisions; two virgae present, both directed apically; each distal lobe with a ventral sclerotized accessory structure bearing a comb of prominent teeth below each virga.

Genus Astreptolabis Engel, 2011

Diagnosis. Refer to that of subfamily (vide supra).
Comments. Given that the subfamily contains a single genus, Astreptolabis Engel, 2011, the diagnosis of the subfamily and genus are identical.

The genus presently includes only two species: the type species, Astreptolabis ethirosomatia Engel, 2011, and Astreptolabis laevis sp. nov.

Astreptolabis laevis sp. nov.

http://zoobank.org/CFBEA9C6-7BF4-49A8-82AD-7D671B82634F
Figs 1-4

Diagnosis. The new species can be distinguished from A. ethirosomatia on the basis of the more sparse setation, particularly on the head, pronotum, and tegmina (distinctly and minutely hirsute in A. ethirosomatia); the larger compound eyes, which encompass the entire lateral surface of the head from the antennal articulations to the posterior border (in A. ethirosomatia the compound eyes are smaller, distinctly separated anteriorly from the antennal base and posteriorly from the temple margin); distance between compound eyes subequal to compound eye length (distance between compound eyes in A. ethirosomatia distinctly greater than compound eye length); absence of ocular setae (present in A. ethirosomatia). On the surface there would appear to be further proportional differences between the new species and the type species, but the holotype of A. ethirosomatia is poorly preserved and largely compressed with considerable taphonomic distortion (Engel 2011).

Description. Female: Total length as preserved (including cerci) ca. 3.61 mm (Fig. 1); sparsely setose; head medial length from clypeal apex to posterior border 0.47 mm , maximum width (across level of compound eyes) 0.59 mm ; compound eye length 0.25 mm , separated from posterior border of head by minute distance. Pronotum medial length 0.51 mm , anterior width 0.37 mm , posterior width 0.60 mm (Fig. 2A); tegmen length 1.18 mm , maximum width 0.46 mm . Abdominal length as preserved (excluding cerci) 1.43 mm , maximum width 0.54 mm ; second tarsomere shortest but almost as long as third tarsomere; arolium vestigial; cercal forceps length 0.61 mm , basal width 0.07 mm , separation between bases 0.05 mm . Integument as preserved dark brown, punctate, somewhat smooth throughout. Legs without spines or bristle-like setae (Fig. 2C). Valvulae extending slightly beyond apex of subgenital plate (Fig. 2D).

Hind wings well developed (Fig. 1); area of hindwing $0.5 \mathrm{~mm}^{2}$ folded, $2.9 \mathrm{~mm}^{2}$ unfolded; squama sclerotized, extending a little beyond apex of tegmina; ulnary area distad squama; eight radiating veins and eight intercalary veins in anal area, with concave and convex folding lines between them; ring fold running through anal fan, intersecting with radiating and intercalary veins in broadened areas (Figs 1, 2B).

Male: Total length as preserved (including cerci) ca. 5.30 mm (Fig. 4A, B); sparsely setose; head medial length from clypeal apex to posterior border 0.47 mm , maximum

Figure I.Astreptolabis laevis sp. nov., holotype, CNU-DER-MA2018001 A photo B line drawing. Scale bars: 0.5 mm .
width (across level of compound eyes) 0.71 mm . Pronotum medial length 0.61 mm , anterior width 0.46 mm , posterior width 0.72 mm ; tegmen length 1.53 mm , maximum width 0.64 mm . Abdominal length as preserved (excluding cerci) 1.96 mm ; second tarsomere shortest but almost as long as the third; arolium vestigial (Fig. 4C); cercal forceps length 0.74 mm . Integument as preserved brown, somewhat smooth throughout. Legs without spines or bristle-like setae. Parameres broad, tapering to acute apex, without incisions or teeth, with a series of sensory setae along inner margin; two virgae extended, apically, with comb-like accessory sclerites positioned ventrally on distal lobes (Fig. 4D, E).

Figure 2. Astreptolabis laevis sp. nov., holotype, CNU-DER-MA2018001 A photo of pronotum B line drawing of hind wing \mathbf{C} photo of legs \mathbf{D} photo of vavula. Scale bars: $0.2 \mathrm{~mm}(\mathbf{A}, \mathbf{C}), 0.5 \mathrm{~mm}(\mathbf{B}), 0.1 \mathrm{~mm}(\mathbf{D})$.

Figure 3. Astreptolabis laevis sp. nov., paratype, CNU-DER-MA2018002 A photo B line drawing \mathbf{C} photo of legs \mathbf{D} photo of cerci. Scale bars: $0.5 \mathrm{~mm}(\mathbf{A}, \mathbf{B}), 0.2 \mathrm{~mm}(\mathbf{C}), 0.1 \mathrm{~mm}(\mathbf{D})$.

Figure 4. Astreptolabis laevis sp. nov., paratype, CNU-DER-MA2018003 A dorsal view B ventral view \mathbf{C} photo of pronotum and legs \mathbf{D} photo of male genitalia \mathbf{E} enlarged view of male genitalia. Scale bars: 1 $\mathrm{mm}(\mathbf{A}, \mathbf{B}), 0.5 \mathrm{~mm}(\mathbf{C}), 0.2 \mathrm{~mm}(\mathbf{D}), 0.1 \mathrm{~mm}(\mathbf{E})$.

Hind wing well developed, congruent with the description above, and unfolded.
Remarks. The hind wing of the holotype of A. laevis is well preserved, and one is unfolded and extended. The base of the hind wing is obscured because of the position of the specimen, but most of the preserved structures are similar to those of extant earwigs. The female paratype CNU-DER-MA2018002 shares the same characters with the holotype, but the integument of this paratype is somewhat roughened and the pronotum seems broader than the holotype; however, these differences may be the result of taphonomy. The male paratype CNU-DER-MA2018003 shares the same characters with the holotype except for a larger body size, which seems to be a sexual difference. Otherwise, differences in body size are mainly reflected in tegmen length and abdominal length which are longer than the female, but otherwise proportional.

Type material. Holotype, + , CNU-DER-MA2018001, dorsal view, a well-preserved complete female. Paratype q CNU-DER-MA2018002, dorsal view, a wellpreserved complete female. Paratype $\begin{gathered}\lambda \\ \text {, CNU-DER-MA2018003. All type material }\end{gathered}$ deposited in College of Life Sciences, Capital Normal University, Beijing, China.

Locality and horizon. Hukawng Valley, Kachin State, northern Myanmar; lowermost Cenomanian, mid-Cretaceous.

Etymology. The specific epithet is the Latin word laevis, meaning, "polished" or "smooth", in reference the integumental surface of the species.

Discussion

Up to now, many than 1000 species of insects have been reported from Burmese amber (Grimaldi et al. 2002; Ross 2019), including termites (Engel et al. 2016; Zhao et al. 2019), stick insects (Chen et al. 2018, 2019), scorpionflies (Lin et al. 2019), lots of wasps (Zhang et al. 2018), beetles (Cai et al. 2018), lacewings (Liu et al. 2018), etc.; however, earwigs are still quite rare compared to most of the other groups. Astreptolabis are the smallest earwigs within Pygidicranidae so far, females being as small as about 3.5 mm in length including cerci. Antenna has at least 14 antennomeres, which is an unusually small number for basal Neodermaptera and likely autapomorphic for the subfamily. Although the known representatives are quite peculiar among living and fossil earwigs, particularly in the straight, tapering, tubular cerci which clearly would have had little force as a grasping structure (contrary to virtually all other Neodermaptera), it has the usual traits typical of the suborder such as the absence of ocelli, the trimerous tarsi, unsegmented cerci, and absence of venation in the tegmina (Engel 2011). The straight and tubular cerci which likely did not function for grasping could imply that astreptolabidines used other strategies for predation, or were scavengers or detritivores and therefore did not hunt. The new species is typical in nearly all traits with the type species, aside from minor differences in largely setation, and proportions of structures. Nonetheless, the new species helps to refine our understanding of the circumscription for the genus and subfamily, and gives us some initial knowledge as to variations that may occur within the lineage. Unfortunately, while it would be revealing to learn more about the structure of the ventral cervical sclerites and thoracic sterna, these cannot be discerned in any of the new specimens and await future discoveries to provide such insights. Nonetheless, the discovery of the male for the group is important, and the uniqueness of the Astreptolabidinae is reinforced by the peculiar features of the male genitalia. Like other Pygidicranidae, the male has two virgae, rather than four terminal virgal sections present in Diplatyidae. However, unlike most other Pygidicranidae the parameres are broader and lack terminal teeth or incisions, and are instead comparatively simple, tapering to an acute apex. These are either specializations apomorphic for the subfamily, or could also suggest that including Astreptolabidinae within Pygidicranidae renders the family paraphyletic. If the latter, then there may be need to elevate the subfamily to family rank (as Astreptolabididae Engel, nomen translatum), but such a formal decision must await further character data such as the form of the thoracic sterna which could provide evidence of affinity to one or more subfamilies within Pygidicranidae as currently defined.

However, the female valvulae slightly extending beyond the subgenital plate is a trait known only among the Pygidicranidae (Engel and Grimaldi 2004), and this feature in A. laevis tends to corroborate its inclusion among pygidicranids. For the time being, the male of A. laevis emphasizes the distinctiveness of the lineage and highlights the need to obtain further character data for this group of peculiar, ancient Neodermaptera. If the subfamily were to fall outside of Pygidicranidae it remains uncertain whether it would be basal to the family or more closely related to Epidermaptera, and perhaps information on sternal forms would aid such a determination. The presence of complex, heavily sclerotized accessory structures ventral to the paired distal lobes is at least reminiscent of the accessory structures sometimes found among diplatyids, although the size and form of those in Astreptolabis are drastically different. If these were homologous, then it might suggest that Astreptolabidinae are intermediate in phylogenetic position between the basal families Diplatyidae, Haplodiplatyidae, and Karschiellidae relative to Pygidicranidae.

To date, there are only four Cretaceous amber species of adult pygidicranids published: Burmapygia resinata Engel \& Grimaldi, 2004, A. ethirosomatia Engel, 2011, Stonychopygia leptocerca Engel et al., 2017, and Gracilipygia canaliculata Ren et al., 2017 (Engel and Grimaldi 2004; Engel et al. 2017; Ren et al. 2017). As noted by the features of the subfamily (vide supra), Astreptolabis differs greatly from all of these groups.

Interestingly, the wing morphology of the hind wings of A. laevis is quite similar to extant earwigs. Though the broad attachment and the base of the hind wing is covered by the tegmina, the anal area is relatively clear, and the same areas of folding can be discerned as is found across all Neodermaptera, emphasizing the consistency of this specialization within the order. In addition, the shortened tegmina is known to allow for flexibility in the abdomen and its role in folding the hind wings when not in use and this behavioral repertoire is likely also conserved.

Acknowledgements

We thank the Editorial Board of ZooKeys, and in particular, Dr. Yasen Mutafchiev and Dr. Jes Rust. We express our gratitude to Dr. Fabian Haas for his critical but valuable reviews of the manuscript. We appreciate the helpful advice provided by Haoqiang Zhang (Capital Normal University). DR was supported by grants from the National Natural Science Foundation of China (No. 31730087 and 41688103), the Program for Changjiang Scholars and Innovative Research Team in University (IRT-17R75), and Support Project of High-level Teachers in Beijing Municipal Universities in the Period of $13^{\text {th }}$ Five-year Plan (No. IDHT20180518). TPG was supported by the National Natural Science Foundation of China (31872277) and Support Project of High-level Teachers in Beijing Municipal Universities in the Period of $13^{\text {th }}$ Five-year Plan (CIT\&TCD201704090). The authors declare no competing financial interests.

References

Cai CY, Escalona HE, Li LQ, Yin ZW, Huang DY, Engel MS (2018) Beetle pollination of cycads in the Mesozoic. Current Biology 22: 2806-2812. https://doi.org/10.1016/j. cub.2018.06.036
Chen S, Yin XC, Lin XD, Shih CK, Zhang RZ, Gao TP, Ren D (2018) Stick insect in Burmese amber reveals an early evolution of lateral lamellae in the Mesozoic. Proceedings of the Royal society B: Biological Sciences 285: 20180425. https://doi.org/10.1098/rspb.2018.0425
Chen S, Deng SW, Shih CK, Zhang WW, Zhang P, Ren D, Zhu YN, Gao TP (2019) The earliest timematids in Burmese amber reveal diverse tarsal pads of stick insects in the midCretaceous. Insect Science 26: 945-957. https://doi.org/10.1111/1744-7917.12601
Engel MS (2003) The earwigs of Kansas, with a key to genera north of Mexico (Insecta: Dermaptera). Transactions of the Kansas Academy of Science 106(3-4), 115-123. https://doi. org/10.1660/0022-8443(2003)106[0115:TEOKWA]2.0.CO;2
Engel MS (2009) Gregarious behaviour in Cretaceous earwig nymphs (Insecta, Dermaptera) from southwestern France. Geodiversitas 31(1): 129-135. https://doi.org/10.5252/ g2009n1a11
Engel MS (2011) New earwigs in mid-Cretaceous amber from Myanmar (Dermaptera, Neodermaptera). ZooKeys 130: 137-152. https://doi.org/10.3897/zookeys.130.1293
Engel MS (2016) The earwig genus Paralabella Steinmann in amber from the Dominican Republic, with remarks on the classification of Burr's Eocene Dermaptera. Entomologist's Monthly Magazine 152(2): 121-130.
Engel MS (2017) The first fossil occurrence for the earwig subfamily Geracinae (Dermaptera). Entomologist's Monthly Magazine 153(1): 31-43.
Engel MS, Barden P, Riccio ML, Grimaldi DA (2016) Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Current Biology 22: 522-530. https://doi.org/10.1016/j.cub.2015.12.061
Engel MS, Chatzimanolis S (2005) Early Cretaceous earwigs (Dermaptera) from the Santana Formation, Brazil. Polskie Pismo Entomlogiczne 74(3): 219-226.
Engel MS, Grimaldi DA (2004) A primitive earwig in Cretaceous amber from Myanmar (Dermaptera: Pygidicranidae). Journal of Paleontology 78(5): 1018-1023. https://doi. org/10.1666/0022-3360(2004)078<1018:APEICA>2.0.CO;2
Engel MS, Grimaldi DA (2014) New mid-Cretaceous earwigs in amber from Myanmar (Dermaptera). Novitates Paleoentomologicae 6: 1-16. https://doi.org/10.17161/np.v0i6.4676
Engel MS, Haas F (2007) Family-group names for earwigs (Dermaptera). American Museum Novitates 3567: 1-20. https://doi.org/10.1206/0003-0082(2007)539[1:FNFED]2.0.CO;2
Engel MS, Perrichot V (2014) An earwig in Late Cretaceous Vendean amber (Dermaptera). Paleontological Contributions 10D: 16-20. https://doi.org/10.17161/PC.1808.15984
Engel MS, Lim JD, Baek KS, Martin LD (2002) An earwig from the Lower Cretaceous of Korea (Dermaptera: Forficulina). Journal of the Kansas Entomological Society 75(2): 86-90. https://doi.org/10.1016/S0022-1910(02)00073-2

Engel MS, Ortega-Blanco J, Azar D (2011) The earliest earwigs in amber (Dermaptera): A new genus and species from the Early Cretaceous of Lebanon. Insect Systematics and Evolution 42(2): 139-148. https://doi.org/10.1163/187631211X555717
Engel MS, Peris D, Chatzimanolis S, Delclòs X (2015) An earwig (Insecta: Dermaptera) in Early Cretaceous amber from Spain. Insect Systematics and Evolution 46(3): 291-300. https://doi.org/10.1163/1876312X-45032121
Engel MS, Huang DY, Thomas CJ, Cai CY (2017) A new genus and species of pygidicranid earwigs from the Upper Cretaceous of southern Asia (Dermaptera: Pygidicranidae). Cretaceous Research 69: 178-183. https://doi.org/10.1016/j.cretres.2016.09.009
Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge University Press, Cambridge.
Grimaldi D, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361: 1-71. https://doi.org/10.1206/0003-0082(2002)361<0001:fcafmb>2.0.co;2
Grimaldi DA, Ross AJ (2017) Extraordinary Lagerstätten in amber, with particular reference to the Cretaceous of Burma. In: Fraser NC, Sues HD (Eds) Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land. Dunedin Press, Edinburgh, 287-342.
Giles ET (1963) The comparative external morphology and affinities of the Dermaptera. Transactions of the Royal Entomological Society of London 115(4): 95-164. https://doi. org/10.1111/j.1365-2311.1963.tb00816.x
Hincks WD (1956) Dermaptera. In: Tuxen SL (Ed.) Taxonomist's Glossary of Genitalia in Insects. Pp. 66-69. Munksgaard, Copenhagen. https://doi.org/10.2307/25006218
Lin XD, Labandeira CC, Shih CK, Hotton CL, Ren D (2019) Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nature Communications 10: 1235. https://doi.org/10.1038/s41467-019-09236-4
Liu Q, Lu XM, Zhang QQ, Chen J, Zheng XT, Zhang WW, Liu XY, Wang B (2018) High niche diversity in Mesozoic pollination lacewings. Nature Communications 9: 3793. htt-ps://doi.org/10.1038/s41467-018-06120-5
Perrichot V, Engel MS, Nel A, Tafforeau P, Soriano C (2011) New earwig nymphs (Dermaptera: Pygidicranidae) in mid-Cretaceous amber from France. Cretaceous Research 32(3): 325330. https://doi.org/10.1016/j.cretres.2011.01.004

Popham EJ (1985) The mutual affinities of the major earwig taxa (Insecta, Dermaptera). Zeitschrift für zoologische Systematik und Evolutionsforschung 23(3): 199-214. https:// doi.org/10.1111/j.1439-0469.1985.tb00583.x
Ren MY, Zhang WT, Shih CK, Ren D (2017) A new earwig (Dermaptera: Pygidicranidae) from the Upper Cretaceous Myanmar amber. Cretaceous Research 74: 137-141. https:// doi.org/10.1016/j.cretres.2017.02.012
Ren MY, Zhang WT, Shih CK, Ren D (2018) Earwig nymphs (Dermaptera) from the mid-Cretaceous amber of Myanmar. Cretaceous Research 90: 382-390. https://doi.org/10.1016/j. cretres.2018.06.010
Ross AJ (2019) Burmese (Myanmar) amber checklist and bibliography. Palaeoentomology 2(1): 22-84. https://doi.org/10.11646/palaeoentomology.2.1.5

Ross AJ, Engel MS (2013) The first diplatyid earwig in Tertiary amber (Dermaptera: Diplatyidae): A new species from Miocene Mexican amber. Insect Systematics and Evolution 44(2): 157-166. https://doi.org/10.1163/1876312X-44032096
Shi G, Grimaldi DA, Harlow GE, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37: 155-163. https://doi.org/10.1016/j.cretres.2012.03.014
Zhang Q, Rasnitsyn AP, Wang B, Zhang HC (2018) Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proceedings of the Geologists' Association 129(6): 736-747. https://doi.org/10.1016/j.pgeola.2018.06.004
Zhao ZP, Eggleton P, Yin XC, Gao TP, Shih CK, Ren D (2019) The oldest known mastotermitids (Blattodea: Termitoidae) and phylogeny of basal termites. Systematic Entomology 44: 612-623. https://doi.org/10.1111/syen. 12344

Aurivillius's "Neue oder wenig bekannte Coleoptera Longicornia" (1886-1927), the correct years and page numbers

Mei-Ying Lin', Si-Qin Ge'
I Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Chaoyang Dist., Beijing, 100101, China
Corresponding author: Mei-Ying Lin (linmeiying@ioz.ac.cn), Si-Qin Ge (gesq@ioz.ac.cn)

Academic editor: Francesco Vitali | Received 22 November 2019 | Accepted 8 January 2020 | Published 12 February 2020
http://zoobank.org/5EF76D0B-1A44-4890-8EB4-9BD0F2DAC5A7
Citation: Lin M-Y, Ge S-Q (2020) Aurivillius's "Neue oder wenig bekannte Coleoptera Longicornia" (1886-1927), the correct years and page numbers. ZooKeys 911: 113-137. https://doi.org/10.3897/zookeys.911.48684

Abstract

Aurivillius's work entitled "Neue oder wenig bekannte Coleoptera Longicornia" was published in parts over a period of over four decades. There were two page numbers on most pages of these publications, one ordered by Aurivillius, the other by the journal. Historically, different authors have used different page numbers, and sometimes different years for these publications, which has caused chaos in the citations. Herein, accurate dates of publications for this work, and correct page numbers that should be used are provided and discussed.

