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Abstract
The common bait worm Marphysa sanguinea (Montagu, 1813), originally described from the south coast 
of England, is the type species of the genus. This species has been widely reported from all around the 
world and has been considered as cosmopolitan until recently. This is partly because the original descrip-
tion was very brief and poorly illustrated, and also because all species superficially look similar. In order 
to clarify the situation, M. sanguinea was redescribed and a neotype was designated by Hutchings and 
Karageorgpoulos in 2003. Recently, specimens from Cornwall, close to the type locality, were sampled, 
examined morphologically, and used to obtain COI gene sequences for this species. Molecular results per-
mitted us to confirm the identity and presence of M. sanguinea along the French coasts and to highlight 
the presence of inaccurate sequences of this species on GenBank. Use of this “false” cosmopolitan species 
at a worldwide scale by many biologists is also discussed in this paper.
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Introduction

Eunicidae Berthold, 1827 is a very speciose family with eleven recent genera and more 
than 400 valid species distributed worldwide (Read and Fauchald 2019a). The genus 
Marphysa de Quatrefages, 1866 comprises approximately 70 valid species (Read and 
Fauchald 2019b) and many of these have similar general morphology. Marphysa san-
guinea (Montagu, 1813), type species of the genus, has a brief and poorly illustrated 
original description, which could fit most species of the genus. Thus, M. sanguinea has 
been considered for decades as a cosmopolitan species (Hutchings and Kupriyanova 
2017). Indeed, this species was reported from Europe (Fauvel 1923; Parapar et al. 
1993; Lewis and Karageorgopoulos 2008; Hutchings et al. 2012), Grand Caribbean 
Region (Salazar-Vallejo and Carrera-Parra 1998), Pacific and Atlantic coasts of North 
America (Leidy 1855; Webster 1879; Hartman 1944; Fauchald 1970), Atlantic Coast 
of South America (Morgado and Tanaka 2001), Red Sea (Fauvel 1953), Africa (Day 
1967; Kouadio et al. 2008; Lamptey and Armah 2008), Asia (Miura 1977), and Aus-
tralia (Day 1967).

In the absence of type material, Hutchings and Karageorgopoulos (2003) decided 
to clarify the status of this species and described a neotype. They provided a complete 
description of specimens from the type locality (Cornwall, England) together with 
SEM plates and data about habitat and reproduction. Subsequent to this work, several 
species previously identified as M. sanguinea at a worldwide scale were carefully checked 
and some described as new species: Marphysa mullawa Hutchings & Karageorgopou-
los, 2003 (from Australia), Marphysa elityeni Lewis & Karageorgopoulos, 2008 (from 
South Africa), Marphysa kristiani Zanol, da Silva & Hutchings, 2016 (from Australia), 
Marphysa victori Lavesque, Daffe, Bonifácio & Hutchings, 2017 (from France), Mar-
physa hongkongensa Wang, Zhang & Qiu, 2018 (from Hong-Kong), Marphysa aegyp-
ti Elgetany, El-Ghobashy, Ghoneim & Struck, 2018 (from Egypt), and also a suite 
of species from China where most previous records recorded M. sanguinea as being 
present: Marphysa multipectinata, Marphysa tribranchiata and Marphysa tripectinata 
Liu, Hutchings & Sun, 2017, Marphysa bulla Liu, Hutchings & Kupriyanova, 2018, 
Marphysa maxidenticulata Liu, Hutchings & Kupriyanova, 2018. Molina-Acevedo and 
Carrera-Parra (2015) also refuted the presence of M. sanguinea in the Grand Caribbean 
region. All these works confirm the absence of M. sanguinea outside European waters. 
Most of these recent studies provide molecular data for type specimens and compare 
them to sequences stored in GenBank (NCBI), including sequences of M. sanguinea 
from several localities, but none from the type locality.

In this study, we test the identification of M. sanguinea cytochrome oxidase I (COI) 
sequences in GenBank, comparing them with those of specimens from the type local-
ity (Cornwall, UK). We have also carefully checked and described the studied material.
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Materials and methods

Sampling and morphological analyses

Specimens were collected in subtidal turf slabs in Arcachon Bay, in intertidal soft rocks 
in Bay of Brest (France) and in rocks easily split to extract the worms in Plymouth 
Sound (Cornwall, UK), close to the type locality. Specimens from Brest and Cornwall 
were fixed and preserved in 96% ethanol. For the Arcachon specimen, several pos-
terior parapodia were removed and fixed in 96% ethanol for molecular studies. The 
rest of specimen was fixed in 4% formaldehyde seawater solution, then transferred to 
70% ethanol for morphological analyses. Preserved specimens were examined under 
a Nikon SMZ25 stereomicroscope and a Nikon Eclipse E400 microscope and pho-
tographed with a Nikon DS-Ri 2 camera. Measurements were made with the NIS-
Elements Analysis software. Selected parapodia along the body were removed from 
one specimen from Brest (AM W.49086) and examined under the scanning electron 
microscope (JEOL JSM 6480LA) and imaged with a secondary detector at Macquarie 
University, Sydney, Australia.

Morphological terminology is based on previous studies of Paxton (2000) and 
Zanol et al. (2014) for general terms and pattern of subacicular hook colour, and 
Molina-Acevedo and Carrera-Parra (2015, 2017) for jaw morphology and for descrip-
tion of chaetae.

The studied material is deposited at the Australian Museum, Sydney (AM), Na-
tional Museum of Brazil, Rio de Janeiro (MNRJ) and the Muséum National d’Histoire 
Naturelle, Paris (MNHN).

Molecular data and analyses

Sub-samples for DNA analysis were removed from specimens, placed in ethanol 96% 
and frozen at -20 °C. Extraction of DNA was done with QIAamp DNA Micro Kit 
(QIAGEN) following protocol supplied by the manufacturers. Approximately 600 bp 
of COI (cytochrome c oxidase subunit I) gene was amplified, using primers polyLCO 
and polyHCO COI (Carr et al. 2011). PCR (Polymerase Chain Reaction) occurred 
in 50 μL mixtures containing: 10μL of 5X Colorless GoTaq Reaction Buffer (final 
concentration of 1X), 1.5 μL of MgCl2 solution (final concentration of 1.5mM), 1 μL 
of PCR nucleotide mix (final concentration of 0.2 mM each dNTP), 0.5 μl of each 
primer (final concentration of 1μM), 0.2 μl of GoTaq G2 Flexi DNA Polymerase (5U/
μl), 1 μl template DNA and 33.8 μL of nuclease-free water. The temperature profile 
was as follows for 16S: 94 °C/600s - (94 °C/60s-59 °C/30s-72 °C/90s)*40 cycles - 
72 °C/600s - 4 °C, for COI: 94 °C/600s - (94 °C/40s-44 °C/40s-72 °C/60s)*5 cycles 
- (94 °C/40s-51 °C/40s-72 °C/60s)*35 cycles - 72 °C/300s - 4 °C. PCR success was 
verified by electrophoresis in a 1 % p/v agarose gel stained with ethidium bromide. 
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Amplified products were sent to GATC Biotech Company to complete double strain 
sequencing, using same set of primers as used for PCR.

Overlapping sequence (forward and reverse) fragments were merged into consen-
sus sequences and aligned using Clustal Omega. COI sequences were translated into 
amino acid alignment and checked for stop codons in order to avoid pseudogenes. The 
minimum length coverage was around 590 bp.

Pairwise Kimura 2-parameter (K2P) genetic distance and Maximum Likelihood 
tree using K2P model and non-parametric bootstrap branch support (1000 replicates) 
was performed using MEGA version 7.0.26. Tree-based analysis was obtained with all 
Marphysa species and available (and exploitable) sequences of M. sanguinea in Gen-
Bank. Other genera of Eunicidae were considered as outgroup.

Results

Taxonomic Account

Family Eunicidae Berthold, 1827

Genus Marphysa Quatrefages, 1866

Type species. Nereis sanguinea Montagu, 1813

Marphysa sanguinea (Montagu, 1813)
Figs 1‒3

Material examined. MNHN-IA-TYPE 1856, one complete specimen, Mount 
Edgcumbe, Plymouth Sound, Cornwall, UK (50°20'59"N, 4°09'52"W), intertidal 
in soft rocks, 04 November 2017. MNRJP002048, one complete specimen, Mount 
Edgcumbe, Plymouth Sound, Cornwall (UK) (50°20'59"N, 4°09'52"W), intertidal 
in soft rocks, 04 November 2017. AM W.51410, one complete specimen, Mount 
Edgcumbe, Plymouth Sound, Cornwall (UK) (50°20'59"N, 4°09'52"W), intertidal in 
soft rocks, 04 November 2017. MNHN-IA-TYPE 1857, one complete specimen, Pyla, 
Arcachon Bay, France (44°33'57"N, 1°14'16"W), subtidal in turf slab (8m depth), 
29 October 2017. AM W. 49085, one complete specimen, Logonna-Daoulas, Bay of 
Brest, France (48°19'37"N, 4°19'27"W), intertidal in soft rocks, 18 October 2016. 
AM W.49086, Logonna-Daoulas, Bay of Brest, France (48°19'37"N, 4°19'27"W), in-
tertidal in soft rocks, 18 October 2016, several parapodia mounted for SEM. AM W. 
27392, one complete specimen, Devon, Plymouth, Mount Edgcumbe (50°21'10"N, 
4°09'30"W), intertidal from burrows in rock crevices, 25 October 1999.

Description. Body relatively long, with complete individuals ranging from 48.1 
(ca. 138 chaetigers) to 163.1 mm (ca. 270 chaetigers) in length and from 3.7 to 6.6 mm 
in width (chaetiger 10 with parapodia), with same width throughout, slightly tapering 
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Figure 1. Marphysa sanguinea: A anterior part, dorsolateral view (MNHN-IA-TYPE 1856) B anterior 
part, ventral view (MNHN-IA-TYPE 1856) C anterior part, lateral view (MNRJP002048) D Maxillae, 
dorsal view (MNHN-IA-TYPE 1856). Key: white arrow showing eye; MI to MV, maxillae I to V, Mc, 
maxillary carriers. Scale bars: 2 mm (A–C), 1mm (D).

at anterior end and abruptly tapering at posterior end. Body cylindrical on anterior 
chaetigers, becoming dorsoventrally flattened. Prostomium slightly shorter than ante-
rior ring of peristomium, as wide as peristomium, bilobed with buccal lips separated 
by deep ventral and dorsal notch with each lobe rounded (Fig. 1B, C). Anterior ring of 
peristomium longer than posterior ring (2 to 3 times) (Fig. 1B, C). Eyes present, po-
sitioned posteriorly between palps and lateral antennae (Fig. 1C). Prostomial append-
ages slightly wrinkled, arranged in arc on the posterior margin of the prostomium; 
median antenna longer than lateral antennae reaching first chaetiger (Fig. 1A), palps 
shortest appendages (Fig. 1A, C). MI more than three times as long as carrier and five 
times longer than closing system. MIII located ventroanterior to MII. Attachment 
lamella of MIII long and thin, placed at the middle of the plate. Left MIV with attach-
ment lamella semicircular, thin, situated along anterior edge. Right MIV with attach-
ment lamella semicircular, larger than left one, situated along anterior edge. Maxillary 
formula: I=1+1, II=3‒4+5, III=6-7+0, IV=4+5‒6, V=1+1 (Fig. 1D).

First few parapodia smaller than subsequent ones but all similar in structure. No-
topodial cirri elongate and triangular (Figs 1C, 2A), digitiform in last chaetigers (Fig. 
2C); longer than chaetal lobe. Ventral cirri from chaetiger 1 to 4–5 conical to tapering, 
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Figure 2. Marphysa sanguinea (MNHN-IA-TYPE 1856): A parapodium from anterior chaetiger B pa-
rapodium from mid-body C parapodia from posterior chaetiger D parapodium from posterior chaetiger. 
Abbreviation: SH, Subacicular hook. Scale bars: 1 mm (B), 500μm (A, C), 100μm (D).

with round wide tips, shorter than notopodial cirri (Fig. 2A); basally inflated from 
chaetiger 5–6, inflated base of round shape with round tip (Figs 1B, 2B); last chaetigers 
with triangular cirri (Fig. 2C). Pre-chaetal lobe inconspicuous; post-chaetal lobe from 
first chaetigers triangular swollen (Fig. 2A), longer than chaetal lobe, becoming incon-
spicuous from ca. chaetigers 15–20 (Figs 2B, C). Branchiae pectinate, from chaetiger 
21 (from chaetiger 13 for small specimens) (Figs 1A, 2B), extending posteriorly by last 
5–15 chaetigers; number of branchial filaments increasing from one in first chaetigers 
to maximum four in mid-body (Fig. 2B), posterior chaetigers with two filaments; fila-
ments slightly annulated.

Chaetae arranged in two bundles: supra-acicular and sub-acicular, separated by 
a row of aciculae. Aciculae dark, tapering, very protruding, 1–4 per parapodium in 
anterior chaetigers and 2–3 in mid and posterior chaetigers. Single subacicular bifid 
hook present from chaetiger 21–25 to nearly end of body, dark on base to middle 
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Figure 3. SEM images of Marphysa sanguinea: A isodont, symmetrical pectinate chaetae from anterior chaeti-
ger (AM W.49086, 3rd chaetiger) B isodont, symmetrical pectinate chaetae from mid-body chaetiger (AM 
W.49086, chaetiger 108) C the two types of pectinate chaetae (AM W.49086, far posterior chaetiger) D subac-
icular bifid hook (AM W.49086, chaetiger 142). Numbers in white circles indicate the type of pectinate chaetae.

and translucent at the distal end (Figs 2D, 3D). Supra-acicular bundle with limbate 
and pectinate chaetae; sub-acicular with compound spiniger chaetae. Between 10 to 
20 limbate chaetae, chaetae of different lengths with hirsute blades, similar to each 
other. Pectinate chaetae present from chaetiger 2–3 (with up to 28 pectinate chaetae 
within a single parapodia), restricted to supra-acicular fascicle. Pectinate chaetae of two 
types. In anterior parapodia, isodonts narrow (n < 10) with long internal teeth (with 
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Figure 4. Maximum Likelihood tree of valid species of Marphysa and different Marphysa sanguinea 
available in GenBank, based on cytochrome oxidase I (COI) sequences and Kimura-2-parameters model. 
Bootstrap values on nodes if >50. Sequence accession numbers refer to Table 1.

ca. 14–15 tapering teeth) and two long outer winged teeth (nearly 2–3 times longer 
than inner teeth) (type 1) (Fig. 3A). Median and posterior parapodia with two types of 
pectinate chaetae (Fig. 2C): thin, isodonts narrow, with ca. 25 short teeth (type 1) (Fig. 
3B, C); anodonts wide pectinate chaetae with long and thick teeth (n = 6–14) (type 2) 
(Fig. 3C); Type 2 less numerous (3–7) than type 1 (16–22). Compound spinigers with 
hirsute shafts and “socket-like” articulations (Fig. 2A), present along whole body, with 
more than 30 spinigers within a parapodia. Compound falcigers absent.

Pygidium with only one pair of relatively short pygidial cirri on ventral margin 
(approximately as long as last five chaetigers), anus slightly crenulated.
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Table 1. List of terminal taxa used in molecular analysis, GenBank accession numbers, status of the spe-
cies, locality of analysed specimen, and voucher specimen catalogue numbers.

Species GenBank 
accession number

Status Locality Voucher specimen

Eunice cf. violaceomaculata Ehlers, 1887 GQ497542 valid Carrie Bow Cay, Belize
Palola viridis Gray in Stair, 1847 GQ497556 valid Kosrae, Micronesia
Leodice rubra (Grube, 1856) GQ497528 valid Ceará, Brazil
M. aegypti Elgetany, El-Ghobashy, Ghoneim & 
Struck, 2018

MF196968 valid Suez Canal, Egypt

M. bifurcata Kott, 1951 KX172177 valid Lizard Island, Australia
M. brevitentaculata Treadwell, 1921 GQ497548 valid Quintana Roo, Mexico
M. californica Moore, 1909 GQ497552 valid California, USA
M. disjuncta Hartman, 1961 GQ497549 valid California, USA
M. fauchaldi Glasby & Hutchings, 2010 KX172165 valid North Australia
M. kristiani Zanol et al., 2016 KX172141 valid Cowan Creek, Australia
M. mossambica (Peters, 1854) KX172164 valid Australia
M. mullawa Hutchings & Karageorgopoulos, 2003 KX172166 valid Careel Bay, Australia
M. pseudosessiloa Zanol, da Silva & Hutchings, 2017 KY605405 valid Careel Bay, Australia
M. victori Lavesque, Daffe, Bonifácio & Hutchings, 
2017

MG384997 valid Arcachon, France

M. viridis Treadwell, 1917 GQ497553 valid Ceará, Brazil
M. sanguinea (Montagu, 1813) GQ497547 valid Callot Island, France

MK541904 valid Cornwall, UK AM W.51410
MK950851 valid Cornwall, UK MNHN-IA-TYPE 1856
MK950852 valid Cornwall, UK MNRJP002048
MK950853 valid Arcachon, France MNHN-IA-TYPE 1857
MK967470 valid Brest, France AM W. 49085
MH826265 invalid USA
KP255196 invalid USA
KR916873 invalid Portugal
AY040708 invalid ?
KY129890 invalid East China Sea
KY129891 invalid East China Sea
KF733802 invalid Yellow Sea, China
EU352317 invalid China?
EU352316 invalid China?

Remarks. Specimens both from British and French coasts agree with the descrip-
tion of the neotype and with voucher AM W.27392 which was also compared in the 
neotype description by Hutchings and Karageorgopoulos (2003). Most morphological 
characteristics are within the variation range of those observed by Hutchings and Kara-
georgopoulos (2003). However, few differences can be noticed: (1) larger number of 
pectinate chaetae (up to 28, instead of 10–14) beginning from chaetiger 2–3 (instead of 
chaetiger 1–2), (2) presence of coarsely denticulate chaetae with less teeth (6–14 teeth 
instead of ca. 14). These variations are typical within a species in the Marphysa genus.

Molecular data. COI gene was successfully sequenced and published at NCBI Gen-
Bank for the tree specimens sampled in Cornwall near the locality type (Table 1). COI 
was also successfully sequenced for specimens sampled in Brest and in Arcachon (Table 1).

First of all, molecular analysis distinguished M. sanguinea from other species with 
sequences available in GenBank (Fig. 4). Analysis permitted the grouping of specimens 
of M. sanguinea from Cornwall together with specimens from French Atlantic coast 
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(Arcachon, Brest) but also from southern English Channel, Callot Island (Zanol et 
al. 2014) (Fig. 4). Intraspecific pairwise genetic distances for COI were zero among 
these specimens. This tree clearly emphasised the presence of different species among 
this sanguinea complex. Especially, some specimens registered as M. sanguinea did not 
belong even to the Marphysa genus (EU352317 and EU352316).

Finally, a comparison of sequences of COI of a specimen from the type locality 
(AM W.51410) with specimen used to sequence the complete mitochondrial genome 
of M. sanguinea (accession number: KF733802, specimen from China) (Li et al. 2016) 
was performed. Unsurprisingly, these sequences were very different; the interspecific 
pairwise genetic distance was 18.5%.

Discussion

This study provides a molecular baseline for future taxonomic works. Among the M. 
sanguinea sequences in GenBank, molecular analyses only confirmed the identification 
of sequence GQ497547 (Zanol et al. 2014) from coarse sand near a Zostera marina 
seagrass bed in Callot Island (English Channel, northern Bretagne, France). All other 
sequences are not M. sanguinea and K2P genetic distance between these sequences and 
the specimen from the type locality varied from 13.6% (with KR916873) to 35.1% 
(with EU352316).

This study, therefore, confirms the presence of M. sanguinea along the French 
coasts, from the English Channel to the Bay of Biscay. Except for specimens from 
the French part of the English Channel (Zanol et al. 2014), which were sampled in 
coarse sand, all the confirmed records of M. sanguinea indicate that they are often as-
sociated with hard substrates. Specimens from the type locality (this study, Hutchings 
and Karageorgopoulos 2003) lived intertidally, in deep burrows in crevices in rocks at 
low watermark. In Arcachon Bay, they were found subtidally, inside turf slabs. Finally, 
in the Bay of Brest, specimens were also sampled from intertidal soft rocks. Except for 
specimens from Callot, all studied specimens were sampled in hard substrates. Actual-
ly, Marphysa species are known to occur in a range of specific habitats: muddy seagrass 
beds (e.g., M. mullawa (Hutchings and Karageorgopolous 2003, Zanol et al. 2016)), 
muddy flats (e.g., M. kristiani (Zanol et al. 2016)), sandy shores (M. hongkongensa 
(Wang et al. 2018), aquaculture fish ponds (e.g., M. fauchaldi (Glasby and Hutchings 
2010)), oyster reefs (e.g., M. victori (Lavesque et al. 2017)).

Among the GenBank sequences that have been misidentified as M. sanguinea, the 
most astonishing is the sequence that is part of the complete mitochondrial genome 
of a species from the coast of the Yellow Sea (China) (GenBank accession number: 
KF733802) (Li et al. 2016). This species forms a monophyletic clade with other se-
quences from East China, suggesting that either a new species is present in this area 
or specimens belong to a described species for which there is no sequence identified 
as such in GenBank. Moreover, we also found an alarming result with the presence in 
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GenBank of sequences registered as M. sanguinea which did not even belong to the 
genus Marphysa (EU352317 and EU352316). This finding confirms the necessity of 
cautiously using these sequences, because these sequences come from specimens that 
clearly do not belong to M. sanguinea, and inevitably continues the confusion regard-
ing the identity of this species. Furthermore, no vouchers were deposited in a museum 
that would allow for examination and comparison with other close species, or allow 
corroboration that it might be a new species for science. We strongly recommend 
verification of sequence publication in an international journal, whether a polychaete 
taxonomist has been associated with the study and whether a voucher specimen has 
been deposited in an official collection, before using the sequences.

As well as being (wrongly) considered as a cosmopolitan species for decades 
(Hutchings and Kupriyanova 2017), specimens identified as M. sanguinea are also 
widely used as a biological model by many scientists, but never with specimens origi-
nating from the type locality or its vicinity. Thus, many studies use specimen under 
the name M. sanguinea as a model in biochemistry, such as studies on galactosylcera-
mides (Noda et al. 1992; Noda et al. 1994, specimens from fishing shops, Japan), 
erythrocruorin (Chew et al. 1965, specimens from Swan River, Australia; Weber et 
al. 1978, specimens from Pivers Island, North Carolina), lectins (Ozeki et al. 1997, 
specimens from fishing shops, Japan), phenols (Whitfield et al. 1999, specimens from 
Sydney, Australia), or acetylcholine (Horiuchi et al. 2003, specimens from commercial 
sources, Japan). Biology and physiology from so-called M. sanguinea specimens are 
also largely studied by scientists worldwide. From the literature, we identified works 
on development regarding sex gonad (Yu et al. 2005, specimens from Shandong Prov-
ince, China), reproduction cycle (Yu et al. 2005; Ouassas et al. 2015, specimens from 
Saharan area, Morocco), metabolism and excretion (Yang et al. 2015, specimens from 
Dalian, China). Several papers also study rearing of so-called M. sanguinea with ef-
fects of density on growth (Parandavar et al. 2015, specimens from South Korea) or 
appropriate feeding for early juvenile stages (Kim et al. 2017, specimens from South 
Korea). Besides Li et al. (2016), several papers focus on genetic elements of this spe-
cies, such as purification, characterisation and cDNA cloning of opine dehydrogenases 
(Endo et al. 2007, specimens from fishing shops, Japan) or genetic diversity from dif-
ferent geographical populations (Zhao et al. 2016, specimens from China). Finally, a 
recent study deals with microplastics and the formation of plastic fragments by M. san-
guinea inhabiting marine polystyrene debris (Jang et al. 2018, specimens from Geoje 
Island, South Korea). While one could consider these as anecdotal, their conclusions 
are likely completely wrong when it comes to the species they refer to Even closely 
similar morphological species might have very different life-history traits (Cole et al. 
2018), internal biology and of course, DNA. Such misidentifications could also lead 
to management and economic problems since Marphysa spp. are widely harvested as 
bait worldwide (Cole et al. 2018). In conclusion, we highly encourage marine biolo-
gists and ecologists to collaborate with confirmed taxonomists when assigning species 
names to marine invertebrate specimen.
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Abstract
A new species of caprellid, Aciconula tinggiensis (Amphipoda, Senticaudata, Caprellidae) was discovered 
from Pulau Tinggi, Sultan Iskandar Marine Park (SIMP), South China Sea, Malaysia. The new Malaysian 
species can be distinguished from the other Aciconula species by the combination of the following char-
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4 articles; 3. inner lobe of lower lip unilobed; 4. gnathopod 2 palm of propodus with a large proximal 
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3–4 with 2 articles (article 1 subrectangular, article 2 conical or tapering at the tip with 1 plumose seta 
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Introduction

The amphipod genus Aciconula was established by Mayer (1903) with A. miranda Mayer, 
1903 as its type species. However, the exact diagnostic characteristics of this genus were 
unclear because the types described by Mayer (1903) for this genus were both females 
(that were collected from three different localities: Singapore, Malaysia and Koh Krau, 
Thailand) and only figures of the whole body, pereopod 3, pereopod 4, pereopod 5, man-
dibular palp article 3 and maxilliped were drawn. Mayer (1912) then described a male but 
the abdomen and mouthparts were also not included. Nevertheless, general morphology 
of the male specimen agrees well with the type and the rest of the appendages such as pere-
opods 3 to 7 are also similar to the female. The abdomen was also left out. Following that, 
Arimoto (1976) referred to Utinomi’s (1969) description based on specimens collected 
from Kii Peninsula, Japan and revised its generic diagnosis. Subsequently, three more 
species of Aciconula were reported; Aciconula acanthosoma Chess, 1989 from southern 
California; A. australiensis Guerra-García, 2004 from Western Australia and most recently 
A. tridentata Guedes-Silva & Souza-Filho, 2013 described from Pernambuco, Brazil.

The Sultan Iskandar Marine Park (SIMP) is one of Malaysia’s marine protected areas 
located 15–65 km from Mersing, off the north-east coast of the Johor State, Malaysia in 
the South China Sea. This body of water covering an area of about 8000 hectares holds 
one of the most diverse marine ecosystems on the east coast of Peninsular Malaysia, 
ranging from sandy shores, coral reefs, mangroves, estuaries, mudflats to seagrass and 
open water habitats (see Harborne et al. 2000; Japar Sidik and Muta Harah 2003; Mari-
time Institute of Malaysia 2006; Japar Sidik et al. 2006; Azman et al. 2008; Japar Sidik 
and Muta Harah 2011; Lim et al. 2015). The SIMP (Fig. 1) consists of 13 main islands 
namely Pulau Harimau, Pulau Mensirip, Pulau Goal, Pulau Besar, Pulau Tengah, Pulau 
Hujung, Pulau Rawa, Pulau Tinggi, Pulau Mentinggi, Pulau Sibu, Pulau Sibu Hujung, 
Pulau Pemanggil and Pulau Aur. This paper continues the previous significant contribu-
tions on the biodiversity of SIMP and its vicinity including Othman and Azman (2007), 
Lim et al. (2010), Gan et al. (2010), Azman and Melvin (2011), Lim et al. (2012), 
Azman and Othman (2013), Chew et al. (2014), Tan et al. (2014, 2015), Lim et al. 
(2015), Chew et al. (2016) Lim et al. (2017) and Tan and Azman (2017, 2018) on ma-
rine crustaceans. The present paper also deals with the detailed description of this new 
species; an updated identification key to all the known Aciconula species is also given.

Material and methods

Sampling

The caprellids examined in this study were collected from an artificial reef of Kampung 
Pasir Panjang, Pulau Tinggi, Sultan Iskandar Marine Park (SIMP) at 9–11 m water 
depth (Fig. 1). Collections were made by SCUBA; hosts (stinging hydroids) together 
with attached caprellids were put into fine mesh bags. Specimens used for morphologi-
cal descriptions were preserved in 4% formaldehyde before examination.
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Figure 1. Pulau Tinggi of Sultan Iskandar Marine Park (SIMP), Malaysia.

Laboratory procedures

Appendages were dissected from the right side of the specimens and stored in sev-
eral semi-permanent slides mounted in glycerol and then drawn under an optical 
microscope (Olympus BX43) and a stereomicroscope with a camera lucida. The 
drawings were digitized on Adobe Illustrator CS3 using the methods described in 
Coleman (2003). All materials are deposited at the South China Sea Research and 
Repository Centre, Institute of Oceanography and Environment, Universiti Malay-
sia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia (UMT Crus). The fol-
lowing abbreviations are used in the figures: A, antenna; ABD(L), abdomen lateral 
view; ABD(V), abdomen ventral view; G, gnathopod; LL, lower lip; MD, mandi-
ble; MX, maxilla; MXP, maxilliped; P, pereopod; UL, upper lip; R, right; L, left; 
♂, male; ♀, female.

Systematics

Order AMPHIPODA Latreille, 1816
Suborder COROPHIIDEA Leach, 1814
Family CAPRELLIDAE Leach, 1814
Genus Aciconula Mayer, 1903
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Aciconula tinggiensis sp. nov.
http://zoobank.org/DEE62918-DA9C-4090-9245-872B7D982DBD
Figs 2–5

Etymology. Named after the type locality, Pulau Tinggi in SIMP, Malaysia.
Material examined. Holotype: male, 2.2 mm, UMT Crus 01003, Mahkota ar-

tificial reef Pulau Tinggi, SIMP, Johor, 02°17.637'N, 104°05.817'E, SCUBA diving, 
9 June 2009, 12.31 PM, depth 10.7 m, coll. Azman, B.A.R., Gan, S.Y., Lim, J.H.C., 
Chew, M.W.H. & Shamsul, B.

Paratypes: 1 female, UMT Crus 01004 (Fig. 4); 2 males, 1 female, UMT Crus 
01005; 2 males, 2 females, UMT Crus 01006; 2 males, 2 females, 1 juvenile, UMT 
Crus 01007; same station data.

Type locality. Mahkota artificial reef, Pulau Tinggi, SIMP, Malaysia.
Description. [Based mostly on holotype (UMT Crus 01003), 2.2 mm, supple-

mented by paratype (UMT Crus 01004), 1.8 mm for female and (UMT Crus 01005) 
for lower lip and maxilliped]

Adult male. Body length, 2.2 mm. UMT Crus 01003. Head/pereonite 1 without dor-
sal projection. Head length 0.2 mm; pereonite 1, 0.07 mm; head and pereonite 1 partially 
fused (suture clear); pereonite 2, 0.34 mm with an acute mid-dorsal projection; pereonite 
3 longest, 0.53 mm; pereonite 4, 0.44 mm; pereonite 5, 0.41 mm, subequal in length to 
pereonite 4; pereonite 6, 0.16 mm; pereonite 7 short, 0.12 mm. Eye small. Antenna 1 
about 0.4× body length; peduncular article 1 with tuft of plumose setae; peduncular article 
2 longest; peduncular article 3 lobed at posterodistal margin; flagellum approximately half 
of peduncular length with 4 articles, proximal article composed of 2 articles. Antenna 2 
about 0.4× the length of antenna 1; peduncular articles lobus; flagellum 2-articulate.

Lower lip outer lobes with pair of ducts; inner lobes unilobed. Mandible left inci-
sor with 6 teeth; lacinia mobilis plate like and serrated distally; accessory setal row with 
3 setae; mandibular molar present without robust teeth; palp 3-articulate with distal 
article comprising a row of 5 teeth and setal formula of 1-3-1, second article of palp 
without seta on inner distal margin; right incisor with 5 teeth; lacinia mobilis with 7 
teeth; accessory setal row with 2 setae; palp 3-articulate with distal article comprising a 
row of 5 teeth and setal formula of 1-3-1, second article of palp with one seta on inner 
distal margin. Maxilla 1 outer plate with 5 cuspidate and denticulate spines (robust api-
cal setal-teeth); palp article 2 long, 4× length of article 1 with 3 setae apically. Maxilla 
2 inner plate with 4 short and long setae distally; outer plate 1.3× length of inner plate 
with 5 slender setae apically. Maxilliped inner plate small, with one short and one long 
apical setae; outer plate about 2.5× inner plate with 3 setae at distal margin; palp 4-ar-
ticulate, scarcely setose, article 2 with 1 seta at inner distal margin, article 3 with 5 distal 
setae; article 4 tapering to a tip with 2 setae distally and 1 seta at outer proximal margin.

Pereon. Gnathopod 1 basis longer than ischium, merus and carpus combined; 
propodus subtriangular, longer than wide, scarcely setose, palm with a pair of grasping 
spines; dactylus falcate, provided with fine setae along lateral margin, tip of dactylus 
bifid. Gnathopod 2 begins ¼-way along anterior margin of pereonite 2; basis about 
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0.7 × pereonite 2; ischium and merus subquadrate; carpus triangular; propodus 1.6 × 
as long as wide, 1.3× length of basis, palm with large proximal projection (stretching 
from proximal margin of palm to nearly mid-way of palm), provided with one robust 
grasping spine proximally, a small triangular projection medially and ending with a 
triangular projection provided with 1 seta, distal margin of palm with 1 triangular 
projection; dactylus falcate, fitting on palm.

Gill 3 length 0.2× corresponding pereonite, oval. Pereopod 3 reduced, about 0.5× gill 
length, 2-articulate, second article with one plumose seta and two simple setae apically. 
Gill 4 slightly larger than gill 3, 0.3 × corresponding pereonite, oval. Pereopod 4 reduced, 
about 0.5 × gill length, 2-articulate, second article of pereopod 4 more slender than article 
2 of pereopod 3 with one plumose seta and two simple setae apically. Pereopod 5, 6-artic-
ulate, curved upwards anterodorsally and extending past pereonite 4, setose entire margin 
comprising short and very long setae, carpus and propodus subequal in length, dactylus 
reduced to a small cone with one plumose seta apically. Pereopod 6 propodus with a pair 
of grasping spines proximally, dactylus falcate with one plumose seta on anterior margin 
at proximal region. Pereopod 7 similar with pereopod 6 but more robust than pereopod 6.

Pleon. Uropod 1 vestigial with 4 setae; Uropod 2 vestigial with 2 setae distally and 
one facial seta on inner margin. Telson with one seta apically.

Adult female. Body length, 1.8 mm. UMT Crus 01004. Head length 0.2 mm; 
pereonite 1, 0.04 mm; head/pereonite 1 without dorsal projection; pereonite 2, 0.29 
mm with rounded mid-dorsal projection; pereonite 3, 0.39 mm; pereonite 4, 0.32 
mm with acute dorsodistal projection; pereonite 5, 0.38 mm, subequal in length to 
pereonite 3; pereonite 6, 0.13 mm; pereonite 7 short, 0.08 mm. Eye small. Antenna 
1 about 0.4 × body length; peduncular article 1 with tuft of setae; peduncular article 
2 longest; peduncular article 3-lobed at posterodistal margin; flagellum approximately 
1.8 × peduncular length with 4 articles. Antenna 2 about 0.4 × the length of antenna 
1; peduncular articles lobus; flagellum 2-articulate.

