Checklist of acanthocephalan parasites of South Africa

Ali Halajian', Lesley R. Smales ${ }^{2}$, Sareh Tavakol', Nico J. Smit ${ }^{3}$, Wilmien J. Luus-Powell ${ }^{1}$
I DST-NRF SARChI Research Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa 2 Parasitology Section, South Australia Museum, North Terrace, Adelaide 5000 South Australia, Australia $\mathbf{3}$ Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Corresponding author: Ali Halajian (ali_hal572002@yahoo.com)

Academic editor: Matthew Wayland \| Received 23 June 2018 | Accepted 11 August 2018 | Published 10 October 2018
http://zoobank.org/9C50AE22-CD06-478C-B81A-D74E5F0E384D
Citation: Halajian A, Smales LR, Tavakol S, Smit NJ, Luus-Powell WJ (2018) Checklist of acanthocephalan parasites of South Africa. ZooKeys 789: 1-18. https://doi.org/10.3897/zookeys.789.27710

Abstract

Twenty-one species of acanthocephalans, representative of thirteen genera from ten families of seven orders and three classes, are included in this updated checklist of acanthocephalans in South Africa. Although South Africa appears to have a less diverse acanthocephalan fauna compared to some other countries such as Iran in Asia, or Brazil in South America, this is probably an artefact of fewer parasitological surveys.

Keywords

Acanthocephala, helminths, diversity, wildlife, Africa

Introduction

South Africa's landscape is the third most biologically diverse in the world with 6\% of the world's mammal species, 8% of bird species and 5% of reptile species of which many are endemic (da Silva and Willows-Munro 2016). In regard to invertebrates, only 36,803 species are listed for Africa, and 12,098 for South Africa (Hamer 2010). It is said that in South African habitats, there are many undiscovered and undescribed animal species, especially invertebrates. It is estimated that as many as 80,000 South

African animal species remain to be discovered or described, and most of these animals are invertebrates (Hamer 2013).

The most comprehensive checklist of helminth parasites of Africa was compiled for freshwater fishes by Khalil (1971) and updated by Khalil and Polling (1997). It included very few records of acanthocephalans considering the total number of freshwater fish species present in the continent. The updated list (Khalil and Polling 1997) comprised 568 adult helminth parasites of which only 21 species are acanthocephalans. These records were compiled from 359 species of African freshwater fishes (assigned to 89 genera belonging to 32 families) of an estimated 3000 existing inland fish species (Khalil and Polling 1997). These examples illustrate the lack of knowledge of the helminth fauna of the wildlife of the African continent in general and in South Africa in particular.

This is the first checklist of acanthocephalans of South Africa and the aim is to provide a comprehensive record of all the previously reported species of Acanthocephala occurring in South African hosts as well as new records from our on-going research on parasites of wildlife, while simultaneously demonstrating the need for more extensive parasitological surveys.

Materials and methods

Data were obtained from two sources, published records and our own ongoing studies on the Acanthocephala of South African wildlife. These data are presented in two parts. In the first part parasites are listed systematically, with families, genera, and species in alphabetical order. The scientific name, including any synonyms, followed by the scientific and common name of the host, the locality in which the parasite was reported and museum (location) of type specimens where known. In the second part, the hosts are listed systematically by their scientific names and parasite records from each host are given together with locality and reference. The records without references are those of our ongoing study that are being reported here for the first time.

Classification of the Acanthocephala follows Amin (2013). For the hosts, fish taxonomy is based on Skelton $(2001,2016)$ and Fishbase (Froese and Pauly 2016), bird taxonomy is based on Clements et al. (2016) and mammal taxonomy on Wilson and Reader (2005) and Apps (2012).

Abbreviations for museums are:

BMNH	Natural History Museum London, London, UK;
GNM	Gothenburg Natural History Museum, Gothenburg, Sweden;
SAMCTA	South African Museum at Cape Town, South Africa;
SAM	South Australian Museum, Adelaide, Australia;
USNM Helm. Coll.	United States National Museum Helminthological Collection
USNPC	United States National Parasite Collection now held in the In-
	vertebrate Zoology collection of the Smithsonian Museum,
	Washington, USA.