Keywords

Correction, misunderstanding, publication date, reference, years of submission, Zoological Record

Introduction

Christopher Aurivillius (1853-1928) was a very important Swedish entomologist, who published 67 references regarding Cerambycidae from 1886 to 1929 (Tavakilian and Chevillotte 2019). Among them, 20 parts were titled as "Neue oder wenig bekannte Coleoptera Longicornia" and numbered from 4 to 23 . Most of them (except the $8^{\text {th }}$ part) have two page numbers printed on each page, both of which have been cited by

[^5]many different authors. In order to determine the correct page numbers and the accurate dates of publication for this significant work, we analyzed all the Cerambycidae literature of Aurivillius.

Materials and methods

Methods of literature collecting

We accessed literature in three ways for this study: a) downloaded pdf files from the Biodiversity Heritage Library: http://www.biodiversitylibrary.org/; b) copied the original pages directly from library holdings (the first author visited the libraries of the Institute of Zoology, Chinese Academy of Sciences, Beijing, China; National Science Library, Chinese Academy of Science, Beijing, China; Muséum national d’Histoire naturelle, Paris, France; Division of Plant Industry, Florida State Collection of Arthropods, Gainesville, Florida, USA; and the National Museum of Natural History (Smithsonian Institution), Washington DC, USA, etc.); c) solicited help from colleagues (especially G. Tavakilian and S. Lingafelter).

Dating the publications

In researching the dates of publication for this work, we consulted five points of reference: a) date printed on first and last pages; b) date shown by the Zoological Record; c) date used by Aurivillius's catalogues; d) date used by literature citing related references; e) date printed on original wrapper.

Results

Historically different ways of citing page numbers

We examined most of the literature citing Aurivillius's "Neue oder wenig bekannte Coleoptera Longicornia" published in the journal "Arkiv för zoologi", and gathered the results herein.
a) Citation using the journal's page numbers: Aurivillius 1912, 1922, 1923, 1928; Breuning 1939, 1940, 1944, 1950, 1956, 1958-1969; Lane 1950; Quentin 1956; Podaný 1968, 1971; Gressitt and Rondon 1970; Rondon and Breuning 1970; Hüdepohl 1985, 1988, 1989, 1990; Lee 1987; Niisato 1989, 2007; Nakamura et al. 1992; Napp 1993; Nýlander 1998; Makihara 1999; Heffern 2002; Makihara and Woro 2002; Morati and Huet 2004; Ohbayashi and Niisato 2007; Bousquet et al. 2009; Morati and Bentanachs 2009; Bentanachs et al. 2010; Sudre et al. 2010;

Juhel 2011; Jiroux 2011; Vitali 2011; Weigel and Skale 2011; Vitali and Vitali 2011; Wallin et al. 2014; Lin 2015; Vitali et al. 2017.
b) Citation using both Aurivillius's and the journal's page numbers, but considering journal numbers as more important: Löbl and Smetana 2010; Heffern 2011; Viktora 2013, 2015a, 2019; Viktora and Tichý 2017; Lin and Yang 2019.
c) Citations using both Aurivillius's and the journal's page numbers, but considering Aurivillius's numbers as more important: Hüdepohl 1992; Juhel and Bentanachs 2010.
d) Citations using Aurivillius's page numbers: Tavakilian 1991; Martins and Galileo 1992; Martins 1997, 1998, 1999, 2002, 2005, 2007, 2009, 2011, 2014; Adlbauer 1998; 2002a, 2002b, 2013; Napp and Mermudes 1999; Vives and Heffern 2001; Vives and Abang 2003; Hüdepohl and Heffern 2004; Heffern 2005; Monné 2005a, 2005b, 2012, 2019a, 2019b, 2019c, 2019d; Monné and Napp 2005; McCarty 2006; Napp 2007; Yokio and Niisato 2009; Juhel and Bentanachs 2009a, 2011, 2012; Vives 2009, 2012, 2015a, 2015b, 2015c, 2015d, 2017; Martins and SantosSilva 2010; Lin and Yang 2011; Juhel 2012, 2014a, 2015; Monné et al. 2012, 2016; Huang et al. 2014; Jiroux et al. 2014; Lingafelter et al. 2014; Miroshnikov 2014; Gouverneur 2015; Monné and Monné 2015, 2017; Viktora 2015b; Rousset et al. 2016; Santos-Silva and Galileo 2016; Sudre et al. 2016; Viktora and Tichý 2016; Vitali 2016, 2018; Yan and Chen 2016; Yokio and Heffern 2016; Bentanachs and Jiroux 2017; Santos-Silva and Botero 2017. Note that some of these citations could have followed the Titan database (Tavakilian and Chevillotte (2019) since they also cited that database (e.g., Huang et al. 2014; Gouverneur 2015).
e) Random citation method: Sometimes using the journal's page numbers and sometimes using Aurivillius's page numbers in the same paper: Gressitt 1940, 1951; Lingafelter and Hoebeke 2002; Juhel and Bentanachs 2009b; Ślipiński and Escalona 2013; Juhel 2014b, 2016; Nakamura et al. 2014; Lin 2017; Bezark 2019; Lazarev and Murzin 2019.

Common errors encountered when citing this series of papers

The errors occurred in the date (see Table 1), page numbers (see Table 1), information regarding the figures and plates, part numbers, first and last page numbers, journal volume numbers, and so on.
a) Errors regarding the separate plates. There were two kinds of figures in this work, text-figures were inside the content and provided with continuous numbers (see Table 1), while end-plates were printed as separate plates, normally numbered from one. The former can be ignored in the reference, while the latter should be added. For example, Hüdepohl and Heffern (2004) wrote the reference as "Aurivillius, C. 1907. Neue oder wenig bekannte Coleoptera Longicornia. 9. Arkiv för zoologi. 3(18): 93-131. 9 fig.", the " 9 fig." would be better stated as "pl. 1: fig. $1-9$ " or "1 pl.", since there were seven text-figures (figs 35-41) inside the content too, which
Table I. Bibliographic details of the series "Neue oder wenig bekannte Coleoptera Longicornia" by Aurivillius (1886-1927). AFZ: Arkiv för zoologi; ET: Entomologisk Tidskrift; ICZN: International Code for Zoological Nomenclature.

Publishing year	Title	Journal name	Volume: page numbers by the journal	Page numbers arranged by Aurivillius	Species numbers	Text-figure numbers (inside content)	End-plates (separated from content)	Date of submission (on first page)	Released / printed date (on last page)	Came out date (for the volume normally)
1886	Nya Coleoptera Longicornia	ET	7(2): 89-94.	none (1-6 concluded herein)	$1-5$	none	none			12 July 1886
1887	Nya Coleoptera Longicornia. II.	ET	8(4): 191-197.	none (7-14 concluded herein)	6-10	figs 1-3.	none			31 Dec. 1887
1891	Neue Coleoptera Longicornia. III	ET	12 (2): 97-106.	15-24	11-20	figs 1-6.	none			18 June 1891

 numbers.
Species number 21 was related to one new genus whose type species was not described by Aurivillius. Later, genera were not numbered again.

 pages 43 to 50 . The figures inside the sixth part continued the numbers from the fourth part, while the figures in fifth part arranged as a separate plate were not numbered continuously.
 Mikael Sörensson on 10 December 2019). Also the website https://www.biodiversitylibrary.org/item/43633\#page/584/mode/1up indicated the publication date as 23 Jan. 1900 . $\begin{array}{lll}\text { We chose } 1899 \text { based on the Zoological Record and Derksen and Scheiding (1963). } \\ 1902 & 7 . & \text { ET } \\ \text { 23: 207-224. }\end{array}$

$$
\text { (printed as: } 1,2,61-76 \text {) }
$$

2 Sept. 1902

 77-92 in conclusion)
$\left.\begin{array}{lccccccccc}\hline \begin{array}{c}\text { Publishing } \\ \text { year }\end{array} & \text { Title } & \begin{array}{c}\text { Journal } \\ \text { name }\end{array} & \begin{array}{c}\text { Volume: page } \\ \text { numbers by the } \\ \text { journal }\end{array} & \text { Page numbers arranged by } & \text { Aurivillius } & \begin{array}{c}\text { Species } \\ \text { numbers }\end{array} & \begin{array}{c}\text { Text-figure } \\ \text { numbers (in- } \\ \text { side content) }\end{array} & \begin{array}{c}\text { End-plates } \\ \text { (separated } \\ \text { from content) }\end{array} & \begin{array}{c}\text { Date of sub- } \\ \text { mission (on } \\ \text { first page) }\end{array}\end{array} \begin{array}{c}\text { Released / } \\ \text { printed date (on } \\ \text { last page) }\end{array} \quad \begin{array}{c}\text { Came out date } \\ \text { (for the volume } \\ \text { normally) }\end{array}\right]$ ninth part, the AFZ printed both the journal's page number on top and Aurivillius' own page number at bottom.
The date of publication of the eighth part is confusing. The printing date on the last page is "Tryckt den 27 november 1903", so it should be 1903. However, Aurivillius (1912; 1922) cited this part as 1904, and Zoological Record indicated 1904, which making this a confusing situation. We believe that 1903 is the correct publication year, because Aurivillius corrected it to 1903 in his 1923 's catalogue. Most authors cite the eighth part as year 1903 (Heffern 2005, but erroneously missed the first page 313; Makihara 1999; Heffern 2011 (corrected and added page 313)).
1907 9. AFZ 3 3(18):1-39. $93-131 \quad 97-155 \quad$ figs 35-41. pl. 1: figs 1-9. 12 Sept. $1906 \quad 7$ Feb. $1907 \quad 24$ Sept. 1907
The correct publication date of the ninth part is surely 1907, and most of authors cited it correctly (Aurivillius 1912, 1922, 1923; Breuning 1944; Gressitt 1951; Podaný 1971; Nakamura et al. 1992; Hüdepohl and Heffern 2004; Heffern 2005, 2011; Makihara and Woro 2002; Morati and Bentanachs 2009; Juhel and Bentanachs 2011, 2012; Nakamura et al. 2014; Yokio and Heffern 2016; Bentanachs and Jiroux 2017; Bezark 2019; Lin and Yang 2019). However, some authors used the submission date of 1906 (e.g., Adlbauer 2002b); while some authors used the year 1908 for unknown 11 Mar. 1908 1 May $1908 \quad 30$ Sept. 1908
 1912, 1922, 1923), and the Zoological Record also listed it as 1910. Most authors cited it correctly (Quentin 1956; Podaný 1968; Hüdepohl 1992; Martins 1997, 1998, 2002; Vives and Heffern 2001; Heffern, 2002; 2005; Vives and Abang 2003; Monné 2005a, 2012, 2019a, d; Bousquet et al. 2009; Bentanachs et al. 2010; Gouverneur 2015; Monné and Monné 2015; Viktora 2015b; Bezark 2019; Lin and Yang 2019).
However, some authors used 1911 because the whole seventh volume was published on January 25, 1911 (Napp 1993; Morati and Huet 2004; Löbl and Smetana 2010; Heffern 2011; Viktora and Tichý 2017).
1911
1913

1911	12.	AFZ	7(19): 1-41.	$187-227$	$224-291$	figs 49-57	none	7 June 1911	8 Dec. 1911
1913	13.	AFZ	$8(22): 1-35$.	$229-263$	$292-351$	figs 58-68	none	4 June 1911 1913	17 Oct. 1913
$1914 a$	14.	AFZ	$8(29): 1-54$.	$265-318$	$352-453$	none	pl. 1: figs 1-9	25 Feb. 1914	9 May 1914

 The publication date of the $15^{\text {th }}$ part is confusing. According to ICZN 21.2 and 21.8, the correct date should be 1914, since on the last page it was printed "Tryckt den 4 november 1914", Aurivillius himself cited it as 1914 (Aurivilius 1922, 1923), and the Zoological Record also included it in 1914. Most authors cited it correctly (Adbauer 2002, Junel and Bentanachs 2011; Juhel 2014a). The page $26(=360)$ is unnecessary to be included, though it doesn't matter so much if it is included. On the page $26(=360)$, there was no content written by Aurivillius, but only "Tryckt den 12 augusti 1916. / Uppsala 1916. Almqvist \& Wiksells Boktryckeri-A.-B. / -360-" Also, there was an ending mark on the page 25 (=359). In a similar situation that happened to the $12^{\text {th }}$ part, $42(=228)$ normally was not included.
1920 AFZ $17.13(9): 1-43 . \quad 361-403 \quad 10523-595 \quad$ figs 73-81 \quad none $\quad 10$ Mar. $1920 \quad 6$ Sept. 1920 11 Oct. 1920
The species number 523 was used twice. It was used for " 523 . Hilarolea humeralis" in the $16^{\text {th }}$ part, and again as " 523 . Ophistomis splendida" in the $17^{\text {th }}$ part.
The publication date of this part is surely 1920 and few errors were made. Martins (2005) carelessly used 1922 but he corrected it to 1920 later (Martins 2011, 2014).
1922 18. AFZ $14(18): 1-32 . \quad 405-436 \quad 1059639$ figs 82-112 \quad none $\quad 7$ Dec. 1921 4 April 1922 26 July 1922 The publishing year of the $18^{\text {d }}$ part is surely 1922. However, some authors used the submission date 1921 (e.g., Makihara, 1999), or even 1920 for unknown reasons (e.g. Makihara and Woro 2002).