Mouthparts of the female are similar to those of male (refer to male mouthparts).
Pereon. Gnathopod 2 basis begins ¼-way along anterior margin of pereonite 2; 

basis about 0.7 × pereonite 2; ischium and merus subquadrate; carpus subtriangular; 
propodus 2.4 × as long as wide, 1.2 × length of basis, palm without large proximal 
projection, provided with one robust grasping spine distally; dactylus falcate, fitting 
on palm. Gill 3 length 0.3 × corresponding pereonite, oval. Pereopod 3 reduced, about 
0.5 × gill length, 2-articulate, similar with the male, second article with one plumose 
setae and two simple setae apically. Gill 4 subequal with gill 3, 0.4 × corresponding 
pereonite, oval. Pereopod 4 reduced, about 0.4 × gill length, 2-articulate, subequal 
with pereopod 3 with one plumose setae and two simple setae apically. Oostegites on 
pereonite 3 and 4 with setae. Pereopod 5, 6-articulate, curved upwards anterodorsally 
and extending past pereonite 4, more slender than male pereopod 5, setose entire mar-
gin comprising short and very long setae, propodus longest, dactylus reduced to a small 
cone with one plumose seta apically.

Pleon. Uropod 1 vestigial with 1 simple setae; Uropod 2 vestigial with 1 setae dis-
tally. Telson with one plumose seta apically.
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Remarks. Considering the four reported species from the genus Aciconula, 
A.  tinggiensis sp. nov. is most similar to A. australiensis in terms of antenna 1 and 
2, gnathopod 1, mouthparts (maxilliped and maxillas) and abdomen. Pereopods 3 
and 4 of the male are also similar except for the presence of a seta on article 1 of 
A. australiensis. The Malaysian specimen differs from the Australian counterpart in 
terms of the absence of 1) a head projection (present in A. australiensis); 2) inner lobe 
of lower lip unilobed (A. australiensis bilobed); 3) gnathopod 2 propodus proximal 
projection shallow and wide, about 1/2 of palm (A. australiensis more pronounced, 
about 1/3 of palm); 4) pereopod 3 of female similar to the male with only 2 articles 
while A. australiensis shows sexual dimorphism with 3 articles; 5) longer (articles 4 
and 5 about 2 × longer) pereopod 5, 0.43 × body length, terminal article with one 
plumose seta and generally more setose (A. australiensis only 0.23 × body length; 
terminal articles with one normal seta); 6) mandibles with setal formula of 1-3-1 
(setal formula 1-4-1 in A. australiensis).

Aciconula acanthosoma Chess, 1989 clearly differs from the Malaysian specimen 
firstly by its numerous dorsal projections throughout its body, maxilliped inner lobes 
more robust and wide, terminally with one tooth and three setae (slender with two 
normal setae in A. tinggiensis sp. nov.), maxilla 2 with very short terminal setae and 
mandibles with large, well-developed molar and palp with setal formula of 1-6-1. 
Apart from its body armature and mouthparts, it also varies in terms of appendages 
such as gnathopod 2 (basis with a distolateral projection, palmar margin of propodus 
with a proximal projection followed by a strong spine and a deep sinus), pereopod 5 
with short and fine dense setae (setae longer and less extensive in A. tinggiensis sp. nov. 
), and abdomen with one pair of well-developed, 1-articulate abdominal appendage. 
The species from southern California is also much larger than the present specimen 
(3.3 × longer) and the other two existing species from the Indo-Pacific. In spite of this, 
A. acanthosoma does have a few similarities in pereopods 3 and 4 with 2 articles and 
article 2 conical (except for the 3 terminal plumose setae) and pereopods 6 and 7 with 
7 articles and grasping structure on article 6. There is more dissimilarity in these two 
species than similarities. According to Guerra-García (2004), A. acanthosoma could 
be placed in a new genus based on the abdominal appendages and several mouthparts 
but presently there is only one genus, which exhibits the soft and flexible character of 
pereopod 5, therefore it is retained in the genus Aciconula.

The female specimen of A. tinggiensis sp. nov. was primarily used to compare with 
Mayer’s (1903) type and Mayer’s (1912) account of A. miranda because he only pro-
vided more detailed description and figures of females compared to males. Females of 
A. tinggiensis sp. nov. are similar to A. miranda Mayer, 1903 based on a single dorsal 
projection on pereonite 2, antenna 1 flagellum with 4 articles, pereopod 4 with 2 arti-
cles (similar in shape and terminally with one plumose seta), and its gill shape. How-
ever, the present species (female) differs from A. miranda Mayer, 1903 in its pereopod 
5 which has longer but less dense setae (more densely setose in A. miranda); pereopod 
3 with 2 articles (3 articles in A. miranda); and pereopod 3 article 2 is conical and short 
(article 2 is subcylindrical with several seta marginally). Mouthparts of A. tinggiensis 
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Figure 2. Aciconula tinggiensis sp. nov., male holotype, 2.2 mm, UMT Crus 01003, Mahkota artificial 
reef, Pulau Tinggi, SIMP. Scales bars: 0.1 mm (A1, A2, G2); 0.05 mm (G1); 0.2 mm (whole body).

sp. nov. for males and females are similar therefore only the male mouthparts are used 
for comparison with Mayer’s (1903) description and figures. Aciconula tinggiensis sp. 
nov. differs from A. miranda in terms of the setal formula of the mandibular palp 1-3-1 
(setal formula 1-7-1 in A. miranda) and maxilliped outer plate with only 3 distal setae 
(maxilliped entire inner margin lined with setae in A. miranda).
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Figure 3. Aciconula tinggiensis sp. nov., male holotype, 2.2 mm, UMT Crus 01003, Mahkota artificial 
reef, Pulau Tinggi, SIMP. Lower lip (LL) and MXPb from male paratype, UMT Crus 01005. Scale 
bars: 0.025 mm
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Figure 4. Aciconula tinggiensis sp. nov., male holotype, 2.2 mm, UMT Crus 01003, Mahkota artificial 
reef, Pulau Tinggi, SIMP. Scale bars: 0.025 mm (ABD); 0.05 mm (P3, P4); 0.1 mm (P5, P6, P7).

Aciconula tridentata Guedes-Silva & Souza-Filho, 2013 reported from Brazil, is simi-
lar to the present species in the: 1) presence of a small sharp median forward projection 
of the head; 2) pereopods 3 and 4 of male with two-articles, and absence of abdominal 
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Figure 5. Aciconula tinggiensis sp. nov., female paratype, 1.8 mm, UMT Crus 01004, Mahkota artificial 
reef, Pulau Tinggi, SIMP. Scale bars: 0.025 mm (ABD); 0.1 mm (G2, P5); 0.05 mm (P3, P4); 0.2 mm 
(whole body).
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appendages but differs in the length of the outer plate of maxilliped (longer in Aciconula 
tinggiensis sp. nov. reaching the mid-length of palp article 2), the sculpturing on the palm 
of male gnathopod 2, (with a 3-dentate projection, followed by a large excavation leading 
to a projection with two sharp processes in A. tridentata) and number or articles in female 
pereopods 3 and 4 (pereopod 3 4-articulate and pereopod 4 3-articulate in A. tridentata )

In conclusion, Aciconula tinggiensis sp. nov. described here is recognized as distinct 
from the four existing species of this genus based on these combination of characters; 
1) a very small suture between head and pereonite 1; 2) antenna 1 flagellum with 4 
articles, its setal formula of 1-3-1; 3) unilobed inner lobe of lower lip with pair of ducts 
on outer lobe; 4) gnathopod 2 palm of propodus with a large proximal projection, 
(stretching from the proximal margin of the palm to nearly mid-way of palm) provided 
with one robust grasping spine proximally, a small triangular projection medially and 
ending with a triangular projection provided with 1 seta; 5) pereopods 3 and 4 with 2 
articles (article 1 subrectangular, article 2 conical or tapering at the tip with 1 plumose 
seta and 2 normal setae); 6) pereopod 5 covered with relatively dense and long setae; 
and 7) abdomen region with penes situated medially, uropod 2 degenerated into 4 
setae, uropod 2 degenerated into 1 seta medially and 2 setae distally.

Habitat. The specimens have been found from 10–12 meters deep, living on sting-
ing hyroids.

Distribution. Currently only known from Pulau Tinggi, Johor, Malaysia.

Key to the species of the genus Aciconula Mayer, 1903

1 Body dorsally strongly spinose, abdominal appendages present .....................
 .......................................................................A. acanthosoma Chess, 1989

– Body dorsally not spinose, abdominal appendages absent ...........................2
2 Head lacking a small sharp median forward projection .................................

 ............................................................................. A. miranda Mayer, 1903
– Head with a small sharp median forward projection ...................................3
3 Antenna 1 article 1 bearing a setose hump proximally ...................................

 ......................................................... A. australiensis Guerra-Garcia, 2004
– Antenna 1 article 1 lacking setose hump proximally ....................................4
4 Gnathopod 2 male first half of propodus palm bearing a 3-dentate followed 

by a large excavation .......A. tridentata Guedes-Silva & Souza-Filho, 2013
– Gnathopod 2 male first half of propodus palm without dentation ................

 .................................................................................. A. tinggiensis sp. nov.
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Abstract
A new species of scorpion belonging to the genus Centruroides Marx, 1890 is described from the 
Coalcomán mountain range, western Michoacán State, Mexico. Its general aspect resembles Centruroides 
ruana Quijano-Ravell & Ponce-Saavedra, 2016, and C. infamatus (C. L. Koch, 1844), but it is a smaller 
species having lower pectinal tooth counts; also, males of C. ruana have the pedipalp chelae slightly 
thicker, whereas C. infamatus has a subaculear tubercle nearer to the base of the aculeus. Another species 
with similar aspect is Centruroides ornatus Pocock, 1902; however, a preliminary molecular analysis of the 
mitochondrial gene mRNA 16S showed genetic divergence (measured as p-distance) near to 10% between 
these species, and lower differences between the new species with respect to C. infamatus (4.63%) and 
C. ruana (5.07%). The molecular evidence together with the morphological characters (integrative tax-
onomy) are sufficient for recognizing the Coalcomán population as a separate and valid species.
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Introduction

Buthid scorpions of the genus Centruroides Marx, 1890 (Buthidae) are widely distrib-
uted in Mexican territory, from which 45 nominal species and two subspecies have 
been recognized (Ponce-Saavedra and Francke 2019), some of them with medical 
importance (Ponce-Saavedra and Moreno-Barajas 2005, Ponce-Saavedra and Francke 
2013a, b, Ponce-Saavedra et al. 2016, Quijano-Ravell and Ponce-Saavedra 2016).

From Michoacán State, eight species belonging to this genus have been described 
or recorded (Ponce-Saavedra et al. 2016): Centruroides balsasensis Ponce-Saavedra & 
Francke, 2004; C. bertholdii (Thorell, 1876); C. infamatus (C. L. Koch, 1844); C. lim-
pidus (Karsch, 1879); C. nigrescens (Pocock, 1898); C. ornatus Pocock, 1902; C. ruana 
Quijano-Ravell & Ponce-Saavedra, 2016 and C. tecomanus Hoffmann, 1932. Only C. 
ruana is endemic to Michoacán.

Centruroides elegans (Thorell, 1876) and C. pallidiceps Pocock, 1902 were men-
tioned from Michoacán by Beutelspacher-Baigts (2000), but those records were seem-
ingly based on misidentified specimens. The first one is only known from Jalisco and 
Nayarit; whereas the second species seems to be restricted to Sinaloa and Sonora 
(Ponce-Saavedra and Francke 2013a, b; Santibañez-Lopez et al. 2016).

The Coalcomán Range is located in the west of Michoacán and forms part of the 
western-most region of the Sierra Madre del Sur. Its highest elevations reach almost 
2900 m a.s.l. and contain well conserved areas with high levels of endemism for ani-
mals and plants (Arriaga et al. 2000).

In the present contribution we describe a new species of the genus Centruroides 
from the Coalcomán Range, based on several specimens of both sexes under an inte-
grative taxonomic perspective, using morphological and molecular evidence.

Material and methods

Material examined

The examined specimens are deposited in 75% ethanol in the following institutions: 
CAFBUM: Colección Aracnológica del Laboratorio de Entomología “Biol. Sócrates 
Cisneros Paz”, Facultad de Biología, Universidad Michoacana de San Nicolás de Hi-
dalgo, Morelia, Michoacán, México; CNAN: Colección Nacional de Arácnidos, Insti-
tuto de Biología, Universidad Nacional Autónoma de México, D.F; and IESC: Insti-
tuto de Ecología y Sistemática, La Habana, Cuba.

Morphological analysis

The specimens were examined and measured with a Zeiss Stemi DV4 stereomicro-
scope, equipped with a 0.1 mm ocular micrometer. Photographs were obtained with a 
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microscope eyepiece camera 3.1mp AmScope MU300. Digital images obtained were 
processed and edited with Adobe Photoshop CS5.The distribution map was generated 
with ESRI ArcGIS online. We obtained two hemispermatophores from one male of 
the new species as a complementary structure for the description.

Nomenclature and measurements follow Stahnke (1970), except for trichoboth-
riotaxy (Vachon 1974, 1975), metasomal carinae (Francke 1977), pedipalp chela cari-
nae (Acosta et al. 2008, as interpreted by Armas et al. 2011), and sternum (Soleglad 
and Fet 2003).

Molecular analyses

In addition to the morphological diagnostic characters, a molecular analysis using se-
quences of mitochondrial gene RNAm 16S was carried out with specimens of four 
populations of C. ornatus, one of C. balsasensis and two localities of C. infamatus. Also, 
included was one sequence of the type population of C. ruana (Quijano-Ravell & 
Ponce-Saavedra 2016). All sequences were obtained from specimens captured at dif-
ferent dates by several collectors that were found in the CNAN, CAFBUM and IESC 
collections, except the one of C. infamatus from Uruapan which was downloaded from 
GenBank (AF439753).

For the genetic analyses, DNA was extracted from muscle tissue preserved at 96% 
ethanol (pedipalps and legs fragments) using the FitzSimmons protocol (FitzSimmons 
1997). A fragment of the mRNA 16S was amplified by polymerase chain reaction 
(PCR) with the primers previously used for scorpions of the Centruroides genus by 
some authors (Gantenbein et al. 1999; Gantenbein et al. 2000; Gantenbein et al. 
2001, Towler et al. 2001, Teruel et al. 2006, Ponce-Saavedra et al. 2009), 5’-GCATTT-
GAACTCAGATCA-3’ and 3’-GTGCAAAGGTAAGCATAATCA-5’. The PCR 
conditions were established according to the protocol for arthropods of Simon et al. 
(1994) with modifications using 25 μl as a final volume. The cycle parameters were: 
initial denaturation at 94 °C (5 min), denaturation at 94 °C (30 s), annealing at 50 °C 
(30 s) and extension at 72 °C (30 s and 7 min) repeated for 30 cycles. The amplified 
products were observed in an agarose gel with UV light for verify their quality. DNA 
samples were sent to Macrogen Inc. USA for sequencing.

DNA sequences were aligned with MEGA X: Molecular Evolutionary Genetics 
Analysis software (Kumar et al. 2018) and a p-distances matrix was generated using 
the Jukes-Cantor model.

The analysis involved 11 nucleotide sequences (Table 5); all ambiguous positions 
were removed for each sequence pair (pairwise deletion option). There were 350 posi-
tions in the final dataset. The percentage of replicate trees in which the associated taxa 
clustered together in the bootstrap test (500 replicates) are shown next to the branches. 
The evolutionary distances were computed using the p-distance method and are in 
the units of the number of base-pair differences per site. For the Maximum Likeli-
hood method we used the Tamura-Nei model. Initial tree(s) for the heuristic search 
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were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to 
a matrix of pairwise distances estimated using the Maximum Composite Likelihood 
(MCL) approach, and then selecting the topology with the superior log likelihood 
value. Due to small number of species in this analysis, the most parsimonious tree 
was obtained using the Subtree-Pruning-Regrafting (SPR) algorithm (Nei and Kumar 
2000) with search level 1 in which the initial trees were obtained by the random ad-
dition of sequences (10 replicates). The evolutionary history using both methods was 
inferred from the Bootstrap consensus tree obtained from 500 replicates. Analyses were 
conducted in MEGA X: Molecular Evolutionary Genetics Analysis across computing 
platforms (Kumar et al. 2018).

Taxonomy

Family Buthidae C. L. Koch, 1837
Genus Centruroides Marx, 1890

Centruroides romeroi sp. nov.
http://zoobank.org/6528884A-5A64-4CC7-B99A-73D5D1BB645F
Figs 1–20; 29, 30a, e, i, 31a, e. Tables 1–3.

Type material. Male holotype (CNAN-T01315), Michoacán: Coalcomán de 
Vázquez Pallares municipality: La Nieve (18°49.070'N, 103°02.653'W, 2230‒2260 
m a.s.l.), 07-VIII-2002, O. Francke, E. González S. y S. Reynaud colls, determined 
as Centruroides infamatus ornatus by R. J. Moreno B., 02-VII-2004. Paratypes: 17 
♂♂, 38 ♀♀ Michoacán: Coalcomán de Vázquez Pallares municipality: La Nieve, 
10.VII.2006, 2246 m, O. Francke, J. Ponce, M. Córdova, A. Jaimes, G. O. Francke & 
V. Capovilla, colls: 1 male (peines 22-21) 1 female (18-18). (CNAN-T01316), 3 ♂♂, 
5 ♀♀ (CAFBUM S0150), 3 ♂♂ adult, 1 ♂ juvenile, 3 ♀♀ (IESC-3.3796 to. 3.3802). 
Michoacán: Coalcomán de Vázquez Pallares municipality: La Nieve, 7. VIII. 2002, 
2265 m, O. Francke, E. Gonzalez-Santillán & S. Reynaud colls.

Distribution. Only known from the type locality (Fig. 1).
Etymology. The proposed name is a patronym honoring Biol. Mario Manuel 

Romero Tinoco, who has dedicated his life to increasing our knowledge of the “hot 
land” in Michoacán State, and for his relevant and continued contributions to the 
people that inhabit those beautiful places.

Diagnosis. A medium-sized species belonging to the Centruroides infamatus sub-
group (as defined by Ponce-Saavedra and Francke 2019) of the “striped” group. Pec-
tines with 16–18 (mode 18) teeth in females and 20–22 (mode 21) in males (Table 3). 
Hemispermatophore flagelliform, internal lobe (il) slightly developed, moderately 
sclerotized and almost straight; medial lobe (ml) scarcely developed but sclerotized; 
external lobe spiniform hook-like; trunk broad, fusiform and expanded towards the 
pedal flexure region; truncal flexure is conspicuous; pedicel with margins strongly 
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sclerotized at inner margin that is less sclerotized towards the pedal flexure which is 
well developed (Fig. 29).

Centruroides romeroi sp. nov. closely resembles C. ruana and C. infamatus, (Qui-
jano-Ravell and Ponce-Saavedra 2016) but it is noticeably smaller (33–45 mm in C. 
romeroi sp. nov., 63–70.7 mm in C. ruana and 54–66 mm in C. infamatus) having a 
lower pectinal tooth count and paler coloration pattern. Also, males of C. ruana have 
pedipalp chelae slightly thicker (Fig. 30b), whereas C. infamatus has subaculear tuber-
cle nearer to the base of the aculeus (Fig. 30k). The most similar species to Centruroides 
romeroi sp nov. is C. ornatus but the new species differs as follows: It has pedipalps mod-
erately elongated (Fig. 30a); femur with dorsal, external and ventral intercarinal spaces 
finely and densely granulose and the internal face with many coarser scattered granules, 
some of which are large and conical; dorsal internal, dorsal external and ventral inter-
nal carinae on the manus dentate and well developed and the ventral external carina 
strong, serrate. Pedipalps of C. ornatus moderately elongated (Fig. 30d); manus oval; 
femur with intercarinal spaces coriaceous, except dorsally where they are finely granu-
lose; all carinae strong, coarsely granulose to subdentate. Segment V of Centruroides 
romeroi sp. nov. (Fig. 30a) almost entirely acarinate except for subtle vestiges of dorsal 
supramedians (basal one-third only), ventral lateral and ventral median carinae. Seg-
ment V of C. ornatus (Fig. 30h) with ventral lateral carinae very weakly subgranulose, 
the submedian carinae absent and ventral median carina weakly subgranulose. Pectinal 

Figure 1. Centruroides romeroi sp. nov., geographic position of the type locality in Mexico.
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tooth counts in C. romeroi sp. nov. male 18–22, female with 16–21 teeth, whereas 
C. ornatus males have 19–24 teeth, females 17–23. Basal pectinal plate of C. romeroi 
sp. nov. with anterior margin with a deep, narrow anteromedian notch, whereas on 
C. ornatus the anterior margin is almost straight, with small median V-shaped notch 
(Fig. 31d). Also, the distribution of C. ornatus is endemic to the Transverse Volcanic 
Belt whereas C. romeroi sp. nov. is distributed only in the Coalcomán mountain range 
which is part of the western-most region of the Sierra Madre del Sur (Fig. 1).

Table 1. Measurements (in mm) of the holotype and four paratype males of Centruroides romeroi sp. nov. 
Abbreviations: L=Length; W=Width; D= Depth; Ca = Carapace; MeS= Mesosomal segment; MS= Meta-
somal segment; Ves=Vesicle; Fmr=Femur; Ptla= Patella; Hand= hand of chelae of pedipalp; Fix F= Fixed 
finger; MovF= Movable finger; BP= Basal plate of pectines; P.C.= Pectinal tooth count.

Measurement Holotype Paratypes
Male 1 Male 2 Male 3 Male 4 Male 5

L Ca 4.60 4.40 4.40 4.40 4.60 4.60
LMeSVII 4.00 3.80 3.20 4.00 4.40 3.80
W MeSVII 4.10 4.20 4.00 4.20 4.20 4.20
L MSI 4.00 3.80 3.60 3.80 4.20 3.80
L MSII 4.60 4.60 4.20 4.40 5.00 4.60
L MSIII 5.20 5.00 4.80 5.00 5.80 5.20
L MSIV 5.80 5.80 5.40 5.60 6.40 5.60
L MSV 6.60 6.60 6.20 6.20 7.20 6.20
W MSI 2.20 2.20 2.20 2.20 2.20 2.20
W MSII 2.00 2.00 2.00 2.00 2.00 2.00
W MSIII 2.00 2.00 2.00 2.00 2.00 2.00
W MSIV 2.00 2.00 2.00 2.00 2.00 2.00
W MSV 2.20 2.20 2.20 2.20 2.20 2.00
D MSI 1.80 2.00 1.80 1.80 1.80 1.80
D MSII 1.80 2.00 1.80 1.80 1.80 1.80
D MSIII 1.80 2.00 1.80 1.80 1.80 1.80
D MSIV 1.80 2.00 1.80 1.80 1.80 1.80
D MSV 2.00 2.10 2.00 2.00 2.00 2.00
L Ves 3.00 2.90 3.00 2.80 3.00 3.00
W Ves 1.60 1.60 1.60 1.60 1.60 1.60
D Ves 1.60 1.40 1.60 1.60 1.60 1.60
L Fmr 4.80 4.80 4.60 4.60 4.90 4.60
W Fmr 1.20 1.20 1.20 1.20 1.20 1.20
L Ptla 5.00 5.00 4.80 4.80 5.20 4.80
W Ptla 1.60 1.60 1.60 1.60 1.60 1.60
L Hand 3.40 3.60 3.40 3.60 3.80 3.60
W Hand 1.60 1.60 1.60 1.80 1.80 1.80
D Hand 1.60 1.60 1.60 1.60 1.60 1.60
L Fix F 4.20 4.40 4.00 4.00 4.40 4.10
L Mov F 5.00 5.00 4.60 4.80 5.00 5.00
L BP 0.50 0.60 0.60 0.50 0.50 0.60
W BP 1.00 1.10 1.10 1.00 1.00 1.00
P.C. 21-21 21-22 21-22 22-23 20-20 22-22
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Figures 2–5. Centruroides romeroi sp. nov., habitus. 2–3 dorsal and ventral views of the male holotype 
4–5 dorsal and ventral view of female paratype.

Description of the male holotype (Figs 2–20). A typical “striped scorpion”, basically 
yellow, paler ventrally (Figs 2–5). Carapace with a broad dark brownish band that runs 
from the lateral eyes to the posterior median carinae, except on median furrow, two patch-
es lateral to ocular tubercle, the ocular lateral furrows and the posterior median furrow, all 
which are immaculate (Fig. 6). Ocular tubercle and area around lateral eyes intensely in-
fuscate. Lateral margins pale brown. Lateral submargins mostly immaculate, with vestigial 
brown pigment. Posterior margin with two short dark lines from which the tergites stripes 
originate. Mesosoma dorsally with two longitudinal blackish stripes on tergites I–VI, 
separated by a slightly narrower pale stripe; on VII the dark stripes become diffuse (Fig. 
7). Median longitudinal carina immaculate on all tergites. Pedipalps mostly immaculate, 
chelae ventrally vestigially infuscate; the fingers have the same color as the manus (Figs 8, 
9). Metasoma dorsally immaculate, ventrally and laterally with vestigial pigments on seg-
ments I–IV, and immaculate on V and telson (Figs 2–5, 10). Legs immaculate.
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Table 2. Measurements (in mm) of six female paratypes of Centruroides romeroi sp. nov. Abbreviations: 
L=Length; W=Width; D= Depth; Ca = Carapace; MeS= Mesosomal segment; MS= Metasomal segment; 
Ves=Vesicle; Fmr=Femur; Ptla= Patella; Hand= hand of chelae of pedipalp; Fix F= Fixed finger; MovF= 
Movable finger; BP= Basal plate of pectines; P.C.= Pectinal tooth count.

Measurement Paratypes
Female 1 Female 2 Female 3 Female 4 Female 5 Female 6

L Ca 4.60 4.80 4.40 4.20 4.20 4.60
LMeSVII 3.00 3.20 3.20 3.40 3.20 3.60
W MeSVII 5.00 4.60 4.60 5.00 4.60 5.00
L MSI 3.20 3.20 3.20 2.80 2.60 3.20
L MSII 3.60 3.60 3.80 3.40 3.20 3.80
L MSIII 4.00 4.00 4.00 3.80 3.40 4.20
L MSIV 4.60 4.40 4.60 4.20 3.80 4.60
L MSV 5.40 5.20 5.20 5.00 4.60 5.20
W MSI 2.60 2.60 2.60 2.40 2.40 2.60
W MSII 2.40 2.40 2.40 2.20 2.20 2.40
W MSIII 2.40 2.40 2.40 2.20 2.20 2.40
W MSIV 2.40 2.40 2.20 2.20 2.00 2.40
W MSV 2.20 2.40 2.20 2.00 2.00 2.40
D MSI 2.00 2.20 2.00 2.00 2.00 2.20
D MSII 2.00 2.20 2.00 2.00 2.00 2.20
D MSIII 2.00 2.20 2.00 2.00 2.00 2.20
D MSIV 1.80 2.00 1.80 1.80 1.80 2.00
D MSV 1.80 2.00 1.80 1.80 1.80 2.00
L Ves 2.40 2.40 2.40 2.20 2.30 2.40
W Ves 1.60 1.60 1.60 1.40 1.40 1.60
D Ves 1.40 1.40 1.40 1.40 1.40 1.60
L Fmr 4.40 4.20 4.40 4.20 4.00 4.60
W Fmr 1.20 1.20 1.20 1.20 1.20 1.20
L Ptla 4.80 4.80 4.80 4.60 4.20 5.00
W Ptla 1.60 1.60 1.60 1.40 1.60 1.60
L Hand 3.40 3.20 3.40 3.00 3.00 3.40
W Hand 1.80 1.60 1.80 1.40 1.40 1.80
D Hand 1.60 1.60 1.60 1.40 1.40 1.60
L Fix F 4.40 4.40 4.20 4.00 3.80 4.40
L Mov F 5.00 5.00 4.80 4.80 4.40 5.20
L BP 0.60 0.60 0.60 0.60 0.60 0.60
W BP 1.20 1.00 1.20 1.20 1.10 1.00
P.C. 18-16 18-18 18-18 17-17 18-18 19-18

Table 3. Variation of the pectinal tooth counts in Centruroides romeroi sp. nov. Abbreviations: n, sample 
by sex; N, total of examined combs; * Mode.

Sex n Pectinal tooth counts Average Standard 
Deviation16 17 18 19 20 21 22

Female 90 2 22 47* 16 2 1 17.96 0.84
Male 46 3 3 13 21* 8 20.60 1.05
N 136
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Carapace. Anterior margin with median notch broadly “V” shaped, reaching the 
level of the posterior margin of the first pair of lateral eyes, weakly crenulate and scarce-
ly setose; three pairs of lateral eyes subequal in size (Fig. 6). Lateral areas feebly granu-
lose, margins finely granulate. Ocular tubercle smooth. Central pigmented area with 
medium-sized granules, but finely granulose around the ocular tubercle (Fig. 6). Pos-
terior margin straight, granulose, with medium-sized granules and a shallow median 
indentation (Fig. 6). Carinae: anterior medians indistinct; superciliary crest smooth, 
with obsolete broad granules (Fig. 6); posterior medians well developed, granulose. 
Furrows: anterior median, median ocular, posterior median, and posterior marginal 
wide and moderately deep; laterals ocular narrow; posterior laterals wide, with disperse 
small granules; central laterals vestigial (Fig. 6).

Mesosoma. Tergites with moderate median longitudinal carina (Figs 7, 11); sub-
median and lateral carinae on VII strong and serrate. Pigmented areas are covered by 
small to medium-sized granules (Fig. 7). Sternites sparsely setose, spiracles oblique 
and slit-like; III – VI acarinate; III with a median triangular area which is smooth 
and glossy, and two lateral areas which are densely and finely granulose (Fig. 12); IV 
– VI with integument smooth and glossy, each with four short and smooth posterior 
carinae, with the submedian pair indistinct on IV – V; V with some coarse punctures 
medially, without translucent whitish patch; VII with two pairs of long and moderately 

Figures 6–11. Centruroides romeroi sp. nov., male holotype: 6 carapace 7 dorsal aspect of mesosoma 8 dor-
sal aspect of pedipalp 9 manus 10 lateral aspect of metasomal segments III–V and telson 11 tergites I–IV.
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Figures 12–17. Centruroides romeroi sp. nov., male holotype: 12 sternites 13 coxoesternal region and 
sternite III 14 lateral view of metasomal segment V 15 lateral view of telson 16 right chelicera 17 dorsal 
aspect of pedipalp femur.

to strongly costate to subcrenulate submedian and lateral carinae, intercarinal spaces 
very finely and densely granulose (Fig. 12).

Sternum type 1, triangular, very finely granular, with two long, median subdistal 
macrosetae; posterior depression long, wide and deep (Fig. 13).

Genital operculum (Fig. 13) medium-sized (its width is slightly larger than the ster-
num length); each valve subtriangular, with four macrosetae and some shorter setae. 
Genital papillae do not protrude from the posterior margin of the valves. Prepectinal 
plate moderately sclerotized, with anterior margin concave.

Pectines. Tooth count 21/22. Basal plate rectangular, anterior margin almost 
straight, with small median V-shaped notch, posterior margin straight (Fig. 13).

Metasoma. Moderately elongated and not incrassate distally (Figs 2, 3, 10). Inter-
carinal spaces coriaceous, with scarce minute granules. Segments I–IV with the fol-
lowing carination: dorsal laterals, lateral supramedians and lateral inframedians (on 
I only) well developed, serrate, the dorsal lateral carinae become gradually stronger 
and dentate distally on each segment, mainly on II – III; ventral laterals and ventral 
submedians well developed, finely granulate and subserrate. Segment V rounded in 
cross-section, almost entirely acarinate except for subtle vestiges of dorsal supramed-
ians (basal one-third only), ventral lateral and ventral median carinae (Fig. 14). Tel-
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son with vesicle slightly elongated (length/width ratio = 1.78, depth/width ratio = 
1.00) and coriaceous; ventral median carina vestigial; subaculear tubercle short, widely 
conical and somewhat distant from the base of aculeus, which is shorter than vesicle 
and moderately curved (Fig. 15), moderately setose. Vesicle incrassate oval (1.81 times 
longer than wide, 1.07 times wider than deep), integument coriaceous; ventral median 
carina vestigial, ending in a small subaculear tubercle, widely conical, not particularly 
close nor separated from base of aculeus. Aculeus strongly curved, shorter than vesicle.

Chelicerae with dentition typical for the genus (Fig. 16). Tegument very finely and 
densely granulose, dorsodistal portion of manus with coarse and glossy granules arranged 
transversally, defining a depressed area. Setation very dense ventrally, but essentially lack-
ing dorsally, except for five rigid macrosetae on depressed area of manus: two anterior (the 
shortest), two posterior and one in the center on a rounded and elevated base (Fig. 16).

Pedipalps orthobothriotaxic A-α; moderately elongated (length/width ratio of femur 
and patella = 4.8 and 3.6, respectively). Femur with dorsal, external and ventral inter-
carinal spaces finely and densely granulose (Fig. 17); internal face with with many scat-
tered coarser granules, some of which are large and conical; carinae: dorsal internal, dor-
sal external and ventral internal well developed, dentate; ventral external carina strong, 
serrate. Patella sparsely setose, with intercarinal spaces finely and densely granulose; 
dorsal, external and ventral carinae crenulate to subcrenulate, internal surface with five 
very large and sharp tubercles (Fig. 18). Hand evenly ovate (Figs 9, 19, 20), 1.1 times as 

Figures 18–20. Centruroides romeroi sp. nov., male holotype: 18 dorsal aspect of pedipalp patella 
19, 20 chelae.
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wide as the patella; intercarinal spaces coriaceous; ventral accessory carina and external 
secondary carina indistinct, with obsolete small granules (Figs 19, 20); digital carina fee-
bly to moderately granulose; dorsal secondary carina and dorsal external carina poorly 
developed, subgranulose; ventral external carina and ventral internal carina strong and 
rather subcrenate. Fixed finger long, slender and evenly curved, with a basal notch, eight 
principal rows of denticles, rows 3 to 7 are flanked by two outer accessory denticles and 
two inner accessory denticles, whereas in row 8 there is no outer accessory denticle nor 
an inner accessory denticle; movable finger with eight principal rows of denticles and 
one apical subrow of three denticles (Fig. 20), basal lobe moderately developed, rows 
3 to 7 are flanked by two outer accessory denticles and two inner accessory denticles, 
whereas row 8 has a single outer accessory denticle and one inner accessory denticle.

Legs. Slender, with carinae granulose to subserrate and intercarinal tegument coria-
ceous to minutely granulose. Prolateral and retrolateral pedal spurs strong and some-
what curved in all legs. Ventral surface of tarsomere II densely covered by long macro-
setae irregularly arranged into two longitudinal, broad, dense rows converging basally. 
Claws rather short and curved.

Female. Differs from males as follows: color pattern somewhat darker. Metasoma 
and pedipalps shorter and robust (Figs 21–28, Table 2). Telson with vesicle more globose 

Figures 21–28. Centruroides romeroi sp. nov., female paratype: 21 carapace 22 mesosoma 23 tergite 
VII 24 sternite VII 25 coxoesternal region 26 femur 27 pedipalp patella in dorsal aspect 28 metasomal 
segment V and telson.
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(Fig. 28). Pectines with 16–21 (mode 18, N = 90) teeth in females, whereas in males it 
is 18–22 (mode 21, N = 46) (Table 3). Basal plate of the pectines with anterior margin 
faintly concave and the posterior margin slightly convex (Fig. 25). Genital papillae absent.