Acanthocephalan specimens from our ongoing wildlife parasitology projects were mostly collected from roadkill animals, museum collections, hunting/culling surveys and other research permits received for a limited number of specimens through the Limpopo Department of Economic Development, Environment and Tourism (LEDET) (permit number CPM004961 and ZA/LP/HO/3370 for freshwater fish research, 001-CPM403-00012 and ZA/LP/HO/3448 for frogs, ZA/LP/HO/3432 for rodents and ZA/LP/87586 for roadkills).

Acanthocephalans from freshly dead animals were placed in tap water and refrigerated for a few hours to one day until the proboscis was everted and then fixed and stored in 70% ethanol until studied. Acanthocephalans from frozen hosts were fixed and stored in 70% ethanol. Some specimens were prepared for examination by staining in Mayer's acid carmine, destained in HCl in 70% ethanol, dehydrated through increasing concentrations of ethanol, cleared in xylene, and mounted as whole worms in Canada balsam. Other worms were examined as temporary mounts following clearing in lactophenol or beechwood creosote.

A total of 102 species of birds (151 individuals), 72 of mammals (420 individuals), 9 of reptiles (18 individuals) and 42 (1050 individuals) of fishes were examined for this study (details in Table 1).

Table I. Total number of host taxa examined and those infected with acanthocephalans (i.e. number of taxa that harboured acanthocephalans, in parenthesis) during our ongoing study on wildlife parasites in South Africa.

Taxon Group	Order	Family	Genus	Species
Amphibians	$1(0)$	$8(0)$	$13(0)$	$19(0)$
Birds	$21(5)$	$50(5)$	$87(5)$	$102(5)$
Fishes (freshwater)	$8(1)$	$13(1)$	$24(1)$	$42(1)$
Mammals	$10(4)$	$26(4)$	$59(6)$	$72(6)$
Reptiles	$3(1)$	$6(1)$	$7(1)$	$9(1)$
Totals	$43(11)$	$103(11)$	$190(13)$	$244(13)$

Parasite-Host List

Acanthocephala

Class: Archiacanthocephala Meyer, 1931
Order: Gigantorhynchida Southwell \& Macfie, 1925
Family: Gigantorhynchidae Hamann, 1892
Genus: Mediorhynchus Van Cleave, 1916

Mediorhynchus africanus Amin, Evans, Heckmann \& El-Naggar, 2013

Empodius segmentatus (de Marval, 1902) Southwell \& Mac-Fie, 1925
Mediorhynchus selengensis Harris, 1973
M. gallinarum (Bhalerao, 1937) Van Cleave, 1947 sensu Junker \& Boomker, 2006

Notes. M. gallinarum is found only in Asia and the species in Africa is actually M. africanus (Amin et al. 2013; Amin 2013) and not M. gallinarum previously reported in South Africa (Junker and Boomker 2006).

Host. Numida meleagris (L. 1758) (Helmeted Guineafowl) (Numididae) (type host).
Localities. Kruger National Park, Mpumalanga Province, South Africa (type locality) (Junker and Boomker 2006); Vicinity of Petrus Steyn, Free State Province, South Africa (Davies et al. 2008); Musina, Limpopo Province, South Africa (Junker and Boomker 2007; Junker et al. 2008).

Mediorhynchus mokgalongi Smales \& Halajian, 2018

Host. Turdus smithi Bonaparte, 1850 (Karoo Thrush) (Turdidae) (type host).
Locality. Polokwane, Limpopo Province, South Africa (type locality) (Smales et al. 2018).

Type specimens. Holotype male SAM AHC 48068, allotype female SAM AHC 48069, paratype SAM AHC 48070.