				Aurivillius	numbe		(separated from content)			
		AFZ	15(25): 1-43.					6 June 1923	c. 1	
The date of publication of the $19^{\text {th }}$ part is one of the most confusing cases, since different people used different years and for different reasons. The correct year should be 1923. Many authors used 1923 because of the "Tryckt den 31 december 1923" on the last page (Aurivillius 1928; Breuning 1939, 1944, 1950 don 1970; Hüdepohl 1985, 1988, 1992; Makihara 1999; Martins 1999, 2009, 2014; Lingafelter and Hoebeke 2002; Hüdepohl and Heffern 2004; Heffern 2005; Mak 2005a, b, 2012; 2019a, b, d; Monné and Napp 2005; Yokio and Niisato 2009; Vives 2011; Monné et al. 2016; Monné and Monné 2017; Bezark 2019). However, since Zoological Record cited 1924 for this work, so do the Titan database (Tavakilian and Chevillotte 2019). Less than half of authors used 1924 as the publi 1990; Heffern 2011; Lingafelter et al. 2014; Nakamura et al. 2014; Viktora and Tichý 2016; Vitali et al. 2017; Lin and Yang 2019). The first author of this paper Mei-Y (chose 1924 in the catalogue by Lin and Yang (2019) and an earlier version of this paper, but finally decided to choose the earlier date of "Tryckt den 31 december 1923 "). For unknown reasons, 1925 was used by Löbl and Smetana (2010) in the Palaearctic catalogue, and this was followed by Viktora (2013), Viktora and Tichý (2017) and Makihara and Woro (2002) erroneously used 1922.										
1925a	20.	AFZ	(12): 1-21	01		fis 134		1		
The publication date of the $20^{\text {th }}$ part is 1925, however, some authors wrongly used the submission year 1924 from the first page (e.g., Makihara 1999; Makihara and Woro 2002).										
1925b	21.	FZ	18A(9):			-16			Nov. 19	
The publication date of the $21^{\text {st }}$ part is also one of the most confusing cases. We consider 1925 as the correct year for two reasons: a) "Tryckt den 17 november 1925" was printed on the last page, which is the correct year according to ICZN item tabase and the following literature used 1925 (Makihara 1999; Martins 1999; Heffern 2005; Monné 2005a, b, 2012, 2019a, b, d; Lin and Yang 2011; Lingafelter et al. 2016; Sudre, et al. 2016; Bezark 2019; Lin and Yang 2019). However, both Zoological Record and the Palaearctic catalogue (Löbl and Smetana 2010) used 1926, as did the following (Gressitt 1940, 1951; Bousquet et al. 2009; H calona 2013; Lin 2017).										
1927a	22		A(17): 1-23		844	164-17		une 192	Sept. 192	v.
1927b	23	AFZ	19A(23): 1-41	549-589	845-919	figs 178-202		14 Sept. 1927	21 Dec. 1927	25 Jan. 1928
The publication date of the 23rd part is also one of the most confusing cases. We consider 1927 as the correct year for two reasons: a) "Tryckt den 21 december 1927" was printed on the last page, which is the correct date according to ICZN item base also used 1927. The following literature used 1927 (Breuning 1944, 1950, 1956; Hüdepohl 1988; Heffern 2005; Weigel and Skale 2011; Vives 2012, 2015b, 2017; mura et al. 2014; Wallin et al. 2014; Rousset et al. 2016; Vitali 2016; Lin and Yang 2019). However, both Zoological Record and the Palaearctic catalogue (Löbl and Smetana 2010) used 1928, as did the following (Heffern 2011; Lazarev and Murzin 2019). "u on the wrapper. We chose the earlier date based on ICZN item 21.8.										

might cause misunderstanding. Sometimes the separate end-plate was missing in the reference (Monné 2005a, 2005b; Vives 2009; Lingafelter et al. 2014; Monné 2019a, 2019b, 2019d; Monné et al. 2016, missing the plate when citing part 16; Monné 2019a, 2019b, 2019d missing the plate when citing part 22).
b) Errors regarding part numbers. Sometimes authors cited the title without the part numbers (Hüdepohl 1985; Martins 1998; Nýlander 1998; Jiroux 2011; Juhel and Bentanachs 2011; Vives 2011; Monné et al. 2012; Juhel 2014a; Wallin et al. 2014; Ślipiński and Escalona 2016; Bezark 2019 for the second and third part), which is an incomplete citation. Sometimes authors made mistakes on the part numbers (for example, Hüdepohl (1992) wrote part 11 incorrectly as 2; Makihara (1999) wrote part 21 while the journal's information indicates part 22; Vives (2009) wrote part $21-22$ while the journal's information indicate part 22 , and he used the figure numbers as page numbers). Some authors mixed different parts together, such as Martins (2011) mixing part 13 and 15 together as "13. Arkiv Zool. 9(8): 229-263", while the journal's volume $9(8)$ belongs to part 15 , not part 13.
c) Errors regarding first and last page numbers. Sometimes the first page number was missing (Heffern 2005, missing page 313 of part 8), or last page number was missing (Lingafelter and Hoebeke 2002, missing page 224 of part 7, and missing part 7 from the title too; Sudre et al. 2010, missing last 23 pages of part 12; Juhel and Bentanachs 2011, 2012, missing page $39=131$ of part 9; Juhel 2016, missing page $54=318$ of part 14), or adding one more page (for example, Martins 1997, 1998, 2002, 2005; Monné 2005a, b, 2012; Monné and Monné 2015 and Bezark 2019, added 187 to part 11; Vives 2015d, Yan and Chen 2016 and Lazarev and Murzin 2019, added 228 to part 12). Adding 187 to part 11 is an error that should be corrected, because 187 is the first page number of part 12 .
d) Errors regarding about journal volume numbers. Sometimes the volume numbers of the journal were wrongly cited. For example, Podaný (1971) wrote 3 (10) for part 9, while the correct number should be 3 (18); Bentanachs et al. (2010) wrote 7 (2) for part 11, while the correct number should be 7 (3); Ohbayashi and Niisato (2007) wrote volume 21 for part 7, while the correct volume number should be 23.
e) Other errors. Some authors cited the figure numbers as page numbers (Vives 2009, 2011), or cited the part number as page number (Löbl and Smetana 2010; Lin 2015, 2017; see fig. 4), or cited page numbers erroneously for unknown reasons (Vives and Abang 2003).

Examples of other types of errors

Nakamura et al. (2014) and Lin (2017) cited part 23 twice in the same paper or book, they used the journal's page numbers and Aurivillius's own numbers in different places in the same publication, and used different years for the same part 23, which made part 23 look like two different articles. Hence, they made mistakes for citations of related taxa. Nakamura et al. (2014) used 1928 for the genus Mimectatina in the title, while the origi-

ARKIV FÖR Z00LOGI.
BAND 14. N:o 18.

part number is included in the title

Nene oder wenig bekannte Coleoptera
 Longicornia.

18.

von

CHR. AURIVILLIUS.

Mit 30 Abbildungen im Text.
Vorgelegt am 7 Dezember 1921.
date of submission
Die Mehrzahl der hier beschrisbenen Formen stammen aus Borneo und den Philippinen und wurden mir von Ch. F. Baker zur Bestimmung und Bearbeitung gesandt. Es findet sich darunter mehrere sehr interessante »mimetische» Formen und andere, welche die philippinische CerambycidenFauna mit derjenigen der Sunda-Inseln verbindet.

Besonders unter den Clytiden sind mehrere der alten Arten nicht mit Sicherheit nach den Beschreibungen zu deuten; um solche Unsicherheit für die Zukunft zu vermeiden habe ich die Mehrzahl der neuen Arten abbilden lassen und bin dem Intendanten der entomologischen Abteilung, Proféssor Y. Sjöstedt, für die Herstellung der Originalfiguren besonders dankbar.

Cerambycinae.

Ischionorox nov. gen.

 (Cerambycini oder Asemini).Femina: Mandibulae subverticales, apice curvatae, obtusae, simplices. - Palporum articulus ultimus apice paiktatus Arkio för zoologi. Bd 14. N:o 18.
Page number arranged by Aurivillius by the journal
Figure I. First page of part 18, showing the title, date of submission, journal's page number and Aurivillius's page number.

page number by the journal

2 arkiv för zoologi. band 14. n:o 18.
Frons depressione transversa media instructa. - Genae breves. - Oculi rude granulati, supra et infra late distantes, antice tuberculos antenniferos parum superantes. - Tuberculi antenniferi validi, late distantes, divergentes. - Antennae breves medium elytrorum parum superantes; scapus leviter curvatus, apicem versus modice incrassatus et apice extus transverse cristatus; articulus tertius scapo vix, 4:0 distincte longior; articuli 4-11 subaequales, 6-10 apice extus breviter angulati. - Prothorax transversus, utrinque in medio tumidus vel subtuberculatus. - Scutellum latum, transversum, subcordiforme. - Elytra elongata, fere cylindrica, apice singulatim obtuse rotundata. - Coxae anticae extus valde angulatae, transversae; rima acetabulorum marginem pronoti fere attingens; acetabula antica postice parum aperta; processus intercoxalis mediocris, postice valde arcuatus, non autem truncatus, apice bilobatus. - Acetabula intermedia extus aperta; mesosternum antice declive. - Metasternum modice elongatum; episterna postice sensim angustata, elongatotriangularia. - Pedes mediocres; femora leviter compressa, sublinearia, postica segmentum secundum abdominis vix superantia; tibiæ haud carinatae, rectae, apice calcaribus duobus brevibus instructae; tarsi infra spongiosi, articulus primus 2:0 et 3:0 simul sumtis haud longior, articulus tertius profunde fissus; ultimus elongatus ad basin tumidus; unguiculi mediocres, simplices; paronychium minutum setis duabus instructum.

Diese eigentümliche Gattung scheint die Cerambycinen mit den Aseminen zu verbinden. Die Gelenkhöhlen der Vorderhüften sind wie bei den Aseminen weit offen und die Fühler sind wenigstens beim \circ nicht länger als $\%$ des Körpers. Die Fühlerhöcker dagegen sind wie bei den Cerambycinen kräftig entwickelt.

species number

596. Ischionorox antiqua n. sp. - ㅇ. Nigrofusca, in elytris magis brunneo-fusca, pube grisescente infra densiore vestita; capite rugoso, supra inter oculos transversim impresso, vertice tumido; antennarum articulis $1-5$ (-6) punctatis, nitidis, infra pilis paucis praeditis, (6)-7-11 sericeo-opacis; pronoto valde rugoso, utrinque piloso, ad basin fortius constricto, supra pone medium carina brevi instructo; elytris undique dense subrugose punctatis, laevibus, apice obtuse page number arranged by Aurivillius

$$
-406-
$$

Figure 2. Second page of part 18, showing the species number, journal's page number and Aurivillius's page number.
page number by the journal

```
    32 arkiv för zoologi. band 14. n:o 18.
```


Fig. 111. Didymonycha singularis Auriv. - Fig. 112. Letztes Fussglied mit den Klauen.
elongatum; episterna postice acuminata. - Coxae posticae magnae, oblique positae, anticae fere contiguae. - Processus intercoxalis abdominis acutus, immersus. Femora mediocria, postica apicem segmenti 4 :i abdominis vix attingentia. - Tibiae intermediae et posticae curvati. - Tarsi elongati infra spongiosi; articulus primus 2:0 et 3:0 simul sumtis haud brevior; quartus apice incrassatus.

Die Verwandtschaft dieser merkwürdigen Gattung ist mir nicht klar. Sie erinnert jedoch an gewissen Amphionychiden und Aereneciden. species number
639. Didymonycha singularis n. sp. - Fig. 111, 112. - Nigrofusca, pube griseo-sericea vestita; caput et pronotum rufa, hoc fascia laterali ad basin distinctiore albosericea et margine basali nigro ornatum; elytra seriatim breviter nigro-setosa. Long. corporis 11 mm .

Peru: Puna (Kinberg). - Reichsmuseum in Stockholm.
Nach einem einzigen, alten, während der Expedition der Fregatte Eugenie angeblich bei Puna erbeuteten Stïcke beschrieben.

ending mark

released date

Tryckt den 4 april 1922.

$$
\begin{aligned}
& \text { Uppsala 1922. Almqvist.\& wiksells Boktryckeri-A.-B. } \\
& \text { page number arranged by Aurivillius }
\end{aligned}
$$

Figure 3. Last page of part 18 , showing the species number, figure numbers, ending mark, release date, journal's page number and Aurivillius's page number.
nal article they used Aurivillius 1927: 27, then type species was written as Mimectatina singularis Aurivillius, 1928. Nakamura et al. (2014) variably used 1928 and 1927 in their authorship date for Mimectatina, causing confusion. And Nakamura et al. (2014) used the journal page number for the detailed taxon citation "Cataphrodisium: Aurivillius: 8", while in the reference they used Aurivillius's own page numbers " $93-131$ ", which were incorrect. Nakamura et al. (1992) used 1927 for the type species Mimectatina singularis and 1928 for the genus Mimectatina. Lin (2017) used 1927 and Aurivillius's page numbers for the genus Mimectatina (writing "Mimectatina Aurivillius, 1927: 575", which should be corrected to "Mimectatina Aurivillius, 1927: 27 (=575)"), then used 1928 and the journal's page numbers for the genus Parenes (Fig. 4, writing "Parenes Aurivillius, 1928c: 23", which was copied from Löbl and Smetana (2010) and should be corrected to "Parenes Aurivillius, 1927: 29 (= 577)"), wrongly treating the same paper as two separate articles.
poris $8-9 \mathrm{~mm}$. tum ventrale 5:um simplex. Segmentum ventrale 5:um apice foveatum. Baker. Riksmuseum in Stockholm.
part number (23)
AURIVIHLJUS, NEUF COLEOPTERA LONGICORNIA. 23.
Frons lata, subtransrersa, vix punctata. Genae lobis oculorum inferioribus longiores. Tubercula antennifera late distantia, divergentia. Antennae corpore tertia fere parte longiores, infra longe ciliatae, fuscae articulis 3-5 plus minus albidis; seapus et articulus tus subaequales, articulo 3:o paullo longiores. Prothoras latitudine basali paullo longior, supra convexus, utrinque prope medium spina parva armatus, pube cinerea aequaliter tectus, obsolete punctulatus. Scutellum subtruncatum. Hlytra subeylindrica, pone medium arcuatim angustata, apice rotundata, ante medium seriatim punctata interstitio 4:0 obsolete elevato, cinerea, fasciis 4 nigris ornata, fascia 1:a basali humeros non attingente, 2:a praullo pone basin angusta flexuosa, 3:a saepe lata ad suturam antrorsum longe producta, ta praeapicali, ad suturam plus minus interrupta. Long. cor-
ot. Femora postica apicem elytrorum superantia. Segmen-
O. Femora postica apicem elytrorum hand attingentia.

Philippinen: Neerros. Samart (C. F. Buker). - Collectio case 2, by Lin (2015)

new genus was not numbered

Parenes gen. nor.
(Acanthocininorum.)
genus Rondibilis J. Thomson, 1857d: 306 subgenus Rondibilis J. Thomson, 1857d: 30 Eryssamena Bates, 1884:251 type species E Parenes Aurivillius, 1928a: 23 type species Polimeta Pascoc, 1864a: 13 type species Ost
case 1 , used the part
no. 23 as page no. by
Löbl \& Smetana (2010)

Parenes Aurivillius, 1928: 23.

page number

by the journal Eryssamena Bates, 1884:251 type species Polimeta Pascoc, 1864a: 13 type species O st
.
-
Parenes Aurivillius, 1928c: 23.
by Lin (2017)

Figure 4. page 29 of part 23 , showing the part number, species number, journal's page number and Aurivillius's page number, and four cases of wrong citation.

Discussion

Date of publication we chose

The dates of publication of this series of work contain several confusing cases; the detailed information is shown in Table 1. For parts 5 and 6, we chose the earlier date indicated by the Zoological Record and Derksen and Scheiding (1963), instead of the later date printed low on the back side of the original wrapper, based on IZCN 21.8.1. For parts 11 and 15, we chose the earlier date printed on the last page and indicated by Zoological Record, instead of the later date indicated by the journal, also based on IZCN 21.8.1. For parts 19, 21 and 23, we chose the earlier date printed on the last page, instead of the later date indicated by Zoological Record and the journal, also based on IZCN 21.8.1, Before 2000, an author who distributed separates in advance of the specified date of publication of the work in which the material was published thereby advanced the date of publication.

When we talk about "distribute reprints in advance" in Aurivillius's cases, the authors mean distribute the reprints after the printing date ("tryckt den XX YY 19ZZ") but before the distribute date of the publisher (either printed on the wrapper, normally for the whole volume, or date applied subsequently by the Zoological Record).

Why the journal page numbers should be used

For parts 8 to 23 of Aurivillius's works, the reasons that the journal page numbers should be used include: 1) the works were first officially published in the journal; 2) the large book titled "Neue oder wenig bekannte Coleoptera Longicornia" does not exist; 3) Aurivillius himself used the journal page numbers instead of his own page numbers (Aurivillius 1912, 1922, 1923, 1928); 4) if Aurivillius's own page numbers were chosen, the results are chaotic since the numbers continued between different journals, different years, and additionally, some parts were missing (Table 1: pages 1-14 and 77-92 were not printed); 5) if Aurivillius's own page numbers were chosen, logically there should be pages preceeding them in the same volume. For example, considering "Arkiv för zoologi 13(9): 361-403" instead of "Arkiv för zoologi 13(9): $1-43$ ", logically there should exist "Arkiv för zoologi 13(9): $1-360$ " (or "Arkiv för zoologi 13: $1-360$ "), but this is not the case.

How to identify which page number was the journal's page number

1) the page number was printed on the upper left corner (of even pages) or the upper right corner (of odd pages), which was the style of the journal "Arkiv för zoologi" (Aurivillius 1917, 1919, 1925a, 1925b, 1926), except the first page normally appeared on the lower right corner; 2) each part of each volume was numbered from one, which was also the style of journal "Arkiv för zoologi" at that time (Aurivillius 1917, 1919, 1925a, 1925b, 1926).

Aurivillius's own numbers might be chosen for the following reasons

1) it was the choice of the Titan database (Tavakilian and Chevillotte 2019), which is the most exhaustive Cerambycidae database; 2) larger sized numbers appear more important (for some reasons), for parts 3 to 7 , which also had two page numbers printed, all were cited with the correct journal's page numbers, because they are larger than Aurivillius's own page numbers (such as Wappes et al. 2011; Ślipiński and Escalona 2016; Souza 2016; Tavakilian and Chevillotte 2019); 3) page numbers on the mid-bottom are more noticeable than page numbers on upper left corner (of even pages) or upper right corner (of odd pages); 4) works were reprinted with the smaller page numbers even though they were originally from a book or journal with the larger page numbers; realizing this subsequent workers may have chosen the larger numbers; 5) to follow author's citing Aurivillius's own page numbers.

The trend

From Fig. 5 we can see that more than half of authors used Aurivillius's page numbers instead of the journal's page numbers. However, from Fig. 6 we can see that more authors used the journal's page numbers than Aurivillius's page numbers before the year 2000, while most authors used Aurivillius's page numbers after the year 2000. Analyzing the references in more detail (Fig. 7), we can see that all authors before 1990 used the journal's page numbers, while more and more authors used Aurivillius's page numbers after 1991. The reasons for this trend might include: a) young authors did not know the history and might choose the bottom page numbers by the first glance; b) many current authors use the Titan database and copy the information from the website.

■ a) use journal's page number
$■$ b)both and Journal's number first

■ c)both and Aurivillius's number first

■ d) use Aurivillius's page number
\square e)chaos

Figure 5. Ratios of different ways to cite Aurivilliu's series of works from 1912 to 2019.

Figure 6. Ratios of different ways to cite Aurivillius's series of works before and after the year 2000.
■ before 1990 ■ 1990-2000 ■ after 2000

Figure 7. Ratios of different ways to cite Aurivillius's series of works before the year 1990, between 1990-2000, and after the year 2000.

We hope that the Titan database will correct the information and use the journal's page numbers after reading this paper, and authors in the future will cite the related references in correct way.