Variation. Pectinal tooth count varies among both sexes (Table 3). Adult males 
of the type series comprise three size categories and range from 33 to 45 mm in total 
length. Females: 34–40 mm (Table 1). Most males have pedipalp manus as wide as 
the patella.

Figure 29. Centruroides romeroi sp. nov., ventral aspect of hemispermatophores of adult ♂ from “La 
Nieve” of Coalcomán municipality, Michoacán, Mexico. a Left side b Right side. Abbreviations: il, inter-
nal lobe. el, external lobe. ml, medial lobe. pf, pedal flexure. Tf, trunk flexure. Scale bar: 0.5 mm.

Figure 30. Comparison among pedipalps, metasomal segment V and telson of Centruroides romeroi 
sp. nov. (a, c, i); C. ruana (b, f, j); C. infamatus (c, g, k) and C. ornatus (d, h, l).
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Figure 31. Male and female pectinal plates of Centruroides romeroi sp. nov. (a, e); C. ruana (b, f); 
C. infamatus (c, g); C. ornatus (d, h). Scale bar: 1.0 mm.

Figure 32. Phylogenetic trees of the Centruroides infamatus subgroup obtained by A maximum parsi-
mony and B maximum likelihood analysis from 500 replicates bootstrap consensus. The specimens used 
as terminal belong to populations of the species that inhabit localities near the Coalcomán Range. Popula-
tion identifications are represented by different colors.
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Natural history. La Nieve (2030 to 2260 m a.s.l.) belongs to the Coalcomán 
Range, the predominant vegetation is pine forest, and the climate is temperate sub 
humid (Cw). The scorpions were collected at night, with portable U.V. lights, under 
stones and fallen rotten trees, under bark of Pinus sp., in the yards and walls of the lo-
cal school and houses of the village. During the collection the temperature and relative 
humidity of the air were 10‒12 °C and 90%, respectively. Centruroides romeroi sp. nov. 
is sympatric with Vaejovis coalcoman Contreras-Félix & Francke, 2014.

Molecular analysis. The 16S mitochondrial marker was used successfully by sev-
eral authors for delimiting several species in the genus Centruroides such as the cryptic 
species C. exilicauda (Wood) and C. sculpturatus (Ewing) (Gantenbein et al. 2001), and 
C. limpidus Karsch and C. tecomanus Hoffmann (Ponce-Saavedra et al. 2009), and for 
delimiting new species such as C. ruana which was separated from C. ornatus and C. 
infamatus (Quijano-Ravell and Ponce-Saavedra 2016). For this reason, in addition to 
the morphological diagnostic characters, a molecular analysis using sequences of the 
mitochondrial gene mRNA 16S was carried out.

The results showed stronger genetic divergence (measured as p-distance and the Jukes-
Cantor model) between the population of C. romeroi sp. nov. and populations of C. ornatus 
at two localities of the municipality of Morelia, Michoacán (p-distance = 0.076–0.079), 
and with two populations at Chapala, Jalisco (p-distance = 0.093–0.098), with one popu-
lation of C. balsasensis (p-distance = 0.128) rather than to C. infamatus from two localities 
of Michoacán (p-distance = 0.463) and with the type population of C. ruana (p-distance 
= 0.049). These differences were consistent both using p-distance and the Jukes-Cantor 
model (Table 4). The trees obtained by the different phylogenetic hypothesis models were 
topologically consistent; the bootstrapping consensus tree is showed in the Figure 32. The 

Table 4. Genetic distances among different populations of four species of Centruroides from Michoacán 
and Jalisco state including Centruroides romeroi sp.  nov. The outgroup was Centruroides fulvipes from 
Puerto Ángel, Oaxaca. The evolutionary distances were computed using the Jukes-Cantor method [2] 
and are in the units of the number of base substitutions per site. p-distance (Nucleotide). This dis-
tance is the proportion (p) of nucleotide sites at which two sequences being compared are different. 
Distances with C. infamatus in blue, distances with C. ornatus in green.

Especie localidad 1 2 3 4 5 6 7 8 9 10 11
1. C fulvipes Oaxaca** 0.8883 0.9837 0.9492 0.8840 0.8973 0.8706 0.8973 0.8536 0.8533 0.8619
2. C infamatus Uruapan 0.5205 0.1259 0.1231 0.0000 0.1008 0.0977 0.0647 0.0478 0.0736 0.0825
3. C balsasensis 
Tepalcatepec

0.5479 0.1159 0.1690 0.1263 0.1753 0.1652 0.1652 0.1404 0.1453 0.1552

4. C infamatus SEscalante1 0.5205 0.0000 0.1159 0.0000 0.1008 0.0977 0.0647 0.0478 0.0736 0.0825
5. C infamatus SEscalante2 0.5192 0.0000 0.1162 0.0000 0.1011 0.0950 0.0619 0.0478 0.0738 0.0828
6. C ornatus Chapala 0.5233 0.0943 0.1563 0.0943 0.0946 0.0191 0.1133 0.1051 0.0275 0.0359
7. C ornatus Isla Alacranes 0.5151 0.0916 0.1482 0.0916 0.0892 0.0189 0.1070 0.0989 0.0247 0.0331
8. C ruana Buenavista 0.5233 0.0620 0.1482 0.0620 0.0595 0.1051 0.0997 0.0507 0.1008 0.1039
9. C romeroi sp. nov.  
Coalcomán

0.5097 0.0463 0.1281 0.0463 0.0463 0.0981 0.0926 0.0490 0.0805 0.0835

10. C ornatus Morelia 0.5096 0.0701 0.1321 0.0701 0.0703 0.0270 0.0243 0.0943 0.0763 0.0081
11. C ornatus Tiripetío 0.5123 0.0782 0.1402 0.0782 0.0784 0.0350 0.0323 0.0970 0.0790 0.0081

** Outgroup
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topology of the consensus tree shows that C. romeroi sp. nov. appears most related to C. 
ruana in a clade formed by the populations of C. infamatus and C. ornatus (Fig. 32). The 
results are consistent with the geographic distribution of the new species, which lives in 
the Coalcomán mountain range in the westernmost region of the Sierra Madre del Sur, 
with its nearest species C. ruana, that inhabit the western region of Balsas Depression, 
while the other two clades are species occur in the Transverse Volcanic Belt (Fig. 1).

These molecular results support our decision of considering the Coalcomán popu-
lation as an isolated and taxonomically valid species.
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Abstract
Two new species of Microplitis Förster, 1862, M. bomiensis Zhang, sp. nov., and M. paizhensis Zhang, 
sp. nov. from Tibet, China are described and illustrated. A key to the species of the genus Microplitis 
Förster from China is added.
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Introduction

The genus Microplitis Förster was established by Förster (1862) with the type species 
Microgaster sordipes (Nees von Esenbeck, 1834).

In 1982, van Achterberg examined three male specimens of Ichneumon deprimator, 
and found that the genus Microplitis should not be Microgaster, but rather Microplitis 
(van Achterberg 1982). Mason (1981) and Whitfield (1987) suggested and recom-
mended to the International Committee of Zoological Nomenclature (ICZN) to aban-
don Ichneumon deprimator as the type species of Microgaster, and reassigned Microgaster 
australis Thomson, 1895 as type species of this genus; the original genus names of 
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Microplitis and Microgaster remained unchanged. This recommendation was adopted by 
ICZN in 1988 (International Commission on Zoological Nomenclature 1988).

Microplitis is a moderately large genus in Microgastrinae, with 190 species known 
from all over the world, of which 37 species have been reported from China (Fernan-
dez-Triana and Ward 2015; Zhang et al. 2017).

This paper describes and illustrates two new species.

Materials and methods

This study is based on a collection of specimens preserved in the Parasitic Hymenop-
tera Collection of the Institute of Beneficial Insect, College of Plant Protection, Fujian 
Agriculture and Forestry University (FAFU; Fuzhou, China). The morphological char-
acters were examined and photographed using a Leica M205C digital stereomicro-
scope. All specimens described are deposited in the Beneficial Insects Institute, Fujian 
Agriculture and Forestry University (Fuzhou, China). The morphological terminology 
used in this paper follows van Achterberg (1988) and Austin and Dangerfield (1992, 
1993). Terminology for wing venation is based on the modified Comstock-Needham 
system (Eady 1974; van Achterberg 1979). Abbreviations used in this paper are as 
follows: POL, Postocellar line (minimum distance between posterior ocelli); OD, Pos-
terior ocellus maximum diameter; OOL, Ocular-ocellar distance (minimum distance 
between posterior ocellus and eye); T1, T2, etc., first, second, etc. metasomal tergites.

Taxonomic part

Microplitis Förster, 1862

Microplitis Förster, 1862: 245 [type species, by original designation, Microgaster sor-
dipes Nees ab Esenbeck, 1834.] Nixon 1970: 3. Mason 1981: 132. Austin and 
Dangerfield 1992 [see Shenefelt (1973: 737) for complete bibliography].

Dapsilotoma Cameron, 1906: 101 [type species, by monotypy, Dapsilotoma testaceipes 
Cameron, 1906]. Synonymized by Viereck (1914: 25).

Glabromicroplitis Papp, 1979: 176 [type species, Glabromicroplitis mahunkai Papp, 
1979]. Synonymized by Austin and Dangerfield (1992).

Diagnosis. Hypopygium usually small, never bearing longitudinal creases along me-
dian line. Ovipositor and sheaths usually projecting only a little beyond apex of 
hypopygium; sheaths bearing a few setae distally. T1 variable from wide to narrow 
apically and usually moderately sculptured; T2 rarely weakly sculptured and often 
with a weakly delimited trapezoidal median area; T3 longer than T2, the transverse 
groove between them poor; remaining tergites nearly smooth. Propodeum usually 
convexly rounded and often with a distinct percurrent medial keel, never with an 
areola, surface almost completely rugose, sometimes reticulo-rugose. Mesoscutum 
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often densely sculptured, sometimes smooth, and with notauli, sometimes strongly 
defined. Posterior band of scutellum usually smooth but interrupted medially by 
rugosity. Fore wing usually with a D-shaped areolet, shape variable in some species, 
subtriangular, rectangular, etc.; 1CU1 much shorter than 2CU1; r short. Hind wing 
with vannal lobe convex and fringed throughout. Hind coxa small and not longer 
than T1; hind spurs shorter than half length of basitarsus. Labial palpi 3-jointed, 
sometimes 4-jointed.

Generally, the genus are clearly distinct from other genera. A detailed description 
of the genus and references to the revised generic diagnosis and Oriental Microplitis 
species can be made using the most recent data (Mason 1981; Austin and Dangerfield 
1993; Ranjith et al. 2015).

Key to species of the genus Microplitis Förster from China

1 T1 less than 1.5× as long as maximum width ..............................................2
– T1 more than 1.5× as long as maximum width ...........................................4
2 Hypopygium in ventral view apically emarginated .....M. ocellatae (Bounche)
– Hypopygium in ventral view not emarginated apically ................................3
3 Head 2.1× as wide as long in dorsal view; antennae as long as body ..............

 ........................................................................... M. amplitergius Xu & He
– Head less than 1.9× as wide as long in dorsal view; antennae distinctly longer 

than body ........................................................M. hirtifacialis Song & You
4 Notauli virtually absent, indicated only by indentations, or shallow; mesoscu-

tum weakly punctate or simply sculptured ..................................................5
– Notauli impressed, percurrent and meeting posterioly, or deep; mesoscutum 

roughly punctate or with rugose sculpture ................................................10
5 Propodeum with basal transverse carina distinct .........................................

 ....................................................................... M. carinata Ashmead, 1900
– Propodeum with basal transverse carina indistinct or absent .......................6
6 Head in dorsal view broadening behind eye; T1 less than 1.8× as long as 

maximum width; tegula black .....................................................................7
– Head in dorsal view not broadening behind eye; T1 more than 2× as long as 

maximum width; tegula reddish yellow .......................................................9
7 Areolet approximately triangular; stigma with basal patch semihyaline .........

 ............................................................... M. basipallescentis Song & Chen
– Areolet approximately quadrangular or rectangular; stigma without basal 

patch Semihyaline .......................................................................................8
8 Mesosoma narrower than head; T1 slightly narrowed in posterior part; 1-R1 

1.7× as long as the distance from itself to apex of marginal cell .....................
 ............................................................. M. fujianica Zhang, Song et Chen

– Mesosoma wider than head; T1 slightly widened in posterior part; 1-R1 2.1× 
as long as the distance from itself to apex of marginal cell .............................
 ..................................................................... M. longwangshanus Xu & He
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9 Vein 1-R1 (metacarpus) 1.6× as long as its distance from apex of marginal cell 
and 1.3× as long as stigma..............................................M. bomiensis, sp.n.

– Vein 1-R1 (metacarpus) 1.1× as long as its distance from apex of marginal cell 
and 0.7× as long as stigma....................................M. helicoverpae Xu & He

10 T1 distinctly broadening posteriorly .........................................................11
– T1 either weakly broadening posteriorly, or subparallel to parallel sides ....17
11 Scutellum evenly or almost evenly rugose .................................................12
– Scutellum anteriorly or antero-medially smooth with weak and rather scat-

tered punctures .........................................................................................13
12 Flagellomeres thick and dark brown; 1-R1 1.5× as long as the distance from 

itself to apex of marginal cell ......................M. crassiantenna Song & Chen
– Flagellomeres thin and reddish yellow; 1-R1 2× as long as the distance from 

itself to apex of marginal cell ........................................ M. tadzhica Telenga
13 T2 rugose or at least shrivelled medially ...................M. menciana Xu & He
– T2 smooth or at most slightly uneven .......................................................14
14 Both outer and inner spurs are the same length, only 0.2× as long as basi-

tarsi; propodeum with basal transverse carina distinct ..................................
 ....................................................................... M. brevispina Song & Chen

– Both outer and inner spurs are equal or unequal length, more than 0.2× as 
long as basitarsi; propodeum with basal transverse carina indistinct ..........15

15 Stigma fully dark or reddish brown, without pale basal spot..........................
 ...................................................................................M. borealis Xu & He

– Stigma blackish with a yellow basal spot at its proximal third ....................16
16 1-R1 almost equal to stigma; tegula reddish yellow .......................................

 ............................................................................ M. jiangsuensis Xu & He
– 1-R1 half as long as stigma; tegula black ..............M. cubitellanus Xu & He
17 T1 more than 1.7× as long as maximum width; usually with subparallel or 

parallel sides ..............................................................................................18
– T1 less than 1.7× as long as maximum width; usually more or less broadening 

posteriorly, or subquadrate ........................................................................26
18 Flagellum reddish yellow to yellow white basely, dull apically, or blackish 

basely, reddish yellow apically ...................................................................19
– Flagellum back or brownish yellow entirely ...............................................20
19 Antenna short, clearly shorter than body ..........................M. chui Xu & He
– Antenna long, clearly as long as or longer than body .......M. zhaoi Xu & He
20 Head in dorsal view 2 or more than 2× as broad as long ...........................21
– Head in dorsal view less than 1.8× as broad as long...................................24
21 Middle and hind femora mostly or entirely black or blackish brown .........22
– Middle and hind femora mostly or entirely reddish yellow ........................23
22 Mesonotum antero-medially dull with dense sculpture; fore wing slight-

ly hyaline ...............................................................M. bicoloratus Xu & He
– Mesonotum antero-medially shiny with few fine punctures; fore wing al-

most opaque ................................................. M. obscuripennatus Xu & He
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23 Hind coxa black ........................................................ M. marshalli Kokujev
– Hind coxa reddish yellow ....................................M. longiradiusis Xu & He
24 Metasoma usually reddish yellow or testaceous, or T1 and last 2 or 3 seg-

ments blackish; hind coxa reddish yellow ................M. pallidipes Szépligeti
– Metasoma black, or T2–3 reddish yellow to brownish yellow; hind coxa 

black .........................................................................................................25
25 T2–3 reddish yellow to brownish yellow .....................M. mediator Haliday
– T2–3 brownish testaceous to black .......................M. tuberculifer Wesmael
26 Hind femora mostly or entirely black ........................................................27
– Hind femora mostly or entirely reddish yellow to brownish yellow ...........30
27 Wings with pale brown areas over first discal cell and above areolet ..............

 .......................................................................M. prodeniae Rao & Kurian
– Wings without pale brown areas over first discal cell and above areolet, or 

only with brown area above areolet ...........................................................28
28 Tegula reddish yellow; stigma blackish brown; hind tibia with basal white or 

yellowish white ring ..................................................................................29
– Tegula black; stigma blackish brown with yellow basal spot at its proximal 

third; hind tibia reddish yellow .........................................M. varipes Ruthe
29 Antennae distinctly longer than body; hind tibia yellow ...............................

 ................................................................................. M. paizhensis sp. nov.
– Antennae slightly longer than body; hind tibia yellowish white .....................

 ................................................................................M. albotibialis Telenga
30 Fore wing with areolet approximately triangular ..........M. strenuus Reihard
– Fore wing with areolet approximately quadrangular ..................................31
31 T1 slightly widened towards apex; antennae with flagellomeres 12–15 

tightly connected ................................... M. changbaishanus Song & Chen
– T1 parallel or subparallel-sided; antennae with flagellomeres 12–15 loose-

ly connected .............................................................................................32
32 Penultimate joint of antenna 2.5 times as long as wide, apex of hypopygium 

ending far beyond apex of abdomen ........................ M. leucaniae Xu & He
– Penultimate joint of antenna 1.6–2.0 times as long as wide, apex of hypopyg-

ium reach beyond apex of abdomen ............. M. vitellipedis Li, Tan et Song

Microplitis paizhensis Zhang, sp. nov.
http://zoobank.org/94F03DB7-B4AC-4293-B7D2-D7992DC54AC9
Figs 1–7

Etymology. The specific name is derived from the type locality.
Type material. Holotype: female, Paizhen, Tibet, 94°58'10.57"E, 29°50'45.67"N, 

3696 m, 16.vii.2013, leg. Zhang Wangzhen (FAFU).
Comparative diagnosis. This species is similar to Microplitis fujianica Song and 

Zhang, but can be distinguished by its shiny pronotum, which is sparsely punctate (vs 
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rugose-punctate); fore wing with vein 1R-1 (metacarpus) 1.3× as long as its distance 
from apex of marginal cell (vs vein 1-R1 1.7× as long as its distance from apex of mar-
ginal cell); T2 subrectangular, ratio of apical width: central length = 3.2: 0.7 (vs T2 
nearly triangular, ratio of apical width: central length = 3.6: 1.4).

This species (M. paizhensis, sp. nov.) is similar to M. albotibialis Telenga, but can 
be distinguished by antennae distinctly longer than body (vs antennae slightly longer 
than body); hind tibia yellow (vs hind tibia yellowish white). Frons faintly sculptured 
(vs frons coarsely sculptured). POL: OD = 1.0: 0.4 (vs POL: OD: OOL = 2.0: 2.0).

This species is also similar to Microplitis bomiensis, sp. nov. (see below for fur-
ther diagnosis).

Description. Female (holotype).
Head. Roughly triangular in anterior view, with antennal sockets high above the 

middle level of the eyes. Face slightly convex, finely micropunctate associated with 
long setae. Inner margin of the eyes straight to moderately emarginate near antennal 
sockets. Transverse in dorsal view, 1.7× as wide as long, posterior vertex and temples 
finely punctate to rugose-punctate, with long sparse setae. Frons faintly sculptured. 
Ocelli small, in a high triangle, imaginary tangent of posterior margin of anterior ocel-
lus far from posterior ocelli. POL: OD: OOL = 1.0: 0.4: 0.9. Antennae longer than 
body (14.2: 10.5), flagellomeres thin, setose. Flagellomere proportion: 2 L/W (section 
2 length/ width) = 2.3, 8 L/W = 2.4, 14 L/W = 2.6. L 2/14 = 1.2, W 2/14 = 1.4. 
F12–15 (Flagellomere 12–15) loosely connected.

Mesosoma. Mesosoma almost as wide as head. Pronotum shiny, sparsely punctate. 
Mesoscutum evenly and densely punctate, setose. Notauli shallow. Scutellar lunules 
deep, broad, divided by five carinae. Disc of scutellum shiny, weakly convex, evenly 
punctate, with white setae, its rugose-punctate spot in the middle interrupting the 
posterior, polished band of scutellum. Propodeum rather evenly curved, coarsely retic-
ulate-rugose, with a median longitudinal carina.

Wings. Fore wing: vein 1-R1 (metacarpus) 1.3 × as long as its distance from apex 
of marginal cell and 1.1 × as long as stigma. Vein r (1st radius) arising distally from 
the middle of the stigma and approximately as long as 2-SR. Areolet approximately 
quadrangular. Stigma 2.9× as long as width. Width of 1st discal cell: height of 1st 

discal = 20.0: 21.5. 1-CU1: 2-CU1: m-cu = 7.5: 11.0: 10.0. Hind wing vein cu-a 
slightly incurved.

Legs. Hind coxa small, slightly shorter than T1. Inner hind tibial spur almost as 
long as outer one, about 0.3× as long as hind basitarsus.

Metasoma. Slightly longer than mesosoma (5.3: 4.8). T1 widening towards apex, 
then narrowing to the extreme apex, weakly punctured except for moderately de-
pressed base and small apical swelling smooth. T2 subrectangular, smooth, ratio of 
apical width: central length = 3.2: 0.7, its median field slightly raised. T3 longer than 
T2 (1.0: 0.7), suture between T3 and T2 weak, T3 and the remaining tergites smooth, 
shiny, sparsely setose. Hypopygium small, slightly shorter than tip of metasoma; ovi-
positor sheath short, approximately 1.3× as long as second hind tarsomere.

Color. Black. Antennae dark brown. Maxillary palps, labial palps, and tibial spur 
pale yellow. Ocelli reddish. Stigma and most veins brown, semitransparent. Wings 
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Figure 1–7. Microplitis paizhensis, sp. nov. (female) 1 Habitus, lateral view 2 Head, anterior view 3 Pro-
podeum and basal tergites of metasoma 4 Wings 5 Head, dorsal view 6 Mesoscutum 7 Apex of metasoma 
(showing ovipositor).
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hyaline without infuscations, except for light brown central area. Wing setae whitish. 
Legs yellow except all coxae, basal 2/5 of fore femur, basal 4/5 of mid femur, hind fe-
mur black, distal 2/5 of hind tibia and tarsus brown. Metasoma blackish brown except 
for T1 and T2 which are black.

Body length 3.2 mm; fore wing length 3.8 mm.
Male. Unknown.
Distribution. Tibet, China.
Habitat. Prairie and bushes.

Microplitis bomiensis Zhang, sp. nov.
http://zoobank.org/55F4D31C-13EC-4856-B38A-4B58B7FD92EB
Figs 8–14

Etymology. The specific name “bomiensis” is derived from the type locality.
Type material. Holotype: female, Bomi, Tibet, 96°23'23.23"E, 29°36'22.33"N, 

3427 m, 28.vii. 2013. Leg. Zhang Wangzhen (FAFU).
Comparative diagnosis. Morphologically this species and M. paizhensis Zhang, 

sp. nov. are very similar; the main points of distinction are to be found in the former 
having golden setae on mesoscutum and disc of scutellum (vs light grey or colourless 
setae on mesoscutum and disc of scutellum). Fore vein 1-R1 1.6× as long as its distance 
from apex of marginal cell and 1.3× as long as stigma (vs. vein 1-R1 1.3× as long as 
its distance from apex of marginal cell and 1.1× as long as stigma). Mid coxa reddish 
brown, hind coxa black brown or infuscate (vs all coxae black).

The new species is also similar to M. helicoverpae Xu & He with the distinction be-
tween them as following: vein 1-R1 1.6× as long as its distance from apex of marginal 
cell and 1.3× as long as stigma (vs vein 1-R1 1.1× as long as its distance from apex 
of marginal cell and 0.7× as long as stigma). Areolet approximately quadrangular (vs 
areolet approximately triangular). T1 2.2× as long as wide (vs T1 1.7× as long as wide).

Description. Female (holotype).
Head. Subcircular in anterior view, lateral temples hidden behind eyes in anterior 

view. Width of face (at widest) half as wide as head. Face flat to slightly convex, dense-
ly punctate, with associated dense setae. Inner margin of eyes straight to moderately 
emarginate adjacent to antennal sockets. Eyes setose. Transverse in dorsal view, 2.2× as 
wide as long. Ocelli medium-sized, in a high triangle, imaginary tangent of posterior 
margin of anterior ocellus distant from posterior ocelli. Vertex shiny, shallowly punc-
tate. Frons depressed, nearly smooth. POL: OD: OOL = 0.9: 0.4: 1.1. Antennae long 
than body (14.1: 10.3), flagellomeres thin, with bristly setae. Flagellomere proportion: 
2 L/W (Flagellomere 2 length/ width) = 2.5, 8 L/W = 2.6, 14 L/W = 2.5. L 2/14 = 1.4, 
W 2/14 = 1.3. F12–15 (Flagellomere 12–15) loosely connected.

Mesosoma. Thorax slightly wider than head (7.3: 7.8). Pronotum sparsely punc-
tae. Mesoscutum shiny, evenly punctate, with dense setae. Notauli faintly impressed. 
Scutellar lunules broad, divided by five carinae. Disc of scutellum shiny, weakly con-
vex, evenly punctate, with setae, its rugose spot in the middle interrupting the poste-



Two new species of the genus Microplitis Förster 57

Figure 8–14. Microplitis bomiensis, sp. nov. (female) 8 Habitus, lateral view 9 Wings 10 Head, anterior 
view 11 Head, dorsal view 12 Mesoscutum and scutellum 13 Propodeum and basal tergites of metasoma 
14 Apex of metasoma (showing ovipositor).
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rior, polished band of scutellum. Propodeum rather evenly curved in profile, coarsely 
reticulate and rugose, with a median longitudinal carina.

Wings. Fore wing: vein 1-R1 (metacarpus) 1.6× as long as its distance from apex of 
marginal cell and 1.3 × as long as stigma. Vein r (1st radius) emitted distally from mid-
dle of stigma and approximately as long as 2-SR. Areolet approximately quadrangular. 
Stigma 2.9× as long as wide. Ratio of width of 1st discal cell: height of 1st discal = 21.6: 
17.5. 1-CU1: 2-CU1: m-cu = 7.4: 11.5: 9.5. Hind wing: vein cu-a incurved.

Legs. Hind coxa small, slightly shorter than T1. Inner hind tibial spur almost as 
long as outer one, 0.3× as long as hind basitarsus. Metasoma Slightly shorter than mes-
osoma (4.9: 5.2). T1 2.2× as long as wide, parallel-sided, with broad shallow medial 
depression on basal 1/3, surface rugulose except for smooth apical swelling. T2 sub-
trapezoidal, its apical width: medial length ratio = 3.1: 0.9, smooth, shiny, glabrous, 
with a shield-shaped median field indicated by oblique grooves. T3 longer than T2 
(1.3: 0.9), suture between T3 and T2 reduced to slight depression. T3 and the follow-
ing tergites smooth, each with one or two transverse rows of sparse hairs posteriorly, 
denser laterally. Hypopygium small. Ovipositor sheath short, 1.3× as long as second 
hind tarsomere.

Color. Body generally black to dark brown. Palps yellow to white. Setae of mes-
oscutum and disc of scutellum golden. Lateral edges of T1–T3 reddish yellow. Hy-
popygium reddish brown. Antennae dark brown or brown. Wings hyaline, venation 
brown, stigma with pale yellowish patch basally. Legs yellow, except mid coxa which 
are reddish brown; hind coxa, tibia, and tarsus black brown or infuscate.

Body length 3.4 mm; forewing length 3.9 mm.
Male. Unknown.
Distribution. Tibet, China.
Habitat. Prairie and bushes.

Remarks

Both new species were collected in high-altitude areas in Tibet, China (above 3400 m), 
which is relatively rare for this group above this altitude. We also collected single male 
specimen of a third species, which, considering the importance of the females in mi-
crogastrine taxonomy and the recommendation of the reviewers, will not be published 
for the time being.
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Abstract
A new Chinese species of the genus Linan Hlaváč, 2003, L. qiniangmontis sp. nov., is described based on 
two male and three female specimens from sifted leaf litter samples at Qiniang Mountain, Shenzhen City, 
Guangdong. The species can be readily recognized and separated from all congeners based on the forms of 
the male antennae, the metaventral processes, and the aedeagus.

Keywords
Ant-loving beetles, southern China, taxonomy, Tyrini

Introduction

The Oriental genus Linan Hlaváč, 2003 belonging to the ‘Pselaphodes complex’ of 
genera (Hlaváč 2003; Yin et al. 2013a) is a small group containing 16 species distrib-
uted in China (16 spp.) and Thailand (1 sp.) (Hlaváč 2003; Yin et al. 2011, 2013b; 
Yin and Li 2012, 2013; Zhang et al. 2018). An identification key and distributional 
maps of the genus were recently provided by Zhang et al. (2018). A survey of the local 
coleopterous fauna in Shenzhen City has resulted in the discovery of the 17th species of 
Linan, which is described here.
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Materials and methods

The material used in this paper is housed in the Insect Collection of Shanghai Normal 
University, Shanghai, China (SNUC). The text of the specimen labels is quoted verba-
tim, with original Chinese names listed in parentheses.

Dissected parts were preserved in Euparal on plastic slides that were placed on the 
same pins as the respective specimens. The habitus images were taken using a Canon 
5D Mark III camera with a Canon MP-E 65mm f/2.8 1–5X Macro Lens, and a Canon 
MT-24EX Macro Twin Lite Flash used as the light source. Images of the morphological 
details were produced using a Canon G9 camera mounted to an Olympus CX31 micro-
scope under transmitted light. Zerene Stacker (version 1.04) was used for image stacking. 
All images were modified and grouped into plates in Adobe Photoshop CS5 Extended.

The abdominal tergites and sternites are numbered following Chandler (2001) in 
Arabic (starting from the first visible segment) and Roman (reflecting true morpho-
logical position) numerals, e.g., tergite 1 (IV), or sternite 7 (IX).

Taxonomy

Linan qiniangmontis sp. nov.
http://zoobank.org/122313A9-AF98-429B-BBBE-D13402160D5C
Figs 1, 2

Type material. Holotype: CHINA: ♂: ‘China: Guangdong, Shenzhen City, Mt. 
Qiniang (七娘山), 23°32'28.73"N, 114°35'8.46"E, mixed leaf litter, sifted, 45 m, 
23.III.2019, Tang, Shuai, Zhao, Zhou & Xia leg.’ (SNUC). Paratypes: CHINA: 1 ♂, 
3 ♀♀, same label data as holotype (SNUC).

Diagnosis. Body length slightly less than 2.5 mm. Male: antennal club almost 
simple, with antennomere IX slightly angulate at anteromesal corner; metaventral pro-
cesses short and narrowing toward apex; protibiae with small denticle at apex; meta-
coxae with truncate, curved, ventral projection; aedeagus elongate, median lobe asym-
metrically narrowed at apex. Female: identifiable only when in association with a male.

Description. Male (Fig. 1A). Body length (combined length of head, pronotum, 
elytra, and abdomen) 2.32–2.33 mm. Head longer than wide, length from clypeal 
anterior margin to head base 0.52–0.54 mm, width across eyes 0.48–0.49 mm; eyes 
small, each composed of ca. 23 facets. Antennae elongate, 1.78–1.79 mm long, scape 
elongate, ca. 3.5 times as long as wide, antennomeres 2–8 each sub-moniliform, of 
similar width, antennal club (Fig. 2A) formed by antennomeres 9–11, antennomere 9 
much longer than wide, broadening from base to apex, angulate at anteromesal corner 
(Fig. 2A, indicated by arrow), antennomere 10 slightly transverse, antennomere 11 
truncate and broadest at base and narrowing apically, both antennomeres 10 and 11 
simple. Pronotum (Fig. 2B) approximately as long as wide, with rounded lateral mar-
gins, length along midline 0.49–0.51 mm, maximum width 0.49–0.52 mm. Elytra 
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Figure 1. Dorsal habitus of Linan qiniangmontis sp. nov. A male B female. Scale bars: 0.5 mm.

strongly transverse, length along suture 0.56–0.57 mm, maximum width 0.85–0.88 
mm. Metaventral processes (Fig. 2C) short, narrowing apically. Protrochanters and 
profemora (Fig. 2D) simple, protibiae (Fig. 2E) with small but distinct denticle at 
apex; mesotrochanters, mesofemora, and mesotibiae (Fig. 2F) simple; metacoxae (Fig. 
2G) with truncate curved projection on ventral margin; metatrochanters, metafemora, 
and metatibiae simple. Abdomen approximately as wide as elytra, length of dorsally 
visible part along midline 0.74–0.77 mm, maximum width 0.86–0.87 mm; tergite 1 
(IV) more than twice as long as tergite 2 (V); sternite 7 (IX) (Fig. 2H) semi-membra-
nous, elongate. Length of aedeagus (Fig. 2I–K) 0.38–0.40 mm; median lobe asymmet-
rical dorso-ventrally, narrowing apically with pointed apex; elongate parameres slightly 
exceeding apex of median lobe, with rounded apices; endophallus with one broad, 
rounded triangular sclerite, and one much shorter, elongate sclerite forked at apex.
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Figure 2. Male diagnostic features of Linan qiniangmontis sp. nov. A antennal club B pronotum 
C metaventral process, lateral D protrochanter and profemur E apex of protibia F mesotrochanter and 
mesofemur G metacoxa, metatrochanter, and metafemur H sternite IX I–K aedeagus, dorsal (I), lateral 
(J), and ventral (K). Scale bars: 0.3 mm (A, B, D, F, G); 0.2 mm (C, I, J, K); 0.1 mm (H); 0.05 mm (E).