Correct citation of Aurivillius's works

Based on the above analyses, we suggest that in the future authors cite the work of Aurivillius as follows: the journal page number must be included, Aurivillius's page numbers might be included inside square brackets [] or not included, the internal figure numbers (text-figures) can be included or not, while the supplemental information for the end-plates must be included.

Aurivillius, C. (1886) Nya Coleoptera Longicornia. Entomologisk Tidskrift 7(2): 89-94.
Aurivillius, C. (1887) Nya Coleoptera Longicornia. II. Entomologisk Tidskrift 8(4): 191-197. figs 1-3.
Aurivillius, C. (1891) Neue Coleoptera Longicornia. III. Entomologisk Tidskrift 12(2): 97-106 [=pp. 15-24], figs 1-6.
Aurivillius, C. (1893) Neue oder wenig bekannte Coleoptera Longicornia. 4. Entomologisk Tidskrift 14 (3): 177-186 [=pp. 25-34], figs 1-12.
Aurivillius, C. (1897) Neue oder wenig bekannte Coleoptera Longicornia. 5. Entomologisk Tidskrift 18 (4): 241-248 [=pp. 35-42], pl. 3: figs 1-8.
Aurivillius, C. (1899) Neue oder wenig bekannte Coleoptera Longicornia. 6. Entomologisk Tidskrift 20 (4): 259-265 [=pp. 51-57], figs 13-17.
Aurivillius, C. (1902) Neue oder wenig bekannte Coleoptera Longicornia. 7. Entomologisk Tidskrift 23: 207-224 [=pp. 59-76], figs 18-26.
Aurivillius, C. (1903) Neue oder wenig bekannte Coleoptera Longicornia. 8. Arkiv för zoologi 1: 313-328, figs 27-34.
Aurivillius, C. (1907) Neue oder wenig bekannte Coleoptera Longicornia. 9. Arkiv för zoologi 3(18): 1-39 [=pp. 93-131], pl. 1: figs 1-9; figs 35-41.
Aurivillius, C. (1908) Neue oder wenig bekannte Coleoptera Longicornia. 10. Arkiv för zoologi 4(17): 1-9 [=pp. 133-141], figs 42-47.
Aurivillius, C. (1910) Neue oder wenig bekannte Coleoptera Longicornia. 11. Arkiv för zoologi 7(3): 1-44 [=pp. 143-186], fig. 48.
Aurivillius, C. (1911) Neue oder wenig bekannte Coleoptera Longicornia. 12. Arkiv för zoologi 7(19): 1-41 [=pp. 187-227], figs 49-57.
Aurivillius, C. (1913) Neue oder wenig bekannte Coleoptera Longicornia. 13. Arkiv för zoologi 8(22): 1-35 [=pp 229-263], figs 58-68.
Aurivillius, C. (1914a) Neue oder wening bekannte Coleoptera Longicornia. 14. Arkiv för zoologi. Uppsala 8(29): 1-54 [=pp. 265-318], pl. 1: figs 1-9.
Aurivillius, C. (1914b) Neue oder wenig bekannte Coleoptera Longicornia. 15. Arkiv för zoologi 9(8): 1-15 [=pp. 319-333].
Aurivillius, C. (1916) Neue oder wenig bekannte Coleoptera Longicornia. 16. Arkiv för zoologi 10(19): 1-25 [=pp. 335-359], pl. 1: figs 1-9; figs 69-72.
Aurivillius, C. (1920) Neue oder wenig bekannte Coleoptera Longicornia. 17. Arkiv för zoologi 13(9): 1-43 [=pp. 361-403], figs 73-81.
Aurivillius, C. (1922) Neue oder wenig bekannte Coleoptera Longicornia. 18. Arkiv för zoologi 14(18): 1-32 [=pp. 405-436], figs 82-112.
Aurivillius, C. (1923) Neue oder wenig bekannte Coleoptera Longicornia. 19. Arkiv för zoologi 15(25): 1-43 [=pp. 437-479], figs 113-133.
Aurivillius, C. (1925a) Neue oder wenig bekannte Coleoptera Longicornia. 20. Arkiv för zoologi 17A(12):1-21 [=pp. 481-501], figs 134-140.
Aurivillius, C. (1925b) Neue oder wenig bekannte Coleoptera Longicornia. 21. Arkiv för zoologi 18A(9):1-22 [=pp. 503-524], figs 141-163.
Aurivillius, C. (1927a) Neue oder wenig bekannte Coleoptera Longicornia. 22. Arkiv för zoologi 19A(17): 1-23 [=pp. 525-547], pl. 1: figs 1-6; figs 164-177.

Aurivillius, C (1927b) Neue oder wenig bekannte Coleoptera Longicornia. 23. Arkiv för zoologi 19A(23): 1-41 [=pp. 549-589], figs 178-202.

Acknowledgements

We thank Steven W. Lingafelter and Norman Woodley (Hereford, Arizona, USA), Ivan Löbl (Genève, Switzerland), Mikael Sörensson (Lund University, Sweden), Roberto Poggi (Genoa, Italy), Gérard L. Tavakilian (Paris, France), Larry Bezark (California, USA), Carolus Holzschuh (Villach, Austria) and Daniel Heffern (Texas, USA) for reviewing the original draft of this paper, the editor of Zookeys, Francesco Vitali (Luxembourg, Luxembourg) and the copy editor of Zookeys, Christopher Glasby, for their comments that improved this paper. The first author is especially grateful to Norman Woodley (Hereford, Arizona, USA) and Mikael Sörensson (Lund University, Sweden) for offering very helpful detail information based on their research. Some parts of discussions between the first author and the reviewers and some evidences from "Web of Science" are attached as Appendix S1. Suppl. material 1. This work was supported by NSFC (National Natural Science Foundation of China) programs 31472029 (Mei-Ying Lin) and J1210002, the China Scholarship Council (CSC, File No. 201704910195), and partly by a grant (No. Y229YX5105) from the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences.

References

Adlbauer K (1998) Revision der Gattung Taurotagus Lacordaire (Coleoptera, Cerambycidae, Cerambycini). In: Ebermann E. (Editor). Arthropod Biology: Contributions to Morphology, Ecology and Systematics. Biosystematics and Ecology Series 14: 333-363.
Adlbauer K (2002a) Neue Cerambyciden aus Afrika sowie neue Synonymien (Coleoptera, Cerambycidae). Les Cahiers Magellanes 13: 1-10.
Adlbauer K (2002b) Die afrikanischen Arten der Gattung Pachydissus Newman, 1838 (Coleoptera: Cerambycidae: Cerambycini). Coleoptera, Schwanfelder Coleopterologische Mitteilungen 6(1/2): 157-185.
Adlbauer K (2013) Nachtrag zum Katalog und Fotoatlas des Bockkäfer Namibias (Coleoptera, Cerambycidae). Les Cahiers Magellanes (NS) 12: 21-45.
Aurivillius C (1912) Cerambycidae: Cerambycinae. Pars 39. In: Schenkling S (Ed.) Coleopterorum Catalogus. Volumen 22. Cerambycidae I. Junk, Berlin, 574 pp.
Aurivillius C (1917) Results of Dr. E. Mjöberg's Swedish Scientific Expeditions to Australia 1910-1913. 12., Cerambycidae. Arkiv för zoologi 10(23): 1-50, pls 1-3: 32 figs. [figs 1-3]
Aurivillius C (1919) Wissenschaftliche Ergebnisse der schwedischen entomologischen Reise des Herrn Dr. A. Roman in Amazonas 1914-1915. 2. Cerambyciden. Arkiv för zoologi 12(11): 1-7.

Aurivillius C (1922) Coleopterorum Catalogus. Pars 73 [vol. 23]. Cerambycidae: Lamiinae. I. W. Junk \& S. Schenkling, Berlin. 1-322.

Aurivillius C (1923) Coleopterorum Catalogus. Pars 74 [vol. 23]. Cerambycidae: Lamiinae. II. W. Junk \& S. Schenkling, Berlin. 323-704.

Aurivillius C (1925a) Dr. E. Mjöberg's Zoological Collections from Sumatra. 3. Cerambyciden. Arkiv för zoologi 17B (1): 1-4.
Aurivillius C (1925b) Sammlungen der Schwedischen Elgon-Expedition im Jahre 1920. Arkiv för Zoologi 17B(3): 1-5.
Aurivillius C (1926) Cerambyciden gesammelt von Dr. A. Roman in Brasilien in den Jahren 1923-1924. Arkiv för zoologi 18B(14): 1-6.
Aurivillius C (1928) Revision of the Philippine Species of the Clytini (Coleoptera, Longicornia). The Philippine Journal of Science 36(3): 307-326, 1 pl.
Bentanachs J, Jiroux E (2017) Le genre Cataphrodisium Aurivillius, 1907: nouvelle synonymie et nouvelle espèce (Coleoptera, Cerambycidae, Cerambycinae, Callichromatini). Les Cahiers Magellanes (NS) 26: 34-39.
Bentanachs J, Morati J, Vives E (2010). Révision du genre Zonopterus Hope et des genres voisins (Coleoptera, Cerambycidae, Callichromatini). Magellanes. Collection systématique 23: 3-53.
Bezark L (2019) Checklist of the Oxypeltidae, Vesperidae, Disteniidae and Cerambycidae (Coleoptera) of the Western Hemisphere. 2019 Edition. https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/checklists/WestHemiCerambycidae2019.pdf
Bousquet Y, Heffern DJ, Bouchard P, Nearns EH (2009) Catalogue of Family-group Names in Cerambycidae (Coleoptera). Zootaxa 2321: 1-80.
Breuning S (1939) Études sur les Lamiaires: Huitième tribu: Mesosini Thomson (Col., Cerambycidae). Novitates Entomologicae Troisième Supplément: 365-526.
Breuning S (1940) Études sur les Lamiaires (Coléop. Cerambycidæ). Neuvième Tribu: Dorcaschematini Thoms. Novitates Entomologicae Troisième Supplément: 527-568.
Breuning S (1944) Études sur les Lamiaires: Douzième tribu: Agniini Thomson. Novitates Entomologicae Troisième Supplément: 281-512. [note: Index, pp. 513-523 issued in 1945]
Breuning S (1950) Révision des Homonoeini. 317-377. In: Lepesme P (Ed.) Longicornia, Études et notes sur les longicornes. Volume 1. Paul Lechevalier, Paris, 603 pp.
Breuning S (1956) Nouveaux Lamiaires du Riksmuseum (Coleoptera, Cerambycidae). Arkiv för zoologi 9(12): 355-361.
Breuning S (1958-1969) Catalogue des Lamiaires du Monde (Col., Céramb.) Lieferung. Museum G. Frey, Tutzing, 1069 pp.
Derksen W, Scheiding GU (1963) Index Litteraturae Entomologicae. Serie II: Die Weltliteratur über die gesamte Entomologie von 1864 bis 1900. Bd. I/A-E. Berlin, 697 pp.
Gouverneur X (2015) Trois nouvelles espèces de Cerambycidae du Laos (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 18: 56-64.
Gressitt JL (1940) The longicorn beetles of Hainan Island. Philippine Journal of Science 72(12): $1-239,7$ pls.

Gressitt JL (1951) Longicorn beetles of China. In: Lepesme P (Ed.) Longicornia, études et notes sur les longicornes, Volume 2. Paris: Paul Lechevalier, 667 pp., 22 pls.

Gressitt JL, Rondon JA (1970) Cerambycids of Laos (Disteniidae, Prioninae, Philiinae, Aseminae, Lepturinae, Cerambycinae). Pacific Insects Monographies 24: 1-314.
Heffern DJ (2002) Replacement Name for Euchitonia Kolbe, 1894 (Coleoptera: Cerambycidae: Cerambycinae: Callichromatini). Insecta Mundi 15(4): 256.
Heffern DJ (2005) Catalog and Bibliography of Longhorned beetles from Borneo (Coleoptera: Cerambycidae) Electronic version 2005, 1, 102 pp.
Heffern DJ (2011) Catalog and Bibliography of Longhorned beetles from Borneo (Coleoptera: Cerambycidae) Electronic version 2011, 1, 106 pp.
Huang G-Q, Liu Z-P, Chen L (2014) A revision of the genus Nyctimenius Gressitt, 1951 (Coleoptera: Cerambycidae: Lamiinae), with description of a new species. Zootaxa 3860(5): 435-448.
Hüdepohl KE (1985) Revision der Untergattung Agelasta Newman s. str. (Coleoptera, Cerambycidae, Lamiinae, Mesosini). Entomologische Arbeiten aus dem Museum G. Frey, Tutzing bei München 33/34: 349-379.
Hüdepohl KE (1988) Über südostasiatische Cerambyciden II. Die philippinischen Arten der Gattung Acalolepta Pascoe, 1858 (Coleoptera, Cerambycidae, Lamiinae, Lamiini). Entomofauna Zeitschrift für Entomologie, Ansfelden 9(11): 241-254.
Hüdepohl KE (1989) Über südostasiatische Cerambyciden IV. (Coleoptera, Cerambycidae, Cerambycinae: Cerambycini und Callichromini; Lamiinae: Pteropliini). Entomofauna Zeitschrift für Entomologie, Ansfelden 10(5): 45-72.
Hüdepohl KE (1990) The Longhorn Beetles of the Philippines Part II. Entomofauna Zeitschrift für Entomologie, Ansfelden 11(3/1): 45-102.
Hüdepohl KE (1992) The Longhorn Beetles of the Philippines Part III (Coleoptera, Cerambycidae: Callichromatini, Clytini, Glaucytini). Entomofauna Zeitschrift für Entomologie, Ansfelden 13(21): 297-340.
Hüdepohl KE, Heffern DJ (2004) Notes on Oriental Lamiini (Coleoptera: Cerambycidae: Lamiinae). Insecta Mundi 16 [2002] (4): 247-249.
International Commission on Zoological Nomenclature (1999) International Code of Zoological Nomenclature, Fourth Edition. https://www.iczn.org/the-code/the-international-code-of-zoological-nomenclature/the-code-online/?article=22\&nfv=true
Jiroux E (2011) Révision du genre Apriona Chevrolat, 1852 (Coleoptera, Cerambycidae, Lamiinae, Batocerini). Les Cahiers Magellanes (NS) 5: 1-103.
Jiroux E, Garreau P, Bentanachs J, Prévost P (2014) Première contribution à l'étude des Monochamini d'Asie du Sud-Est (Coleoptera, Cerambycidae, Lamiinae). Les Cahiers Magellanes (NS) 14: 67-118.
Juhel P (2011) Quatrième contribution à l'étude des Callichromatini africains: description du genre Hosmaeus nov. et de cinq nouvelles espèces (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 3: 1-8. [10 figs]
Juhel P (2012) Neuvième contribution à l'étude des Callichromatini Africains: révision du genre Litomeces Murray, 1870 (Cerambycidae, Cerambycinae, Callichromatini). Les Cahiers Magellanes (NS) 9: 65-87. [35 figs]
Juhel P (2014a) Quatorzième contribution à l'étude des Callichromatini Africains: révision du genre Pelidnopedilon Schmidt, 1922 (Coleoptera, Cerambycidae, Cerambycinae, Callichromatini). Les Cahiers Magellanes (NS) 14: 1-11. [6 figs]

Juhel P (2014b) Quinzième contribution à l'étude des Callichromatini Africains: révision du genre Mecosaspis Thomson, 1864 (Coleoptera, Cerambycidae, Cerambycinae, Callichromatini). Les Cahiers Magellanes (NS) 16: 1-72. [40 figs]
Juhel P (2015) Dix-neuvième contribution à l'étude des Callichromatini africains: notes taxonomiques et description de trois espèces et deux sous-espèces nouvelles (Coleoptera, Cerambycidae, Cerambycinae, Callichromatini). Les Cahiers Magellanes (NS) 19: 84-98. [10 figs]
Juhel P (2016) Vingtième contribution à l'étude des Callichromatini africains: révision du genre Cloniophorus Quedenfeldt (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 22: 1-109. [42 figs]
Juhel P, Bentanachs J (2009a) Révision du genre Helymaeus Thomson, 1864 et des genres voisins (Coleoptera, Cerambycidae, Cerambycinae). Magellanes. Collection systématique 22: 4-80. [128 figs]
Juhel P, Bentanachs J (2009b) Description d'une nouvelle espèce de la tribu des Callichromatini originaire du Kenya: Promeces masai sp. nov. (Coleoptera, Cerambycidae, Callichromatini). Les Cahiers Magellanes 91: 1-4.
Juhel P, Bentanachs J (2010) Deuxième contrbution à l'étude des Callichromatini africains: Révision du genre Chromacilla Schmidt, 1922 (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 1: 28-73.
Juhel P, Bentanachs J (2011) Sixième contribution à l'étude des Callichromatini Africains: révision du genre Litopus Audinet-Serville, 1833 (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 6: 19-62.
Juhel P, Bentanachs J (2012) Septième contribution à l'étude des Callichromatini africains: révision du genre Hospes Jordan, 1894 (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 7: 21-60.
Lane F (1950) Cerambicídeos neotrópicos II. Sôbre a posição sistemática de alguns gêneros. Arquivos de Zoologia, Sáo Paulo 7(5): 363-378.
Lazarev MA, Murzin SV (2019) Catalogue of Nepal Longhorn beetles (Coleoptera, Cerambycidae). Humanity space International almanac 8(6): 746-868.
Lee SM (1987) The longicorn beetles of Korean Peninsula. National Science Museum, Seoul, 287 pp.
Lin M-Y (2015) Album of Type Specimens of Longhorn Beetles Deposited in National Zoological Museum of China. Zhengzhou: Henan Science and Technology Press. 374 pp.
Lin M-Y (2017) Insect Fauna of the Qinling Mountains, volume VI (Coleoptera II), Ceramby-cid-beetles. Xi'an: World Publishing Corporation, 548 pp., 37 pls.
Lin M-Y, Yang X-K (2011) Glenea coomani Pic, 1926 and its related species of South China with description of a new species. ZooKeys 153: 57-71.
Lin M-Y, Yang X-K (2019) Catalogue of Chinese Coleoptera Volume IX. Chrysomeloidea: Vesperidae, Disteniidae, Cerambycidae. Beijing: Science Press, 575 pp.
Lingafelter SW, Hoebeke ER (2002) Revision of Anoplophora (Coleoptera, Cerambycidae). Entomological Society of Washington, Washington DC, 236 pp. [46 pls]
Lingafelter SW, Nearns EH, Tavakilian GL, Monné, MÁ, Biondi M (2014) Longhorned Woodboring Beetles (Coleoptera: Cerambycidae and Disteniidae): Primary Types of the Smithsonian Institution. Smithsonian Institution Scholarly Press, Washington DC, 390 pp.

Löbl I, Smetana A (2010) Catalogue of Palaearctic Coleoptera. Vol. 6. Chrysomeloidea. Apollo Books, Stenstrup, 924 pp.
Makihara H (1999) Atlas of Longicorn Beetles, in Bukit Soeharto Education Forest, Mulawarman University, East Kalimantan, Indonesia. PUSREHUT Special Publication 7: 1-140.
Makihara H, Woro AN, Sugiarto (2002) Longicorn Beetles from Gunung Halimun National Park, West Java, Indonesia from 1997-2002 (Coleoptera, Disteniidae and Cerambycidae). Bulletin of the Forestry and Forest Products Research Institute, Ibaraki 1(3) 384: 189-223.
Martins UR (1997) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 1. Subfamília Cerambycinae: Oemini Lacordaire, 1869, Methiini Thomson, 1860, Dodecosini Aurivillius, 1912, Paraholopterini, trib. n. Sociedade Brasileira de Entomologia, São Paulo, 217 pp. [171 figs]
Martins UR (1998) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 2. Subfamília Cerambycinae: Phlyctaenodini Lacordaire, 1869, Holopterini Lacordaire, 1869, Uracanthini Lacordaire, 1869, Pleiarthrocerini Lane, 1950, Ectenessini trib. n. Sociedade Brasileira de Entomologia, São Paulo, 195 pp. [216 figs]
Martins UR (1999) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 3. Subfamília Cerambycinae: Hesperophanini Mulsant, 1839; Eburiini Blanchard, 1845; Diorini Lane, 1950. Sociedade Brasileira de Entomologia, Sáo Paulo, 418 pp. [271 figs]
Martins UR (2002) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 4. Subfamília Cerambycinae: Erlandiini Aurivillius, 1912, Smodicini Lacordaire, 1869, Achrysonini Lacordaire, 1869, Cerambycini Latreille, 1804 - Cerambycina Latreille, 1804. Sociedade Brasileira de Entomologia, Sáo Paulo, 265 pp. [287 figs]

Martins UR (2005) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 5. Subfamília Cerambycinae: Cerambycini - Subtribo Sphallotrichina subtrib. nov., Callidiopini Lacordaire, 1869, Graciliini Mulsant, 1839, Neocorini trib. nov. Sociedade Brasileira de Entomologia, São Paulo, 284 pp. [425 figs]
Martins UR (2007) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 9. Subfamília Cerambycinae: Ibidionini Thomson, 1860, Subtribo Tropidina Subtrib. nov., Subtribo Ibidionina Thomson, 1860. Sociedade Brasileira de Entomologia, São Paulo, 349 pp. [351 figs]
Martins UR (2009) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 10. Subfamília Cerambycinae: Ibidionini Sub-tribo Compsina Martins, 2007, Eligmodermini Lacordaire, 1869, Ideratini trib. nov., Callichromatini Blanchard, 1845. Sociedade Brasileira de Entomologia, São Paulo, 373 pp. [349 figs]
Martins UR (2011) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 12. Subfamília Cerambycinae, Clytini Mulsant, 1839. Sociedade Brasileira de Entomologia, São Paulo, 264 pp. [194 figs]
Martins UR (2014) Cerambycidae sul-americanos (Coleoptera). Taxonomia Volume 14. Subfamília Lamiinae. Tribo Hemilophini Thomson, 1868. Parte II. Sociedade Brasileira de Entomologia, Sáo Paulo, 296 pp. [217 figs]
Martins UR, Galileo MHM (1992) Divisáo do gênero Hilarolea Thomson, 1868 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini). Revista Brasileira de Entomologia, São Paulo 36(2): 437-447. [5 figs]

Martins UR, Santos-silva A (2010) Contribuição para o estudo dos Rhinotragini (Coleoptera, Cerambycidae). I. Mudança de status nos subgêneros de Ommata White, 1855 e revisão de Agaone Pascoe, 1859. Papéis Avulsos de Zoologia, São Paulo 50(25): 391-411. [38 figs]
McCarty JD (2006) A review of the genus Antodice Thomson of Mexico \& Central America (Coleoptera, Cerambycidae). Les Cahiers Magellanes 53: 1-23. [9 figs]
Miroshnikov AI (2014) The genus Trypogeus Lacordaire, 1869: an annotated check list and descriptions of new species from Cambodia and Laos (Coleoptera: Cerambycidae). In: Konstantinov AS, Ślipiński SA, Solodovnikov AYu (Eds): Advances in Studies on Asian Cerambycids (Coleoptera: Cerambycidae): 51-71. [38 figs]
Monné MÁ (2005a) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae. Zootaxa 946: 1-765.
Monné MÁ (2005b) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part II. Subfamily Lamiinae. Zootaxa 1023: 1-759.
Monné MÁ (2012) Catalogue of the type-species of the genera of the Cerambycidae, Disteniidae, Oxypeltidae and Vesperidae (Coleoptera) of the Neotropical Region. Zootaxa 3213: 1-183.
Monné MÁ (2019a) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae, 971 pp . http://cerambyxcat.com/
Monné MÁ (2019b) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part II. Subfamily Lamiinae. 944 pp. http://cerambyxcat.com/
Monné MÁ (2019c) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part III. Subfamilies Lepturinae, Necydalinae, Parandrinae, Prioninae, Spondylidinae and Families Oxypeltidae, Vesperidae and Disteniidae. 268 pp. http://cerambyxcat.com/
Monné MÁ (2019d) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae. 1007 pp. http://cerambyxcat.com/
Monné ML, Monné MÁ (2015) Lectotype designations of Cerambycidae (Coleoptera) described by E. F. Germar in 1824 and J. C. Klug in 1825 and a new synonymy. Zootaxa 3981(3): 385-396. [24 figs]
Monné ML, Monné MÁ (2017) New species and new records of Cerambycidae (Insecta, Coleoptera) from RPPN Sanctuary of Caraça, Minas Gerais, Brazil. Zootaxa 4319(2): 201262. [42 figs]

Monné ML, Monné MÁ, Botero JPR, Carelli AA (2016) Two new species and new records of Cerambycidae (Insecta, Coleoptera) from Itatiaia National Park, Rio de Janeiro, Brazil. Zootaxa 4137(3): 339-356. [38 figs]
Monné ML, Monné MÁ, Quintino HYS, Botero JPR, Souza Machado V, Carelli AA, Simões MVP, Cupello M (2012) Inventário das espécies de Lamiinae (Insecta, Coleoptera, Cerambycidae) do Parque Nacional do Itatiaia, RJ, Brasil. Biota Neotropica 12(1): 39-76. [135 figs]
Monné ML, Napp DS (2005) Cladistic analysis of the tribe Torneutini Thomson (Coleoptera: Cerambycidae: Cerambycinae: Trachyderoinia). Zootaxa 1062: 1-56. [167 figs]
Morati J, Bentanachs J (2009) Note sur le genre Niraeus Newman, 1840 (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes 95: 1-10.
Morati J, Huet M (2004) Révision du genre Pachyteria. Magellanes. Collection systématique 9: 1-148.

Nakamura S, Makihara H, Saito A (1992) Check-list of Longicorn-Beetles of Taiwan. Miscellaneous Reports of the Hiwa Museum for Natural History, Shobara (33): 1-111.
Nakamura S, Makihara H, Kurihara T, Yamasako J (2014) Check-list of Longicorn-Beetles of Taiwan. Miscellaneous Reports of the Hiwa Museum for Natural History, Shobara (55): 1-278.

Napp DS (1993) Caperonotus, gen. n. de Compsocerini (Coleoptera, Cerambycidae). Revista Brasileira de Entomologia, Sáo Paulo 37(4): 657-670.
Napp DS (2007) Unxiini, uma nova tribo de Cerambycinae (Coleoptera, Cerambycidae). Revista Brasileira de Entomologia, Curitiba 51(3): 312-340.
Napp DS, Mermudes JRM (1999) Taxonomic Studies on Compsocerini and Transfer of Stenochariergus Giesbert and Hovore to Rhinotragini (Coleoptera, Cerambycidae). The Coleopterists' Bulletin 53(1): 80-86.
Niisato T (1989) Two New Stenhomalus (Coleoptera, Cerambycinae) from Mindanao and Borneo. The Japanese Journal of Entomology 57(1): 122-126.
Niisato T (2007) Taxonomic Notes on the Genus Stenhomalus (Coleoptera, Cerambycidae) from Sulawesi, Indonesia. Elytra 35(1): 335-340.
Nýlander U (1998) Description of two new species of the genus Osphryon Pascoe, 1869 from New Guinea (Coleoptera, Cerambycidae, Prioninae). Entomofauna Zeitschrift für Entomologie, Ansfelden 19(17): 277-284.
Ohbayashi N, Niisato T (2007) Longicorn Beetles of Japan. Tokai University Press, Kanagawa, 818 pp.
Podaný Č (1968) Studien über Callichromini der palaearktischen und orientalischen Region I. mit 33 Fotos und 12 Abbildungen. Abhandlungen und Berichte aus dem staatlichen Museum für Tierkunde in Dresden 36(3): 41-121. [12 figs, 3 pls]
Podaný Č (1971) Studien über Callichromini der palaearktischen und orientalischen Region (II). Abhandlungen und Berichte aus dem staatlichen Museum für Tierkunde in Dresden 38(8): 253-313.
Quentin MR (1956) Contribution à l'étude des Coléoptères Cerambycidae. II. - Le genre Allophyton Thomson, et la tribu des Obriini, avec description d'une espèce nouvelle du Congo belge. Revue Française d'Entomologie 23(3): 156-160.
Rondon JA, Breuning S (1970) Lamiines du Laos. Pacific Insects Monograph 24: 315-571.
Rousset F, Sudre J, Vitali C (2016) Mises au point relatives au genre Prosopocera (s. str.) Blanchard, 1845 et ses sous-genres Alphitopola Thomson, 1857, Kallikera Téocchi, 1985, Dalterus Fairmaire, 1892 et description de deux nouvelles espèces d'Afrique sub-saharienne (Coleoptera, Cerambycidae, Lamiinae, Prosopocerini). Les Cahiers Magellanes (NS) 24: 5-19.
Santos-Silva A, Botero JP (2017) Four new species of Nyctonympha Thomson, 1868 (Coleoptera, Cerambycidae, Lamiinae). European Journal of Taxonomy 332: 1-16. https://doi. org/10.5852/ejt.2017.332
Santos-Silva A, Galileo MH (2016) On Amillarus Thomson, 1857 (Coleoptera: Cerambycidae): Types, Variation, and a New Synonym. The Coleopterists Bulletin 70(4): 805-811. http://doi.org/10.1649/0010-065X-70.4.805
Ślipiński AS, Escalona HE (2013) Australian Longhorn Beetles (Coleoptera: Cerambycidae) Volume 1, Introduction and Subfamily Lamiinae. CSIRO Publishing, 484 pp.

Ślipiński AS, Escalona HE (2016) Australian Longhorn Beetles (Coleoptera: Cerambycidae) Volume 2, Subfamily Cerambycinae. CSIRO Publishing, 613 pp.
Souza DS (2016) A new species of Colobothea Lepeletier \& Audinet-Serville, 1825 (Coleoptera: Cerambycidae: Lamiinae) from Ecuador. Zootaxa 4161(1): 129-132.
Sudre J, Grobbelaar E, Minetti R (2016) Description d'un nouveau genre et d'une nouvelle espèce d'Afrique du Sud appartenent à la tribu des Parmenini (Coleoptera, Cerambycidae, Lamiinae). Les Cahiers Magellanes (NS) 24: 20-24.
Sudre J, Vives E, Cazères S, Mille C (2010) Contribution à l'étude des Cerambycidae (Coleoptera) de la Nouvelle-Calédonie - 1e partie: sous-famille des Lamiinae. Mémoires de la Société Linnéenne de Lyon 1: 1-76.
Tavakilian GL (1991) Notas sinonímicas e novas combinações em longicórneos sul-americanos (Coleoptera, Cerambycidae). Revista Brasileira de Entomologia, São Paulo 35(2): 439-453.
Tavakilian GL, Chevillotte H (2019) Titan: base de données internationales sur les Cerambycidae ou Longicornes. http://titan.gbif.fr/ [accessed 21 July 2019]
Viktora P (2013) A contribution to knowledge of the genus Oligoenoplus Chevrolat, 1863 (Coleoptera: Cerambycidae: Cerambycinae: Anaglyptini) with descriptions of five new species from the Oriental Region. Studies and Reports of District Museum Prague-East, Taxonomical Series 9(2): 561-582.
Viktora P (2015a) A description of a new species of the genus Callichromopsis Chevrolat, 1863 (Coleoptera: Cerambycidae: Cerambycinae: Compsocerini) from Peninsular Malaysia. Studies and Reports of District Museum Prague-East, Taxonomical Series 11(1): 181-187.
Viktora P (2015b) A description of two new species of the genus Polyphida Pascoe, 1869 (Coleoptera: Cerambycidae: Cerambycinae: Glaucytini) from the Oriental Region. Studies and Reports of District Museum Prague-East, Taxonomical Series 11(1): 189-196.
Viktora P (2019) New Chlorophorus species from Palaearctic, Oriental and Australian Region (Coleoptera: Cerambycidae: Cerambycinae: Clytini). Folia Heyrovskyana (Series A) 27(1): 119-163.
Viktora P, Tichý T (2016) A review of the genus Psilomerus Chevrolat, 1863 (Coleoptera: Cerambycidae: Cerambycinae: Clytini) from the Philippines. Folia Heyrovskyana (Series A) 24(2): 77-90.
Viktora P, Tichý T (2017) A description of six new species of Clytini Mulsant, 1839 (Coleoptera: Cerambycidae: Cerambycinae) from India and Vietnam. Folia Heyrovskyana (Series A) 25(1): 72-88.

Vitali C, Vitali F (2011) Révision du sous-genre Ochropyga Aurivillius, 1913 (Coleoptera, Cerambycidae, Lamiinae, Prosopocerini). Les Cahiers Magellanes (NS) 4: 23-30.
Vitali F (2011) Systematic, taxonomic and faunistic notes about some African Cerambycids belonging to the National Museum of Natural History of Luxembourg (Coleoptera, Cerambycidae). Entomologia Africana 16(1): 2-12. [pl. I, figs 1-5]
Vitali F (2016) The Philippine Acalolepta-species of the group rusticatrix (Coleoptera, Cerambycidae). Les Cahiers Magellanes (NS) 21: 30-37.
Vitali F (2018) The Acalolepta australis species-group, with revalidation of Dihammus Thomson, 1864 as a subgenus (Coleoptera, Cerambycidae). Les Cahiers Magellanes (NS) 31: 25-39.

Vitali F, Gouverneur X, Chemin G (2017) Revision of the tribe Cerambycini: redefinition of the genera Trirachys Hope, 1843, Aeolesthes Gahan, 1890 and Pseudaeolesthes Plavilstshikov, 1931 (Coleoptera, Cerambycidae). Les Cahiers Magellanes (NS) 26: 40-65.
Vives E (2009) New or interesting Cerambycidae from the Philippines (Part III) (Coleoptera, Cerambycidae). Les Cahiers Magellanes 105: 1-20.
Vives E (2011) Especies nuevas o interesantes Cerambycidae de Malaysia (Coleoptera, Cerambycidae). Lambillionea 111(1): 85-88.
Vives E (2012) New or interesting Cerambycidae from the Philippines (Part V) (Coleoptera, Cerambycidae). Les Cahiers Magellanes (NS) 7: 70-82.
Vives E (2015a) New or interesting Cerambycidae from the Philippines (Part X) (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes (NS) 18: 1-18.
Vives E (2015b) New or interesting Cerambycidae from the Philippines. Revisión del género Pseudodoliops Schultze, 1934 (ParsXI). (Coleoptera, Cerambycidae, Lamiinae). Lambillionea 115(1): 65-73.
Vives E (2015c) Revision of the genus Trypogeus Lacordaire, 1869 (Cerambycidae, Dorcasominae). ZooKeys 502: 39-60.
Vives E (2015d) New or interesting Cerambycidae from the Philippines (Coleoptera, Cerambycidae, Lamiinae) (Part XII). Boletín de la Sociedad Entomológica Aragonesa 56: 49-60.
Vives E (2017) New or interesting Cerambycidae from the Philippines (Part XV) (Coleoptera, Cerambycidae, Lamiinae). Les Cahiers Magellanes (NS) 25: 47-65.
Vives E, Abang F (2003) Notes on the Lepturinae (Coleoptera: Cerambycidae) of the Sarawak Museum Insect Collection. The Sarawak Museum Journal (New Series) 58(79): 245-249.
Vives E, Heffern DJ (2001) Notes on Lepturinae (V). New and interesting South East Asian Lepturinae (Coleoptera, Cerambycidae). Lambillionea CI (4): 621-625.
Wallin H, Kvamme T, Nýlander U (2014) A revision of the genus Nemophas Thomson, 1864 (Coleoptera: Cerambycidae), with descriptions of a new subgenus Pilomophas and a new genus Nemoplophora. In: Telnov D (Ed.) Biodiversity, Biogeography and Nature conservation in Wallacea and New Guinea 2: 407-436, pls 102-119.
Wappes JE, Lingafelter SW, Perger R (2011) Additions and deletions to the known Cerambycidae (Coleoptera) of Bolivia. Insecta Mundi 0150: 1-8.
Weigel A, Skale A (2011) Systematik, Taxonomie und Faunistik der Apomecynini der orientalischen und australischen Region (Coleoptera, Cerambycidae, Lamiinae). Revision der Gattung Sybra und Anmerkungen zu weiteren Gattungen, Teil 2. In: Dmitry Telnov D (Ed.) Biodiversity, Biogeography and Nature conservation in Wallacea and New Guinea Vol. 1. The Entomological Society of Latvia, Riga, 299-350, pls 78-83.
Yan X-Y, Chen L (2016) Taxonomy of Thermonotus Gahan (Coleoptera: Cerambycidae: Lamiinae). Entomotaxonomia 38(4): 265-271.
Yokio Y, Heffern DJ (2016) Four new Dorcaschematini from the Oriental Region (Coleoptera, Cerambycidae, Lamiinae). Les Cahiers Magellanes (NS) 24: 50-63.
Yokio Y, Niisato T (2009) Seven New Taxa of the Genus Merionoeda Pascoe (Coleoptera, Cerambycidae) from Borneo, Mainly from South Kalimantan. Special Bulletin of the Japanese Society of Coleopterology 7: 169-192.