Female. Similar to male in general morphology, with slightly shorter anten-
nae and smaller eyes; antennae and legs simple; lacking metaventral processes. Eyes 
each composed of approximately 18 facets. Measurements (as of male): Body length 
2.33–2.44 mm, length/width of head 0.53–0.55 /0.49–0.51 mm, length of anten-
nae 1.63–1.70 mm, length/width of pronotum 0.50–0.51/0.51 mm, length/width of 
elytra 0.57/0.89–0.91 mm, length/width of abdomen 0.72–0.81/0.92–0.93 mm.
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Distribution. China: Guangdong.
Etymology. The new species epithet refers to the type locality of the new species, 

Qiniang Mountain.
Comparative notes. The new species is placed as a member of the L. chinensis 

group by the almost unmodified antennal clubs in the male. It is most similar to L. hu-
jiayaoi Yin & Li, 2013 and L. mulunensis Zhang, Li & Yin, 2018 (both from Guangxi) 
in sharing modified male metacoxae. Linan qiniangmontis differs from both known 
species in the slightly angulate anteromesal corner of antennomere 9 (rounded in L. 
hujiayaoi and L. mulunensis), a different form of the metaventral processes (processes 
stouter in L. hujiayaoi and much more elongate in L. mulunensis), the lack of addi-
tional projections above the metacoxae (present in L. hujiayaoi and L. mulunensis), and 
a more elongate aedeagus with a different configuration of the endophallus.
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Abstract
Morphological differences, including growth-related changes, were examined in three morphologically 
similar East Asian sea bass species, Lateolabrax japonicus, L. maculatus and L. latus. In many cases, body 
measurements indicated specific patterns of growth-related proportional changes. Lateolabrax latus differed 
from the other two species in having greater body depth, caudal peduncle depth, caudal peduncle anterior 
depth, snout length, and upper and lower jaw length proportions. In particular, scatter plots for caudal 
peduncle anterior depth relative to standard length (SL) in that species indicated complete separation from 
those of the other two species, being a new key character for identification. Comparisons of L. japonicus 
and L. maculatus revealed considerable proportional differences in many length-measured characters, in-
cluding fin lengths (first and second dorsal, caudal and pelvic), snout length, post-orbital preopercular 
width (POPW) and post-orbital length. In particular, snout length (SNL) and POPW proportions of the 
former were greater and smaller for specimens >200 and ≤ 200 mm SL, respectively. Because the scatter 
plots of these proportions for the two species did not overlap each other in either size range, identifica-
tion of the species was possible using a combination of the two characters. In addition, scatter plots of the 
POPW / SNL proportion (%) of L. japonicus and L. maculatus were almost completely separated through-
out the entire size range examined (border level 90%), a further aid to identification. The numbers of pored 
lateral line scales and scales above the lateral line tended to increase and decrease with growth, respectively, 
in L. japonicus, whereas scales below the lateral line and gill raker numbers tended to increase with growth 
in L. maculatus. Because the ranges of these meristic characters may therefore vary with specimen size, 
they are unsuitable for use as key characters. Accordingly, a new key is proposed for the genus Lateolabrax.
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Introduction

The sea basses of the genus Lateolabrax (Lateolabracidae) are common East Asian 
coastal marine fishes (occasionally also occurring in fresh water). Bleeker (1854–57) es-
tablished the genus for a single species, Lateolabrax japonicus (Cuvier, 1828), Katayama 
(1957) later describing a second species, Lateolabrax latus, from Japan. More recently, 
Yokogawa and Seki (1995) concluded that differences between the Japanese and Chi-
nese forms of “L. japonicus” were sufficient for the Chinese form to be recognized as a 
distinct species, being referred to as “spotted sea bass” by Yokogawa and Tajima (1996). 
Finally, it was formally redescribed as Lateolabrax maculatus (McClelland, 1844) in 
Yokogawa’s (2013b) revision, where Lateolabrax lyiuy (Basilewsky, 1855), which is in-
correctly treated as valid and applied to the Chinese form (Kottelat 2013; Eschmeyer 
2019), was regarded as a junior synonym of L. maculatus. At this point, three valid 
species of Lateolabrax are recognized (Fig. 1).

Lateolabrax latus has been distinguished from L. japonicus by having greater pro-
portions of body and caudal peduncle depth (BD and CPD), more dorsal and anal fin 
rays (≥15 and ≥9, respectively), fewer scales below the lateral line (≤16) and possess-
ing ventromandibular scale rows (VSRs) (Katayama 1957). Furthermore, the range 
of dorsal fin ray (DFR) counts in L. latus, which had been considered to not overlap 
that of L. japonicus, had become established as a key identification character (e.g., 
Katayama 1960a, 1965, 1984; Hatooka 1993). However, subsequent finding of L. 
latus individuals with 14 DFRs [overlapping the range in L. japonicus (12–14 DFRs)] 
(Hatooka 2000, 2013; Murase et al. 2012) made this character an incomplete key for 
identification. In addition, VSRs have not been adopted in recent keys proposed for 
Lateolabrax (Hatooka 2000, 2013), because they have been found in some specimens 
of the other two Lateolabrax species (Paxton and Hoese 1985; Hirota et al. 1999; Kang 
2000; Murase et al. 2012). On the other hand, recent keys have included “caudal fin 
notch depth,” being shallower in L. latus than in the other two species (Hatooka 2000, 
2013), although the lack of any proportional information means that verification fol-
lowing examination of possible growth-related changes is necessary. Furthermore, pro-
portional differences in BD and CPD appear to be based on the premise that their 
proportions are stable (isometric growth), although this has not been verified to date.

Lateolabrax maculatus has been characterized by many clear black spots on the 
body, but this character is also problematic as a few individuals of the species lack such 
spots (Yokogawa and Seki 1995), whereas some individuals of the other two Lateolabrax 
species have dots (Fig. 2). Although Yokogawa and Seki (1995) revealed differences 
between L. japonicus and L. maculatus in some meristic characters, including counts of 
lateral line scales, gill rakers and vertebrae, overlapping ranges between the two species 
result in no single character separating them completely. Proportional snout length 
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(SNL), also recently used to separate the two species [SNL of L. maculatus relatively 
shorter than in L. japonicus (Hatooka 2000, 2013; Yamada et al. 2007)], may also 
be problematic due to lack of proof of isometric growth. Furthermore, morphology 
of the first anal pterygiophore (arched and straight in L. japonicus and L. maculatus, 
respectively), proposed by Kang (2000), still needs to be validated due to possible 
growth-related changes.

Thus, morphological identifications of the three Lateolabrax species remain prob-
lematic, although genetic studies have shown them to be independent species (Yokoga-
wa 1998; Shan et al. 2016). Accordingly, the present study investigated the morphol-
ogy of the three Lateolabrax species in detail, emphasizing growth-related changes, 
which have received little previous attention, in a search for clear and unequivocal 
key characters. Concerning this, although the potential of sexual dimorphism is an 
important issue, Lateolabrax species have no reported visual traits to distinguish the 
gender. Although sex determination requires observations on gonads by dissection, it 
could not be performed on the catalogued specimens, which represented most of the 
materials examined in the present study (see Materials and methods), therefore sexual 
dimorphism was not considered.

Figure 1. General aspects of small (fingerling) and large (adult) individuals of Lateolabrax japonicus 
(A, B), L. maculatus (C, D) and L. latus (E, F) in fresh condition. A KPM-NI 27449 (91.9 mm SL) 
B KPM-NI 30671 (331.0 mm SL) C uncatalogued specimen (94.3 mm SL) D BSKU 100776 (265.0 
mm SL) E KPM-NI 29044 (97.1 mm SL) F KPM-NI 24656 (369.0 mm SL). A, B, E and F were pho-
tographed by Hiroshi Senou (KPM), C and D were photographed by K. Yokogawa.
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Materials and methods

Specimens examined

Measurements were based on the following Lateolabrax specimens, which have been 
deposited in the Laboratory of Marine Biology, Faculty of Science, Kochi University 
(BSKU), Kanagawa Prefectural Museum of Natural History (KPM), the Kagoshima 
University Museum (KAUM) and Tokushima Prefectural Museum (TKPM), together 
with some uncatalogued ones. Because presence of some specialized sea bass popu-
lations, which resulted from introgressive hybridization between Lateolabrax japoni-
cus and L. maculatus, have been reported from Japan (Ariake and Yatsushiro Seas) 
(Yokogawa et al. 1997; Yokogawa 2002, 2004; Nakayama 2002; Han et al. 2015) and 
Korea (Yokogawa 2004; Bae et al. 2017), specimens from such areas were not adopted. 
Further, most specimens of these two species examined in the present study had been 
previously genetically recognized to be from the pure strains, using isozyme analysis 
(Yokogawa and Seki 1995).

Lateolabrax japonicus (229 specimens). BSKU 100789–100804 (16), 100826, 
KPM-NI 9697, 9698, KAUM–I. 82683–82703 (21), 93431–93439 (9), uncata-
logued specimens (54) – all Kagawa Pref.; BSKU 101505–101541 (37), Hyogo Pref., 
Seto Inland Sea; BSKU 100739–100769 (31), 100788, Yamaguchi Pref., Seto Inland 
Sea; BSKU 66400, KPM-NI 9699 – both Uwajima, Ehime Pref., TKPM-P 352 (20), 
Tokushima Pref.; KPM-NI 27449, Mie Pref.; KPM-NI 30671, Sagami Bay; BSKU 
100837, 100839, 100842, 100845, 100846, 100852, 100854, 100855, 100859–
100862 (4), 100865, 100867, 100873, 100874, 100876, 100878, 100879, 100882, 
100883, 100886, 100888, 100891, 100893, 100897, 100898, 100900–100902 (3), 
100904, 100906, 100907 – all Ishikawa Pref.

Lateolabrax maculatus (170 specimens). BSKU 100770–100787 (18), 101787–
101826 (40), a wild strain imported from Yantai, China and cultured in Kagawa, 
Japan; TKPM-P 1655 (40), uncatalogued specimens (33), a wild strain imported from 
China (locality unknown) as aquacultural seeds; BSKU 66398, 66399, 66401–66406 
(6), TKPM-P 6114, 6140, KPM-NI 9686–9689 (4), 9691–9694 (4), uncatalogued 
specimens (17) – all Uwajima, Ehime Pref. (presumed escapees from nurseries); 
TKPM-P 16897, KPM-NI 9696, uncatalogued specimens (2) – all eastern Seto Inland 
Sea (presumed escapees from nurseries).

Lateolabrax latus (136 specimens). BSKU 101827, Awaji I., Seto Inland Sea; BSKU 
100553, 100554, 100556–100561 (6), 101835, TKPM-P 372 – all Tokushima Pref.; 
KAUM–I. 1895 (4) locality unknown; KAUM–I. 25203, 29117, KPM-NI 24246–
24248 (3), 24252–24256 (5), 24648–24656 (9), 24935–24940 (6) – all Yakushima I.; 
KAUM–I. 33778, Ikarajima I., Yatsushiro Sea.; KAUM–I. 39049–39051 (3), 39055–
39058 (4), 39128, 39129, 61956, 64737, 64738, 66393, 66394, 67090, Tanegashi-
ma I.; KAUM–I. 42043, 42044, 51058–51068 (11), 54112, 54668, 57963, 58161, 
58162, 61406, 61407, 61577, 63162–63169 (8), 63625, 65483–65485 (3), 65671, 
80441–80444 (4), Kagoshima Pref. (mainland); KAUM–I. 66081, 75375, 75660, 
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75815, 75816, Nagasaki Pref.; KPM-NI 21869, 22433, 23429, Shizuoka Pref.; KPM-
NI 24566, 24579, 24615, 35333, Miyazaki Pref.; KPM-NI 26185, 26186, 26992, 
28599 (3), 29040, Chiba Pref.; KPM-NI 26973, 26975–26979 (5), 26988–26991 
(4), Uwajima, Ehime Pref.; KPM-NI 29041–29048 (8), 31568, Kochi Pref.; KPM-NI 
29279, 37509, 37919, 37920, Kanagawa Pref.

Morphological measurements

Methods of measurements and counts followed Hubbs and Lagler (1970). Dimensions 
were taken with calipers (minimum scale 0.1 mm), with particular care for smaller 
specimens due to the effect of even a small error on the calculated proportion. The 
characters examined are listed with abbreviations in Table 1 and illustrated in Figure 
3. New or uncommon length-measured characters included: post-orbital preopercular 
width (horizontal distance from orbit posterior edge to preopercle posterior margin), 
post-orbital length (distance from orbit posterior edge to opercle posterior angle), cau-
dal peduncle anterior depth (distance between posterior ends of dorsal and anal fin 
bases), caudal fin notch depth (horizontal distance from bottom of notch to margin 
of naturally spread fin) and pectoral scaly area length (defined by Yokogawa and Seki 
1995) (see Figure 3).

Scale row and paired fin ray counts were made on the left side of the body, whereas 
gill rakers were counted on the first gill arch on the right side by separating the upper 
and lower limbs of the gill arch. Because counts of pelvic fin-spine (P2FS) and soft rays 
(P2FRs) showed no variation (P2FS: 1, P2FRs: 5 in all specimens), these counts were 
omitted from the statistical analyses. Abdominal and caudal vertebrae were counted, 
and first anal fin pterygiophore morphology observed from radiographs.

Total numbers of recognizable black or faint spots / dots on the left side of the 
body and mid-dorsal aspect of the caudal peduncle (Fig. 2) were counted. Dorsal head 
squamation [reported as differing between L. japonicus and L. maculatus (Yokogawa 
and Seki 1995)], was examined in all three species. Ventromandibular scale rows were 
also examined on the left side by separating the anterior and posterior parts following 
Murase et al. (2012), and their status recorded as present, vestigial or absent.

Statistical computations

For a length-measured dimension (LD), a growth-related proportional change pattern 
is given by the relationship between base dimension [e.g., standard length (SL) or head 
length (HL)] and the LD proportion (LD / SL or LD / HL). Because the relationship 
between SL (or HL) and LD is generally expressed by a power regression formula (LD 
= a SL b) (allometric growth), the following formula was used (LD / SL = a SL b-1). 
Accordingly, power regressions were applied for the relationships between SL (or HL) 
and the LD proportions (Table 2).
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Table 1. Characters considered for the analysis.

Abbreviation Abbreviation
Length-measured body characters Post-orbital preopercular width POPW

Standard length SL Upper jaw length UJL
Pre-anus length PAL Lower jaw length LJL
Body depth BD Meristic characters
Body width BWT Dorsal fin spine DFS
Caudal peduncle depth CPD Dorsal fin soft ray DFR
Caudal peduncle anterior depth CPAD Anal fin spine AFS
Caudal peduncle length CPL Anal fin ray AFR
Pre-dorsal length PDL Pectoral fin ray P1FR
First dorsal fin (longest spine) length FDFL Pelvic fin spine P2FS
Second dorsal fin (longest ray) length SDFL Pelvic fin ray P2FR
Caudal fin length CFL Pored scale on lateral line LLS
Caudal fin notch depth CFND Scale above lateral line SAL
Anal fin (longest ray) length AFL Scale below lateral line SBL
Pectoral fin length P1FL Upper-limb gill raker UGR
Pelvic fin length P2FL Lower-limb gill raker LGR
Pectoral scaly area length PSAL Total gill raker TGR
Head length HL Abdominal vertebra AV

Length-measured cephalic characters Caudal vertebra CV
Snout length SNL Total vertebra TV
Orbital diameter OD Others
Inter-orbital width IOW Dorsocephalic scale row DSR
Sub-orbital width SOW Ventromandibular scale row VSR
Post-orbital length POL First anal pterygiophore FAP

Characteristics that changed with growth were evaluated so as to determine if the 
changes were isometric or allometric, i.e., regressions between SL (or HL) and LD 
were transformed into natural logarithms (ln) (lnLD = a lnSL + b), and a t test was 
used to examine slope significance for the null hypothesis (a = 1), according to Zar 
(2010). When a differed significantly from 1, the character was considered to have 
changed allometrically, i.e., its proportion had increased or decreased with growth. 
Meristic counts (MC) were regressed using SL (MC = a SL + b), and a t test used to 
examine slope significance for the null hypothesis (a = 0) (Zar 2010). When a differed 
significantly from 0, the character was considered to have changed with growth. In ad-
dition, standard errors, which indicated data variation from the regression lines, were 
calculated during the above analyses (Zar 2010).

To examine inter-specific differences in length-measured characters, regressions be-
tween SL (or HL) and LD were also logarithm-transformed (lnLD = a lnSL + b), since 
most characters showed allometric growth (Table 3). Parameters of the regressions (a 
and b) were compared by analysis of covariance (ANCOVA) (t test), following the 
methods of Yamada and Kitada (2004).

Because some meristic counts tended to increase significantly with growth (Table 
4), they were compared using the Mann-Whitney U test (Iwasaki 2006). Example 
numbers for the U test being >20 for all species, z values (instead of U values) for the 
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Figure 2. Dots / spots on lateral body regions of Lateolabrax japonicus (A), L. maculatus (B) and L. latus 
(C). A uncatalogued specimen (168.4 mm SL) B BSKU 100773 (254.2 mm SL) C KAUM–I. 29117 
(219.7 mm SL).
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normal distribution were calculated after correction for distribution continuity, follow-
ing Iwasaki (2006).

In the above statistical inferences, due to multiple tests being applied simultane-
ously in each case, multiple comparisons were introduced for the t test results, risk 
percentages for the t values being corrected according to total test counts, using the 
Holm-Bonferroni method (Holm 1979).

Results

Growth-related proportional changes
Body characters

In the three Lateolabrax species, slopes of the logarithm-transformed regressions were 
significantly different from 1 (allometric growth) for most characters (Table 3), indi-
cating that most of the body proportions changed with growth. Relationships between 
standard length (SL) and length-measured body proportions are shown graphically by 
species in Figure 4, those with prominent plot separation between species being shown 
with multiple specific plots in Figure 5.

Figure 3. Illustrations of Lateolabrax body measurements taken. For abbreviations, see Table 1.
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Similar patterns of growth-related proportional changes common to the three 
species were observed for some characters, viz., significant positive allometric growth 
(proportions increased with growth) in body width and significant negative allomet-
ric growth (proportions decreased with growth) in head (HL) and pre-dorsal length 
(PDL), and second dorsal, anal and pelvic fin (longest ray) lengths (SDFL, AFL and 
P2FL), although patterns of the regression curves or plot distributions for the three spe-

Table 2. Regression parameters and correlation between standard length (SL) or head length (HL) and 
proportions of length-measured dimensions (LD) [SL = a (LD/SL)b, HL = a (LD/HL)b] of three Lateo-
labrax species.

Regression Lateolabrax japonicus Lateolabrax maculatus Lateolabrax latus
a b r a b r a b r

SL–PAL/SL 64.42 0.004 0.092 74.89 -0.026 -0.524 63.90 0.008 0.270 
SL–BD/SL 44.23 -0.108 -0.735 29.94 -0.029 -0.379 33.03 -0.021 -0.240 
SL–BWT/SL 8.78 0.075 0.471 10.71 0.048 0.455 8.43 0.079 0.466 
SL–CPD/SL 16.55 -0.100 -0.749 11.48 -0.025 -0.353 11.32 0.002 0.034 
SL–CPL/SL 22.33 -0.007 -0.069 19.83 0.019 0.216 21.55 -0.010 -0.115 
SL–CPAD/SL 21.12 -0.091 -0.686 14.36 -0.014 -0.220 15.05 0.009 0.140 
SL–PDL/SL 44.01 -0.041 -0.574 39.76 -0.029 -0.513 45.07 -0.039 -0.711 
SL–FDFL/SL 22.72 -0.081 -0.407 12.40 0.008 0.065 22.22 -0.086 -0.541 
SL–SDFL/SL 36.65 -0.201 -0.762 17.05 -0.068 -0.443 23.31 -0.091 -0.485 
SL–CFL/SL 32.62 -0.085 -0.472 17.40 0.008 0.056 28.45 -0.055 -0.445 
SL–CFND/SL 9.30 -0.115 -0.220 2.87 0.077 0.176 25.10 -0.296 -0.781 
SL–AFL/SL 28.14 -0.142 -0.713 18.56 -0.061 -0.474 24.60 -0.096 -0.553 
SL–P1FL/SL 25.19 -0.070 -0.581 16.98 -0.010 -0.109 19.79 -0.024 -0.270 
SL–P2FL/SL 31.24 -0.101 -0.701 25.47 -0.073 -0.682 23.84 -0.040 -0.357 
SL–HL/SL 42.88 -0.054 -0.677 38.39 -0.036 -0.629 46.25 -0.066 -0.836 
SL–SNL/SL 8.23 0.002 0.047 11.42 -0.087 -0.664 10.91 -0.027 -0.456 
SL–OD/SL 65.54 -0.431 -0.958 42.67 -0.364 -0.945 55.60 -0.368 -0.963 
SL–IOW/SL 7.55 -0.020 -0.173 9.31 -0.064 -0.601 7.75 -0.010 -0.082 
SL–SOW/SL 2.26 0.067 0.232 1.80 0.135 0.513 2.04 0.070 0.246 
SL–POPW/SL 5.47 0.045 0.423 13.03 -0.094 -0.741 7.21 -0.008 0.066 
SL–POL/SL 15.94 0.016 0.170 13.46 0.060 0.691 19.07 -0.027 -0.373 
SL–UJL/SL 19.09 -0.061 -0.706 20.81 -0.083 -0.778 22.01 -0.071 -0.778 
SL–LJL/SL 20.51 -0.058 -0.700 22.29 -0.084 -0.782 21.66 -0.052 -0.629 
SL–PSAL/SL1 8.14 -0.130 -0.203 
SL–POPW/SNL 71.07 0.030 0.314 90.56 0.031 0.222 65.79 0.020 0.149 
HL–SNL/HL 20.42 0.057 0.530 28.48 -0.054 -0.453 24.50 0.040 0.533 
HL–OD/HL 109.60 -0.400 -0.946 79.68 -0.338 -0.945 93.74 -0.323 -0.950 
HL–IOW/HL 18.38 0.033 0.246 23.83 -0.031 -0.292 17.72 0.057 0.359 
HL–SOW/HL 5.90 0.127 0.397 5.55 0.178 0.625 4.98 0.143 0.432 
HL–POPW/HL 14.81 0.090 0.690 26.66 -0.022 -0.240 16.41 0.061 0.418 
HL–POL/HL 39.87 0.073 0.729 38.83 0.099 0.873 42.78 0.041 0.498 
HL–UJL/HL 44.57 -0.009 -0.139 51.77 -0.049 -0.667 47.53 -0.006 -0.109 
HL–LJL/HL 48.01 -0.005 -0.092 55.24 -0.049 -0.713 47.36 0.014 0.237 

1 Simple patterned regressions could not be applied for complicated fluctuations in L. japonicus and L. 
maculatus.
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cies sometimes varied from one another (Figs 4, 5, Table 3). Differing specific growth-
related proportional changes were evident for some other characters, e.g., pre-anus 
length (PAL), isometric growth in L. japonicus, negative and positive allometric growth 
in L. maculatus and L. latus, respectively (Fig. 4A–C, Table 3); and caudal fin notch 
depth (CFND), modestly and highly negative allometric growth in L. japonicus and 
L. latus, respectively, and isometric growth in L. maculatus (Fig. 4G–I, Table 3). In the 
latter, however, despite specific growth-related patterns, ranges of the CFND / SL pro-
portions taken over the entire range of SLs were similar to one another, viz., 2.0–8.4%, 
1.9–7.4% and 2.9–7.9%, in L. japonicus, L. maculatus and L. latus, respectively (Fig. 
4J–L).

Table 3. Regression parameters (slope and intercept) and correlation between logarithm-transformed 
length-measured characters, together with results of t tests to examine significance of slopes for three 
Lateolabrax species (null hypothesis, slope = 1).

Regression Lateolabrax japonicus Lateolabrax maculatus Lateolabrax latus

Slope Intercept t Slope Intercept t Slope Intercept t

ln SL–ln PAL 1.004 -0.44 1.39 0.974 -0.29 -7.97*** 1.008 -0.45 3.25*
ln SL–ln BD 0.892 -0.82 -16.35*** 0.971 -1.21 -5.31*** 0.979 -1.11 -2.87*
ln SL–ln BWT 1.075 -2.43 8.05*** 1.048 -2.23 6.62*** 1.079 -2.47 6.10***
ln SL–ln CPD 0.900 -1.80 -17.04*** 0.975 -2.16 -4.89*** 1.002 -2.18 0.40 
ln SL–ln CPL 0.993 -1.50 -1.05 1.019 -1.62 2.86* 0.990 -1.53 -1.33 
ln SL–ln CPAD 0.909 -1.55 -14.28*** 0.986 -1.94 -2.92* 1.009 -1.89 1.63 
ln SL–ln PDL 0.959 -0.82 -10.56*** 0.971 -0.92 -7.71*** 0.961 -0.80 -11.72***
ln SL–ln FDFL 0.919 -1.48 -6.72*** 1.008 -2.09 0.85 0.914 -1.50 -7.45***
ln SL–ln SDFL 0.794 -0.97 -17.15*** 0.932 -1.77 -6.31*** 0.909 -1.46 -6.42***
ln SL–ln CFL 0.914 -1.11 -7.84*** 1.008 -1.75 0.70 0.974 -1.35 -2.55 
ln SL–ln CFND 0.880 -2.35 -3.41** 1.077 -3.55 2.22 0.704 -1.38 -13.88***
ln SL–ln AFL 0.858 -1.27 -15.17*** 0.939 -1.68 -6.97*** 0.904 -1.40 -7.67***
ln SL–ln P1FL 0.930 -1.38 -10.73*** 0.990 -1.77 -1.41 0.976 -1.62 -3.25*
ln SL–ln P2FL 0.899 -1.16 -14.81*** 0.927 -1.37 -12.06*** 0.960 -1.43 -4.42***
ln SL–ln HL 0.946 -0.85 -13.87*** 0.964 -0.96 -10.46*** 0.934 -0.77 -17.67***
ln SL–ln SNL 1.002 -2.50 0.67 0.913 -2.17 -11.57*** 0.973 -2.22 -5.94***
ln SL–ln OD 0.569 -0.42 -50.25*** 0.636 -0.85 -37.39*** 0.632 -0.59 -41.41***
ln SL–ln IOW 0.980 -2.58 -2.64 0.936 -2.37 -9.71*** 0.990 -2.56 -0.95 
ln SL–ln SOW 1.067 -3.79 3.60** 1.135 -4.02 7.73*** 1.070 -3.89 2.94*
ln SL–ln POPW 1.033 -2.84 5.68*** 0.943 -2.26 -7.72*** 0.993 -2.63 -0.69 
ln SL–ln POL 1.014 -1.82 2.10 1.060 -2.00 12.25*** 0.974 -1.66 -4.56***
ln SL–ln UJL 0.939 -1.66 -15.04*** 0.917 -1.57 -16.02*** 0.929 -1.51 -14.34***
ln SL–ln LJL 0.942 -1.58 -14.74*** 0.916 -1.50 -16.11*** 0.948 -1.53 -9.34***
ln SNL–ln POPW 1.026 -0.26 4.37*** 1.020 0.01 1.71 1.017 -0.36 4.19***
ln HL–ln SNL 1.057 -1.59 9.41*** 0.946 -1.26 -6.65*** 1.040 -1.41 7.28***
ln HL–ln OD 0.600 0.09 -44.06*** 0.662 -0.23 -37.38*** 0.677 -0.06 -35.28***
ln HL–ln IOW 1.033 -1.69 3.82** 0.969 -1.43 -3.94** 1.057 -1.73 4.45***
ln HL–ln SOW 1.127 -2.83 6.52*** 1.178 -2.89 10.36*** 1.143 -3.00 5.55***
ln HL–ln POPW 1.090 -1.91 14.36*** 0.978 -1.32 -3.19* 1.061 -1.81 5.32***
ln HL–ln POL 1.073 -0.92 15.93*** 1.099 -0.95 23.15*** 1.041 -0.85 6.62***
ln HL–ln UJL 0.991 -0.81 -2.11 0.951 -0.66 -11.57*** 0.994 -0.74 -1.27 
ln HL–ln LJL 0.995 -0.73 -0.19 0.952 -0.59 -13.19*** 1.014 -0.75 2.81*

Asterisks indicate significance of t values; single, double and triple asterisks indicate 5%, 1% and 0.1% 
levels, respectively, after Holm-Bonferroni correction by species.
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Table 4. Regression parameters (slope and intercept) and correlation between standard length (SL) and 
meristic counts of three Lateolabrax species (null hypothesis, slope = 0).

Regression Slope Intercept r t
Lateolabrax japonicus

SL–DFS counts -0.00008 12.87 -0.019 -0.28
SL–DFR counts -0.00081 13.13 -0.130 -2.05
SL–AFR counts 0.00048 7.56 0.089 1.34
SL–P1FR counts -0.00047 16.96 -0.086 -1.30
SL–LLS counts 0.01207 77.01 0.343 5.50***
SL–SAL counts -0.00258 15.84 -0.258 -3.98**
SL–SBL counts 0.00057 18.57 0.046 0.68
SL–UGR counts 0.00111 8.63 0.126 1.90
SL–LGR counts -0.00025 17.93 -0.027 -0.41
SL–TGR counts 0.00086 26.56 0.073 1.10
SL–AV counts 0.00017 16.00 0.073 0.93
SL–CV counts -0.00068 20.02 -0.108 -1.38
SL–TV counts -0.00051 36.02 -0.083 -1.80
SL–Dot counts -0.02297 12.69 -0.198 -2.90*

Lateolabrax maculatus
SL–DFS counts -0.00046 12.95 -0.153 -2.00
SL–DFR counts -0.00028 13.03 -0.066 -0.86
SL–AFS counts 0.00008 2.98 0.104 1.36
SL–AFR counts 0.00097 7.34 0.217 2.88
SL–P1FR counts 0.00079 16.33 0.190 2.50
SL–LLS counts 0.00261 73.45 0.099 1.30
SL–SAL counts 0.00008 15.52 0.009 0.24
SL–SBL counts 0.00477 18.17 0.409 5.72***
SL–UGR counts 0.00139 6.40 0.173 2.24
SL–LGR counts 0.00330 14.70 0.507 7.49***
SL–TGR counts 0.00469 21.11 0.408 5.68***
SL–AV counts -0.00026 15.97 -0.135 -1.67
SL–CV counts 0.00022 19.00 0.089 1.09
SL–TV counts 0.00003 34.97 -0.012 -0.02
SL–Spot counts 0.02333 33.89 0.126 1.62

Lateolabrax latus
SL–DFS counts -0.00026 13.05 -0.092 -1.08
SL–DFR counts -0.00041 15.11 0.011 -1.20
SL–AFS counts -0.00002 3.00 0.001 -0.34
SL–AFR counts 0.00026 9.06 0.002 0.55
SL–P1FR counts -0.00026 16.20 0.004 -0.73
SL–LLS counts 0.00264 72.91 0.169 1.99
SL–SAL counts -0.00063 13.86 -0.079 -0.92
SL–SBL counts -0.00013 15.79 -0.014 -0.16
SL–UGR counts -0.00045 6.83 -0.072 -0.83
SL–LGR counts -0.00109 17.11 -0.176 -2.07
SL–TGR counts -0.00154 23.94 -0.166 -1.95
SL–AV counts 0.00004 16.03 0.018 0.22
SL–CV counts -0.00005 19.92 -0.014 -0.17
SL–TV counts 0.00001 35.95 -0.004 -0.05
SL–Dot counts -0.06278 24.74 -0.365 -4.53***

Asterisks indicate significance of t values; single, double and triple asterisks indicate 5%, 1% and 0.1% 
levels, respectively, after Holm-Bonferroni correction by species.



Kōji Yokogawa  /  ZooKeys 859: 69–115 (2019)80

Figure 4. Relationships between standard length and proportions of some length-measured body charac-
ters of three Lateolabrax species. For character abbreviations, see Figure 3 and Table 1. Solid lines indicate 
power regression curves (parameters given in Table 2).
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Cephalic characters

For length-measured dimensions (LD) of cephalic characters, SL-based (SL–LD / SL) 
and HL-based relationships (HL–LD / HL) are illustrated in pairs with multiple spe-
cific plots in Figure 6. In each species, significant allometric growth was recognized in 
most length-measured cephalic characters as well as length-measured body characters 
(Table 3). In particular, negative allometric growth was so significant for orbital di-
ameter (OD) (very high t values, see Table 3) that the plots for each all formed typi-
cal arched curves (Fig. 6C, D), indicating rapid decrement of OD proportions with 
growth. Such acute relative OD decrement in the three species was clearly apparent 
from photographs (Fig. 1).

Growth-related proportional change patterns based on SL and HL were incon-
sistent with each other for some characters in L. japonicus and L. latus, e.g., snout 
length (SNL) of L. japonicus was isometric and positively allometric for SL and HL, 

Figure 4. (Continued) Relationships between standard length and proportions of some length-measured 
body characters of three Lateolabrax species. For character abbreviations, see Figure 3 and Table 1. Solid 
lines indicate power regression curves (parameters given in Table 2).
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Figure 5. Relationships between standard length and proportions of some length-measured body characters 
which exhibited prominent plot separation among three Lateolabrax species. For character abbreviations, see 
Figure 3 and Table 1. Solid lines indicate power regression curves (parameters given in Table 2) for each species.



Morphological differences between Lateolabrax species 83

respectively; that of L. latus was negatively and positively allometric for SL and HL, 
respectively (Fig. 6A, B, Table 3). While the patterns were consistent between the 
SL- and HL-based relationships in L. maculatus for all cephalic characters (Fig. 6A–P, 
Table 3), allometric increment / decrement rates varied in the two-way relationships 
e.g., proportions of post-orbital preopercular width (POPW) decreased with growth 
acutely and slightly for SL and HL, respectively (Fig. 6I, J, Table 3).

As well as some body characters, specific proportional change patterns were recog-
nized for some characters, e.g., SL-based relationships of POPW, exhibiting isometric 
growth in L. japonicus, and positive and negative allometric growth in L. maculatus 
and L. latus, respectively (Fig. 6K, Table 3); and SNL, exhibiting isometric growth in 
L. japonicus, and high and modest negative allometric growth in L. maculatus and L. 
latus, respectively (Fig. 6A, Table 3).

Pectoral scaly area length

The relationship between SL and pectoral scaly area length (PSAL) in L. latus was well 
fitted to a power regression (like many other body and cephalic length-measured char-
acters), the PSAL / SL proportion gradually decreasing with growth (Fig. 4X, Table 
2). In the other two species, however, proportional PSAL rapidly increased from the 
smallest specimens to a peak and thereafter gradually decreased (Fig. 4V, W), therefore 
being unsuitable for simple patterned regressions. Synchronous plotting for the two 
species showed the proportional PSAL of L. maculatus to be distinctly less than that 
of L. japonicus during the initial stage (< ca. 150 mm SL), although plots of the two 
species largely overlapped during the subsequent decreasing stage (Fig. 7). The propor-
tional PSAL of L. latus during the former stage was much greater than in the other two 
species (Fig. 4V–X).

Inter-specific differences
Length-measured body and cephalic characters

Plot separation of L. latus from the other two species was prominent for vertical body 
dimensions of body depth (BD), caudal peduncle depth (CPD) and caudal peduncle 
anterior depth (CPAD), L. japonicus and L. maculatus both showing significant negative 
allometric growth, the degree of relative decrease being especially acute in the former. 
Although BD of L. latus showed slight negative allometric growth, CPD and CPAD 
were regarded as isometric (Fig. 5A–C, Table 3). However, despite considerable plot sep-
aration of BD and CPD between L. latus and the other species, plots of the three species 
overlapped for the smaller size class (< ca. 200 mm SL) (Fig. 5A, B). CPAD plots for L. 
latus were entirely separated from those of the other two species (border level 15%) (Fig. 
5C). Although similar plot separation for caudal peduncle length (CPL) in L. latus was 
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Figure 6. Relationships between standard length or head length and proportions of length-measured 
cephalic characters of three Lateolabrax species. For character abbreviations, see Figure 3 and Table 1. Solid 
lines indicate power regression curves (parameters given in Table 2) for each species.
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Figure 6. (Continued) Relationships between standard length or head length and proportions of length-
measured cephalic characters of three Lateolabrax species. For character abbreviations, see Figure 3 and 
Table 1. Solid lines indicate power regression curves (parameters given in Table 2) for each species.
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also apparent, ranges of proportional CPL of the three species almost overlapped due to 
considerable variation in plot distribution in L. japonicus and L. maculatus (Fig. 4G–I).

Plot separation of first and second dorsal (FDFL and SDFL), caudal (CFL) and 
pectoral (P1FL) fin lengths was also apparent between L. japonicus and L. maculatus 
(Fig. 5E–H), the former showing significant negative allometric growth of each feature, 
whereas the latter exhibited isometric growth for all, except SDFL (Table 3). Proportions 
in the former were distinctively greater than in the latter in the smaller size class (< ca. 
200 mm SL), although plots of the two species overlapped in the larger size class (> ca. 
200 mm SL), since fin length proportions decreased and did not change with growth, 
respectively (Fig. 5E, G, H). Such proportional differences in fin length in the smaller 
size class between the two species were clearly apparent from photographs (Fig. 1A, C).