Supplementary material I

Discussions and evidences

Authors: Mei-Ying Lin, Si-Qin Ge
Data type: personal communications / figures.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.911.48684.suppl1

Genetic diversity and population structure of Terapon jarbua (Forskål, I775) (Teleostei, Terapontidae) in Malaysian waters

Shyama Sundari Devi Chanthran ${ }^{1,2}$, Phaik-Eem Lim ${ }^{1}$, Yuan Li ${ }^{3}$, Te-Yu Liao ${ }^{4}$, Sze-Wan Poong ${ }^{1}$, Jianguo Du ${ }^{3,5,6}$, Muhammad Ali Syed Hussein ${ }^{7}$, Ahemad Sade ${ }^{8}$, Richard Rumpet ${ }^{9}$, Kar-Hoe Loh ${ }^{1}$
I Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia 2 Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia 3 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China 4 Department of Oceanography, National Sun Yatsen University, Kaohsiung 80424, Taiwan 5 Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Xiamen 361005, China $\mathbf{6}$ Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China 7 Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia 8 Department of Fisheries Sabah, Kota Kinabalu 88624, Sabah, Malaysia 9 Fisheries Research Institute, Sarawak, Department of Fisheries Malaysia, Kuching 93744, Sarawak, Malaysia

Corresponding author: Kar-Hoe Loh (khloh@um.edu.my)

Academic editor: Nina Bogutskaya | Received 19 October 2019 | Accepted 2 January 2020 | Published 12 February 2020
http://zoobank.org/66CEE714-50BE-4C33-AF5D-B02A2E2C7DF7
Citation: Chanthran SSD, Lim P-E, Li Y, Liao T-Y, Poong S-W, Du J, Hussein MAS, Sade A, Rumpet R, Loh K-H (2020) Genetic diversity and population structure of Terapon jarbua (Forskål, 1775) (Teleostei, Terapontidae) in Malaysian waters. ZooKeys 911: 139-160. https://doi.org/10.3897/zookeys. 911.39222

Abstract

A background study is important for the conservation and stock management of a species. Terapon jarbua is a coastal Indo-Pacific species, sourced for human consumption. This study examined 134 samples from the central west and east coasts of Peninsular (West) Malaysia and East Malaysia. A 1446-bp concatenated dataset of mtDNA COI and Cyt b sequences was used in this study and 83 haplotypes were identified, of which 79 are unique haplotypes and four are shared haplotypes. Populations of T. jarbua in Malaysia are genetically heterogenous as shown by the high level of haplotype diversity ranging from $0.9167-0.9952$, low nucleotide diversity ranging from 0.0288-0.3434, and high $\mathrm{F}_{\text {ST }}$ values (within population genetic variation). Population genetic structuring is not distinct as shown by the shared haplotypes between geographic populations and mixtures of haplotypes from different populations within the same genetic cluster. The gene flow pat-

terns and population structuring observed among these regions are likely attributed to geographical distance, past historical events, allopatric speciation, dispersal ability and water currents. For instance, the mixture of haplotypes revealed an extraordinary migration ability of T. jarbua (>1200 km) via ancient river connectivity. The negative overall value of the neutrality test and a non-significant mismatch distribution are consistent with demographic expansion(s) in the past. The median-joining network concurred with the maximum likelihood haplotype tree with three major clades resolved. The scarcity of information on this species is an obstacle for future management and conservation purposes. Hence, this study aims to contribute information on the population structure, genetic diversity, and historical demography of T. jarbua in Malaysia.

Keywords

COI, crescent perch, Cyt b, historical demography, ikan mengkerong, Pleistocene

Introduction

A population's genetic structure describes the total genetic diversity in the population, which is shaped by several factors, including the life history, geographical barriers, gene flow, selection and bottlenecks (Wright 1931; Slatkin 1987; Charlesworth 2009; Liu et al. 2019). The patterns of genetic diversity and population structure provide information on the life histories, demography, reproduction and ecology of a species. This information is important for a population's sustainability by implementation of appropriate conservation and management strategies (Okumuş and Çiftci 2003; Zaya et al. 2017).

Terapon jarbua (Forskål, 1775) is a medium-sized fish commonly known as crescent perch, and it is locally known as "ikan mengkerong" in Malaysia (Department of Fisheries Malaysia 2009). This species is classified under the class Actinopterygii, order Perciformes and family Terapontidae (Froese and Pauly 2018). Although it is primarily a marine species, it has also been found in coastal areas, estuaries, freshwaters and in some coastal lagoons (Rao et al. 2000). It is categorized as a catadromous fish, in which the adults spawn in deeper saltwater while the juveniles move to the shallow sandy bottom area near the river mouths. According to Lavergne et al. (2012), the pelagic larval phase of this species is about 25 days. Terapon jarbua is classified as least concern (LC) under the IUCN Red List due to its widespread distribution with no known threats (Dahanukar et al. 2017). The native distributional ranges of the crescent grunters include Australia, Bangladesh, Cambodia, China, India, Indonesia, Japan, Malaysia (Du et al. 2019; Shyama et al. 2020), Mediterranean (Golani and Appelbaum-Golani 2010), Myanmar, Philippines, Red Sea, Sri Lanka and Taiwan (Froese and Pauly 2018).

Existing reports on T. jarbua are generally limited to their morphometry (e.g., length-weight relationship) and reproductive biology (Miu et al. 1990; Nandikeswari et al. 2014; Musarrat and Masood 2015) while the information on their genetic diversity and population structures is relatively little. Lavergne et al. (2012) and Liu et al. (2015) reported on the population genetic diversity of T. jarbua in the Gulf of Aden, Yemen and Taiwanese waters, respectively, using cytochrome c oxidase subunit I (COI), cytochrome b (Cyt b) and microsatellites molecular markers. Also, a phylogeo-
graphic survey of T. jarbua along with other reef fauna of the western Indian Ocean was reported by Borsa et al. (2016) using COI gene sequences. Mitochondrial DNA (mtDNA) has been widely utilized as the marker of choice to examine the genetic diversity and population structure of marine fishes due to its strict maternal inheritance, rapid mutation rates and the absence of recombination in most species (Whitehead et al. 2003; Dowling et al. 2008; Song et al. 2013).

The main focus of the current study is on the Malaysian populations: Peninsular (West) Malaysia and East Malaysia (Sabah and Sarawak) which are located in the tropical Indo-west Pacific region (Fig. 1). These two land masses are about 1200 km apart, separated by the south-western portion of the South China Sea. In this study COI and Cyt b were used as molecular markers to examine the level of gene flow, population genetic differentiation and the historical demography of T. jarbua populations in Malaysia. To the best of our knowledge, there is no documented report on the population genetics of T. jarbua in Malaysia to date. Hence, this study aims to provide a documented background report as well as to fill the information gap for T. jarbua in this region. Homologous COI+ Cyt b sequences of four regional representatives of this species from India, Taiwan, Hainan and the Philippines were included in the analysis to provide a wider coverage of the species' natural distribution.

Materials and methods

Sampling

Sampling around major landing sites and local markets was conducted in both East and Peninsular Malaysia where 134 samples of various sizes were collected randomly from five wild populations of T. jarbua. Populations were provisionally divided into five groups according to region: 1) Kuala Selangor (KS, $N=31$) of west Peninsular which is surrounded by the Straits of Malacca; 2) Kuantan, Pahang (KN, $N=30$) of east Peninsular which is adjacent to the South China Sea; 3) Mukah, Sarawak (MH, $N=21$) of East Malaysia which is surrounded by the South China Sea; 4) Sandakan (SN, $N=28$) and 5) Tawau (TW, $N=24$) of East Malaysia which are surrounded by the Sulu Sea and the Celebes Sea, respectively (Fig. 1). Samples were collected within the period of April 2015 to August 2018. Approximately 20 mg of muscle tissue from each fish sample was removed and immediately preserved in 95% ethanol and stored at $-20^{\circ} \mathrm{C}$ until genetic analysis was performed.

DNA extraction, PCR amplification and DNA sequencing

Genomic DNA was extracted using 10\% Chelex Resin following the protocol of Hyde et al. (2005). Approximately 680 bp of the COI-5' gene was amplified using the FishF1 or FishF2 forward primers and FishR1 or FishR2 reverse primer pairs (Ward et al. 2005).

Polymerase Chain Reaction (PCR) amplification of approximately 1000 bp from the 5'end of the Cyt b gene was performed using the primer pairs Glu31 and Thr33 (Liu et al. 2015) and internal primers: Glu231 (5’-CTT ACA GGC CTC TTT CTG GCC AT- 3’) and Thr233 (5'-TTT GAG CTA CTA ATG CAG TAT- 3') were designed for this study.

PCR was performed using a Mastercycler epgradient S thermalcycler (Eppendorf, Hamburg, Germany) and 25μ reaction mixtures consisting of 12.5μ exTEN 2X PCR master mix ($1{ }^{\text {st }}$ BASE, Selangor, Malaysia), $9.5 \mu \mathrm{l}$ of sterile distilled water, $1 \mu \mathrm{l}$ each of forward and reverse primers, and $1 \mu \mathrm{l}$ of DNA template. PCR cycling conditions were as follow: initial denaturation for 1 min at $96^{\circ} \mathrm{C}, 36$ cycles of denaturation at $95^{\circ} \mathrm{C}$ for 30 s , annealing for 30 s at $44^{\circ} \mathrm{C}(\mathrm{CO} 1)$ or $48^{\circ} \mathrm{C}(\mathrm{Cyt} b)$, elongation for 1 min at $72^{\circ} \mathrm{C}$, and final elongation for 10 min at $72^{\circ} \mathrm{C}$. The amplicons were checked for correct length via electrophoresis on a 1% agarose gel (90 V for 25 min). PCR products were sent to Apical Scientific Sdn. Bhd. (Selangor, Malaysia) for purification and DNA sequencing.

Sequence analysis

Multiple sequence alignment was first performed separately for each gene region using the CLUSTAL X (Thompson et al. 1994) program implemented in BIOEDIT ver. 7.0.5 (Hall et al. 2011). The sequences were subsequently trimmed and aligned manually prior to concatenation of COI and $\mathrm{Cyt} b$ sequences. Analyses performed in this study were based on the final truncated length of $1446-\mathrm{bp}$ concatenated sequences. All haplotype sequences were deposited in Genbank under the accession numbers MN529663-MN52993.

Unique haplotypes were quantified and the genetic diversity, nucleotide diversity, and pairwise distance were calculated using DNASP v. 4.0 (Rozas et al. 2003). The level of gene flow among populations (Nm) based on Hudson et al. (1992) was also calculated in DNASP v. 4.0. Analysis of molecular variance (AMOVA) was performed using ARLEQUIN v.3.5 (Excoffier and Lischer 2010) for the four, hypothetical, region-based groupings (Selangor, Pahang, Sabah and Sarawak) to investigate the partition of genetic variation among regions $\left(\mathrm{F}_{\mathrm{CT}}\right)$, among populations within regions $\left(\mathrm{F}_{\mathrm{SC}}\right)$, and within populations $\left(\mathrm{F}_{\mathrm{ST}}\right)$. The significance of the F -statistics for population comparisons was assessed using 1000 permutations. The Tamura Nei plus gamma rate model (TN93+G) was selected by MEGA v. 7.0 (Kumar et al. 2016) as the bestfitting substitution model based on the Bayesian information criterion. A Maximum Likelihood (ML) tree was reconstructed in MEGA 7.0 to show the level of divergence and relationships among haplotypes of T. jarbua. The confidence level at each node was assessed by 1000 bootstrap replications. This tree was compared against the me-dian-joining network generated using the program's default settings of NETWORK 4.5.0.2 (Bandelt et al. 1999).

In addition, a neutrality test of the pairwise differences among all populations was performed to infer historical demographic and deviation of sequence variation from evolutionary neutrality. Deviations from neutrality were evaluated using Fu's Fs (Fu 1997) and Tajima's D (Tajima 1989) via DNASP. Statistical tests and
confidence intervals for D and F's were based on a coalescent simulation algorithm. A large negative value of Fu's Fs or the Tajima's D rejecting the null hypothesis of neutrality indicates population expansion(s). The demographic changes were also examined using the mismatch distribution analysis (Rogers and Harpending 1992) in ARLEQUIN with 1000 permutations. The Harpending's raggedness index (Harpending et al. 1993) and the sum of squared deviations (SSD) between observed and expected mismatch for each of the populations under the model of constant population size were analyzed according to Schneider and Excoffier (1999). This method quantifies the smoothness of the observed mismatch distribution and a non-significant result indicates an expanding population. The spatial expansion hypothesis (both raggedness index and SSD) was tested using a parametric bootstrap approach with 1000 replicates.

Results

Genetic diversity

The 1446 bp concatenated COI (631 bp) and Cyt b (815 bp) sequences were analyzed for 134 individuals obtained in five different locations (Fig. 1) from East Malaysia and Peninsular Malaysia. The nucleotide composition was 23.0% adenine,

Figure I. Sampling localities from East (Sandakan and Tawau, Sabah \& Mukah, Sarawak) and West (Peninsula) Malaysia (Kuala Selangor, Selangor and Kuantan, Pahang).
28.9% thymine, 32.0% cytosine and 16.1% guanine. The higher $\mathrm{A}+\mathrm{T}$ content (51.9%) compared to $\mathrm{G}+\mathrm{C}$ content (48.1%), is common among fishes (Appendix 1). There were 202 polymorphic sites of which 31 (15.4\%) were singleton variable sites, and 171 (84.6%) were parsimony informative (Appendix 2). A total of 149 mutations with 66 transitions, 8 transversions and 75 substitutions were found within the dataset (data not shown).

A total of 83 putative haplotypes were derived from the 134 individuals sequenced with 79 of them being unique haplotypes (95.18%) and four were shared haplotypes (4.82%). The dominant haplotype of Malaysian populations is Hap5 (KS, KN, TW, SN, MH, TAI) while other shared haplotypes are Hap3 (KS, KN, TW, MH, IND), Hap8 (KS and KN) and Hap45 (TW and SN). The population from KS recorded the highest total number of haplotypes (22) of which 19 were unique haplotypes, while Tawau recorded the lowest number of haplotypes (15) with 12 unique haplotypes. The nucleotide diversity (π) of T. jarbua populations in this study ranged from 0.0288 ± 0.0158 (mean \pm SD) to 0.3434 ± 0.1722 while haplotype diversity (h) ranged from 0.9167 ± 0.0482 to 0.9952 ± 0.0165 (Table 1). The MH population recorded the highest π and h. A high h and low π indicate that the populations studied were moderate in genetic diversity.

Genetic structure

A ML tree was reconstructed based on the 83 haplotypes of this study and four COI + Cyt b sequences from Hainan, Taiwan, India and Philippines which were downloaded from National Center for Biotechnology Information (NCBI) (Appendix 3). The mtDNA concatenated dataset defined the haplotypes into three major clades with no significant clusters corresponding to sampling localities (Fig. 2). Apart from Clade I which consists of eight haplotypes solely from Sarawak, the other four clades include mixtures of haplotypes from various localities without any obvious geographical structuring among them. Clade II consists of haplotypes from MH and KS populations while Clade III consists of the haplotype from the Philippines and haplotypes from Malaysia except MH. Clade III is the most geographically inclusive with haplotypes from India, Hainan, Taiwan, Philippines and all five Malaysian populations.

The general topology of the median-joining network (Fig. 3) corresponded with the ML tree (Fig. 2) with three major clusters identified. In the network presented, shared haplotypes occupy the central area, while the unique haplotypes branched out from the center. This formation provides a star-like profile, which indicates population expansions. Hap3 and Hap5 are the dominant haplotypes in cluster III. The distribution frequency of all the 83 haplotypes in T. jarbua populations is presented in Appendix 4 . Hap 5 recorded the highest distribution frequency with 21 individuals. It is the only common haplotype shared between all five populations from Malaysia and the representative from Taiwan. Hap3 with 16 individuals was found in India and in all locations sampled in Malaysia except for Sandakan.

Figure 2. Maximum likelihood haplotype tree reconstructed based on the concatenated mtDNA dataset. The bootstrap values higher than 50% are shown near the nodes.

Table I. Information and molecular indices of T. jarbua. N , number of samples; NH , number of haplotypes; NUH, number of unique haplotypes; h, haplotype diversity; π, nucleotide diversity; k, average number of pairwise differences.