Upward plot separation of L. latus from the other two species was prominent for 
SNL and upper and lower jaw lengths (UJL and LJL), there being almost no overlap 
with L. maculatus and only modest overlap with L. japonicus (Fig. 6A, B, M–P). Plots 
of OD for L. latus were similarly upwardly separated from those of the other two 
species (Fig. 6C, D), especially in the HL-based graph (Fig. 6D). Post-orbital length 
(POL) plots for L. latus were shifted downward from those of the other two species 
(Fig. 6K, L), plot separation being more prominent in the HL-based graph (Fig. 6L).

On the other hand, plot separation between L. japonicus and L. maculatus was 
prominent for SNL, POPW and POL (Fig. 6A, B, I–L). SNL plots for the two spe-
cies overlapped in the smaller size class (< ca. 200 mm SL), subsequently progres-
sively separating with growth due to the proportional SNL of L. maculatus decreasing 
with growth (negative allometry), to a border level of ca. 7.7% (Fig. 6A) in the larger 

Figure 7. Relationships between standard length (SL) and pectoral scaly area length (PSAL) proportions 
for Lateolabrax japonicus and L. maculatus.
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size class (> ca. 200 mm SL). This phenomenon was more apparent in the HL-based 
relationship because proportional SNL in L. japonicus increased with growth (posi-
tive allometry) (Fig. 6B, Table 3), unlike that for the SL-based relationship (isomet-
ric growth) (Fig. 6A, Table 3). Similar patterns were observed for POL, plots of the 
two species overlapping in the smaller size class (< ca. 200 mm SL), but subsequently 
separating to a certain extent with growth due to a proportional POL increase in L. 
maculatus (positive allometry) (Fig. 6K, L). In contrast, POPW plots of the two species 
were completely separated from each other in the smaller size class (< ca. 200 mm SL), 
having a border level of ca. 7.5%, but progressively overlapped with growth due to the 
proportional POPW of L. japonicus and L. maculatus increasing and decreasing with 
growth, respectively (Fig. 6I, J).

POPW proportional to SNL is shown graphically in Figure 8. The SL–POPW / 
SNL regressions were positively allometric for L. japonicus and L. latus, and isometric for 
L. maculatus (Table 3). Plots for L. japonicus and L. maculatus were separated from each 
other almost entirely throughout all size ranges (border level 90%), following a slight 
plot overlap at ca. 100 mm SL (Fig. 8). In addition, plots for L. latus were displaced well 
downward from the other two species, despite some overlap with L. japonicus (Fig. 8).

Meristic characters

The t tests of regressions between SL and meristic counts (null hypothesis, slope = 0) proved 
significant for scales on (LLS) and above the lateral line (SAL) in L. japonicus, and scales 
below the lateral line (SBL) and gill raker counts [lower limb and total (LGR and TGR, 
respectively)] in L. maculatus (Table 4). Whereas SAL counts in L. japonicus tended to 
decrease with growth (Fig. 9), having negative slope values (Table 4), the remaining charac-
ters tended to increase (Fig. 9, Table 4). No significant differences in any meristic characters 
were found in L. latus (Table 4), indicating that none changed with growth in that species.

Figure 10 shows multiple specific frequency histograms for all meristic characters, 
L. latus clearly differing from the other two species in dorsal (DFR) and anal fin ray 
(AFR) counts (there being only slight range overlaps), as well as in pectoral fin ray 
(P1FR) and SBL counts, again with some range overlaps. Notably, DFRs (14) in L. 
latus had only a 7.4% overlap of the ranges of the other two species, the latter differ-
ing significantly in vertebral counts [caudal and total (CV and TV, respectively)] and 
ranges of LLS, LGR and TGR. However, no species had a meristic character count 
range that was entirely separated from those of the other species.

Spots / dots on lateral body region

Some examples of L. japonicus and L. latus had small and fine dots, respectively, on the 
lateral body region (Fig. 2A, C), whereas L. maculatus usually had many clear black 
spots (Fig. 2B). In both of the former, dots appeared to be limited to some smaller 
specimens (Fig. 11A, C), the maximum sizes of specimens with dots being 260.6 mm 
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SL (BSKU 100765) and 254.8 mm SL (KAUM–I. 66393), respectively. The t tests 
indicated significant regressions between SL and dot counts for the two species (null 
hypothesis, slope = 0 rejected), both indicating negative correlations (minus slope val-
ues) (Fig. 11A, C, Table 4). The proportions of dotted specimens of the total material 
examined were 35.6% and 46.3% (51.9 and 60.0% for specimens <250 mm SL) in L. 
japonicus and L. latus, respectively. In L. maculatus, spot counts were typically abun-
dant (ca. 40 on average), but variable (absent in 4.9% of specimens) (Fig. 11B) and 
not related to body size, a t test (null hypothesis, slope = 0) indicating no significant 
regression between SL and spot counts (Table 4).

Squamation on dorsal head region

Post-juvenile specimens (> ca. 70 mm SL) of the three Lateolabrax species had a pair of 
scale rows (dorsocephalic scale rows, DSRs) extending forward from the inter-orbital 
area, which was densely covered with fine scales (Fig. 12). DSRs in L. japonicus and 
L. latus were well developed distally, with anterior edges always beyond the anterior 
nostril position (ANP) (Fig. 12A, B, E, F), and almost reaching the upper lip in large 
specimens of L. latus (Fig. 12F). On the other hand, DSRs in small specimens of L. 

Figure 8. Relationships between standard length and (post-orbital preopercular width) / (snout length) 
proportions of three Lateolabrax species. Solid lines indicate power regression curves (parameters given in 
Table 2) for each species.
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Figure 9. Relationships between standard length and some meristic characters which exhibited growth-
related changes in some Lateolabrax species. For character abbreviations, see Figure 3 and Table 1. Solid 
lines indicate linear regressions (parameters given in Table 4).
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Figure 10. Histograms of meristic characters of three Lateolabrax species. For character abbreviations, see 
Figure 3 and Table 1. Vertical axes indicate frequencies (%). 

maculatus were almost entirely restricted to the inter-orbital region, not extending be-
yond ANPs (Fig. 12C), although gradual development with growth resulted in DSRs 
extending beyond the ANP in specimens > ca. 150 mm SL (Fig. 12D).
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Figure 11. Relationships between standard length and dot / spot counts on lateral body regions of Lateo-
labrax japonicus (A), L. maculatus (B) and L. latus (C). Solid lines indicate linear regressions (parameters 
given in Table 4).

Squamation on ventral head region

Some individuals of the three Lateolabrax species had a pair of ventromandibular scale rows 
(VSRs), VSR status by body size being summarized in Table 5. In L. japonicus, although 
VSRs were entirely absent in specimens ≤ 100 mm SL, a few ca. 150 mm SL had vestigial 
VSRs. Subsequently, the proportion of specimens with VSRs gradually increased with 
growth, those lacking anterior and posterior VSRs comprising 25.0% and 0%, respective-
ly, of the largest size class (> 400 mm SL). VSRs were entirely absent in L. maculatus speci-
mens < 200 mm SL, appearing in a few just over 200 mm SL. Subsequently, the propor-
tion of specimens with VSRs gradually increased with growth, those without anterior and 
posterior VSRs comprising 36.4% and 0%, respectively, of the largest size class (> 400 mm 
SL). Although VSRs were absent in most L. latus specimens ≤ 100 mm SL, a few over 90 
mm SL had incipient or established VSRs. Subsequently, the proportion of specimens with 
VSRs rapidly increased with growth, including most up to 300 mm SL and all > 300 mm 
SL. Notably, 100–200 mm SL specimens with VSRs showed greater development of the 
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anterior portion, contrary to the developmental pattern displayed by the other two species. 
The prominence of VSR appearance was ranked: 1 L. latus, 2 L. japonicus, 3 L. maculatus.

Morphology of first anal pterygiophore

All three Lateolabrax species had a well-developed first anal pterygiophore (FAP), 
which comprised a short thin plate-like anterior part and a long thick spiny posterior 
part (Fig. 13). In L. japonicus, although the FAPs were straight in small specimens (< 
ca. 90 mm SL) (Fig. 13A), they became modestly arched in larger specimens (Fig. 
13B–D), suggesting a growth-related morphological change. In contrast, the FAPs in 
L. maculatus remained straight (morphologically stable) regardless of body size (Fig. 
13E–H). In L. latus, on the other hand, although the FAPs were straight in some 
specimens (Fig. 13I, K), they were slightly arched distally in others (Fig. 13J, L), thus 
showing neither growth-related morphological change nor morphological stability. As 
such, relationships between body size and FAP morphology were specifically unique.

Statistical differences

Analyses of covariance (ANCOVA) for regressions of logarithm-transformed length-
measured characters by pairwise comparisons for the three Lateolabrax species indi-

Table 5. Frequencies (%) of ventromandibular scale row status in three Lateolabrax species.

SL range (mm) Anterior part Posterior part
Present Vestigial Absent Present Vestigial Absent

Lateolabrax japonicus
≤100 0.0 0.0 100.0 0.0 0.0 100.0 
100–200 0.0 14.3 85.7 10.7 21.4 67.9 
200–300 5.0 25.0 70.0 35.0 30.0 35.0 
300–400 5.3 26.3 68.4 31.6 57.9 10.5 
>400 25.0 50.0 25.0 37.5 62.5 0.0 

Lateolabrax maculatus
≤100 0.0 0.0 100.0 0.0 0.0 100.0 
100–200 0.0 0.0 100.0 0.0 0.0 100.0 
200–300 0.0 18.2 81.8 22.7 54.5 22.7 
300–400 5.6 55.6 38.9 55.6 27.8 16.7 
>400 12.1 51.5 36.4 84.8 15.2 0.0 

Lateolabrax latus
≤100 0.0 13.3 86.7 6.7 13.3 80.0 
100–200 70.5 18.0 11.5 49.2 19.7 31.1 
200–300 95.1 4.9 0.0 97.6 2.4 0.0 
300–400 100.0 0.0 0.0 100.0 0.0 0.0 
>400 100.0 0.0 0.0 100.0 0.0 0.0 
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Figure 12. Squamation on dorsal head regions of Lateolabrax japonicus (A, B), L. maculatus 
(C, D) and L.  latus (E, F). Thick arrows indicate anterior nostrils, thin arrows indicate anterior edges 
of dorsocephalic scale rows. A KAUM–I. 93435 (137.0 mm SL) B BSKU 100803 (265.2 mm SL) 
C uncatalogued specimen (104.9 mm SL) D BSKU 100773 (254.2 mm SL) E KAUM–I. 39058 (114.2 
mm SL) F KPM-NI 24255 (240.1 mm SL).

cated significant differences in the slopes or intercepts of all such characters (Table 6). 
In general, significance (t values) between L. japonicus and L. latus, and L. maculatus 
and L. latus were greater than those between L. japonicus and L. maculatus, suggesting 
that L. latus exhibited greater morphological differences from the other two species 
(Table 6). High significance levels between the species were apparent for the SNL–
POPW relationship (t values for intercepts ca. 28–44), in which the scatter plots were 
almost entirely separated from one another (Fig. 8). The next highest significance levels 
between the species were for vertical body dimensions (BD, CPD and CPAD), which 
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Figure 13. Radiographs of first anal pterygiophores in Lateolabrax japonicus (A–D), L. maculatus (E–
H) and L. latus (I–L), according to body size by species. A KAUM–I. 82683 (65.6 mm SL) B BSKU 
100883 (96.8 mm SL) C BSKU 100756 (252.4 mm SL) D KPM-NI 9697 (317.0 mm SL) E uncatalogued 
specimen (58.4 mm SL) F TKPM-P 1655-6 (95.2 mm SL) G BSKU 100771 (250.8 mm SL) H KPM-NI 
9686 (364.0 mm SL) I KAUM–I. 1895-4 (70.3 mm SL) J KAUM–I. 64737 (SL 94.2 mm) K KPM-NI 
24650 (265.4 mm SL) L KAUM–I. 57963 (342.0 mm SL).

also exhibited considerable plot separation from one another (Fig. 5) (t values of ca. 10 
for slopes between L. japonicus and L. maculatus and between L. japonicus and L. latus 
and ca. 27–37 for intercepts between L. maculatus and L. latus) (Table 6).

Although the Mann-Whitney U tests for pairwise comparisons of meristic charac-
ters of the three species found significant differences in many, significance was not ap-
parent for others, including counts of vertical fin rays [dorsal fin spines (DFSs), DFRs 
and AFRs] between L. japonicus and L. maculatus, and vertebrae [abdominal vertebrae 
(AVe), CVe and TVe] between L. japonicus and L. latus (Table 7).
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Table 6. Results of analysis of covariance (ANCOVA) (t test) to compare regression parameters of loga-
rithm-transformed length-measured characters between three Lateolabrax species.

Regression L. japonicus × L. maculatus L. japonicus × L. latus L. maculatus × L. latus
Slope Intercept Slope Intercept Slope Intercept

ln SL–ln PAL 7.00*** – 1.03 6.61*** 7.08*** –
ln SL–ln BD 9.03*** – 8.16*** – 0.91 26.57***
ln SL–ln BWT 2.34 6.92*** 0.22 2.58* 2.22 9.23***
ln SL–ln CPD 9.51*** – 10.97*** – 3.26 26.59***
ln SL–ln CPL 2.81 2.97* 0.29 9.35*** 2.69 11.00***
ln SL–ln CPAD 9.41*** – 10.18*** – 2.91 36.84***
ln SL–ln PDL 2.22 11.60*** 0.25 10.07*** 1.83 21.83***
ln SL–ln FDFL 5.75*** – 0.30 5.13*** 5.99*** –
ln SL–ln SDFL 8.52*** – 6.02*** – 1.23 18.51***
ln SL–ln CFL 6.05*** – 3.45* – 1.86 16.84***
ln SL–ln CFND 3.99** – 3.49* – 7.37*** –
ln SL–ln AFL 6.28*** – 2.88 12.25*** 2.25 11.23***
ln SL–ln P1FL 6.17*** – 4.24** – 1.26 12.21***
ln SL–ln P2FL 3.07 9.89*** 5.18*** – 2.96 16.28***
ln SL–ln HL 3.45* – 1.82 5.42*** 5.30*** –
ln SL–ln SNL 9.97*** – 3.68* – 5.53*** –
ln SL–ln OD 5.26*** – 4.66*** – 0.26 28.99***
ln SL–ln IOW 4.29** 0.73 10.95*** 4.27** –
ln SL–ln SOW 2.64 7.96*** 0.08 5.20*** 2.15 12.35***
ln SL–ln POPW 10.37*** – 3.61* – 4.15** –
ln SL–ln POL 5.43*** – 3.90** – 10.54*** –
ln SL–ln UJL 3.42* – 1.44 25.97*** 1.55 26.46***
ln SL–ln LJL 4.05** – 0.79 22.93*** 3.76* –
ln SNL–ln POPW 0.48 33.61*** 0.76 27.56*** 0.18 44.42***
ln HL–ln SNL 11.07*** – 1.82 23.86*** 7.76*** –
ln HL–ln OD 4.84*** – 5.29*** – 1.02 28.82***
ln HL–ln IOW 5.47*** – 1.52 7.78*** 5.92*** –
ln HL–ln SOW 1.95 9.36*** 0.46 6.42*** 1.14 15.08***
ln HL–ln POPW 12.17*** – 2.40 2.74* 6.34*** –
ln HL–ln POL 4.04** – 4.15** – 7.64*** –
ln HL–ln UJL 6.89*** – 0.38 22.63*** 6.19*** –
ln HL–ln LJL 7.92*** – 2.84 3.37** 9.71*** –

Numbers indicate t values given by ANCOVA. Asterisks indicate significance of t vales; single, double and 
triple asterisks indicate 5%, 1% and 0.1% levels, respectively, after Holm-Bonferroni correction. Bars indi-
cate that calculation was not demonstrated because significance was recognized for the slope and ANCOVA 
was therein terminated.

Table 7. Results of the Mann-Whitney U test (z values) to compare meristic counts between three Lateo-
labrax species.

Character L. japonicus × L. maculatus L. japonicus × L. latus L. maculatus × L. latus
DFS counts 0.37 3.00* 3.64**
DFR counts 0.12 16.22*** 15.60***
AFS counts 0.00 1.29 0.64 
AFR counts 1.39 14.64*** 14.11***
P1FR counts 5.69*** 10.62*** 5.77***
LLS counts 11.53*** 13.74*** 0.89 
SAL counts 2.04 11.50*** 11.47***
SBL counts 3.57** 14.43*** 13.88***
UGR counts 14.31*** 14.58*** 0.65 
LGR counts 15.45*** 8.83*** 11.76***
TGR counts 16.54*** 15.13*** 7.81***
AV counts 4.23*** 0.64 4.15***
CV counts 13.58*** 0.01 13.45***
TV counts 14.82*** 0.73 14.09***

Asterisks indicate significance of z vales; single, double and triple asterisks indicate 5%, 1% and 0.1% 
levels, respectively, after Holm-Bonferroni correction.
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Table 8. Standard errors for morphological character regressions of three Lateolabrax species.

Regression L. japonicus L. maculatus L. latus
ln SL–ln PAL 0.024 0.029 0.015 
ln SL–ln BD 0.057 0.050 0.043 
ln SL–ln BWT 0.080 0.064 0.077 
ln SL–ln CPD 0.051 0.046 0.036 
ln SL–ln CPL 0.055 0.060 0.044 
ln SL–ln CPAD 0.055 0.044 0.031 
ln SL–ln PDL 0.033 0.033 0.020 
ln SL–ln FDFL 0.103 0.084 0.068 
ln SL–ln SDFL 0.094 0.096 0.084 
ln SL–ln CFL 0.085 0.095 0.068 
ln SL–ln CFND 0.273 0.299 0.119 
ln SL–ln AFL 0.079 0.079 0.074 
ln SL–ln P1FL 0.056 0.063 0.045 
ln SL–ln P2FL 0.058 0.053 0.054 
ln SL–ln HL 0.034 0.031 0.022 
ln SL–ln SNL 0.044 0.067 0.027 
ln SL–ln OD 0.074 0.087 0.053 
ln SL–ln IOW 0.066 0.059 0.065 
ln SL–ln SOW 0.160 0.155 0.140 
ln SL–ln POPW 0.050 0.058 0.060 
ln SL–ln POL 0.057 0.044 0.035 
ln SL–ln UJL 0.035 0.046 0.029 
ln SL–ln LJL 0.034 0.046 0.033 
ln SNL–ln POPW 0.052 0.097 0.068 
SL–DFS counts 0.515 0.424 0.299 
SL–DFR counts 0.649 0.607 0.420 
SL–AFS counts 0.000 0.109 0.086 
SL–AFR counts 0.626 0.629 0.581 
SL–P1FR counts 0.624 0.589 0.432 
SL–LLS counts 3.828 3.725 1.623 
SL–SAL counts 1.117 0.614 0.837 
SL–SBL counts 1.394 1.516 1.009 
SL–UGR counts 1.020 1.131 0.659 
SL–LGR counts 1.073 0.804 0.644 
SL–TGR counts 1.366 1.507 0.963 
SL–AV counts 0.155 0.279 0.191 
SL–CV counts 0.420 0.370 0.336 
SL–TV counts 0.426 0.414 0.333 

Standard errors (SEs) for regression lines between logarithm-transformed SL and 
length-measured characters, and between SL and meristic characters are summarized 
in Table 8. For many characters, L. latus had the lowest SE values among the three spe-
cies, followed by L. japonicus (Table 8). In general, degrees of SE could be ranked: 1 L. 
maculatus, 2 L. japonicus, 3 L. latus.
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Discussion

Growth-related morphological changes

The present study revealed that most body proportions of the three Lateolabrax spe-
cies change with growth (Table 3). Although such proportional changes with growth 
have been reported for a number of fishes, including two black-and-white snappers of 
the genus Macolor (Kishimoto et al. 1987), Spanish mackerel, Scomberomorus nipho-
nius (Yokogawa 1996), giraffe catfish, Auchenoglanis occidentalis (Chioma et al. 2007), 
red porgy, Pagrus pagrus (Minos et al. 2008), bluegill, Lepomis macrochirus (Yokogawa 
2013a; Bell and Jacquemin 2017), largemouth bass, Micropterus salmoides (Yokogawa 
2014), two flatfishes of the genus Pleuronichthys (Yokogawa 2015), and some sea ban-
jofishes of the genus Banjos (Matsunuma and Motomura 2017), such have been fre-
quently neglected, particularly in taxonomic studies.

On the other hand, taxonomic and related literature on Lateolabrax have commonly 
noted the diagnostic importance of ranges and / or averages of body proportions (e.g., 
Katayama 1960a, b; Yokogawa and Seki 1995; Kim and Jun 1997; Yamada et al. 2007; 
Murase et al. 2012), although such, being commonly subject to allometric growth, are 
largely biased by the body sizes of specimens examined. For example, Figure 14 summa-
rizes proportional body depth (BD) and orbital diameter (OD) ranges previously report-
ed for L. japonicus and L. maculatus, respectively, compared with the present study. The 
smaller proportional ranges previously reported were all less than those presented here, 
representing many variously-sized specimens, suggesting that the former were based on 
relatively few specimens. Also, the variations in published proportional ranges, in some 
cases showing no range overlap (e.g., Fig. 14J vs K; L vs M), suggested differing body size 
ranges of the material studied. Although such proportional data has often been included 
in taxonomic diagnoses, the inherent inconsistencies have made specimen comparisons 
and specific identifications problematic. In fact, the use of proportions subject to iso-
metric growth in species diagnoses is a legitimate procedure, although such propor-
tions are rare in both Lateolabrax species (Table 3) and the other species listed above. 
However, the use of non-isometric proportional data, traditionally under the premise of 
(presumed) isometric growth, in species diagnoses is inappropriate.

Differing growth-related proportional change patterns in the three Lateolabrax spe-
cies include pre-anus length (PAL) (Fig. 4A–C, Table 3) and post-orbital preopercular 
width (POPW) (Fig. 6K, Table 3). Similarly, the very similar East Asian frog flounders 
Pleuronichthys lighti and P. cornutus have the caudal fin, and dorsal and anal fins short-
ened with growth in the former and latter, respectively (Yokogawa 2015), indicating 
the potential for differing specific patterns, even between closely related species. Com-
parisons of black bass congeners (genus Micropterus) have shown the upper jaw length 
proportion to increase with growth in M. salmoides (Yokogawa 2014), while remain-
ing stable in M. dolomieu (Senou 2002). Although the three Lateolabrax species share a 
similar “bass shape” with M. salmoides, the upper and lower jaw length (UJL and LJL) 
/ standard length (SL) proportions decreased with growth in the former (Fig. 6M, O, 
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Table 3), unlike the latter (Yokogawa 2014). Also, it is notable that BD and head length 
(HL) proportions of the three Lateolabrax species decreased with growth (Fig. 5A, Table 
3), in contrast to the centrarchids M. salmoides and L. macrochirus (Yokogawa 2013a), 
in which BD and HL increased with growth (Yokogawa 2014). This suggests that some 
phylogenetic factors may be responsible for growth-related proportional change patterns.

As in many other fishes (Okiyama 1988), BD of L. japonicus increased relatively 
with growth during the larval stage (from 13–16 to 26–30% of SL) until ca. 25 mm 
SL, thereafter being “stable,” according to Tanaka and Matsumiya (1982) and Tamura 
et al. (2013), although subsequently decreasing from ca. 30 to ca. 21% of SL (Fig. 5A). 
Similarly, HL of L. japonicus and L. latus increased relatively with growth during the 
larval stage (Kinoshita 1988), in contrast to the growth-related acute decrement of HL 
during the juvenile and adult stages (Fig. 4S, U). During the larval stage of L. japonicus 
and L. latus (11–19 mm SL), the greater HL / SL proportion of the latter compared 
with the former in same-sized larvae, enabled ready distinction of the two species from 
each other (Kinoshita 1988). Although a similar distinction was observed in juve-
nile fishes (ca. 40–100 mm SL), very similar growth-related HL decreasing patterns 
between the two species in the adult stage (Fig. 4S, U) made it clear that Kinoshita’s 
(1988) criterion for separation was applicable only for larvae of the two species.

Growth-related proportional change patterns of length-measured cephalic char-
acters (based on SL and HL) were sometimes inconsistent in L. japonicus and L. latus 
(Fig. 6, Table 3), possibly due to HL being negatively allometric with SL (decreasing 
with growth) (Fig. 4S, U, Table 3) and paralleling or exceeding the change rate of some 
cephalic characters, resulting in negative allometry and isometry in SL-based relation-
ships appearing as isometry and positive allometry in the HL-based ones, respectively. 
However, OD was negatively allometric relative to both SL and HL (Fig. 6C, D, Table 
3), due to their degree of allometry relative to SL exceeding that of HL to SL. On the 
other hand, the consistency of the growth patterns between the two-way relationships 
in L. maculatus (Fig. 6A–P, Table 3) may be due to the growth-related decreasing rate 
of proportional HL being less apparent in this species (Fig. 4T) than in the others (Fig. 
4S, U) and therefore less influential on the relative growth of the cephalic characters. 
Although HL-based proportions of cephalic characters have been frequently used for 
cephalic characters in taxonomic studies on Lateolabrax (e.g., literature cited in Fig. 
14), it should be recognized that the base dimension (HL) is not a stable character.

The proportional values (percentages) of proportions subject to allometric growth 
are correlated with the base dimension (e.g., SL and HL). In Figure 14, because both 
BD and OD were negatively allometric in both L. japonicus and L. maculatus (Figs 5A, 
6D, Table 3), high and low proportional values are regarded as representing small and 
large size specimens, respectively. McClelland (1844) noted in the original description 
of L. maculatus (as Holocentrum maculatum) that the eyes were large, indicating that his 
description was based on a small specimen(s). The OD / SL proportion taken from his 
specimen illustration (pl. 21, fig. 1) was 6.4%, whereas the SL calculated by the inverse 
function of the SL–OD / SL regression (Fig. 6C, Table 2) was ca. 184 mm, agreeing 
with the above suggestion. This suggests that length-measured characters (including 
OD) subject to allometric growth can be utilized for estimation of body size.
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Hirota et al. (1999) compared their morphometric data for L. maculatus (as Lateo-
labrax sp.) from Kanto region, Japan [n = 6, 151–451 (average 298.3) mm SL] with 
those examined by Yokogawa and Seki (1995) [n = 62, 76.3–121.8 (average 97.6) mm 
SL], recording lower OD proportions (% of HL) for their specimens [18.5–25.3 (aver-
age 20.8) vs 21.3–30.5 (average 24.8)] (Hirota et al. 1999, table 1). Such inconsistency 
was clearly due to body size differences of the specimens examined in the two studies, 
i.e., the larger specimens in the former study provided lower OD proportions (Fig. 
6D). Nevertheless, Hirota et al. (1999) suggested that the different OD proportions 
resulted from Yokogawa and Seki (1995) having measured eye diameter rather than 
OD, which was incorrect. Kim and Jun (1997) examined the morphology of Korean 

Figure 14. Proportional range comparisons of head length [HL, % of standard length (SL)] in Lateolabrax 
japonicus (upper graph, axis labelled BD / SL) and orbital diameter (OD, % of HL) in L. maculatus (lower 
graph, axis labelled OD / HL) in the present study and previous literature. Data based on A present 
study B Katayama (1960a) C Lindberg and Krasyukova (1969) D Chyung (1977) E Yokogawa (1995) 
F Nozaka (1995) G Yamada et al. (2007) H Bae et al. (2016) I Chu et al. (1962) J Chu (1985) K 
Chen (1987) L Zheng (1987) M Chen et al. (1990) N Mao et al. (1991) O Gao (1991) P Cheng and 
Zhou (1997). 1 Proportional percentages were calculated as reciprocal numbers from proportional data 
(multiple numbers) therein given. 2 Despite descriptions as “L. japonicus,” synonymized as L. maculatus 
by Yokogawa (2013b). 3 Provisionally referred to as Lateolabrax sp., which was identical with L. maculatus.
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L. japonicus specimens from Kohung [n = 69, 77.4–353.0 (average 175.0) mm SL] and 
Puan [n = 6, 465.0–640.0 (average 582.0) mm SL], giving similar average proportional 
values (% of SL) for BD (25.8 and 24.3), caudal peduncle depth (CPD) (31.6 and 
32.1), HL (31.4 and 31.8) and OD (19.7 and 19.8) for the respective lots (Kim and 
Jun 1997, table 1). However, those degrees of proportional similarity between such 
different-sized specimens is extremely unlikely due to the highly negatively allometric 
proportions of those characters in this species (Figs 5A, B, 4S, 6C, Table 3).

Because most of the length-measured characters of the three Lateolabrax species 
were subject to allometric growth (Table 3), raw dimension measurement data were 
logarithm-transformed in order to transform the data distribution to be symmetric 
for statistical analysis, including canonical discriminant analysis (Bae et al. 2016) and 
analysis of covariance (ANCOVA), performed in the present study. Although Wang 
et al. (2016) provided multiple-regression analyses between body weight (BW) and 
some body dimensions for L. maculatus using raw data, the approach was problematic, 
because the raw dimension data (including BW) needed to have been logarithm-trans-
formed before analysis, as done for M. salmoides by Yokogawa (2014).

Counts of pored scales on the lateral line (LLSs) and scales above the lateral line 
(SALs) tended to increase and decrease with growth, respectively, in L. japonicus (Fig. 
9A, D, Table 4), those of scales below the lateral line (SBLs) and lower-limb and total 
gill rakers (LGRs and TGRs) tending to increase with growth in L. maculatus (Fig. 9H, 
K, N, Table 4). By contrast, overall meristic counts (except dots) did not change with 
growth in L. latus (Table 4), implying some phylogenetic determination of growth-
related meristic characters, as in the case of PSAL change patterns. Although the mech-
anism by which such counts increase or decrease with growth is uncertain, an SBL 
count increase with growth has been reported for L. macrochirus (Yokogawa 2013a), 
M. salmoides (Yokogawa 2014) and P. cornutus, in which gill raker numbers also in-
creased with growth (Yokogawa 2015), suggesting that such phenomena are not so rare 
in fishes. Although meristic characters have been frequently used as important keys in 
taxonomic studies on the premise that they are stable at any body size, the potential for 
growth-related changes should be considered and actively assessed in taxonomic studies.

Nozaka (1995) examined the morphology of L. japonicus fingerlings from the 
eastern Seto Inland Sea (n = 112, average 141.1 mm SL), comparing his data with 
Yokogawa and Seki (1995) [n = 65, 122.8–417.0 (average 301.4) mm SL] and not-
ing differences in LLS and gill raker numbers (average LLSs = 76.4 and 83.1, average 
TGRs = 24.9 and 27.2, in the former and latter, respectively). Inconsistency in LLS 
counts may have resulted from body size differences in specimens examined, larger 
specimens resulting in higher LLS counts (Fig. 9A, Table 4). On the other hand, the 
difference in gill raker counts, which do not change with growth in L. japonicus (Fig. 
9J, M, Table 4), may have resulted from the non-inclusion of rudiments located on 
the gill arch edges, since low gill raker counts as reported by Nozaka (1995) have 
not been found in the many other L. japonicus samples examined from around Japan 
(Yokogawa, unpublished data).
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The growth-related status of dots / spots on the lateral body region also varied 
among the three Lateolabrax species. In L. japonicus and L. latus, although dots ap-
peared in some smaller specimens (up to 260.6 and 254.8 mm SL, respectively), they 
disappeared with growth (Fig. 11A, C), a well-known phenomenon in the former 
species (e.g., Katayama 1960a, 1960b; Yokogawa 1995; Kim and Jun 1997; Kim et al. 
2004; Ishikawa and Senou 2010), but barely noted in taxonomic descriptions of the 
latter species, other than Katayama (1957, 1960a) and Murase et al. (2012). This may 
have been due to such dots being so fine or faint (Fig. 2C) that they were overlooked, 
or because descriptions were based only on large specimens. However, spot counts 
were not related to body size in L. maculatus, which typically had many clear spots in 
both large and small specimens (Fig. 2B, Table 4). Although many taxonomic descrip-
tions of this species have incorrectly noted that spot counts decreased gradually with 
growth (Tchang et al. 1955; Chu et al. 1962, 1963; Chu 1985; Chen 1987; Chen et 
al. 1990; Li and Zhang 1991; Feng and Jiang 1998; Chen and Fang 1999; Wang et al. 
2001; Zhao and Zhong 2006), such may have been based only on subjective observa-
tions without statistical analysis, unlike the present study. On the other hand, large 
individuals of this species tend to have smaller and more rounded (non-jagged) spots 
than in small individuals [e.g., Katayama 1984, plate 108-I, 52 cm, as a variation of L. 
japonicus; Yokogawa et al. 1996, fig. 1, 600 mm in total length (TL), as L. sp.], which 
may have provided some grounds for the above views. Descriptions of L. maculatus 
(as L. japonicus) from Hong Kong noted that in young specimens, spots were larger 
and fewer in number, whereas with advancing fish age the large spots become smaller 
and more numerous (Chan and Tang 1968; Sadovy and Cornish 2000). However, 
although growth-related spot size decrement is correct, growth-related spot number 
increment is not.

The proportional growth-related change pattern of pectoral scaly area length 
(PSAL) in L. latus closely fitted a power regression (Fig. 4X, Table 2). However, simple 
patterned regressions could not be applied to L. japonicus and L. maculatus since they 
exhibited inverted V-shaped changes (Fig. 4V, W). This may reflect the phylogenetic 
status of the three species, L. latus being genetically further from the other two species 
(Yokogawa 1998; Song et al. 2008; Shan et al. 2016). A similar growth-related change 
pattern was also observed for the maximum blotch diameter on the dorsal fin (% of SL) 
in Banjos banjos banjos (Matsunuma and Motomura 2017, fig. 8d), inferring that such 
non-linear patterns arise in some characters in which dimensions are not determined 
by internal bony structure, rather than in normal body portions. Although PSAL, as 
defined by Yokogawa and Seki (1995) (see above), was examined in L. japonicus and L. 
maculatus, overall growth-related change patterns were limitedly revealed for both at 
that time due to size-biased samples. Accordingly, Nozaka’s (1995) examination of L. 
japonicus fingerlings (see above) resulted in a much smaller proportional PSAL range 
and average than those given by Yokogawa and Seki (1995) for larger examples of that 
species. Such disagreement was regarded as arising from body size differences in the 
material specimens between the two studies.
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Inter-specific differences and taxonomy

Lateolabrax latus is typically characterized by a deeper body, represented by BD and 
CPD. However, neither character provides unequivocal identification due to the range 
overlap for proportional BD and CPD between L. latus and L. japonicus (Katayama 
1957, 1965). In the present study, although the scatter plots for proportional BD and 
CPD of L. latus were well separated from those of the other two species, some overlap 
occurred in the smaller size class (< ca. 200 mm SL) (Fig. 5A, B). However, the newly 
defined dimension caudal peduncle anterior depth (CPAD), located between BD and 
CPD (Fig. 3), is suitable for distinguishing L. latus from the other two species, there 
being no plot overlap with the latter (border level 15%) (Fig. 5C).