ID	Populations	\mathbf{N}	NH	NUH	\boldsymbol{b}	$\boldsymbol{\pi}$	\boldsymbol{k}
KS	Kuala Selangor, Selangor	31	22	19	0.9828 ± 0.0135	0.1817 ± 0.0904	36.5161 ± 16.3285
KN	Kuantan, Pahang	30	19	16	0.9678 ± 0.0208	0.0288 ± 0.0158	5.7885 ± 2.8485
MH	Mukah, Sarawak	21	16	14	0.9952 ± 0.0165	0.3434 ± 0.1722	69.0238 ± 31.0005
SN	Sandakan, Sabah	28	20	18	0.9577 ± 0.0262	0.0487 ± 0.0256	9.7810 ± 4.6212
TW	Tawau, Sabah	24	15	12	0.9167 ± 0.0482	0.0514 ± 0.0271	10.3333 ± 4.8857
Total		134	83	79	0.9820 ± 0.0050	0.0248 ± 0.0031	35.8653 ± 12.2638

Figure 3. Haplotypes median-joining network corresponding to the ML tree with three observed clusters. The star-like profile observed in cluster III indicates the presence of sudden expansion.

Pairwise F_{ST} comparisons between populations in Malaysia were significant at the 95\% confidence level except for the comparison between TW and SN (Table 2). Populations of MH and KN showed the greatest pairwise differentiation ($\mathrm{F}_{\mathrm{ST}}=0.5353$; $p<$ 0.05) while SN and TW showed the least differentiation ($\mathrm{F}_{\mathrm{ST}}=0.0452 ; p>0.05$). The pairwise nucleotide divergence among populations (Table 3) showed the same trend as the F_{ST} values and was not correlated with geographical distance. The overall gene flow (Nm) estimated among populations was low at 0.82 . The sequence divergence was calculated using the Kimura two parameter (K2P) distance model for both genes (Table 3). The greatest genetic differences (COI: 0.019 and Cyt $b: 0.029$) were observed between MH-KN, MH-SN and MH-TW. The T. jarbua populations displayed a low level of conspecific divergence within 2% (COI).

The genetic structure of the T. jarbua populations analysed by AMOVA showed little (39.52%) genetic differentiation among regions but high (62.13\%) variation within populations (Table 4). This indicates that the populations were not genetically differentiated among regions and the genetic variation was mainly from within the population level. There is essentially no genetic structuring (-0.14% variation) among populations within region.

Table 2. Pairwise F_{ST} (below diagonal) and exact P-values (above diagonal) among five populations of T. jarbua based on 1000 permutations of the sequence data set. Numbers in bold represent the highest and lowest value. *Significant at $p<0.05$ by the permutation test. Overall gene flow $\left(\mathrm{N}_{\mathrm{m}}\right)$ is 0.82 .

Populations	KS	KN	MH	SN	TW
KS	-	0.0000^{*}	0.0000^{*}	0.0000^{*}	0.0000^{*}
KN	0.2965	-	0.0000^{*}	0.0270^{*}	0.0090^{*}
MH	0.3310	$\mathbf{0 . 5 3 5 3}$	-	0.0000^{*}	0.0000^{*}
SN	0.2681	0.0702	0.5038	-	0.0541
TW	0.2633	0.1773	0.4844	$\mathbf{0 . 0 4 5 2}$	-

Table 3. Net between-group mean distances using Kimura-2-parameter (K2P) model.

	Populations	KS	KN	SN	MH	TW
COI	KS	-				
	KN	0.003	-			
	SN	0.003	0.000	-		
	MH	0.015	0.019	0.019	-	
	TW	0.004	0.001	0.000	0.019	-
Cyt b	KS	-				
	KN	0.008	-			
	SN	0.008	0.001	-		
	MH	0.018	0.029	0.029	-	
	TW	0.008	0.001	0.000	0.029	-

Table 4. AMOVA of T. jarbua samples based on mtDNA sequences.

Source of variation	Sum of squares	Percentage of variation	F statistic	\boldsymbol{P}
Among region $\left(\mathrm{F}_{\mathrm{CT}}\right)$	800.958	39.52	0.3952	0.1896 ± 0.0134
Among populations within region $\left(\mathrm{F}_{\mathrm{SC}}\right)$	11.1610	-0.14	-0.0033	0.0831 ± 0.0082
Within populations $\left(\mathrm{F}_{\mathrm{ST}}\right)$	1476.92	62.13	0.3952	0.0000 ± 0.0000

Historical demography

The overall Tajima's D value was negative with an insignificant p-value, indicating deviation from evolutionary neutrality. Similarly, the Fu's Fs test which is based on the distribution of haplotypes, revealed negative but significant p-values for all five populations studied, indicating an excess of rare haplotypes or rare mutations in the population compared to what is expected under a neutral model of evolution. Following the results of Fu's Fs test, the hypothesis of neutral evolution was rejected.

In the present study, all populations demonstrated bimodal and ragged shaped patterns which points to the population having remained largely constant in size and that the lineage was widespread (Rogers and Harpending 1992). The scatterplot of the bimodal illustrations is shown in Figure 4. The results of mismatch distribution are contradictory to the results of the neutrality analysis. Hence, to further test the validity of the neutrality test results, we calculated the raggedness index and SSD under the demographic expansion model as shown in Table 5. P-

Figure 4. Pairwise number of difference (mismatch distribution) analysis was conducted using the constant population size model to observe the population size changes. The observed frequencies were represented by red dotted line. The frequency expected under the hypothesis of population expansion model was depicted by continuous green line. a Kuala Selangor b Kuantan c Mukah d Sandakan e Tawau fall populations.

Table 5. Parameter estimates of neutrality tests (Tajima's D statistic and Fu's Fs) and mismatch distribution (sum of squares deviation (SSD) and $\mathrm{r}=$ raggedness index) for each population. Significance (${ }^{*} p<$ 0.10) was determined using coalescent simulations.

	Neutrality test		Mismatch distribution		
	Tajima's \boldsymbol{D}	Fu's $_{\mathbf{s}}$	SSD	\mathbf{r}	Curve
KS	1.4817	-1.252	0.0296	0.0106	Bimodal
KN	-1.2595	-11.560	0.0113	0.0333	Bimodal
SN	-0.4265	-6.153	0.0301	0.0160	Bimodal
TW	1.0793	-2.075	0.0236	0.0266	Bimodal
MH	2.1863^{*}	-1.093^{*}	0.0288	0.0142	Bimodal
Total	-0.3132	-24.885^{*}	0.0247	0.0201	Bimodal

values of SSD between the observed and expected mismatch distributions were all statistically insignificant $(p>0.10)$, indicating the presence of non-equilibrium and a population expansion event in T. jarbua. Besides that, the studied populations showed non-significant raggedness index ($p>0.10$) indicating the data has relatively good fit to a model of population expansion (Harpending 1994). A ragged distribution suggests that the lineage was widespread (Excoffier et al. 1992; Rogers and Harpending 1992; Rogers 1995).

Discussion

Genetic diversity

Species identification was confirmed by morphological observation and DNA sequence data in which the intraspecific COI divergence was within the 2% threshold value (Hebert et al. 2003; Ward 2009; Srivathsan and Meier 2012). In general, a relatively high haplotype diversity ($0.92-0.99$) and low nucleotide diversity ($0.03-0.34$) were observed for the populations in this study. The combination of high haplotype diversity and low nucleotide diversity is common in pelagic marine fishes (Liu et al. 2015). This is likely due to rapid demographic expansion from a small effective population size, assuming there is sufficient time for the number of haplotypes to increase through mutation but insufficient for accumulation of large sequence differences (Grant and Bowen 1998; Avise 2000; Lowe et al. 2004). The inference of population expansion is further supported by the star-like patterns in Figure 3. Our results agree with an earlier study of T. jarbua populations from the Taiwanese waters which exhibited similarly high population haplotype diversity ranging from 0.86 to 1.00 as inferred from COI and Cyt b sequence data (Liu et al. 2015). In a study on T. jarbua populations from the Gulf of Aden, Lavergne et al. (2014) reported similarly high genetic diversities ranging from 0.216 to 0.698 . The high number of haplotypes (83 haplotypes) in the present study is likely due to the high mutation rate of the mtDNA genes. Most of the haplotypes are unique to its region which may indicate the presence of different founding populations in the studied localities (Teixeira et al. 2011). The haplotype diversity of a relatively rapid evolving genome within a population often approaches 1.0 as many individuals will tend to have unique haplotypes (Freeland et al. 2011).

Genetic structure

A population's genetic structure is affected by genetic drift, local adaptation, and gene flow. In a marine environment, the development of population structure is greatly influenced by factors that affect dispersal, such as ocean currents, historical variance, and geographic distance coupled with differences in dispersal ability and habitat discontinuity (Saarman et al. 2010). Population structure inferred from mtDNA markers displays less genetic divergence in the pelagic and moderately pelagic species due to their potential to undertake long-distance migrations in oceanic waters (Jaafar 2014).

The haplotype tree (Fig. 2) revealed three major lineages but geographic structuring among the five populations is not distinct. In general, haplotypes specific to certain geographic regions did not form monophyletic groups, but appeared to be randomly distributed across the haplotype tree. Hap5 and Hap3 which recorded the highest distribution frequency are likely the ancestral haplotypes among the populations sampled.

Recent haplotypes were evolved directly or indirectly from the ancestral haplotypes. The existence of two ancestral points indicates that T. jarbua in Malaysia probably exist from two different sources. According to the coalescent theory, common haplotypes at the center of a network are inferred to be ancestral, while tip haplotypes at the periphery are derived or descendant from ancestral haplotypes (Akib et al. 2015). The occurrence of star-like patterns radiating from these major haplotypes suggests that T. jarbua populations have undergone significant population size expansions in the relatively recent past (Forster et al. 2001; Akib et al. 2015).
$\mathrm{F}_{S T}$ values are often used to infer gene flow, in which a lower $\mathrm{F}_{S T}$ value indicates low genetic divergence and higher gene flow. F_{ST} values below 0.05 , as observed between SN and TW populations, indicate negligible genetic divergence, probably due to active exchange of genetic material between populations through breeding. Furthermore, the pairwise divergence between these populations is not statistically significant. According to Wright (1965), $\mathrm{F}_{\text {ST }}$ of 0-0.05 is described as little differentiation, $0.05-0.15$ as moderate differentiation, $0.15-0.25$ as great differentiation and values greater than 0.25 as very great differentiation. All populations studied showed moderate to very great pairwise differentiation except for TW-SN. The overall gene flow recorded was rather low $(\mathrm{Nm}=0.82)$ which suggests limited genetic connectivity among the five populations.

Populations from the same region, i.e., TW and SN of Sabah, were the least genetically variable (Tables 2 and 3), which is likely due to the close geographical distance between these populations. The theory of fish migration across adjacent drainage systems due to flooding, which follows the one-dimensional stepping stone model that allows migration to adjacent population (Song et al. 2013), may apply in the case of T. jarbua. The significantly higher genetic differentiation between populations of KSSN (pairwise $\mathrm{F}_{\mathrm{ST}}=0.2681$) compared to $\mathrm{KN}-\mathrm{SN}$ (pairwise $\mathrm{F}_{\mathrm{ST}}=0.0702$) may be attributed to distance and physical barrier. Some genetic exchange can be expected since the Straits of Malacca connects the Andaman Sea and South China Sea via the narrow Tebrau strait. It is likely that mixing between the two bodies of water is very limited which supports the F_{ST} value obtained. However, the higher genetic variation between populations of MH-SN (pairwise $\mathrm{F}_{\mathrm{ST}}=0.5038$) as compared to MH-KS (pairwise F_{ST} $=0.3310$) implies that geographical distance is not the only driving factor of genetic variation among populations of T. jarbua in the Malaysian waters, similar to the results observed in the wider Gulf of Aden (Lavergne et al. 2014) where populations of adjacent locations showed low genetic connectivity despite the absence of a geographic barrier. Populations bordering a common origin such as the South China Sea (KN, MH, TW, and SN) may have evolved independently of each other over time, but there might have been insufficient time for genetic divergence to accumulate in these populations.

Another interesting finding of this study is the occurrence of shared haplotype between the populations from Peninsular and East Malaysia, India, Hainan, Philippines and Taiwan. Common haplotypes between localities and mixed haplotypes of different lineages in some populations in the current study can be explained by the biogeographical history of Southeast Asia (historically known as the Sundaland). Southeast

Asia is believed to have experienced simultaneous glaciation and consequent deglaciation along with its associated decrease and increase of seawater levels during the Pleistocene period, which greatly influenced continental and oceanic configuration (Voris 2000). The shared haplotypes between Malaysian populations and those from as far as India suggests that the range of population expansion after glacial retreat was not restricted to the South China Sea but also extended into the Indian Ocean (Liu et al. 2015). Lavergne et al. (2014) also reported high connectivity between populations in the Gulf of Aden and South China Sea due to the unique sharing of COI haplotypes between both regions. The haplotype sharing and their consequent gene flow may also be attributed to breeding migration, mutation, pelagic larvae, and sharing of common ancestors (Frankham 1996).

The MH population is the most genetically distinct with the highest betweengroup mean distances, haplotype and nucleotide diversity among the five populations. Geographical isolation of allopatric populations restricts gene flow between two populations, which in turn allows the evolution of a genome adapted to local condition (Hall 1993). Cluster I (MH) is estimated to form after the separation of Peninsular Malaysia from the Borneo Island due to the rise in the depth of the Sunda River between 40 to 100 m . This gradual separation was suspected to have caused accumulative genetic drift. According to Halliday (1993), genetic drift is likely to occur, particularly in small populations that are isolated from the main population and it may become the major source of genetic variation between some populations.

Among the four populations, MH is genetically closest to KS. Geological evidence suggests that the river systems of Sarawak were historically interconnected with most major river systems of Peninsular Malaysia via the Sunda River during Pleistocene glaciation (about 10000 years ago), thus allowing gene flow among these drainages (Kamarudin and Esa 2009). Gene flow from populations in the Straits of Malacca to those in Sarawak has been reported in several studies including Ryan and Esa (2006), Azhar and Hassan (2015), Samani et al. (2016) and Lau et al. (2018). Meanwhile, populations of SN-KN, which are separated by the South China Sea, showed high genetic connectivity (pairwise $\mathrm{F}_{\mathrm{ST}}=0.0702$). This could probably be explained by the high migration ability of T. jarbua ($>1000 \mathrm{~km}$, Liu et al. 2015), human-mediated transfer through ballast waters (Liu et al. 2019) or past glaciation events. Furthermore, the high similarity in the sequence data (Table 3) perhaps indicates remnants of identical haplotypes from both populations, and that they were essentially similar at one time before the separation (Inger and Chin 2002). Eventually, sea level rise during the last Pleistocene period caused Borneo to be separated from mainland Asia (Peninsular Malaysia), which we suggest, resulted in shelf submergence and subsequent genetic differentiation between grunters from KN and SN. Pleistocene sea level fluctuations could also explain the incomplete divergence of grunters between East and Peninsular Malaysia. Similar evidence of a close genetic relationship between fishes of Borneo and mainland Asia in relation to their biogeographical history was discussed by several other authors (Pin et al. 2001; Nadiatul et al. 2011; Tan et al. 2012; Song et al. 2013).

Historical demography

Historical demographic expansions were determined by analysing the frequency distributions of pairwise differences between sequences (Rogers and Harpending 1992; Ray et al. 2003; Excoffier 2004). Neutrality tests with Tajima's D and Fu's Fs statistics estimate the deviation from neutrality, which is based on the expectation of a constant population size at mutation-drift equilibrium. Here, a negative Tajima's D signifies an excess of low frequency polymorphisms relative to expectation, indicating population size expansion or positive selection (Tajima 1983). The negative and significant Fu's Fs statistical value provides strong evidence for past population expansion, and rule out the possibility of genetic hitching or background selection, and evolutionary forces that produce a pattern similar to population expansion (Fu and Li 1993; Fu 1997; Okello et al. 2005). The T. jarbua populations displayed a genetic pattern typical of a population that has undergone a recent population expansion due to its two common haplotypes (Hap3 and Hap5) present across the range while the rest of the haplotypes are unique. The range expansion was a recent phenomenon and may not have achieved the migration-drift equilibrium, as shown by the lack of phylogeographical structure. Neutrality test statistics were in overall negatively significant and not consistent with a population at drift-mutation equilibrium.

The mismatch distribution is generally displayed as a multimodal pattern for populations showing demographic equilibrium. In contrast, a unimodal pattern depicts populations which have experienced recent demographic expansion (Rogers and Harpending 1992). In the results, all localities presented a multimodal pattern proving recent expansion. The hypothesis that the observed data fit the sudden expansion model was tested using the SSD and the raggedness index. Here, non-significant values for SSD signifies that the observed data do not deviate from that expected under the model of expansion. Non-significant raggedness index also indicates population expansion. Our observations of non-significant values in goodness-of-fit distribution for all populations suggest that population expansion occurred recently (Rogers and Harpending 1992).

Conclusion

To summarize, we found 1) high haplotype diversity but low nucleotide diversity among T. jarbua populations in Malaysia; 2) significant results suggesting population expansion of T. jarbua in this region; 3) despite the three genetic clusters observed in the haplotype tree and median-joining network, no obvious population structuring was detected among geographically distinct populations. Common haplotypes among populations and haplotypes from several populations in each genetic cluster indicate high genetic connectivity among the populations. This study assesses the genetic diversity and population structure of T. jarbua in Malaysia for appropriate conservation and management strategies. Conservation of crescent grunter at its natural variation level is required as it forms a diverse group of taxa with 83 haplotypes distributed across Malaysia. The haplotype composition surveyed in the present study may provide a baseline for future comparisons to monitor the temporal variability of haplotype frequency and population structure. This study also has indirectly revealed the
dispersal power of T. jarbua through its high mobility and rapid adaptability to a newly colonized area. Further studies can be conducted using larger sample size and temporal replicates, samples collected from other areas of geographical distributions, and sequence data from other mtDNA genes or information based on nuclear DNA. This research contributed useful data for future large scale biogeographical and taxonomic studies of this species.

Animal ethics

The fish species that was employed in this study is not categorized as endangered species under the IUCN list and all the samples were collected from fish markets and landing sites.

Acknowledgements

This study was supported by the University of Malaya, Research University Grant (RU009E-2018), Top 100 Universities in The World Fund (TU001-2018), IF030B-2017; Ministry of Science and Technology (108-2119-M-110-005) and the China-ASEAN Maritime Cooperation Fund project "Monitoring and conservation of the coastal ecosystem in the South China Sea". We would also like to thank Surajwaran Mangaleswaran, an English professional for checking on the language used in this paper.

References

Akib NAM, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, Nor SAM (2015) High connectivity in Rastrelliger kanagurta: influence of historical signatures and migratory behaviour inferred from mtDNA cytochrome b. PLoS One 10(3): e0119749. https://doi. org/10.1371/journal.pone. 0119749
Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, 447pp.
Azhar MAAM, Hassan R (2015) Population genetics of Tor Douronensis in Sarawak-a Revisit. Borneo Journal of Resource Science and Technology 5(2): 1-15. https://doi.org/10.33736/ bjrst.218.2015
Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution 16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Borsa P, Durand JD, Chen WJ, Hubert N, Muths D, Mou-Tham G, Kulbicki M (2016) Comparative phylogeography of the Western Indian Ocean reef fauna. Acta Occologica 72: 72-86. http://doi.org/10.1016/j.actao.2015.10.009
Canoy RJC, Quilang JP (2015) Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes. [Unpublished]
Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10: 195. https://doi.org/10.1038/nrg2526

Dahanukar N, Kaymaram F, Alnazry H, Al-Husaini M, Almukhtar M, Hartmann S, Alam S, Sparks JS (2017) Terapon jarbua. The IUCN red list of threatened species 2019. https:// www.iucnredlist.org/species/166892/46643542
Department of Fisheries Malaysia (2009) Valid local name of Malaysian marine fishes. Department of Fisheries Malaysia. Ministry of Agriculture and Agro-based Industry, 180 pp .
Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends in Ecology \& Evolution 23: 546-554. https://doi. org/10.1016/j.tree.2008.05.011
Du J, Loh K-H, Hu W, Zheng X, Amri AY, Ooi JLS, Ma Z, Rizman-Idid M, Chan AA (2019) An updated checklist of the marine fish fauna of Redang Islands, Malaysia. Biodiversity Data Journal 7: e47537. https://doi.org/10.3897/BDJ.7.e47537
Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13: 853-864. https:// doi.org/10.1046/j.1365-294X.2003.02004.x
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology 10(6):1500-1508.
Freeland JR, Kirk H, Peterson SD (2011) Molecular Ecology, 2nd ed. Wiley-Blackwell, 449 pp.
Froese R, Pauly D (2018) FishBase. http://fishbase.sinica.edu.tw/Summary/SpeciesSummary. php?id=4458 [August 2019]
Forster P, Torroni A, Renfrew C, Röhl A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Molecular Biology and Evolution 18: 1864-1881. https:// doi.org/10.1093/oxfordjournals.molbev.a003728
Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2): 915-925.
Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3): 693-709.
Golani D, Appelbaum-Golani B (2010) First record of the Indo-Pacific fish the Jarbua terapon (Terapon jarbua) (Osteichthyes: Terapontidae) in the Mediterranean with remarks on the wide geographical distribution of this species. Scientia Marina 74(4): 717-720.
Grant W, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89: 415-426. https://doi.org/10.1093/jhered/89.5.415
Hall M (1993) Species, speciation and extinction evolution - A Biological and paleontological approach. Addison-Wesley Publishing Company, Great Britain, 391pp.
Hall T, Biosciences I, Carlsbad C (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2: 60-61.
Halliday T (1993) Natural selection In: Skelton P (Ed.) Evolution - A biological and palaeontological approach. Addison-Wesley Publishing Company, Great Britain, 141-142.
HarpendingH (1994) Signature of ancient population growth in alow-resolution mitochondrial DNA mismatch distribution. Human Biology 66(4): 591-600. https://doi.org/10.2307/41465371

Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) The genetic structure of ancient human populations. Current Anthropology 34: 483-496. https://doi. org/10.1086/204195
Hebert PD, Ratnasingham S, De Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences 270: S96-S99.
Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132(2): 583-589.
Hyde J, Lynn E, Humphreys Jr R, Musyl M, West A, Vetter R (2005) Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Marine Ecology Progress Series 286: 269-277. https://doi. org/10.3354/meps286269
Inger RF, Chin PK (2002) Fresh-water fishes of North Borneo. Natural History Publications, Borneo, 346 pp.
Jaafar TNAM (2014) DNA barcoding and population genetic structure of Malaysian marine fishes. PhD Thesis, Bangor University, Bangor. 327 pp.
Kamarudin KR, Esa Y (2009) Phylogeny and phylogeography of Barbonymus schwanenfeldii (Cyprinidae) from Malaysia inferred using partial cytochrome b mtDNA gene. Journal of Tropical Biology \& Conservation 5: 1-13.
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874. https://doi. org $/ 10.1093 / \mathrm{molbev} / \mathrm{msw} 054$
Lau JS, Ransangan J, Rodrigues KF (2018) Genetic diversity and population structure of the Asian Green Mussel (Pernaviridis) in the waters of Sabah, Malaysia based on mitochondrial DNA D-Loop Sequences. Turkish Journal of Fisheries and Aquatic Sciences 18(1): 109-117. https://doi.org/10.4194/1303-2712-v18_1_12
Lavergne E, Calvès I, Meistertzheim AL, Charrier G, Zajonz U, Laroche J (2012) Estuarine fish biodiversity of Socotra Island (NW Indian Ocean): from the community to the functioning of Terapon jarbua populations. PhD Thesis, University of Western Brittany.
Liu L, Zhang X, Li C, Zhang H, Yanagimoto T, Song N, Gao T (2019) Population genetic structure of Marbled Rockfish, Sebastiscus marmoratus (Cuvier, 1829), in the northwestern Pacific Ocean. ZooKeys 830: 127. https://doi.org/10.3897/zookeys.830.30586
Liu SYV, Huang IH, Liu MY, Lin HD, Wang FY, Liao TY (2015) Genetic stock structure of Terapon jarbua in Taiwanese waters. Marine and Coastal Fisheries 7: 464-473. https://doi. org/10.1080/19425120.2015.1074966
Lowe A, Harris S, Ashton P (2004) Genetic diversity and differentiation - Ecological genetics: design, analysis, and application. Blackwell Publishing Oxford, 50-105. https://doi. org/10.1093/aob/mci073
Miu TC, Lee SC, Tzeng WN (1990) Reproductive biology of Terapon jarbua from the estuary of Tamshui River. Journal of the Fisheries Society of Taiwan 17(1): 9-20. https://doi. org/10.29822/JFST.200812.0004
Musarrat UAin RYF, Masood Z (2015) Gonadosomatic index of a Teraponid Species, Terapon jarbua (Forsskal, 1775) (Family: Teraponidae) of Karachi Coast, Pakistan. International Journal of Biology and Biotechnology 12(4): 575-578.

Nadiatul H, Daud S, Siraj S, Sungan S, Moghaddam F (2011) Genetic diversity of Malaysian indigenous Mahseer, Tor douronensis in Sarawak river basins as revealed by cytochrome c oxidase I gene sequences. Iranian Journal of Animal Biosystematics 7(2): 119-127.
Nandikeswari R, Sambasivam M, Anandan V (2014) Estimation of fecundity and gonadosomatic index of Terapon jarbua from Pondicherry Coast, India. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 8(1): 61-65. https://doi.org/10.5281/zenodo. 1090709
Nei M (1987). Molecular Evolutionary Genetics. Columbia University Press, 512 pp.
Okello JBA, Nyakaana S, Masembe C, Siegismund HR, Arctander P (2005) Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion. Heredity 95(3): 206-215. https://doi.org/10.1038/sj.hdy. 6800711
Okumuş İ, Çiftci Y (2003) Fish population genetics and molecular markers: II-molecular markers and their applications in fisheries and aquaculture. Turkish Journal of Fisheries and Aquatic Sciences 3: 51-79.
Pin LC, Teen LP, Ahmad A, Usup G (2001) Genetic diversity of Ostreopsis ovata (Dinophyceae) from Malaysia. Marine Biotechnology 3: 246-255. http://doi.org/10.1007/ s1012600000073
Rao DV, Devi K, Rajan P (2000) Account of Ichthyofauna of Andaman \& Nicobar Islands, Bay of Bengal. Zoological Survey of India 48p.
Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution 20: 76-86.
Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49: 608615. https://doi.org/10.1111/j.1558-5646.1995.tb0229.x

Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552-569. https://doi. org/10.1093/oxfordjournals.molbev.a040727
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. https://doi. org/10.1093/bioinformatics/btg359
Ryan JR, Esa YB (2006) Phylogenetic analysis of Hampala Fishes (Subfamily Cyprininae) in Malaysia inferred from partial mitochondrial cytochrome B DNA Sequences. Zoological Science 23(10): 893-902. https://doi.org/10.2108/zsj.23.893
Saarman NP, Louie KD, Hamilton H (2010) Genetic differentiation across eastern Pacific oceanographic barriers in the threatened seahorse Hippocampus ingens. Conservation Genetics 11: 1989-2000. http://doi.org/10.1007/s10592-010-0092-x
Samani NK, Esa Y, Amin SN, Ikhsan NFM (2016) Phylogenetics and population genetics of Plotosus canius (Siluriformes: Plotosidae) from Malaysian coastal waters. PeerJ 4: e1930. http://doi.org/10.7717/peerj. 1930
Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079-1089.
Shyama SDC, Lim PE, Poong SW, Du J, Loh KH (2020) Relationships between Sagittal otolith size and fish size of Terapon jarbua (Teleostei, Terapontidae) in Malaysian waters. Journal of Oceanology and Limnology http://doi.org/10.1007/s00343-019-9193-7

Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236: 787-792. https://doi.org/10.1126/science. 3576198
Song LM, Munian K, Abd Rashid Z, Bhassu S (2013) Characterisation of Asian snakehead murrel Channa striata (Channidae) in Malaysia: an insight into molecular data and morphological approach. The Scientific World Journal 2013: e917506. https://doi. org/10.1155/2013/917506
Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28: 190-194.
Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437-460.
Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123: 597-601.
Tan MP, Jamsari AFJ, Azizah MNS (2012) Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: ancient river connectivity, geographical and anthropogenic singnatures. PLoS One 7: e52089. https://doi.org/10.1371/journal.pone. 0052089
Teixeira S, Cambon-Bonavita MA, Serrão EA, Desbruyeres D, Arnaud-Haond S (2011) Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris exoculata along the Mid-Atlantic Ridge. Journal of Biogeography 38: 564-574. https://doi. org/10.1111/j.1365-2699.2010.02408.x
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680. https://doi. org/10.1093/nar/22.22.4673
Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153-1167. https://doi.org/10.1046/j.13652699.2000.00489.x

Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1847-1857. https://doi.org/10.1098/rstb.2005.1716
Ward RD (2009) DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9(4): 1077-1085. https://doi.org/10.1111/j.1755-0998.2009.02541.x
Whitehead A, Anderson SL, Kuivila KM, Roach JL, May B (2003) Genetic variation among interconnected populations of Catostomus occidentalis: implications for distinguishing impacts of contaminants from biogeographical structuring. Molecular Ecology 12: 28172833. https://doi.org/10.1046/j.1365-294X.2003.01933.x

Wright S (1931) Evolution in Mendelian populations. Genetics 16: 1-97.
Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.
Wu G, Wu C, Wang Q, Luo J (2016) The complete mitochondrial genome of the Terapon jarbua (Perciformes: Terapontidae). Mitochondrial DNA Part A 27: 3430-3431. https:// dx.doi.org/10.3109/19401736.2015.1022734

Zaya DN, Molano-Flores B, Feist MA, Koontz JA, Coons J (2017) Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha RK Godfrey (Lentibulariaceae). Conservation Genetics 18: 171-180. https://dx.doi.org/10.1007/s10592-016-0891-9
Appendix I
Percentage of nucleotide composition based on populations.

ID	Nucleotide composition (\%)																	
	COI						Cyt b						Combine					
	A	T	C	G	A + T	C + G	A	T	C	G	A + T	C + G	A	T	C	G	A+T	C+G
KS	22.4	28.8	30.9	17.9	51.2	48.8	23.5	28.7	32.9	14.9	52.2	47.8	22.9	28.9	32.0	16.2	51.8	48.2
KN	22.6	28.9	30.7	17.8	51.5	48.5	23.5	28.7	32.8	14.9	52.2	47.7	23.0	29.0	31.9	16.1	52.0	48.0
MH	22.5	28.4	31.4	17.8	50.9	49.2	23.7	28.4	32.9	15.0	52.1	47.9	23.0	28.6	32.2	16.2	51.6	48.4
SN	22.6	28.9	30.7	17.8	51.5	48.5	23.5	28.7	32.8	14.9	52.2	47.7	23.0	29.0	31.9	16.1	52.0	48.0
TW	22.6	28.9	30.8	17.8	51.5	48.6	23.5	28.7	32.9	14.9	52.2	47.8	23.0	28.9	32.0	16.1	51.9	48.1
Total	22.2	29.2	30.9	17.7	51.4	48.6	23.6	28.7	32.9	14.9	52.3	47.8	23.0	28.9	32.0	16.1	51.9	48.1
HAI	22.5	28.9	30.7	17.8	51.4	48.5	23.4	28.8	32.9	14.8	52.2	47.7	23.1	28.9	32.0	16.1	52.0	48.1
IND	22.3	29.5	30.5	17.7	51.8	48.2	23.6	28.8	32.8	14.8	52.4	47.6	22.9	29.7	31.6	15.8	52.6	47.4
PHI	22.9	28.9	30.7	17.5	51.8	48.2	23.4	28.6	32.9	15.1	52.0	48.0	23.2	28.7	32.0	16.1	51.9	48.1
TAI	22.5	28.9	30.7	17.8	51.4	48.5	23.6	28.7	32.9	14.8	52.3	47.7	23.1	28.8	32.0	16.1	51.9	48.1

Appendix 2

Polymorphic site analysis based on COI, Cyt b and combined gene. C, conserved site; V , variable site; Pi , parsimony informative sites; S, singleton sites.

ID	COI (631 bp)				Cyt b (815 bp)				Combine (1446 bp)			
	C	V	Pi	S	C	V	Pi	S	C	V	Pi	S
KS	602	29	20	9	742	73	53	20	1344	102	73	29
KN	618	13	6	7	793	22	14	8	1411	35	20	15
MH	575	56	54	2	716	99	95	4	1291	155	149	6
SN	617	14	7	7	787	28	20	8	1404	42	27	15
TW	619	12	9	3	798	17	14	3	1417	29	23	6
Total	557	74	60	14	687	128	111	17	1244	202	171	31

Appendix 3

Sequence data used in this study. All data were downloaded from NCBI.

Location	COI	Cyt \boldsymbol{b}	Publication
	NC027281	NC027281	Wu et al. 2016
Hainan	KP204162	KP152133	Liu et al. 2015
Taiwan	KC774674	KC774717	Lenka et al. 2014 (Unpublished)
Kochi, India	KF999840	KF999856	Canoy and Quilang 2015 (Unpublished)
Philippines	MN529663-MN529796	MN529797-MN529930	This study
Malaysia			

Appendix 4

Frequency distribution of haplotypes according to localities. Highlighted columns indicate shared haplotypes.

Haplotype	Total	KS	KN	TW	SN	MH	PHI	TAI	HAI
IND									
Hap_1	3	3							
Hap_2	1	1							
Hap_3	17	4	4	7		1			
Hap_4	1	1							
Hap_5	21	5	6	1	5	3		1	
Hap_6	1	1							
Hap_7	1	1							
Hap_8	2	1	1						
Hap_9	1	1							
Hap_10	1	1							
Hap_11	1	1							
Hap_12	1	1							
Hap_13	1	1							
Hap_14	1	1							
Hap_15	1	1							
Hap_16	1	1							
Hap_17	1	1							
Hap_18	1	1							
Hap_19	1	1							
Hap_20	1	1							
Hap_21	1	1							
Hap_22	1	1							
Hap_23	1		1						
Hap_24	4		4						

Haplotype	Total	KS	KN	TW	SN	MH	PHI	TAI	HAI	IND
Hap_25	1		1							
Hap_26	1		1							
Hap_27	1		1							
Hap_28	1		1							
Hap_29	1		1							
Hap_30	1		1							
Hap_31	1		1							
Hap_32	1		1							
Hap_33	1		1							
Hap_34	1		1							
Hap_35	1		1							
Hap_36	1		1							
Hap_37	1		1							
Hap_38	1		1							
Hap_39	1				1					
Hap_40	1				1					
Hap_41	5				5					
Hap_42	1				1					
Hap_43	1				1					
Hap_44	1				1					
Hap_45	2			1	1					
Hap_46	1				1					
Hap_47	1				1					
Hap_48	1				1					
Hap_49	1				1					
Hap_50	1				1					
Hap_51	1				1					
Hap_52	1				1					
Hap_53	1				1					
Hap_54	1				1					
Hap_55	1				1					
Hap_56	1				1					
Hap_57	1				1					
Hap_58	2					2				
Hap_59	1					1				
Hap_60	1					1				
Hap_61	1					1				
Hap_62	1					1				
Hap_63	1					1				
Hap_64	2					2				
Hap_65	1					1				
Hap_66	1					1				
Hap_67	1					1				
Hap_68	1					1				
Hap_69	2					2				
Hap_70	1					1				
Hap_71	1					1				
Hap_72	1			1						
Hap_73	2			2						
Hap_74	1			1						
Hap_75	1			1						
Hap_76	3			3						
Hap_77	1			1						
Hap_78	1			1						
Hap_79	1			1						
Hap_80	1			1						
Hap_81	1			1						
Hap_82	1			1						
Hap_83	1			1						
Hap_84	1								1	
Hap_85	1						1			

[^0]: Copyright L. Sanoamuang, S.Watiroyram. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

[^1]: Academic editor: Saskia Brix | Received 28 October 2019 | Accepted 3 January 2020 | Published 12 February 2020

[^2]: Copyright LiYu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

[^3]: Academic editor: Gergin Blagoev | Received 2 August 2019 | Accepted 9 January 2020 | Published 12 February 2020

[^4]: Copyright Yue Mao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

[^5]: Copyright Lin M-Y, Ge S-Q. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