The CPAD proportion may be a useful feature for specific identification, since it 
can also be determined from illustrations and photographs of Lateolabrax species. For 
instance, an illustration of “L. japonicus (as Perca-labrax japonicus)” in Fauna Japonica 
(Temminck and Schlegel 1846, pl. II, fig. 1, drawn by Keiga Kawahara) may, in fact, be 
L. latus, because the proportional CPAD (% of SL) measured from the illustration was 
15.4%, falling within the range of the latter (Fig. 5C). Because the SL of the illustrated 
specimen estimated by the earlier-described procedure (use of an inverse function of 
SL–OD / SL regression for L. latus) was ca. 336 mm, proportional BD and CPD (% of 
SL), which had no plot overlap with the larger size classes (>200 mm SL) of the other 
two Lateolabrax species, may also be used for specific identification. The proportional 
BD and CPD of the illustrated specimen were 29.3 and 12.1%, respectively, cor-
responding with the ranges of L. latus (Fig. 5A, B). Although Katayama (1960b) also 
recognized the greater BD and CPD proportions of Temminck and Schlegel’s (1846) 
specimen, he identified it as L. japonicus because the dorsal and anal fin ray counts 
(xiv, 13 and iii, 8, respectively) corresponded to the ranges for L. japonicus. In fact, 
he may have counted 12 spines in the first dorsal fin, and 2 spines plus 13 rays in the 
second (SDF). However, the SDF should be regarded as comprising 1 spine and 14 
rays, the ray next to the first SDF spine having a distal branch. Specimens examined 
in the present study included 6 L. latus with 14 dorsal fin rays (DFRs) and 8 anal fin 
rays (AFRs), supporting the opinion that Temminck and Schlegel’s (1846) illustration 
was of L. latus. Similarly, illustrations of L. japonicus and L. latus in Katayama (1965, 
figs 520 and 521) should actually be reversed, since their proportional CPAD (% of 
SL) values were 15.1 and 13.5%, respectively, falling within the respective ranges of L. 
latus and L. japonicus.

In addition to caudal peduncle stoutness in L. latus, Hatooka (2000, 2013) pro-
posed peduncle shortness as a diagnostic character of the species. Similarly, Murase 
et al. (2012) recorded proportions of caudal peduncle length (CPL) (% of SL) for L. 
latus (n = 27, 18.7–20.9), L. japonicus (n = 25, 20.0–23.4), and L. maculatus (n = 7, 
20.7–22.3), indicating a clear difference between L. latus and the other two species. 
However, despite the distinctly downward shift in plot distribution in L. latus from the 
other two species found here, the CPL proportion range (n = 136, 18.3–22.7) largely 
overlapped those of L. japonicus (n = 229, 18.5–24.6) and L. maculatus (n = 170, 18.6–
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25.3), owing to considerable variation in plot distribution in the latter two species (Fig. 
4G–I). The disagreement between the above two studies and the present one is likely to 
have resulted from differing numbers of specimens examined. In conclusion, although 
the proportional CPL of L. latus tended to be lower than in the other species, adoption 
of the feature as a diagnostic key for L. latus is problematic.

Caudal fin notch depth (CFND) has been recently proposed as a new character for 
distinguishing L. latus from the other two species, the former having a shallower CFND 
than the others (Hatooka 2000, 2013). However, although growth-related patterns of 
proportional CFND (% of SL) differed from one another among the three species (Fig. 
4J–L) and ANCOVA for the logarithm-transformed regressions indicated significant 
differences of the slopes between any two species (Table 6), the ranges relative to overall 
SL (2.9–7.9, 2.0–8.4 and 1.9–7.4% for L. latus, L. japonicus and L. maculatus, respec-
tively) were similar (Fig. 4J–L) and unable to distinguish between species. In fact, the 
proportional CFND of L. latus decreased acutely with growth, with relatively little vari-
ation owing to high correlation with SL (Fig. 4L, Table 3), being almost stable at low 
values (around 4–5%) in specimens > ca. 200 mm SL (Fig. 4L). In contrast, the other 
two species had highly variable proportional CFND, up to ca. 8% at any body size (Fig. 
4J, K). Therefore, individual specimens of L. japonicus and L. maculatus with greater 
CFND may give the impression that L. latus has a shallower CFND than the others, as 
emphasized by some photographs of L. latus in which the caudal fins are so well opened 
that CFND decreases considerably (nearly truncate) (e.g., Masuda et al. 1975, pl. 42E; 
Ishikawa and Senou 2010; Murase et al. 2012, fig. 2C). It is possible that the caudal 
fin of L. latus may spread more than that of the other two species owing to broader 
membrane between the fin rays (Fig. 1E, F), particularly when fresh (when specimens 
were photographed). Notwithstanding, the results herein clearly indicate that CFND 
is problematic as a key character. Although Shimose et al. (2011) made underwater 
observations of and photographed a single Lateolabrax fish at Ishigaki Island, Okinawa, 
Japan, suggesting it to likely be L. latus based on some visually-recognized features, 
including CFND, the influence of such a key in the popular media is unfortunate.

Among the length-measured cephalic characters of L. latus, plot separation of that 
species from the others was marked for snout length (SNL) (Fig. 6A, B), post-orbital 
length (POL) (Fig. 6K, L), and upper and lower jaw lengths (UJL and LJL) (Fig. 
6M–P). In particular, SNL may be a practical means of distinguishing L. latus from 
the others because plots were vertically separated for both in the SL- and HL-based re-
lationships (border levels ca. 9 and 28%, respectively) (Fig. 6A, B), which were similar 
to Murase et al.’s (2012) results. However, POL may not be practical for identification 
because the plots and vertical axis ranges overlapped considerably with those of L. 
japonicus (Fig. 6K, L). Although Murase et al. (2012) showed an unequivocal differ-
ence in POL (% of SL) between L. latus (n = 27, 14.1–15.8) and the other species [L. 
japonicus (n = 25, 16.1–18.5), L. maculatus (n = 7, 16.4–20.2)], such may have been 
due to the low numbers specimens examined, as in the case of CPL. The fact that SNL 
and POL of L. latus are greater and shorter, respectively, than in the other species infers 
that the eyes of L. latus are located more posteriorly than in the latter.
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The UJL and LJL plots for all three species (SL-based relationships) were well 
clustered around their regression curves (high negative allometry), but could not be 
distinguished from one another vertically (Fig. 6M, O). On the other hand, since the 
UJL and LJL plots of L. latus in the HL-based relationships formed almost horizontal 
clusters, they could be vertically distinguished from those of the other two species 
(border levels of ca. 45 and 49%, respectively) (Fig. 6N, P). Despite Murase et al.’s 
(2012) proposal of some diagnostic characters for L. latus including greater SNL and 
shorter POL, they excluded UJL, despite having measured that dimension. Although 
Hirota et al.’s (1999) (see above) examination of L. maculatus recorded SNL and UJL 
proportions (% of HL) [23.2–30.0 (average 26.3) and 39.4–46.4 (average 42.5), re-
spectively], the maximum values of both fell within the ranges peculiar to L. latus 
(Fig. 6B, N). Assuming correct calculations, their catalogued “L. maculatus” specimens 
(whereabouts unknown) may have included L. latus. This possibility is also suggested 
by their higher counts of DFRs [13–14 (average 13.3)] and AFRs [8–9 (average 8.2)], 
including a small proportion of specimens (n = 6) with minor counts in L. maculatus 
[14 DFRs (16.6%) and 9 AFRs (5.3%)] (Fig. 10B, D).

The original description of L. latus included several diagnostic meristic charac-
ters, including counts of DFRs, AFRs and SBLs (Katayama 1957). In particular, DFR 
numbers =15, considered peculiar to the species, have subsequently been noted as an 
important diagnostic key (Katayama 1960a, 1965, 1984; Masuda et al. 1975; Araga 
1981; Hatooka 1993). However, because some L. latus specimens with 14 DFRs (over-
lapping the ranges of the other two Lateolabrax species) have been recognized (Sakai et 
al. 1998; Hatooka 2000, 2013; Murase et al. 2012), including 7.4% of L. latus speci-
mens in the present study, DFR counts alone cannot absolutely distinguish L. latus 
from the others, although higher DFR counts may be useful (Fig. 10B). In contrast, 
AFR and SBL counts have rarely been adopted as diagnostic for L. latus, inferring that 
the count range overlaps between L. latus and the other two species are problematic 
for specific identification. In the present study, L. latus was well separated from the 
other species by AFRs (Fig. 10D) and DFRs, whereas SBL counts broadly overlapped 
(Fig. 10H). On the other hand, pectoral fin ray (P1FR) counts, which have not been 
emphasized as having taxonomic significance for L. latus, showed a strong modal shift 
between L. latus and L. japonicus (16 and 17, respectively) (Fig. 10E). Although the 
large range overlap of P1FR counts in L. japonicus and L. maculatus preclude their diag-
nostic use, they may be useful in the case of L. latus. For example, the two Lateolabrax 
specimens collected from Tanegashima Island both having 16 P1FRs (Sakai et al. 1998) 
are likely referable to L. latus.

In addition to length-measured and meristic characters in the original description 
of L. latus a further diagnostic feature proposed was the possession of ventromandibu-
lar scale rows (VSRs) (Katayama 1957). Although frequently noted as diagnostic for L. 
latus until recent years (e.g., Katayama 1960a, 1965, 1984; Masuda et al. 1975; Araga 
1981; Hatooka 1993), the possession of such scales has subsequently been omitted 
from keys to the genus Lateolabrax (Hatooka 2000, 2013) owing to the presence of 
VSRs in some specimens of L. japonicus and L. maculatus (Table 5) (Paxton and Hoese 
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1985; Hirota et al. 1999; Kang 2000; Murase et al. 2012). Furthermore, the lack of 
VSRs in some small L. latus (mainly ≤100 mm SL) (Table 5) underlines the unsuit-
ability of this feature as a diagnostic character for L. latus. It was clear in the present 
study that VSRs did not exist in larvae and juveniles of all Lateolabrax species, but first 
appeared in L. latus at ca. 90 mm SL, thereafter rapidly developing with growth until 
present in almost all large individuals. In L. japonicus and L. maculatus, the appear-
ance of VSRs was delayed, beginning from around 150 and 200 mm SL, respectively, 
and thereafter gradually developing with growth, although still absent in some large 
individuals. Such specific differences in squamation development may be common for 
PSAL (Fig. 4X) and dorsocephalic scale rows (DSRs) (Fig. 12), development being 
greatest in L. latus and least in L. maculatus, as indicated by Murase et al. (2012).

The diagnosis accompanying the original description of L. latus included ven-
tral (pelvic fins) generally dusky, unlike in L. japonicus (Katayama 1957), followed 
by Katayama (1965) and Araga (1981). Although such coloring was infrequent in 
preserved L. latus specimens examined here, it has been noted in some large fresh 
adult specimens [e.g., photographs in Araga (1981) and Ishikawa and Senou (2010)]. 
However, non-dusky (pale) pelvic fins have been commonly observed in small L. latus 
(to fingerling size) (Fig. 1E, Murase et al. 2012, fig. 2A, B) and some large fresh condi-
tion specimens (Fig. 1F, Murase et al. 2012, fig. 2C). Possibly based on this supposed 
feature, the English name “blackfin sea bass” has been employed for L. latus (e.g., 
Matsuyama et al. 2002; Arakaki et al. 2014; FishBase 2018), however, such naming is 
not suitable, because it suggests that all fins were black, and many L. latus specimens 
including the large individual (915 mm TL) figured in FishBase (2018) do not have 
dusky (“black”) pelvic fins. Instead, “flat sea bass,” which describes the deeper body, 
a common feature of the species, should be applied for L. latus, following Yokogawa 
and Kishimoto (2012).

Recent keys for identification of L. japonicus and L. maculatus have adopted SNL, 
that of L. maculatus supposedly being relatively shorter than that of the former (Ya-
mada et al. 2007; Hatooka 2000, 2013). However, plots of proportional SNL largely 
overlapped in smaller size classes (< ca. 200 mm SL) of the two species, although plots 
for L. maculatus shifted downward (highly negative allometry) and were clearly sepa-
rated from those of L. japonicus in specimens > ca. 200 mm SL (border levels ca. 7.7% 
and 24% for SL- and HL-based relationships, respectively) (Fig. 6A, B). Accordingly, 
SNL proportions enable separation only of large specimens (> ca. 200 mm SL) of the 
two species; e.g., Wakabayashi and Nakamura’s (2003) L. maculatus specimen (as L. 
sp.) from Shima Peninsula, Japan (381 mm SL) was identifiable by its SNL propor-
tions (7.1 and 22.8% of SL and HL, respectively).

On the other hand, post-orbital preopercular width (POPW) is a notable dimen-
sion, showing a contrasting pattern to SNL, i.e., plots of proportional POPW in 
small (< 200 mm SL) L. maculatus shifted upward and separated completely from 
those of similar sized L. japonicus (border levels ca. 7.5% and 23% for SL- and HL-
based relationships, respectively), although larger specimens (> 200 mm SL) of the 
two species had some overlap due to the relative decrease of POPW with growth 
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(highly negative allometry) in the former (Fig. 6I, J). Thus, a combination of SNL 
and POPW proportions [for small (< ca. 200 mm SL) and large (> ca. 200 mm SL) 
specimens, respectively] enables the two species to be separated unequivocally for 
their entire size range. Furthermore, the POPW / SNL proportion, which largely 
separates the two species throughout their entire size range (border level 90%) (Fig. 
8), can also be adopted.

Proportional differences between L. japonicus and L. maculatus were also apparent 
in many of the fin lengths (first and second dorsal, caudal and pectoral), proportions 
of the former being distinctly greater than those of the latter in smaller specimens (< 
ca. 200 mm SL), although plots of the two species overlapped in the larger size class 
(> ca. 200 mm SL), due to the relative fin lengths decreasing and not changing with 
growth in the former and latter species, respectively (Fig. 5E–H). That this means of 
distinguishing between small specimens of L. japonicus and L. maculatus has largely 
gone unrecognized is probably due to a lack of morphological examination of small 
Lateolabrax specimens. The benchmark size of 200 mm SL being common to SNL, 
POPW and fin lengths of the two species suggests some synchronization of specific 
growth-related morphological changes.

Although Yokogawa and Seki (1995, figs 6, 7) proposed that considerable differ-
ences in LLS and gill raker numbers were sufficient for unequivocal differentiation 
of L. japonicus and L. maculatus when used in combination, the present study has 
demonstrated greater count range overlaps between the two species (70–84 LLSs and 
24–26 TGRs, vs 76–82 LLSs and 24 TGRs) (Fig. 10F, K), due to LLS and gill raker 
counts increasing with growth in L. japonicus and L. maculatus, respectively (Fig. 9A, 
M, Table 4). Similarly, Kang’s (2000) comparable frequency distributions of LLS and 
gill raker counts between the two species from Korean waters may have resulted from 
a size bias in specimens examined, his L. maculatus material including only very large 
specimens (ca. 500–750 mm SL). Accordingly, counts of LLSs and gill rakers, which 
can be biased by specimen size, are now likely to be unsuitable for distinguishing be-
tween the two species. In fact, Lou et al. (2002), who compared morphology between 
L. japonicus (1 sample lot from Tokyo, Japan) and L. maculatus (5 sample lots from 
Beihai, Xiamen, Fuzhou, Zhoushan and Weihai, China), showed considerable range 
overlaps for LLS and TGR counts, although the average values of those counts for L. 
maculatus were unequivocally lower than those for L. japonicus. Although Iseki et al. 
(2010) identified 263 Lateolabrax specimens from western Japan as L. maculatus (as L. 
sp.) based on LLS and gill raker counts proposed by Yokogawa and Seki (1995), some 
difficulties in identification may have been encountered due to some of their speci-
mens being very large (up to 1130 mm SL), with gill raker counts that approached or 
overlapped the range for L. japonicus.

On the other hand, caudal and total vertebral counts (CV and TV, respectively), 
in which dominant counts were almost completely replaced between L. japonicus and 
L. maculatus (20 and 19 CVe, 36 and 35 TVe, for the former and latter, respectively) 
(Fig. 10M, N), may be useful for specific identification because they do not change 
with growth (Table 4). A modal count of 35 TVe in L. maculatus was indicated by 
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Lou et al. (2002) (see above), who recorded average TV counts for 5 sample lots from 
China, viz., 34.75 (Beihai, n = 40), 34.64 (Xiamen, n = 19), 34.90 (Fuzhou, n = 10), 
34.98 (Zhoushan, n = 27) and 35.07 (Weihai, n = 50), in spite of a geographic cline 
that suggested a trend towards lower and higher TVe in sample lots from southern 
and northern regions, respectively. Notwithstanding, Chen et al. (2001) recorded an 
average TV count of 35.31 (n = 98) for a sample lot from Laizhou, China, inferring 
that approximately 30% of their specimens had 36 TVe, which largely contradicts the 
present results (Fig. 10N). However, the former average count is suspect, differing con-
siderably from the sample lot from Weihai (Lou et al. 2002), located close to Laizhou. 
In fact, such a high average TV value has not been recorded elsewhere at any time for L. 
maculatus (Yokogawa and Seki 1995; Yokogawa et al. 1996; Lou et al. 2002). Although 
vertebral counts [abdominal (AV), CV and TV, respectively] of L. japonicus and L. 
latus are similar to each other, those of L. maculatus stand apart (Fig. 10L–N, Table 7), 
in contrast to their phylogenetic relationship (Yokogawa 1998; Song et al. 2008; Shan 
et al. 2016). In this case, since the difference in L. maculatus was primarily due to a dif-
ference in CV counts, which generally reflect inter-specific differences or lower, unlike 
AV counts which may reflect differences at a higher taxonomic level (Takahashi 1962), 
the vertebral count peculiarity in L. maculatus may not have phylogenetic significance.

Although L. maculatus typically possessed many black spots on the body, indi-
vidual spot counts and patterns varied considerably (Yokogawa 2013b, fig. 2), a few 
specimens (4.9% of total) entirely lacking spots. In addition, the proportion of dot-
ted L. japonicus specimens (35.6% of total) made visual separation of the two species 
difficult, the use of color pattern for specific identification being of value only as an 
accessory character. Youn’s (2002) key, however, distinguished between the two species 
on the presence or absence of black spots, may causing mis-identification.

Yokogawa and Seki (1995) demonstrated differences between L. maculatus and 
L. japonicus in some newly-demonstrated characters, including PSAL and DSRs 
(scale development in these characters being poorer in L. maculatus). However, be-
cause their examined material was size-biased (see above), overall growth-related 
change patterns were still unclear. Examination of PSAL and DSR in the present 
study have overcome that problem. Although differences between the two species 
were apparent in specimens < ca. 150 mm SL, squamation developed thereafter 
with growth in L. maculatus, the two species consequently having similar degrees 
of squamation in large specimens (Figs 7, 12). Notwithstanding, specific differences 
in specimens < ca. 150 mm SL can be used to identify Lateolabrax individuals up 
to fingerling size. Growth-related squamation development has been examined in 
laboratory-reared larval and juvenile L. japonicus (Fukuhara and Fushimi 1982) and 
L. maculatus (Kang 2000). Although squamation initially occurred on the caudal 
peduncle at ca. 19 mm SL in both species, body squamation was completed earlier in 
the former (ca. 35 mm SL vs 47 mm SL) (Fukuhara and Fushimi 1982; Kang 2000), 
indicating delayed development in L. maculatus. The slower development in PSAL 
and DSRs in L. maculatus might be an extension of such squamation delay, which is 
a characteristic peculiar to that species.
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A morphological difference in the first anal pterygiophore (FAP) between L. 
japonicus and L. maculatus was initially noted by Kang (2000) during his detailed os-
teological observations of the three Lateolabrax species, and included in one of his keys 
(for adults) to the genus Lateolabrax; FAPs were arched and straight in L. japonicus and 
L. maculatus, respectively (Kang 2000). However, FAPs of small L. japonicus specimens 
(< ca. 90 mm SL) were found here to be straight (Fig. 13A), a condition not found by 
Kang (2000) due to his examining only larger specimens (minimum size 185.5 mm 
TL). Although Kang (2000) also described FAP in L. latus as straight, some examples 
of that species examined here had the FAP slightly arched distally (Fig. 13J, L). Be-
cause Kang (2000) examined only three L. latus specimens, ontogenetic morphologi-
cal variations were not considered at that time. However, despite the growth-related 
morphological changes now apparent in L. japonicus, morphological differentiation of 
FAP is stable in specimens of L. japonicus and L. maculatus > 90 mm SL (Fig. 13B–D, 
F–H), enabling separation of the two species. Yokogawa and Kishimoto’s (2012) iden-
tification of a long-finned Lateolabrax specimen from Japan (SPMN-h 40001, 331 
mm SL) as L. japonicus was based on its genetic characteristics, although morphologi-
cal identification of the specimen was equivocal, the TV count of 35 being suggestive 
of L. maculatus (Fig. 10N). However, identification of the specimen as L. japonicus was 
settled by the FAP being arched (Yokogawa and Kishimoto 2012, fig. 2a).

Standard errors (SEs) for the length-measured and meristic character regressions, 
which indicated degrees of morphological variation, were generally lowest in L. latus 
(Table 8), suggesting less morphological variation in that species. This may be due to 
less genetic variation, average observed heterozygosity for 28 isozymic loci in L. latus 
being 0.033, much lower than that of L. japonicus (0.095) and L. maculatus (0.103) 
(Yokogawa 1998). Usually, lower genetic diversity occurs in a small or reduced popula-
tion, but the L. latus specimens examined in the present study were from a broad area 
around southern Japan. Possibly, in spite of the species’ broad distribution, L. latus re-
sources may not be so abundant, since the species is much less popular than L. japonicus 
in Japanese commercial markets. In contrast, SEs were generally highest in L. maculatus 
(Table 8), inferring considerable morphological variation. The significant geographical 
differences in otolith morphology among some L. maculatus samples from China (Ye et 
al. 2007) may have also resulted from its genetic diversity. This is supported by L. macu-
latus being broadly distributed along the east Asian coast, with some local populations 
being so genetically divergent from one another as to form a genetic / geographic cline, 
unlike L. japonicus, which is genetically stable (Yokogawa 2004; Liu et al. 2006; Han et 
al. 2015). In this regard, Zhao et al. (2018) reasonably considered that the Leizhou Pen-
insula, Hainan Island and Shandong Peninsula were major physical barriers, substan-
tially blocking gene flow and genetic admixture among local L. maculatus populations.

The present study demonstrated a number of growth-related morphological chang-
es in the three Lateolabrax species, including some new key characters for identification. 
Despite the number of taxonomic descriptions and studies of Lateolabrax, such features 
have remained obscure due to the limited numbers of specimens examined and an in-
herent belief that fish morphology is stable regardless of growth, notwithstanding some 
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recent unique allometric approaches to fish morphology and taxonomy (e.g., Sidlaus-
kas et al. 2011). The importance of investigating possible growth-related morphologi-
cal changes, as well as meristic characters, is emphasized herein, as an understanding of 
proportional changes throughout the overall size range of a species may provide certain 
criteria which can distinguish between species and become keys for identification. Al-
though such examinations need to be based on many specimens of various sizes, it may 
not be so difficult for commercial fishes, including Lateolabrax. Based on the results of 
the present study, a new key to the genus Lateolabrax is proposed.

Key to Lateolabrax species

a1 Caudal peduncle anterior depth [% of standard length (SL)] > 15%. Snout length 
(% of SL) > 9%. Upper and lower jaw length [% of head length (HL)] > 45% 
and 49%, respectively. Dorsal fin rays 15–16 [rarely 14 (7.4%)]. Anal fin rays 9 
(usually)–11 [rarely 8 (11.0%)] .............................................. Lateolabrax latus

a2 Caudal peduncle anterior depth (% of SL) ≤ 15%. Snout length (% of SL) ≤ 9%. 
Upper and lower jaw length (% of HL) ≤ 45% and 49%, respectively. Dorsal fin 
rays 14 or fewer. Anal fin ray counts 8 or fewer (rarely 9) ..................................b

b1 Post-orbital preopercular width (POPW) [% of snout length (SNL)] < 90% 
[POPW (% of SL) < 7.5% in specimens ≤ 200 mm SL; SNL (% of SL) > 7.7% in 
specimens > 200 mm SL]. Caudal vertebrae 20 (usually)–21 [rarely 19 (13.5%)]; 
total vertebrae 36 (usually)–37 [rarely 35 (13.5%)]. First anal pterygiophore 
modestly arched in specimens ≥ 90 mm SL. Spots / dots absent on body in speci-
mens > 260 mm SL (although some specimens ≤ 260 mm SL have some dots 
restricted to upper part than lateral line) .........................Lateolabrax japonicus

b2 Post-orbital preopercular width (POPW) [% of snout length (SNL)] ≥ 90% 
[POPW (% of SL) ≥ 7.5% in specimens ≤ 200 mm SL; SNL (% of SL) ≤ 7.7% in 
specimens > 200 mm SL]. Caudal vertebrae 18–19 (usually) [rarely 20 (9.2%)]; 
total vertebrae 34–35 (usually) [rarely 36 (6.6%)]. First anal pterygiophore 
straight. Usually many clear black spots on lateral and dorsal body regions (usu-
ally even on lower part than lateral line) .........................Lateolabrax maculatus
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Kōji Yokogawa  /  ZooKeys 859: 69–115 (2019)110

Endo, Mr. Hirokazu Kishimoto (Shizuoka City, Japan), Mr. Taiji Kurozumi (Natural 
History Museum and Institute, Chiba), Dr. Brian L. Sidlauskas (Oregon State Univer-
sity) and Mr. Ikuo Wakabayashi (Wildlife Research Society of Shima Peninsula) helped 
with provision of literature. Finally, I wish to thank Dr. Graham S. Hardy (Ngunguru, 
New Zealand) for checking the manuscript.

References

Araga C (1981) Lateolabrax latus. In: Ochiai A (Ed.) Gakken Illustrated Nature Encyclopedia, 
the Fishes of Japan. Gakushu-kenkyusha, Tokyo, 82, 258–259. [In Japanese]

Arakaki S, Hutchinson N, Tokeshi M (2014) Foraging ecology of a large opportunistic preda-
tor (adult Lateolabrax latus) on a temperate-subtropical rocky shore. Coastal Ecosystems 1: 
14–27. http://www.scesap.org/ce_archive/ce2014/arakaki2014a.pdf

Bae S, Kim J, Kim J (2016) Evidence of incomplete lineage sorting or restricted secondary 
contact in Lateolabrax japonicus complex (Actinopterygii: Moronidae) based on morpho-
logical and molecular traits. Biochemical Systematics and Ecology 66: 98–108. https://doi.
org/10.1016/j.bse.2016.03.006

Basilewsky S (1855) Ichthyographia Chinae borealis. Nouveaux mémoires de la Société impé-
riale des naturalistes de Moscou, Tome 10, Impremerie de l’Université Impériale, Moscou, 
215–263. [pls. 1–9; in Latin]

Bell Jr AJ, Jacquemin SJ (2017) Evidence of morphological and functional variation among 
Bluegill Lepomis macrochirus populations across Grand Lake St Mary’s watershed area. Jour-
nal of Freshwater Ecology 32(1): 1–18 https://doi.org/10.1080/02705060.2017.1319429 

Bleeker P (1854–57) Nieuwe nalezingen op de ichthyologie van Japan. Verhandelingen van het 
Bataviaasch Genootschap van Kunsten en Wetenschappen 26: 1–132. [8 pls.; in Dutch]

Chan W, Tang Y (1968) Marine Fishes of Hong Kong, Part I. Hong Kong Government Press, 
Hong Kong, 129 pp.

Chen J (1987) Family Serranidae. In: Liu C, Qin K (Eds) Fauna Liaoningica, Pisces. Liaoning 
Science and Technology Publishing House, Shenyang, 232–235. [In Chinese]

Chen D, Gao T, Zeng X, Ren Y, Ruan S (2001) Study on the fishery biology of Laizhou population 
of Lateolabrax sp. Acta Oceanologica Sinica 23(4): 81–86. [In Chinese with English abstract]

Chen I, Fang L (1999) The Freshwater and Estuarine Fishes of Taiwan. National Museum of 
Marine Biology & Aquarium, Checheng, 287 pp. [In Chinese]

Chen M, Yu T, Tong H (1990) Fish Resources of Qiantang Jiang. Shanghai Scientific and Tech-
nical Publishers, Shanghai, 267 pp. [In Chinese]

Cheng Q, Zhou C (1997) The Fishes of Shandong Province. Shandong Science and Technol-
ogy Press, Jinan, 549 pp. [In Chinese]

Chioma GN, Adejumo AO, Olumoh S (2007) Allometric and isometric growth of external 
body parts of Auchenoglanis occidentalis (Pisces: Bagridae). Science Focus 12(2): 76–82.

Chu Y (1985) The Fishes of Fujian Province, Part 2. Fujian Science and Technology Publishing 
House, Fuzhou, 700 pp. [In Chinese]



Morphological differences between Lateolabrax species 111

Chu Y, Tchang T, Cheng Q (1962) Fishes of the South Sea. Science Press, Beijing, 1184 pp. 
[In Chinese]

Chu Y, Tchang T, Cheng Q (1963) Fishes of the East Sea. Science Press, Beijing, 642 pp. [In Chinese]
Chyung M (1977) The fishes of Korea. Iljisa, Seoul, 727 pp. [In Korean]
Cuvier G (1828) Des poissons de la famille des perches, ou des percoïdes. Histoire Naturelle des 

Poissons, Tome II, Livre 3, F. G. Levrault, Paris, 490 pp. [In French]
Eschmeyer WN (2019) Eschmeyer's Catalog of Fishes, Online Version. California Academy 

of Sciences, San Francisco. http://researcharchive.calacademy.org/research/Ichthyology/
catalog/fishcatmain.asp

Feng Z, Jiang Z (1998) Spotted Sea Bass Research. China Ocean Press, Beijing, 119 pp. [In 
Chinese]

FishBase (2018) Lateolabrax latus Katayama, 1957, blackfin seabass. http://www.fishbase.org/
summary/23379

Fukuhara O, Fushimi T (1982) Development of fins and squamation in the percichthyid fish, 
Lateolabrax japonicus. Japanese Journal of Ichthyology 29(2): 173–178. https://www.
jstage.jst.go.jp/article/jji1950/29/2/29_2_173/_pdf

Gao G (1991) Serranidae. In: Pan J, Zhong L, Zheng C, Wu H, Liu J (Eds) The Freshwater 
Fishes of Guangdong Province. Guangdong Science and Technology Press, Guangzhou, 
363–371. [In Chinese]

Han Z, Han G, Wang Z, Shui B, Gao T (2015) The genetic divergence and genetic structure 
of two closely related fish species Lateolabrax maculatus and Lateolabrax japonicus in the 
Northwestern Pacific inferred from AFLP markers. Genes & Genomics 37(5): 471–477 
https://doi.org/10.1007/s13258-015-0276-3

Hatooka K (1993) Percichthyidae. In: Nakabo T (Ed.) Fishes of Japan with Pictorial Keys to 
the Species, 1st ed. Tokai University Press, Tokyo, 594–599. [In Japanese]

Hatooka K (2000) Moronidae. In: Nakabo T (Ed.) Fishes of Japan with Pictorial Keys to the 
Species (2nd edn). Tokai University Press, Tokyo, 683 pp. [In Japanese]

Hatooka K (2013) Lateolabracidae. In: Nakabo T (Ed.) Fishes of Japan with Pictorial Keys to 
the Species (3rd edn). Tokai University Press, Hadano, 748 pp. [In Japanese]

Hirota Y, Ikeda M, Setokuma T, Mochizuki K (1999) New record of Chinese sea bass, Lateo-
labrax sp., from the coastal area of Kanto, central Japan. Journal of the Natural History 
Museum and Institute, Chiba 5: 103–108. [In Japanese with English abstract]

Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal 
of Statistics 6: 65–70.

Hubbs CL, Lagler KF (1970) Fishes of the Great Lakes Region (3rd edn). The University of 
Michigan Press, Ann Arbor, 213 pp. [44 pls]

Iseki T, Mizuno K, Ohta T, Nakayama K, Tanaka M (2010) Current status and ecological 
characteristics of the Chinese temperate bass Lateolabrax sp., an alien species in the western 
coastal waters of Japan. Ichthyological Research 57(3): 245–253. https://doi.org/10.1007/
s10228-010-0161-7

Ishikawa H, Senou H (2010) Grand Illustrated Encyclopedia of Marine Fishes. Nitto Shoin 
Honsha Co.,Ltd., Tokyo, 399 pp. [In Japanese]
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Introduction

Mesoamerica is a global biodiversity hotspot (Johnson et al. 2015). Within this region, 
Panamá has the second greatest number of reptile and amphibian species, containing 
26% of all amphibian species reported for Mesoamerica (Jaramillo et al. 2010). How-
ever, a substantial portion of eastern Panamá has been understudied. Geographically, 
eastern Panamá comprises the northernmost part of the Chocó biogeographical region 
(Duque-Caro 1990), and it is part of the Tumbes-Chocó-Magdalena global biodiver-
sity hotspot (Mittermeier et al. 1999). This region includes a number of relatively low 
mountain ranges, including the Serranía de San Blas + Serranía del Darién on Carib-
bean side, the inland Serranía de Pirre + Altura de Nique + Altos de Quía, Serranía de 
Majé, and the Serranía de Sapo + Serranía de Jingurudó + Altos de Aspavé + Cordillera 
de Juradó along the Pacific Ocean (Duque-Caro 1990; Batista et al. 2016).

Whitfield et al. (2016) analyzed regional trends and reported that eastern Panamá 
has a very small number of recognized species in relation to its geographic area, which 
reflects the limited number of field surveys in the area. A sharp increase in the number 
of field surveys during the last decade has led to the discovery of several new amphibian 
species with restricted distribution ranges (e.g., Ibáñez and Crawford 2004; Crawford 
et al. 20104a; Batista et al. 2014a, 2014b, 2016) supporting the hypothesis that east-
ern Panamá is a region with a high endemic amphibian diversity. This is in contrast to 
the claim that it was mainly a dispersal route during the Great American Biotic Inter-
change (Webb 2006), and was colonized by species groups from the north and South 
America (Vanzolini and Heyer 1985; Pinto-Sánchez et al. 2012).

One reason to establish baseline estimates of amphibians is to assess changes fol-
lowing loss caused by disease epidemics. The pathogenic fungus Batrachochytrium den-
drobatidis (Bd) causes population declines and extinctions of many amphibian spe-
cies worldwide, particularly in the Neotropics (James et al. 2015, Lips 2016). Bd has 
caused dramatic declines of amphibian communities in the highlands of western and 
central Panamá (Lips 1999; Lips et al. 2006; Crawford et al. 2010b). Importantly, to 
our knowledge, at the time of sampling there were no published data reporting the 
presence of Bd in the region – though the amphibian species present at this region can 
either represent the original community or a subset as a consequence of an undetected 
Bd epidemic. Here, we describe the results from field surveys to characterize α and β di-
versity along an altitudinal gradient in the isolated Serranía de Majé of eastern Panamá.

Materials and methods

Study sites

During the wet season, from June 23 to July 2 2007, we conducted field surveys at 
three study sites located at a low, middle, and high elevations in the Serranía de Majé. 
This mountain range is located on the Pacific coast, previously known as Serranía de 
Cañazas (Myers 1969), and is isolated from others mountainous areas by the Chepo 
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and Chucunaque Rivers (Figure 1; Angher and Christian 2000). Its highest point, 
Cerro Chucantí (1,489 m), stands on the eastern end of the mountain range, at the 
boundary of the Panamá and Darién provinces (Angher and Christian 2000).

The three study sites were located in Lowland Wet/Moist Forest (LWM) below 600 
m, and Premontane Rain Forest/Wet Forest (PRW) above 600 m (Holdridge 1967). 
The sites were: a low elevation site, Centro Cristo Misionero (8.96N, 78.457W) at 
120–150 m elevation; a mid-elevation site, located within the Reserva Natural Privada 
Cerro Chucantí (8.79N, 78.451W) at 797 m elevation; and, the high elevation site, 
also located in the Cerro Chucantí private natural reserve (8.80N, 78.462W), near 
the top of the Cerro Chucantí, at 1,240–1,365 m elevation. The approximate airline 
distances between the study sites were 19, 18, and 2 km for lowland-mid-elevation, 
lowland-highland and mid-elevation-highland sites, respectively.

Data collection

The surveys were conducted using the sampling technique “free and unrestricted search”, 
which is considered to be one of the most efficient methods to record a high number of 
species in a relatively short amount of time (Rueda et al. 2006). Different types of habitat 
such as forest, streams, ponds, and open areas with grass were surveyed during the day and 
night. Species identification and individual counts were performed using the techniques 
‘visual encounter survey’ (VES) and ‘acoustic encounter survey’ (AES). In addition, the 
search effort invested (in person-hours) at each sampling site was calculated by multiply-
ing the search time by the number of observers, and the catch per unit of search effort 
for each site was calculated by dividing the number of post-metamorphic amphibians 
encountered by the search effort at the respective site as estimated by Kilburn et al. (2011).

A few specimens of each species were collected as voucher specimens (Suppl. mate-
rial 1: Table S1), photographed, and deposited in the reference Collection of Herpetol-
ogy (specimen tags CH and AJC) at the Smithsonian Tropical Research Institute, and 
in the Museo de Vertebrados de la Universidad de Panamá (tags MVUP). Amphib-
ians to be preserved were first euthanized using Orajel (benzocaine 20%) or occasion-
ally 10% ethanol. Before fixation, liver samples were taken from each specimen and 
preserved for future phylogenetic and phylogeographic analyses (Seutin et al. 1991). 
Vouchers were then fixed in 10% formalin in a position that facilitates examination. 
To verify the identification of specimens we used all relevant literature available on the 
amphibians of Panamá (e.g., Ibáñez et al. 1999a), and compared specimens with those 
in the CH reference collection. The identification of anuran advertisement calls was 
facilitated by audio recordings of Panamanian frogs (Ibáñez et al. 1999b).

Data analyses

We calculated α diversity based on all post-metamorphic amphibians captured at each 
site (Hortal et al. 2006), using the software EstimateS 8.0.0 (Colwell 2006). We calcu-
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Figure 1. Map showing the location of the study sites in the Serranía de Majé and the Serranía de 
Piedras-Pacora across the valley of the Chepo River.

lated Mao Tau (Colwell et al. 2004) and plotted sample-based rarefaction curves with 
95% confidence intervals.

To determine β diversity for assessing the variation in species composition across 
sites, we also used all post-metamorphic amphibians captured at each site, and con-
ducted a cluster analysis based on Jaccard dissimilarity measures estimated with the R 
function vegdist from the vegan package (Oksanen et al. 2017). In order to identify 
clusters, we built a dendrogram using the unweighted pair-group method based on 
arithmetic averages (UPGMA), using function hclust from the default R package stats. 
This analysis was completed in the R version 3.3.3 (R Core Team, 2017).

Results

Our team conducted 280 person-hours of surveys (lowland site: 125; mid-elevation 
site: 96; highland site: 59) and identified 38 amphibian species from all three amphib-
ian orders, ten families, and 22 genera (Table 1). The total number of species for the 
surveyed area within the Serranía de Majé was estimated as 44 species based on the 
upper 95% confidence interval of the Mao Tau function (Table 2).
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Table 1. List of species and number of post-metamorphic individuals found at the three surveyed sites 
across the elevational gradient in the Serranía de Majé. The letter ‘L’ refers to a species that was recorded 
by its larvae and ‘V’ by its vocalizations. The IUCN conservation status is based on the IUCN (2018). ‘E’ 
represents a species that is endemic to Central America (CA) based on Johnson et al. (2015).

Order Family Genus Species Lowland Mid-
elevation

Highland IUCN 
status

Endemic 
to CA

Anura Aromobatidae Allobates talamancae 2 1 LC

Bufonidae Rhaebo haematiticus 9 11 LC

Rhinella alata 13 1 1 LC

Rhinella horribilis 2 1 LC

Centrolenidae Espadarana prosoblepon L 8 V LC

Cochranella euknemos 3 LC

Hyalinobatrachium colymbiphyllum 1 LC

Hyalinobatrachium fleischmanni 3 LC

Hyalinobatrachium vireovittatum 1 DD E

Craugastoridae Craugastor crassidigitus 1 9 1 LC

Craugastor fitzingeri 5 3 LC

Craugastor raniformis 15 3 LC

Pristimantis aff. latidiscus 4 – –

Pristimantis caryophyllaceus 57 NT E

Pristimantis cruentus 1 71 LC

Pristimantis gaigei 1 LC

Pristimantis moro 10 LC

Pristimantis pardalis 1 NT E

Pristimantis ridens 1 LC

Pristimantis taeniatus V LC

Strabomantis bufoniformis 2 LC

Dendrobatidae Colostethus aff. pratti 11 9 4 – –

Dendrobates auratus 8 19 LC

Silverstoneia aff. nubicola 3 12 4 – –

Eleutherodactylidae Diasporus aff. diastema* 21 – –

Diasporus  majeensis** 1 – E

Hylidae Agalychnis callidryas L 4 LC

Dendropsophus microcephalus 10 LC

Boana rosenbergi 4 LC

Scinax rostratus 2 LC

Scinax ruber 3 LC

Smilisca phaeota 6 LC

Smilisca sila 12 LC

Leptodactylidae Engystomops pustulosus 13 1 LC

Leptodactylus fragilis 3 LC

Leptodactylus savagei 1 V LC

Caudata Plethodontidae Oedipina complex 1 LC

Gymnophiona Caeciliidae Caecilia isthmica 1 DD E

3 10 22 38 130 99 166
* This species refers to the Diasporus aff. diastema from the Serranía de Majé as suggested by Batista et al. (2016).
** Described by Batista et al. (2016), only known from Panamá; therefore, considered endemic to CA.
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The greatest number of species was found at the lowland site (24 spp., Table 2; 
individuals catch per unit of search effort: 1.04), where the search effort was the 
highest, and where multiple aquatic habitats were available (i.e. ponds and forest 
streams). The most abundant species at this site were Diasporus aff. diastema (sensu 
Batista et al. 2016), Craugastor raniformis and Engystomops pustulosus (Table 1). Es-
padarana prosoblepon and Agalychnis callidryas were detected at this site with larval 
surveys. The mid-elevation site had fewer species than the lowland site (22 spp., 
Table 2; individuals catch per unit of search effort: 1.03); however, despite lower 
search effort at this site, the upper 95% confidence intervals of the Mao Tau func-
tion estimated very similar species number (i.e., 25 spp. at the lowland site and 26 
spp. at the mid-elevation site). The most abundant species at the mid-elevation site 
were Dendrobates auratus, Silverstoneia aff. nubicola and Smilisca sila (Table 1). In 
addition, at this site two species were detected only by their vocalizations: Pristi-
mantis taeniatus and Leptodactylus savagei. The lowest richness was observed at the 
highland site (13 spp., Table 2; frog catch per unit of search effort: 2.81), because of 
limited searching effort, fewer habitats, and the lower diversity of the upland area. 
The estimated number of species for this site based on the upper 95% confidence 
intervals of the Mao Tau function was 17 spp., and the most abundant species at this 
site were Rhaebo haematiticus, Pristimantis caryophyllaceus, P. cruentus, and P. moro 
(Table 1). Moreover, the glassfrog, Espadarana prosoblepon, was detected at this site 
only by its vocalization.

The individual-based rarefaction curves for the total area surveyed (Figure 2A) and 
at the site level (Figure 2B) showed a substantial decrease in the slope as the number 
of individuals increased with search effort. Thus, while the upper 95% confidence 
interval of the Mao Tau function suggests that not all species present in the area were 
observed, the amphibian community determined in these surveys might be representa-
tive of the extant community in Serranía de Majé.

Based on the Jaccard dissimilarity coefficients calculated, the community compo-
sition was more similar between the low and mid-elevation sites relative to the high 
elevation site (Table 3, Figure 3). As expected, the sites that most differed were the 
low versus high elevation sites. However, six species were consistently present across 
all three elevation sites: Rhinella alata, Espadarana prosoblepon, Craugastor crassidigitus, 
Colostethus aff. pratti, and Silverstoneia aff. nubicola.

Table 2. Total number of post-metamorphic individuals and species per site, and the site-level estimated 
richness as a function of the 95% confidence intervals (CI) calculated by the function Mao Tao.

Site Number of Individuals Number of species observed (Sobs) Expected 95% CI upper limit

Lowland 130 22 24.64
Mid-elevation 99 19 25.58
Highland 166 12 16.57
All sites 395 37 44.08
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Table 3. Number of species shared between pairs of sites along an elevational transect of the Serranía de 
Majé (below the diagonal); total number of species per site including the species registered by post-meta-
morphic stages, vocalization, or larval stage (diagonal); and Jaccard similarity coefficients (1 - dissimilarity 
estimate) for each pair of sites (above the diagonal).

Lowland Mid-elevation Highland
Lowland 24 0.32 0.13
Mid-elevation 13 22 0.24
Highland 5 7 13

Figure 2. Individual-based rarefaction curves showing the estimated richness as a function of the upper 
95% confidence interval (CI) calculated by the function Mao Tao. A Rarefaction curve combining all 
data obtained for the Serranía de Majé transect B rarefaction curves for low (120 – 150 m), intermediate 
(797 m), and high elevation (1,240–1,365 m) survey sites.
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Discussion

The present study represents the first attempt to characterize the composition and al-
titudinal diversity pattern of the amphibian community from the isolated Serranía de 
Majé of eastern Panamá. We determined that the composition of the species commu-
nity across the altitudinal gradient was comprised by species from both Mesoamerican 
and South American groups, and that taxonomic genera from South America domi-
nated the composition of the community (South American genera: 82%; Mesoameri-
can genera: 18%). In addition, the observed proportion in the composition of genera is 
consistent with the diversity pattern determined by Savage (2002) for eastern Panamá, 
where genera from South American groups represented over 50% of the genera com-
prising the amphibian assemblage.

The species found during this study represent 17% of the native amphibian spe-
cies of Panamá (AmphibiaWeb 2018). However, the estimated total number of species 
based on the rarefaction analysis suggests that the richness of the study area is slightly 
higher than what we observed. In addition, the recent discovery of two new amphib-
ian species from the Serranía de Majé, Bolitoglossa chucantiensis and Diasporus majeensis 
(see Batista et al. 2014b, 2016), suggest that this region might be high in endemism, as 
previously suggested for eastern Panamá (Crawford et al. 2010a).

Amphibians, occurring in Central America, have their highest species richness at 
intermediate elevations (Savage 2002, Wiens et al. 2006, Whitfield et al. 2016). This 
general altitudinal diversity pattern might also apply to the Serranía de Majé consider-
ing that, despite the relatively lower search effort and lower number of individuals en-
countered at the mid-elevation site, we observed and estimated a species richness simi-

Figure 3. Site-level dendrogram based on Jaccard dissimilarities and built with the unweighted pair-
group method based on arithmetic averages (UPGMA). This analysis was based on all post-metamorphic 
amphibians captured at each site.
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lar to that of the lowland site (i.e., site with the highest observed richness). In addition, 
we determined similar estimates of individuals catch per unit of search effort (lowland 
site: 1.04 vs. mid-elevation site:1.03) between the lowland and mid-elevation sites. 
Hence, these results suggest that an increase in sampling effort at the mid-elevation site 
will potentially increase the number of species detected. Lastly, the observed altitudinal 
pattern of species richness could have been influenced by the variation across sites in 
the area covered during the surveys and the habitat types present at the sampling sites. 
In particular, the number of observed species at the highland site was potentially affect-
ed by the absence of streams and ponds, and the reduced patch size of the cloud forest.

In terms of β diversity, the higher similarity in the community composition be-
tween the mid-elevation and highland sites compared to that between the lowland and 
highland sites, suggests that the composition at intermediate elevations in Serranía de 
Majé might result, in part, by an overlap in the altitudinal distribution of the species 
associated with higher and lower altitudes; a pattern previously observed for the anuran 
communities from the Panamá Canal watershed (Ibáñez et al. 2002). In addition, de-
spite the mid-elevation and highland sites being closer to each other (i.e., ~2 km apart) 
than to the lowland site, the community composition between the mid-elevation and 
highland sites was less similar than the composition between the mid-elevation and 
lowland sites. The higher similarity in the community composition between the mid-
elevation and lowland sites compared to that with the highland site suggests that the 
highland site might be comprised by species with restricted altitudinal distributions. 
For instance, the dissimilarity associated with the highland site in our study was poten-
tially influenced by the observation of species with restricted altitudinal ranges, such as: 
Pristimantis aff. latidiscus, P. caryophyllaceus, P. moro, P. pardalis and Diasporus majeensis.

The Serranía de Majé is isolated from the other mountain ranges in the region by 
the valleys of the Chepo and Chucunaque Rivers (Figure 1), which could have rep-
resented physical barriers leading to genetic isolation of populations that could have 
resulted in allopatric speciation (Cadena et al. 2011). Preliminary results from a com-
parison between the amphibian communities from the Serranía de Majé and Serranía 
de Piedras-Pacora (Ibáñez et al. 1994, Sosa and Guerrel 2013), located across the valley 
of the Chepo River (Figure 1), showed a lower species diversity at the Serranía de Majé 
and a decrease in the similarity of species composition as elevation increases (Figure 4). 
In addition, the highest elevations studied at these two mountain ranges are about 106 
km apart (airline distance), and their dissimilarity is largely due to the disproportionate 
number of species that are present in Serranía de Piedras-Pacora but potentially absent in 
Serranía de Majé. Hence, thus far, seems that dispersal limitation has potentially played 
a major role in shaping the amphibian community at Serranía de Majé; nonetheless, 
more studies would be necessary to address this. Lastly, the decrease in similarity in spe-
cies composition as elevation increases is consistent with the general pattern of amphib-
ians endemism observed in Central America, that shows that a substantial portion of 
endemic species in the region are associated with upland regions (Whitfield et al. 2016).

Central America, while being a hotspot for amphibian diversity, is a region with 
a high proportion of threatened amphibian species. For instance, 41% of the regional 
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pool of species that have been assessed by the IUCN (International Union for Conser-
vation of Nature) are under one of the following categories of the Red List of Threat-
ened Species: critically endangered, endangered or vulnerable (reviewed in Whitfield 
et al. 2016). Within this context, the amphibian community of the Serranía de Majé 
does not seem, at first, to be comprised of species of high conservation concern given 
that 76% of the species registered in this study are under the category ‘least concern’ 
of the IUCN Red List of Threatened Species (IUCN 2018). However, the Serranía de 
Majé harbors amphibian species that could be regarded as threatened species, as well as 
poorly known species lacking an evaluation of their conservation status. For example, 
based on the IUCN criteria, two of the recorded species are considered near threatened 
(i.e., Pristimantis caryophyllaceus and P. pardalis), and two others are data deficient (i.e., 
Caecilia isthmica, and Hyalinobatrachium vireovittatum). Importantly, these two spe-
cies that are considered near threatened and the two data deficient ones are endemic 
to Central America (Johnson et al. 2015). Notably, in this study we also found four 
species, which include one species from the genus Pristimantis (P. aff. latidiscus), two 
dendrobatids (Colostethus aff. pratti and Silerstoneia aff. nubicola) and one species from 
the Diasporus diastema species group (i.e., Diasporus aff. diastema suggested by Batista 
et al. 2016), that are potential new species and, together with the recently described 
Diasporus majeensis, lack an assessment by the IUCN.

Our survey provides baseline information for exploration and conservation efforts 
by identifying species in the area requiring immediate assessment and conservation ac-
tion (Table 1). Importantly, this study might also inform the delimitation of protected 
areas based on species with restricted distribution ranges. This is particularly relevant 
given the absence of biological reserves within this mountain range that are recognized 
by the national system of protected areas (Jaramillo et al. 2010), and the increasing 
deforestation pressure in the region (Parker et al. 2004). Lastly, considering the ar-
rival of Bd to the Serranía de Majé some years after this study (Küng et al. 2014), the 

Figure 4. Diagram showing a decrease with elevation in the similarities of amphibian species assemblages 
associated with sites from the Serranía de Piedras-Pacora mountain range and the isolated Serranía de 
Majé mountain range. The numbers represent the shared species between sites (N), Jaccard similarity coef-
ficients (N) and total number of species at the site level (N). Each color represents an elevation category, 
where the lowlands (< 400 m) are represented in yellow, mid-elevation sites (400–800 m) in green, and 
highlands (> 800 m) in blue. NA = no data available.
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baseline information provided by this inventory could potentially serve to determine 
Bd-induced changes in the amphibian community. In particular, at mid and high el-
evations, where disease-induced losses of amphibian diversity have been substantial in 
Central America, including Panamá (Lips 2016).
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Abstract
The genomic era contributes to update the taxonomy of many debated terrestrial vertebrates. In an ac-
companying work, we provided a comprehensive molecular assessment of spadefoot toads (Pelobates) using 
genomic data. Our results call for taxonomic updates in this group. First, nuclear phylogenomics confirmed 
the species-level divergence between the Iberian P. cultripes and its Moroccan relative P. varaldii. Second, 
we inferred that P. fuscus and P. vespertinus, considered subspecies until recently, feature partial reproductive 
isolation and thus deserve a specific level. Third, we evidenced cryptic speciation and diversification among 
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Introduction

The revolution initiated by high-throughput sequencing techniques has reached the 
field of phylogeography (Coates et al. 2018), where it lifts the veil on cryptic species 
and solves long-term taxonomic issues (e.g. Rodriguez et al. 2017; Psonis et al. 2018; 
Dufresnes et al. 2018, 2019a). We conducted such study in spadefoot toads from 
the monotypic family Pelobatidae Bonaparte, 1850 (genus Pelobates Wagler, 1830) 
endemic to the Western Palearctic (Dufresnes et al. 2019b). These grassland species 
typically inhabit soft (e.g. sandy) soils with freshwater ponds for breeding and have 
a semi-fossorial lifestyle, thanks to well-known adaptations such as metatarsal spades 
(to dig themselves in) and a strongly ossified skull (to dig themselves out) (Székely 
et al. 2017; Dufresnes 2019). They are threatened in many parts of their fragmented 
ranges due to land-use changes, wetland destruction, pollution, species introduction, 
and ongoing changes in climate, which already led to population extinctions and con-
tractions of geographic ranges (Nyström et al. 2002, 2007; Džukić et al. 2005; Eggert 
et al. 2006). Mediterranean regions, where most of the diversity is located (Litvinchuk 
et al. 2013; Dufresnes et al. 2019b), could be particularly threatened (Iosif et al. 2014).

Until recently, Pelobates included four recognized extant species. First, the sister 
taxa P. cultripes (Cuvier, 1829) and P. varaldii Pasteur & Bons, 1959 are found north 
and south of the Strait of Gibraltar, respectively (Busack et al. 1985). Second, the 
western and eastern sister taxa P. fuscus (Laurenti, 1768) and P. vespertinus (Pallas, 1771) 
were long considered subspecies (e.g. Crottini et al. 2007), but their narrow transition 
is rather consistent with a species level (Litvinchuk et al. 2013). Third, Mediterranean 
populations from the Near East and the Balkans are commonly referred to as P. syriacus 
Boettger, 1889 and split as two subspecies: P. syriacus syriacus in Asia Minor and P. 
syriacus balcanicus Karaman, 1928 in the Balkans, based on morphological (Uğurtas 
et al. 2002) and scattered phylogenetic data (Veith et al. 2006; Litvinchuk et al. 2013; 
Ehl et al. 2019).

Our accompanying paper (Dufresnes et al. 2019b) revisits the evolution of this 
group, with several taxonomic implications. First, phylogenomics confirmed the old 
split between P. cultripes and P. varaldii, previously identified with mtDNA (Garcia-
Paris et al. 2003; Veith et al. 2006; Crottini et al. 2007) and allozyme markers (Busack 
et al. 1985; Litvinchuk et al. 2013). Second, hybrid zone analyses support the conclu-
sions of Litvinchuk et al. (2013) that P. fuscus and P. vespertinus deserve a specific status. 
Third, P. syriacus represents two cryptic species respectively distributed in the Near East 
and the Balkans, then corresponding to P. syriacus and P. balcanicus. Fourth, these spe-
cies feature deep intraspecific divergence, worthy of subspecific status. This is the case 
between Levantine and Anatolian/Caucasian populations in P. syriacus, and between 
the northern Balkans and Peloponnese in P. balcanicus.
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In this paper, we integrate these recent findings into an updated overview of the 
Pelobates radiation, including comparative diagnosis, current taxonomy, distribution, 
and diversity of the resulting eight extant taxa (Fig. 1). Last but not least, we describe 
the newly discovered clade from Peloponnese as a subspecies of P. balcanicus.

Material and methods

Nomenclatural search

In order to attribute names to the newly documented Pelobates species and subspe-
cies, we examined nomina available in the literature. To this end, we first referred to 
the Amphibian Species of the World online database (Frost 2019) and subsequently 
reviewed all the original references available.

Diagnosis

We reviewed phenotypic (coloration, morphology) and genetic (genome size, karyo-
type, and sequence divergence) variation of the considered taxa. Coloration is illustrat-
ed by high-quality photographs of known geographic origins, taken by us and credited 
photographers. Besides detailing general characteristics, we compiled a dataset of snout-
vent length (SVL) from published studies (Suppl. material 1, Table S1), consisting of 
average SVL (computed separately for males and females) from 82 populations, totaling 

Figure 1. Phylogeny and distribution of Pelobates taxa. The tree is adapted from the phylogenomic 
analysis of Dufresnes et al. (2019b), and the map was built from known records updated with genetic data 
(see accounts). Note that the distribution of P. vespertinus extends further east to Kazakhstan and Siberia. 
Photo credits: CD (P. cultripes, P. b. chloeae), SNL (P. s. boettgeri), IS (P. b. balcanicus), A Sanchez Vialas 
(P. varaldii), A Nöllert (P. fuscus), N Suriadna (P. vespertinus).
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6,004 individuals at least, and representing all taxa expect the narrowly distributed P. s. 
syriacus and P. b. chloeae (Suppl. material 1, Table S1). We report the ranges (minimum-
maximum) and average values for each sex separately, and illustrate interpopulation 
variation by boxplots. We statistically tested differences among taxa and sex by a two 
way analysis of variance (ANOVA) in R. We then performed comparisons between spe-
cies using a Tukey test. Finally, we tested sex-specific differences within taxa for which 
measures of both sexes were available in at least five populations, by paired t-tests.

We briefly described the karyotype of each taxon based on the literature and fur-
ther report nuclear DNA content as a proxy to genome size, obtained from flow cy-
tometry. In addition, sequence divergence, available from our phylogeographic study 
(Dufresnes et al. 2019b), are provided between each pair of taxa, based on mitochon-
drial (cyt-b + 16S, 1.2 kb) and nuclear DNA (63.5 kb of RAD tags).

Distribution

We detailed the distribution of each Pelobates taxon, based on available literature, i.e. 
national and regional atlas, as well as scientific articles informative of distribution. 
Boundaries between cryptic taxa were inferred from genetic studies, and thus remain 
unclear for parapatric ranges for which no molecular survey has been conducted. Dis-
tribution layers were originally obtained from the IUCN Red List of Threatened Spe-
cies (https://www.iucnredlist.org/), and meticulously reshaped with the drawing tools 
of ArcMap 10.3.

Description of Pelobates balcanicus chloeae sp. nov.

In order to describe the new P. balcanicus subspecies from southern Greece, we con-
ducted a short fieldwork expedition to the only recently confirmed locality of this tax-
on, Strofylia meadows in Peloponnese (38.1239°N, 21.3858°E) on December 2018. 
Collection of live animals was authorized by permit ΑΔΑ: ΩΣΜ34653Π8-9ΣΟ issued 
by the Greek Ministry of Environment, Energy and Climate Change. Pelobates usually 
breed during spring (March–April) in this area but are active all-year round providing 
proper weather conditions. A total of 18 individuals could be captured in the evening 
of December 10th, under heavy rains. The largest 12 individuals (putatively adults) 
were measured for 11 standard morphometric variables, i.e. SVL: snout-vent length; 
HW: head width; HL: head length; ED: eye diameter; EE: inter-eye distance; NN: 
inter-nostril distance; EN: eye-nostril distance; ML: metatarsal tubercle length; MH: 
metatarsal tubercle height; HLL: hind leg length; TTL: tibia + tarsus length. HLL and 
TTL were measured with a ruler (1 mm precision); all other variables were measured 
with a digital caliper (0.1 mm precision). For the sake of comparison, only one of us 
(IS) measured all individuals. Note that we did not discriminate the sex of individuals 
as it was unclear whether all specimens were adults.
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Toads were subsequently released at their place of capture, except for two females 
that were chosen as holotype and paratype, sent to the Natural History Museum of 
Crete (NHMC). Our choice for a small type series was bounded by the rarity of this 
taxon, so far confirmed from a single locality, with unknown population trends.

Results and discussion

We updated the distributions and taxonomy of Eurasian spadefoot toads (genus 
Pelobates). Following recent molecular results (Dufresnes et al. 2019b), a total of eight 
extant clades are distinguished. Six of them correspond to species level divergences, 
given their confirmed or putative reproductive isolation, as inferred from hybrid 
zone analyses, which make ad hoc tests to evaluate where two lineages stand along 
the speciation continuum (Singhal and Moritz 2013; Dufresnes et al. 2019b). The 
remaining intraspecific lineages are accordingly treated as subspecies, because they 
featured extensive admixture and thus seem to lack reproductive barriers.

From our SVL dataset, there was a significant global effect of species (P < 0.001) 
but not of sex (P = 0.08), neither of their interaction (P = 0.42) (two way ANOVA). 
The species effect was mainly due to differences between the large P. cultripes, P. syriacus, 
and P. balcanicus versus the smaller P. varaldii, P. fuscus, and P. vespertinus: all pairwise 
comparisons between these two groups were significant (P < 0.001), but none within 
groups (P > 0.05) (Tukey test). Females were significantly larger than males in P. 
cultripes (P = 0.002, n = 16 populations with both sexes), P. fuscus (P < 0.001, n = 21), 
but not in P. balcanicus (P = 0.58, n = 15) (paired t-test). Sample size precluded similar 
analyses in the remaining taxa.

The following present accounts for each taxon. We could successfully access the 
original literature for all but one description, and herein report the primary informa-
tion as it was published. The only exception is Pelobates praefuscus Khosatzky, 1985, 
and we rely on Frost (2019) for its information. Phylogeny and distributions of extant 
Pelobates are shown in Figure 1, sizes and color variation are displayed in Figure 2, and 
Figures 3 and Figures 4, respectively.

Pelobates cultripes (Cuvier, 1829)
Western spadefoot

Diagnosis. The largest Pelobates species, P. cultripes differs from the other Eurasian spa-
defoots by metatarsal spades being entirely black and a flat skull. Sizes largely overlap 
between sexes although males are generally smaller than females (Fig. 2). The back-
ground coloration can be yellow, gray, or brown, reticulated by dark patches; it typically 
lacks orange spots (Fig. 3). Average SVL = 74 mm (range: 32–105 mm) for females 
(n = 16 populations) and 71 mm (34–93 mm) for males (n = 17 populations) (Suppl. 
material 1, Table S1; Fig. 2). The karyotype consists of six large and seven small (i.e. < 
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6% of total length) pairs of two-armed chromosomes (Morescalchi 1967, 1971; Mores-
calchi et al. 1977; Schmid et al. 1987; Herrero and Talavera 1988). Large centromeric 
C-bands appears in pairs 1, 2, 4, 9, and 12; pericentric bands in the short arm of pair 1 
and the long arm of pair 8; telomeric bands in the long arms of pairs 1, 2, and 11; the 
short arm of pair 7 is almost heterochromatic (Herrero and Talavera 1988). Nucleolus 
organizers (NORs) are in the short arm of pair 7 (Schmid et al. 1987). The nuclear 
DNA content averages 7.4 pg (Litvinchuk et al. 2013).

Taxonomy. First named Rana cultripes Cuvier, 1829; holotype: MNHNP 0.4554; 
type locality: “notre midi”, corresponds to southern France, as noted by Mertens and 
Müller (1928). Two junior synonyms. Rana calcarata Michahelles, 1830; type lo-
cality: “prope Malagam” (near Malagam), probably Malaga, Spain; type(s): not men-
tioned. Cultripes provincialis Müller, 1832; type locality: “Provence” (meridional 
France), France; type(s): not designated, but the author refers to Rana cultripes from 
Paris (MNHN). First mentioned as Pelobates cultripes by Tschudi (1838).

Distribution. The species inhabits south-western Europe (0–1770 m elevation 
a.s.l.) (Sillero et al. 2014; Beja et al. 2009) (Fig. 1). Its main distribution spans across 
the Iberian Peninsula, where it occurs roughly everywhere in suitable habitats south 
of the Cantabrian Mountains and Pyrenees (Lizana 1997; Malkmus 2004). It is yet 
absent from the south-eastern tip of Spain (Lizana 1997). In France, it is present only 
along the Atlantic coast, from the Landes region to the Loire River, and along the Med-
iterranean Sea, from the Spanish border to the Var Department, reaching the area of 
Valence in the Rhone Valley. Some isolates exist also in south-western France (Thirion 
and Cheylan 2012). IUCN status: Near Threatened (Beja et al. 2009).

Diversity. Combining mtDNA and microsatellite data, Gutiérrez-Rodriguez et 
al. (2017) identified three closely-related mtDNA haplogroups (see also Crottini et al. 
2010) in the southern, western / northwestern, and northeastern parts of the range, 
which are mirrored by equivalent nuclear clusters that widely admix. Most of the ge-
netic diversity of this species is found in southern ranges, where climate conditions 
remained stable through the last ice ages (Gutiérrez-Rodriguez et al. 2017).

Pelobates varaldii Pasteur & Bons, 1959
Moroccan spadefoot

Diagnosis. A smaller version of P. cultripes (Fig. 2) differing by a few phenotypic fea-
tures. Unlike P. cultripes, the black coloration of the spades is often concentrated on 
the edges (Pasteur and Bons 1959; Busack et al. 1985). The cranial braincase is high 
and narrow in P. varaldii, while it is low and wide in P. cultripes (Pasteur and Bons 
1959; Roček 1981). The background coloration can be yellow, gray, and brown, with 
dark reticulate patches, and the dorsal surface is abundantly covered by orange dots, 
most pronounced on the eyelids (usually absent in P. cultripes; Pasteur and Bons 1959; 
Beukema et al. 2013; Fig. 3). Males are usually smaller than females (Fig. 2). Aver-
age SVL = 53 mm (range: 36–66 mm) for females (n = 4 populations) and 51 mm 
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(33–65 mm) for males (n = 4 populations) (Suppl. material 1, Table S1; Fig. 2). The 
karyotype includes six large and seven small pairs of two-armed chromosomes. Large 
centromeric C-bands appears in the pairs 1, 2, 4, 9, and 12; pericentric bands in the 
short arms of pair 1 and long arm of pair 8; telomeric bands in the long arms of pairs 
1, 2, and 11; the short arm of pair 7 is almost heterochromatic (Herrero and Talavera 
1988). The nuclear DNA content averages 7.3 pg (Litvinchuk et al. 2013). As shown 

Figure 2. Between-population variation of average size (snout–vent length – SVL) for each Pelobates 
species, measured separately for females (pink) and males (blue). This compiles average size-data from 82 
populations, representing at least 6,004 individuals (Suppl. material 1, Table S1). For P. balcanicus, it only 
includes populations from the nominal P. b. balcanicus. For P. syriacus, it only includes populations from 
P. s. boettgeri.
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in Table 1, P. varaldii differs from P. cultripes by 6.0% at mtDNA and 0.40% at nuclear 
DNA (Dufresnes et al. 2019b).

Taxonomy. The nomen Pelobates varaldii Pasteur & Bons, 1959 is the only one 
ever proposed for the Moroccan populations of spadefoot toads; holotype: MNHN-
RA-1959.1; type locality: Merja Samora, Morocco. The ancient split of P.  varaldii, 
dating back to the Messinian Salinity Crisis (5.3 My), supports its specific distinction 
from P. cultripes (Busack et al. 1985; Crottini et al. 2007).

Distribution. It is endemic to north-western Morocco (0–350 m elevation a.s.l.), 
found along the Atlantic coast, from the south of Tanger to Oualidia, where it is rare 
(de Pous et al. 2012; Beukema et al. 2013; Frost 2019). IUCN status: Endangered 
(Salvador et al. 2009).

Diversity. To our knowledge, P. varaldii has not been the focus of any phylogeo-
graphic or population genetic work.

Figure 3. Color variation in Pelobates cultripes, P. varaldii, P. fuscus and P. vespertinus. Photo credits and 
origins as follows a CD (Hérault, France) b, c CD (Algarve, Portugal) d A Sanchez Vialas (Spain) e G 
Martinez (Kenitra, Morocco) f–h A Sanchez Vialas (Tanger, Morocco) i, j N Suriadna (Ukraine) k CD 
(Wojewodztwo podkarpackie, Poland) l A Nöllert (Burgenland, Austria) m–p N Suriadna (Ukraine).
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Pelobates fuscus (Laurenti, 1768)
Common spadefoot

Diagnosis. Small spadefoot characterized by pale grayish metatarsal spades and a 
domed skull. The webbing of the hindfeet is well developed. Males are smaller than 
females (Fig. 2). The species can be found in a spectrum of gray, brown, or yellow-
ish colors, but rarely greenish (P. Székely pers. comm.), and features patterns such 
as stripes or blotches of varying sizes; variable presence of orange dots, from almost 
absent to very abundant (Fig. 3). In Eastern Europe, it differs from its sister species 
P. vespertinus by most individuals having numerous dark rounded spots on a light 
dorsum (Suriadna et al. 2016) and lacking a dark stripe between the eyes (Lada et al. 
2005). Average SVL = 54 mm (range: 37–78 mm) for females (n = 21 populations) 
and 47 mm (36–65 mm) for males (n = 21 populations) (Suppl. material 1, Table 
S1; Fig. 2). The karyotype consists of seven large and six small pairs of two-armed 
chromosomes (Mészáros 1973; Schmid et al. 1987; Manilo and Radchenko 2004; 
Manilo and Manuilova 2013; Suriadna 2014). Centromeric C-bands are obvious 
in pairs 2, 6, and 7–13 (Schmid et al. 1987). NORs are in the short arm of pair 7 
(Schmid 1980, 1982). The nuclear DNA content (calculated from flow cytometry) 
averages 8.7–9.0 pg (Litvinchuk et al. 2013).

Taxonomy. Originally described as Bufo fuscus Laurenti, 1768; type locality: not 
specifically designated (“in paludibus, rarissime hospitantur in continenti”, in swamps, 
rarely on the land); type(s): the specimens depicted by Rösel von Rosenhof (1758: 
pls XVII, XVIII), expressively cited by Laurenti (1768); although controversial (see 
Nöllert et al. 2012; Frost 2019), the additional mention of pl. XV (p. 122), a drawing 
of a dissected Pelophylax, could simply be an error. Rösel depicted the amphibians of 
Germany, and Shaw (1802) accordingly mentioned that Rösel found his specimens 
in the neighborhood of “Nurenberg” (Nürnberg), Germany, which could then apply 
as the type locality. Seven junior synonyms. Rana alliacea Shaw, 1802; type locality: 
not specifically designated, but Shaw (1802) refers to Rösel’s toads from Nürnberg, 
Germany; type(s): the toad illustrated by the author (pl. 41), which may very well 
corresponds to the amplexed female on the top right of pl. XVII in Rösel von Rosenhof 
(1758), of identical posture and color patterns. Bombinator marmorata Sturm, 
1828; type locality: near Penig, Germany; holotype: the frog illustrated by the author. 
Cultripes minor Müller, 1832; type locality: “unbekannt” (unknown); type(s): not 
mentioned. Pelobates fuscus var. lividis Koch, 1872: type locality: “von den Wiesen 
in der Nähe des Röder-Wäldchens bei Frankfurt” (the meadows in the Röder groove 
near Frankfurt), Germany; type(s): not mentioned; Pelobates insubricus Cornalia, 
1873; type locality: nearby Milano, Italy; type(s): not mentioned, most likely 
deposited at MSNM, but presumably lost since (Blackburn and Scali 2014). Pelobates 
latifrons Herón-Royer, 1888; type locality: “environ de Turin” (nearby Torino), Italy; 
type(s): not mentioned. Pelobates praefuscus Khosatzky, 1985; type locality: Etuliya, 
Moldova; holotype: ZISP 21N RNA M-1, a Pliocene fossil (according to Frost 2019). 
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The Italian populations, for long considered as a subspecies P. f. insubricus, have been a 
matter of debate until recently because they bear private mtDNA haplotypes (Crottini 
et al. 2007). Litvinchuk et al. (2013) synonymized this taxon with P. fuscus, given 
the weak divergence of these haplotypes, together with the lack of differentiation 
of allozyme and genome content. As it stands, P. fuscus should thus be considered a 
monotypic taxon.

Distribution. Widespread distribution in western, central and eastern Eu-
rope (0–810 m elevation a.s.l.), but absent from the northern European countries 
and most of southern Europe (Sillero et al. 2014; Nöllert at al. 2012) (Fig. 1). In 
the west, it reaches the eastern edge of the Netherlands (Creemers and Van Delft 
2009), the eastern part of Flanders in Belgium (Bauwens and Claus 1996), the 
western parts of Nordrhein-Westfalens and the south-east of Rheinland-Pflaz in 
Germany (Bitz et al. 1996; Chmela and Kronshage 2011), the north-eastern side of 
France (particularly along the Rhine River, Eggert and Vacher 2012). In the north, 
it extends to northern Netherlands (Creemers and Van Delft 2009), the North Sea 
coastline of Germany (Nöllert and Günther 1996) and Denmark, the south of Swe-
den, as well as the coastline of the Baltic Sea from Germany to Estonia, and east-
ward until it reaches P. vespertinus in Russia (Kuzmin 1999; Nyström et al. 2007; 
Litvinchuk et al. 2013; Sillero et al. 2014). The contact zone with the latter is well 
delineated from the Kursk region in Russia to the Black Sea coast (Dufresnes et al. 
2019b). From there, it is present westward along the Black Sea coast of Ukraine to 
north-eastern Bulgaria (Kuzmin 1999; Stojankov et al. 2011). The southern edges 
extend along the Danube at the borders of Romania and Bulgaria (Stojankov et al. 
2011) and across Serbia (Vukov et al. 2013), eastern Croatia, northern Bosnia and 
Herzegovina, Slovenia (Džukić et al. 2008, Curić et al. 2018), northern and east-
ern Austria around the Alps (Cabela et al. 2001), and southern Germany (Nöllert 
and Gunther 1996). The species is also present in a large area of northern Italy, 
especially in the Po Valley (Andreone 2006). Last, isolated populations persist in 
central France (Indre, Loiret, Indre-et-Loire: Eggert and Vacher 2012) and west-
ern Bulgaria (around Sofia: Stojankov et al. 2011). IUCN Status: Not Evaluated, 
considered Least Concern when grouped with P. vespertinus (Agasyan et al. 2009a). 
Declines have been reported for more than a century in various parts of Europe, 
which have caused a regression of the distribution limits (Džukić et al. 2005; Egg-
ert et al. 2006).

Diversity. The phylogeographic work by Crottini et al. (2007) and Litvinchuk 
et al. (2013) characterized two refugial groups for this species (as the “western line-
age of P. fuscus”), based on shallow mtDNA divergence and allozyme differentiation: 
in the Balkans/northern Italy and on the western shores of the Black Sea coast. This 
seems supported by weak genomic differentiation among Central-European samples 
(Dufresnes et al. 2019b). The refugial areas bear nearly all the genetic diversity of the 
species, which was lost in the derived northern populations, following post-glacial 
colonizations (Eggert et al. 2006).
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Pelobates vespertinus (Pallas, 1771)
Pallas’ spadefoot

Diagnosis. Morphologically close to its sister species P. fuscus, it similarly features pale 
metatarsal spades and a domed skull. The coloration also spans the gray-yellowish-
brownish spectrum, including reddish individuals (Fig. 3); orange dots can be heavily 
marked or absent (Fig. 3). It differs from P. fuscus by most individuals having three 
light longitudinal stripes on the dorsum (Suriadna et al. 2016), as well as a dark stripe 
between the eyes (Lada et al. 2005). Sexes of similar size (Fig. 2). Average SVL = 47 
mm (range: 29–59 mm) for females (n = 3 populations) and 48 mm (29–61 mm) for 
males (n = 12 populations) (Suppl. material 1; Table S1, Fig. 2). The karyotype consists 
of seven large and six small pairs of two-armed chromosomes (Manilo and Manuilova 
2013; Suriadna 2014). NORs (secondary constrictions) are in the short arm of pair 7 
(Manilo and Radchenko 2008). The nuclear DNA content averages 9.2–9.4 pg (Lit-
vinchuk et al. 2013). As shown in Table 1, P. vespertinus differs from P. fuscus by 2.5% 
at mtDNA and 0.13% at nuclear DNA (Dufresnes et al. 2019b). The genome of P. 
vespertinus is about 5% larger than P. fuscus (Borkin et al. 2001; Litvinchuk et al. 2013; 
Suriadna 2014).

Taxonomy. Originally named Rana vespertina Pallas, 1771; type locality: 
not specifically designated, but the author mentioned this taxon in Zarbay Creek 
(“Bach Sarbei”, Samara oblast), Russia, which can be considered as the type local-
ity; type(s): not mentioned. Three junior synonyms. Pelobates fuscus var. orien-
talis Severtsov, 1855; type locality: “Voronezhskaya Gubernia” (Voronezh gover-
norate), Russia; type(s): not mentioned. Pelobates campestris Severtsov, 1855; 
type locality: between Bityug, Don and Ikorets rivers in today’s Voronezh province, 
Russia; type(s): not mentioned. Pelobates borkini Zagorodniuk, 2003; proposed 
for the eastern form of P. fuscus but nomen nudum because neither a type speci-
men nor a type locality were designated (Zagorodniuk 2003). Pelobates vesperti-
nus was previously considered a subspecies of the common spadefoot, as Pelobates 
fuscus vespertinus (Crochet and Dubois 2004). The significant divergence (~2–3 
My) and restricted admixture with P. fuscus, consistent with reproductive isolation, 
both support the distinction of P. vespertinus as a separate species (Litvinchuk et 
al. 2013; Dufresnes et al. 2019b), as also proposed from genome size differences 
(Suriadna 2014).

Distribution. A lowland species (0–830 m elevation a.s.l.) widespread from the 
contact zone with P. fuscus, to western Siberia and Kazakhstan, and along the Ural 
River (Kuzmin 1999) (Fig. 1). However, the exact limits with P. fuscus are not known 
in the northern 700 km of the distribution range. Detailed genetic data showed that 
the transition extends between the Kursk region to southern Ukraine (Litvinchuk et al. 
2013; Dufresnes et al. 2019b). In the south, it is present along the Sea of Azov coast to 
the northern Caucasus (Kuzmin 1999; Suriadna et al. 2016). Spadefoot populations in 
the Crimea are attributed to P. vespertinus (Litvinchuk et al. 2013). The southernmost 
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populations are in Dagestan, where it is sympatric with P. syriacus (Mazanaeva and 
Askenderov 2007). IUCN Status: Not Evaluated, as P. vespertinus was previously 
included in the P. fuscus assessment.

Diversity. Crottini et al. (2007) and Litvinchuck et al. (2013) provided detailed 
phylogeographic accounts for this species (as the “eastern lineage of P. fuscus”), which 
consists of a homogenous clade that expanded from a single glacial refugia located in 
the eastern shores of the Sea of Azov. Pelobates vespertinus forms a narrow hybrid zone 
(< 20 km) with P. fuscus in eastern Ukraine/western Russia (Litvinchuk et al. 2013; 
Dufresnes et al. 2019b).

Figure 4. Color variation in Pelobates syriacus and P. balcanicus. Photo credits and origins as follows 
a, b G Hamoivitch (Israël) c R Winkler (Israël) d G Martinez (Israël) e IS (Limnos, Greece) f SNL (Eu-
ropean Turkey) g IS (Limnos, Greece) h A Nöllert (Dagestan, Russia) i MD (Danube Delta, Romania) 
j IS (Thrace, Greece) k IS (Macedonia, Greece) l IS (Evia, Greece) m–o IS (Peloponnese, Greece) p CD 
(Peloponnese, Greece).
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Pelobates syriacus Boettger, 1889
Eastern spadefoot

Diagnosis. Large spadefoot with whitish metatarsal spades and a flat skull. Webbing 
of the hind feet less developed than in P. fuscus and P. vespertinus. Sexes of similar 
size (Fig. 2). Coloration can be gray, yellow, greenish but rarely brown; orange dots 
often present, but not as abundant and marked as in some individuals of P. fuscus, 
P. vespertinus, or P. balcanicus (Fig. 4). Based on populations of P. syriacus boettgeri, 
average SVL = 68 mm (range: 40–92) for females (n = 5 populations) and 69 mm 
(57–83 mm) for males (n = 4 populations) (Suppl. material 1, Table S1; Fig. 2). The 
karyotype consists of seven large and six small pairs of two-armed chromosomes 
(Uğurtaş et al. 2001, from P. s. boettgeri). Centromeric C-bands are obvious in pairs 
8 and 10 and telomeric Q-bands in the long arms of pairs 9 and 10 (Schmid 1979; 
Schmid et al. 1987). NORs are in the short arm of pair 7 (Schmid 1982; Schmid et 
al. 1987). The nuclear DNA content averages 8.2 pg (Litvinchuk et al. 2013; data 
from P. s. boettgeri).

Taxonomy. Described from the Levant region as Pelobates syriacus Boettger, 
1889; type locality: “Haiffa in Syrien” (Haifa), Israel; type: SMF 1437.1a (Boettger 
1892), subsequently designated as lectotype SMF 1722 (Mertens 1967). Other nomi-
na proposed apply to P. s. boettgeri and P. balcanicus (see below).

Distribution. Scattered distribution; mainly present in the Middle East with 
0–2000 m elevation a.s.l. (Agasyan et al. 2009b; Uğurtas 2001; Džukić et al. 2008; 
Sofianidou 2012) (Fig. 1). The nominate subspecies P. syriacus syriacus inhabits the 
southern part of the distribution in the Levant, from the Syrian coast at the border of 
Lebanon to the southern Israeli coast, as well as in south-western Syria (Boettger 1889; 
Munwes et al. 2010; Sofianidou 2012). It may be extinct from western Jordan (Agasy-
an et al. 2009b; Disi and Amr 2010). The subspecies P. syriacus boettgeri occupies the 
remaining ranges. In the west, it is present in western Turkey and along the Aegean  
coastline. It also occurs in European Turkey and probably southeastern Bulgaria. Alter-
natively, the latter populations could belong to P. balcanicus, notably along the Maritsa 
River, and identification is pending molecular analyses. The presence of P. syriacus is 
also documented on the Greek islands of Limnos, Lesbos, and Kos (Sofianidou 2012; 
Strachinis and Roussos 2016). Its central distribution is poorly known and therefore 
not well delineated, with several isolates described in Turkey, both along the Black and 
Mediterranean sea coasts, as well as the central parts of Anatolia. In the northeast, P. 
syriacus reaches the southern slopes of the Caucasus, from Georgia to Azerbaijan. The 
northernmost records are in Dagestan, on the west coast of the Caspian Sea, where 
it meets P. vespertinus (Mazanaeva and Askenderov 2007). Further east, it is present 
along the southern shores of the Caspian Sea in Iran (eastern limit in Golestan; Kamali 
and Malekzadeh 2013). IUCN status: Not Evaluated; considered Least Concern when 
grouped with P. balcanicus (Agasyan et al. 2009b).
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Diversity. Using mtDNA and genomic data, Dufresnes et al. (2019b) evidenced a 
Pleistocene split between the Levant (P. s. syriacus) and the rest of the range (P. s. boettgeri; 
see below). Within both subspecies, populations are weakly differentiated despite their 
present-day fragmentation (see also Munwes et al. 2010 for P. s. syriacus). Populations 
from the Caucasus (P. s. boettgeri) differs from Anatolian ones at nuclear, but not 
mitochondrial markers. In the Lesser Caucasus and southern Turkey, P. s. boettgeri 
features traces of past gene flow with P. s. syriacus. Iranian populations have not been 
examined with genetic tools and could bear cryptic diversity.

Pelobates syriacus boettgeri Mertens, 1923
Anatolian spadefoot

Diagnosis. Similar to the nominal subspecies, notably in terms of cranial characters 
(Roček 1981) and coloration patterns (Fig. 4). Most biometric data on P. syriacus come 
from populations of P. s. boettgeri (Fig. 2, see above). As shown in Table 1, P. s. boettgeri 
differs from P. s. syriacus by 1.7% at mtDNA and 0.01% at nuclear DNA (Dufresnes 
et al. 2019b).

Taxonomy. The oldest nomen available for Anatolian/Caucasian spadefoots is 
Pelobates syriacus boettgeri Mertens, 1923; type locality: Belesuwar, southeastern 
Azerbaijan; holotype: SMF 1725 (originally 1437.2a, Mertens 1923). A single junior 
synonym. Pelobates transcaucasicus Delwig, 1928; type locality: “Tiflis” (Tbilisi), 
Georgia; types: ten syntypes, nine at ZISP, and one at ZIK (Amph A5/A (2164)). Sub-
species level of P. s. boettgeri is granted by its phylogenetic divergence from P. s. syriacus, 
but the recent split (~1 My) and the widespread traces of admixture between both sub-
species in Armenia, Turkey (Antalya region), and Israel argue against a specific status.

Distribution and diversity. See the accounts for P. syriacus.

Pelobates balcanicus Karaman, 1928
Balkan spadefoot

Diagnosis. Resembling P. syriacus with which it was previously considered a synonym 
(Frost 2019). Large toad with whitish metatarsal spades and a flat skull. Sexes of 
similar size (Fig. 2). Various motifs with gray, yellow or greenish colors, but rarely 
brown (unlike the sympatric P. fuscus, P. Székely pers. comm.); frequently specked 
with orange dots, sometimes heavily (perhaps more than in P. syriacus) (Fig. 4). 
Based on 25 biometric characters, Uğurtas et al. (2002) showed that the P. balcanicus 
populations from the Balkans are morphologically very variable and differentiated 
from Asia Minor (P. syriacus); yet P. syriacus populations from European Turkey 
(Edirne, genetically confirmed by Dufresnes et al. 2019b) and southeastern Bulgaria 
(Primorsko) grouped with P. balcanicus (Uğurtas et al. 2002). Roček (1981) only found 
one cranial difference: the processus posterior parasphenoidei is present in P. syriacus but 
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not developed in P. balcanicus. Morphometric assessments associated to genetic data 
are needed. Based on populations of P. balcanicus balcanicus, average SVL = 67 mm 
(48–100 mm) for females (n = 16 populations) and 68 mm (46–94 mm) for males (n 
= 15 populations) (Suppl. material 1, Table S1; Fig. 2). The karyotype (P. b. balcanicus) 
consists of six large and seven small pairs of two-armed chromosomes. NORs 
(secondary constrictions) are in the short arm of pair 7 (Belcheva et al. 1977). The 
nuclear DNA content (calculated from flow cytometry) averages 7.9 pg (Litvinchuk et 
al. 2013; data from P. b. balcanicus). As shown in Table 1, P. balcanicus differs from P. 
syriacus by ~7.4% at mtDNA and ~0.31% at nuclear DNA (Dufresnes et al. 2019b).

Taxonomy. Originally described as a subspecies of the Eastern spadefoot, 
Pelobates  syriacus balcanicus Karaman, 1928; type locality: Dojran Lake, North 
Macedonia; type(s): most likely include the skeleton described by Karaman (1928), 
deposited at MMNH (Skopje, North Macedonia), but destroyed in an earthquake 
in 1963 (V. Sidorovska pers. comm.); the MMNH currently hosts one specimen 
from the type locality, MMNH-A-699 (collected in 2001). This taxon represents a 
distinct species from P. syriacus, due its old divergence (>6 My) and the absence of 
contemporary introgression at their area of contact in European Turkey, consistent 
with advanced reproductive isolation (Dufresnes et al. 2019b). Therefore, we herein 
remove P. balcanicus from its previous synonymy with P. syriacus.

Distribution. Pelobates balcanicus is restricted to the Balkan Peninsula, 0–920 m 
a.s.l. (Džukić et al. 2008) (Fig. 1). In the north, it is present in northern Serbia and 
northwestern Romania. It follows the Danube River from Serbia to the Black Sea in 
Romania (Székely et al. 2013; Ţeran et al. 2017). There are yet some possible gaps 
along the Danube (e.g. around the Iron Gate: Vukov et al. 2013; Ţeran et al. 2017). 
In the north-west, the Great Morova River in Serbia marks its western margin (Džukić 
et al. 2008). Northern ranges are currently disconnected from the southern popula-
tions (Vukov et al. 2013) of North Macedonia, eastern Albania (a single location), 
south-west Bulgaria (Strimon River), and Greece (Džukić et al. 2008; Mollov et al. 
2006; Szabolcs and Mizsei 2017). In the 1980s, Sofianidou (2012) reported the spe-
cies along the western coastline of the Adriatic Sea and the northern coastline of the 
Gulf of Corinth (Greece), but there is no recent observation in this region. Elsewhere 

Table 1. Pairwise % of genetic differences between Pelobates taxa (from the data of Dufresnes et al. 
2019b). The estimates below diagonal correspond to mitochondrial DNA (cyt-b + 16S, 1.2 kb); the esti-
mates above diagonal correspond to nuclear DNA (63.5 kb of RAD tags).

  P. cultripes P. varaldii P. fuscus P. vespertinus P. s. syriacus P. s. boettgeri P. b. balcanicus P. b. chloeae
P. cultripes – 0.40 0.66 0.75 0.72 0.70 0.74 0.73
P. varaldii 6.0 – 0.83 0.92 0.89 0.88 0.92 0.90
P. fuscus 10.1 10.0 – 0.13 0.63 0.62 0.65 0.64
P. vespertinus 9.7 9.6 2.5 – 0.71 0.70 0.74 0.73
P. s. syriacus 9.1 8.6 9.1 8.9 – 0.01 0.32 0.30
P. s. boettgeri 9.2 8.9 9.2 9.0 1.7 – 0.31 0.29
P. b. balcanicus 9.2 8.6 8.5 8.5 7.2 7.0 – 0.02
P. b. chloeae 9.2 8.2 8.5 8.6 7.7 7.7 2.8 –
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in Greece, it is present in Peloponnese (P. balcanicus chloeae ssp. nov., see below), in the 
eastern parts of the mainland, and along the Aegean Sea shores, from Sterea Ellas to 
the Evros River, until it reaches P. syriacus in Thrace (Džukić et al. 2008; Sofianidou, 
2012). The spadefoots known from the Maritsa (Evros) River in southern Bulgaria, 
and along the western coasts of the Black Sea, may correspond to P. syriacus (Stojanov 
et al. 2011; Dufresnes et al. 2019b). IUCN status: Not Evaluated; previously included 
in P. syriacus assessment.

Diversity. Using mtDNA and genomic data, Dufresnes et al. (2019b) evidenced 
a Pleistocene split (~2 My) for spadefoots from the Peloponnese (P. balcanicus chloeae 
ssp. nov.). In the rest of the range, at least three glacial lineages (<1 My) were 
identified: a first one in the eastern ranges, from the Carpathians to the Black Sea 
and as south as Greek Thrace; a second one in western ranges from Serbia to northern 
Greece; and a third one on the coastal island of Evia (north-east of Peloponnese). The 
eastern and western lineages widely admix. Populations from central Greece are yet 
to be examined.

Pelobates balcanicus chloeae ssp. nov.
http://zoobank.org/A1C08645-8307-49EF-A2EB-7F09D7BCC89D
Chloe’s spadefoot

Type locality. Strofylia meadows, near the village of Metochi, Peloponnese, Greece 
(38.1239°N, 21.3858°E, 1 m a.s.l.). Coastal sandy meadows with shallow ponds (Fig. 5).

Holotype. NHMC 80.2.15.10, adult female captured on December 10th 2018 
by CD, IS and ET at Strofylia meadows, Greece (38.1239°N, 21.3858°E, 1 m a.s.l.); 
subsequently deposited at the Natural History Museum of Crete (NHMC); mitochon-
drial cyt-b haplotype BAL19 (Dufresnes et al. 2019b). Full measurements are available 
in Table 2 and photographs in Figure 5. Large specimen (SVL = 78.7 mm) with the 
head narrower than the body, ending by a rounded snout; nostrils closer to each other’s 
than from the eyes; forehead flat, as viewed from the side, with large interorbital; tym-
panum invisible; vomerine teeth present. Large, bulging eyes (7.2 mm of diameter) 
with vertical pupil and a dark-golden iris. Legs relatively short (92 mm), 1.2 times the 
size of the body. Five partially webbed toes; webbing formula: I 1-1+ II 1-2 III 1-2+ IV 
3-1+ V; relative lengths from inner to outer toes: 4>3>5>2>1; large and long rounded 
(blade-shaped) metatarsal tubercle (“spade”), whitish; subarticular tubercles indistinct. 
Strong arms with four unwebbed fingers; palm tubercles visible, oval. Ventral and dor-
sal skins smooth, although the latter bears scattered warts. Coloration in life: ventrum 
glossy white, bluish near the limbs; dorsum light gray with prominent green-brown 
reticulated patches featuring orange dots, notably at the armpits; head darker, with 
a horizontal brown line running between the eyes. Changes of coloration in ethanol: 
dorsum less contrasted; fainted orange dots.
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Paratype. NHMC 80.2.15.11, adult female captured on December 10th 2018 by 
CD, IS and ET at Strofylia meadows, Greece (38.1239°N, 21.3858°E, 1 m a.s.l.); 
subsequently deposited at the Natural History Museum of Crete (NHMC); mito-
chondrial cyt-b haplotype BAL20 (Dufresnes et al. 2019b). Full measurement and 
post-mortem pictures are provided in Table 2 and Figure 5, respectively.

Diagnosis. Supposedly similar morphologically to the nominal subspecies and 
reliably diagnosed only by molecular data. So far studied from the type locality only 
(Strofylia). Like the nominal subspecies, Pelobates balcanicus chloeae is a large spadefoot 
with whitish metatarsal spades, a flat skull and incomplete webbing on the hind feet 
(Fig. 4). It also shares general characteristics of the genus, i.e. stocky built, smooth skin 
and vertical pupil; males bear oval protuberances on the arms, absent in females. The 
dorsum coloration is generally light gray, sometimes yellow, covered with dark green-
brown reticulate patches and variable orange dots (Fig. 4). From our own observa-
tions, the color patterns seem to slightly differ from the nominal subspecies (Fig. 4). In 
P. b. chloeae, the green patches are small and numerous (fewer but larger patches in the 
nominal subspecies); dots are usually orange (more reddish in the nominal subspecies) 
and located inside the green patches (randomly distributed in the nominal subspecies). 
The ventrum and limbs are glossy and slightly bluish (rather pale whitish in the nomi-
nal subspecies). Moreover the snout of P. b. chloeae appears shorter and blunter than 
the nominal subspecies. These suspicions will need to be assessed by formal phenotypic 
analyses. At the type locality, the SVL of adults averaged 71.5 mm (range: 62–84; n 
= 12 individuals, both sexes combined). The mating call and the tadpole are yet to be 
described and diagnosed. The karyotype has not been documented. As shown in Table 
1, P. b. chloeae differs from the nominal subspecies by 2.8% at mtDNA and 0.02% at 
nuclear DNA (Dufresnes et al. 2019b).

Table 2. Morphometric measurements (mm) of Pelobates balcanicus chloeae at the type locality (Strofylia 
meadows), based on 12 adults (both sexes combined), and detailed for the type specimens. SVL: snout-
vent length; HW: head width; HL: head length; ED: eye diameter; EE: inter-eye distance; NN: inter-
nostril distance; EN: eye-nostril distance; ML: metatarsal tubercle length; MH: metatarsal tubercle height; 
HLL: hind leg length; TTL: tibia + tarsus length.

Strofylia population Holotype NMHC 80.2.15.10 Paratype NMHC 80.2.15.11
SVL 71.5 ± 3.4 78.7 74.1
HW 23.7 ± 1.1 26.6 25.5
HL 21.8 ± 0.9 23.4 23.1
ED 7.4 ± 0.24 7.2 7.1
EE 15.9 ± 0.7 16.7 17.3
NN 4.4 ± 0.2 4.6 4.2
EN 6.0 ± 0.3 6.7 6.0
ML 6.1 ± 0.4 7.1 6.5
MH 2.6 ± 0.1 2.6 2.8
HLL 83.7 ± 3.6 92 90
TTL 64.2 ± 3.1 72 69
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Figure 5. Description of Pelobates balcanicus chloeae. Top live photograph of the holotype, NHMC 
80.2.15.10 (CD, taken on December 10th 2018); middle dorsal and lateral views of the type specimens 
(left NHMC 80.2.15.10; right NHMC 80.2.15.11) post-mortem (IS); bottom Strofylia meadows, the 
type locality in Peloponnese, Greece (ET).
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Taxonomic status. Following Dufresnes et al. (2019b), we raise the population(s) 
from the Peloponnese as a distinct P. balcanicus subspecies based on nuclear and mi-
tochondrial phylogenetic data, but refrain a specific status from current data, due 
to the relatively young evolutionary divergence (~2 My) and potential introgression 
with the nominal subspecies.

Etymology. No name is available for spadefoots from the Peloponnese or Greece 
in general. We hence attribute it a new nomen, Pelobates balcanicus chloeae, as a refer-
ence to the young daughter of CD, Chloé, who played a decisive role in guiding his 
research towards European biogeography and herpetology. Moreover, “Chloé” is an 
ancient Greek name (“Χλόη”) designating the young green grass spurring from the 
ground in spring, reminiscent of spadefoots unearthing themselves to breed in mass. 
The name is also associated with Dimitra (Δήμητρα), the Ancient Greek goddess of 
agriculture who protected traditional farmlands in which so many amphibians used 
to thrive.

Distribution. From current knowledge, this subspecies is endemic to the Pelo-
ponnese in southern Greece (Dufresnes et al. 2019b) (Fig. 1); it was so far genetically 
confirmed from its type locality only. Historically (1980s), there were records of 
spadefoots all over the Peloponnese, except in the three southern peninsulas (Böhme 
1975; Eiselt 1988; Sofianidou 2012). Nowadays, the two known  Pelobates localities 
are restricted to the central (Tripoli) and north-western (Strofylia) areas. Conse-
quently, it is likely that there are only few populations left for this subspecies. It is 
not excluded that its range extends to Central Greece, where potential populations 
have not been examined; one sample from Kallithea Elassonos (Thessaly, Greece) 
bore trace of introgression by P. b. chloeae, suggesting past or present contact (Du-
fresnes et al. 2019b).

Ecology. Never studied as such, but this subspecies most likely shares a similar 
ecology as the nominal subspecies (P. b. balcanicus). Inhabits open, flat, lowland areas 
with soft sandy soil near shallow ponds or ditches with aquatic vegetation for breeding, 
as described for P. balcanicus (Dufresnes 2019). Mostly nocturnal and semi-fossorial: 
comes out of the ground for foraging and breeding during / right after heavy rains. 
Hence it can be observed in high numbers during winter-spring showers; ET counted 
>70 individuals (mostly juveniles) in 15 min of search in late-October 2018 at the 
type locality; usually active around 13–20 °C, but also as low as 7 °C (ET pers. obs.).

Diversity. Our P. b. chloeae samples featured the lowest nuclear genetic diver-
sity recorded across the entire ranges of P. balcanicus and P. syriacus (Dufresnes et al. 
2019b). This implies that the Strofylia population and perhaps the subspecies as a 
whole have been heavily bottlenecked. Two mtDNA haplotypes co-occur (Dufresnes 
et al. 2019b). Genetic studies are urgently needed to assess the range and diversity of 
this regional endemic.

Conservation Status – Ioannidis and Mebert (2011) mentioned road casualties 
at the type locality of this taxon, one of few extant populations. Although not evalu-
ated yet, this taxon is clearly threatened according to IUCN criteria; given the narrow 
extent of occurrence (EOO), it should be listed as Critically Endangered (CR).
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Identification key

Based on our updated overview of the taxonomy and distribution of Pelobates, we 
hereby provide a key to summarize the main discriminating features within this group. 
Because several taxa are cryptic and lack diagnostic phenotypic differences, geographic 
origin remains an essential information.

1 Black spades on the hind legs ............................................................................2
– Spades of light coloration ..................................................................................3
2 Large body (6–9 cm) without orange dots, spades entirely black; Spain, Portugal 

and southern France .......................................................................... P. cultripes
– Small body (<6 cm) with orange dots, spades bordered with black; Morocco ......

 .......................................................................................................... P. varaldii
3 Domed skull, developed webbing, and small body (<6 cm) ...............................4
– Flat skull, partial webbing, and large body (6–8 cm) .........................................5
4 Dorsum stripes rare; Central and northwestern Europe, west of a Crimea–Mos-

cow imaginary line .................................................................................P. fuscus
– Three dorsum stripes often present; Eastern Europe and Central Asia, east of a 

Crimea–Moscow imaginary line .................................................... P. vespertinus
5 Levantine region (Israel, Lebanon, and Syria) ........................P. syriacus syriacus
– Caucasus and Caspian Sea shores, Anatolia, and European Turkey ......................

 ........................................................................................... P. syriacus boettgeri
– Balkan Peninsula, except Peloponnese ..........................P. balcanicus balcanicus
– Peloponnese ...................................................................... P. balcanicus chloeae

Conclusions

Our phylogeographic analyses of Pelobates (Dufresnes et al. 2019b) called for a 
taxonomic reassessment of this threatened amphibian group. We reviewed the evidence 
for distinct Moroccan (P. varaldii), Iberian (P. cultripes), Central (P. fuscus), and Eastern 
European (P. vespertinus) species. Furthermore, we revised the taxonomy of P. syriacus 
by distinguishing two cryptic species, P. syriacus and P. balcanicus, and by considering 
their strong intraspecific diversity into subspecific divisions, P. s. syriacus, P. s. boettgeri, 
P. b. balcanicus, and P. b. chloeae, the latter as a newly described taxon. Their variation 
in size and coloration are detailed and illustrated, based on a literature review and high-
quality photographs, respectively. Finally, our paper provides up-to-date whole-range 
distribution maps for all extant Pelobates taxa.
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ero Gil E, Pérez Mellado V, Díaz-Paniagua C (2009) Pelobates cultripes. The IUCN Red 
List of Threatened Species 2009: eT58052A86242868. https://doi.org/10.2305/IUCN.
UK.2009.RLTS.T58052A11722636.en

Beukema W, De Pous P, Donaire-Barroso D, Bogaerts S, Garci-Port J, Escoriza D, Arribas 
OJ, El Mouden EH, Carranza S (2013) Review of the systematics, distribution, bioge-
ography and natural history of Moroccan amphibians. Zootaxa 3661: 1–60. https://doi.
org/10.11646/zootaxa.3661.1.1

Bitz A, König H, Simon L (1996) Knaublauchkröte – Pelobates fuscus (Laurenti, 1768). In: 
Bitz A, Fischer K, Simon L, Thiele R, Veith M (Eds) Die Amphibien und Reptilien in 
Rheinland-Pfalz. GNOR, Landau, 165–182.

Blackburn DC, Scali S (2014) An annotated catalog of the type specimens of Amphibia in 
the collection of the Museo Civico di Storia Naturale, Milan, Italy. Herpetological Mono-
graphs 28: 24–45. https://doi.org/10.1655/HERPETOLOGICA-D-13-00008

Boettger O (1889) Ein neuer Pelobates aus Syrien. Zoologischer Anzeiger 12: 144–147.
Boettger O (1892) Katalog der Batrachier-Sammlung im Museum der Senckenbergischen Natur-

forschenden Gesellshaft in Frankfurt am Main. Gebrüder Knauer, Frankfurt am Main, 48.



Christophe Dufresnes et al.  /  ZooKeys 859: 131–158 (2019)152

Böhme W (1975) Zur Vorkommen von Pelobates syriacus in Griechenland. Senckenbergiana 
Biologica 56: 199–202.

Borkin LJ, Litvinchuk SN, Rosanov JM, Milto KD (2001) Cryptic speciation in Pelobates 
fuscus (Anura, Pelobatidae): evidence from DNA flow cytometry. Amphibia-Reptilia 22: 
387–396. https://doi.org/10.1023/A:1018806900399

Busack SD, Maxson LR, Wilson MA (1985) Pelobates varaldii (Anura: Pelobatidae): A morpho-
logically conservative species. Copeia 1985: 107–112. https://doi.org/10.2307/1444797

Cabela A, Grillitsch H, Tiedemann F (2001) Atlas zur Verbreitung und Ökologie der Am-
phibien und Reptilien in Österreich. Umweltbundesamt, Wien, 880 pp.

Chmela C, Kronshage A (2011) Knoblauchkröte – Pelobates fuscus. In: Hachtel M, Schlüp-
mann M, Weddeling K, Thiesmeier B, Geiger A, Willigalla C (Eds) Handbuch der Am-
phibien und Reptilien Nordrhein-Westfalens Band 1. Laurenti Verlag, Bielefeld, 543–582.

Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation units: dealing with 
the species-population continuum in the age of genomics. Frontiers in Ecology & Evolu-
tion 6: 165. https://doi.org/10.3389/fevo.2018.00165

Cornalia EBM (1873) Observazioni sul Pelobates fuscus e sulla Rana agilis trovate in Lombar-
dia. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di 
Milano 16: 97–107.

Creemers RCM, van Delft JJCW (2009) De amfibieën en reptielen van Nederland. Nationaal 
Natuurhistorisch Museum Naturalis, Leiden, 476 pp.

Crochet P-A, Dubois A (2004) Recent changes in the taxonomy of European amphibians and 
reptiles. In: Gasc J-P, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haf-
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