Mediorhynchus numidae (Baer, 1925) Meyer, 1932

Heteroplus numidae Baer, 1925; Empodisma numidae (Baer, 1925) Yamaguti, 1963
Host. Numida meleagris (L. 1758) (Helmeted Guineafowl) (Numididae)
Locality. Pretoria, Gauteng Province, South Africa (Oosthuizen and Markus 1967).

Mediorhynchus taeniatus (von Linstow, 1901) Dollfus, 1936

Echinorhynchus taeniatus von Linstow, 1901; E. segmentatus de Marval, 1902
Host. Numida meleagris (L. 1758) (Helmeted Guineafowl) (Numididae).
Locality. Rooipoort farm, Kimberley, Northern Cape Province, South Africa (Crowe 1977).

Host. Tockus leucomelas (Lichtenstein, 1842) (Southern Yellow-billed Hornbill) (Bucerotidae)

Locality. Limpopo Province, South Africa.

Order: Moniliformida Schmidt, 1972
Family: Moniliformidae Van Cleave, 1924
Genus: Moniliformis Travassos, 1915
Moniliformis kalahariensis Meyer, 1931
Host. Atelerix frontalis (Smith, 1831) (Southern African Hedgehog) (Erinaceidae)
Locality. Mohlonong village and University of Limpopo, Limpopo Province, South Africa (Amin et al. 2014).

Moniliformis moniliformis (Bremser, 1811) Travassos, 1915 (type species)

Echinorhynchus moniliformis Bremser, 1811
E. grassi Railliet, 1893
E. canis Porter, 1914
E. belgicus Railliet, 1919

Moniliformis moniliformis aegypticus Meyer in Petrochenko, 1958
M. dubius Meyer, 1932
M. travassosi Meyer, 1932 (fide Machado Filho 1946, Van Cleave 1952)

Host. Atelerix frontalis (Smith, 1831) (Southern African Hedgehog) (Erinaceidae).
Locality. Hammanskraal, Gauteng Province, South Africa (Le Roux 1930).
Notes. Host recorded as Aethechinus frontalis in Le Roux (1930).

Moniliformis acomysi Ward \& Nelson, 1967
Host. Gerbilliscus leucogaster (Peters, 1852) (Bushveld Gerbil), Mastomys natalensis (Smith, 1834) (Natal Mastomys), Mus minutoides (Pygmy mouse) (Muridae).

Localities. Bloemhof, Free State Province; Vyeboom village, Limpopo Province; Hoopstad, Free State Province; South Africa.

Moniliformis sp.

Host. Otolemur crassicaudatus (É. Geoffroy Saint-Hilaire, 1812) (Thick-tailed Bushbaby) (Galagidae).

Locality. Venda, Limpopo Province, South Africa.
Remarks. One male and one female worm were found in the small intestine of an adult bushbaby.

Order: Oligacanthorhynchida Petrochenko, 1956
 Family: Oligacanthorhynchidae Southwell \& Macfie, 1925
 Genus: Heptamegacanthus Spencer Jones, 1990

Heptamegacanthus niekerki Spencer Jones, 1990 (type species)
Host. Chrysospalax trevelyani (Günther, 1875) (Giant Golden Mole) (Chrysochloridae) (type host).

Locality. Nqadu Forest, Transkei, Eastern Cape Province, South Africa (type locality) (Spencer Jones 1990).

Type specimens. Holotype male BMNH 1988.2480; allotype female BMNH 1988.2481; paratypes BMNH 1988.2482-2491.

Oligacanthorhynchidae sp.

Host. Varanus albigularis Daudin, 1802 (Rock Monitor) (Varanidae).
Localities. Tzaneen; Tolwe, Limpopo Province, South Africa.

Class: Eoacanthocephala Van Cleave, 1936
Order: Gyracanthocephala Van Cleave, 1936
Family: Quadrigyridae Van Cleave, 1920
Genus: Acanthogyrus Thapar, 1927
Subgenus: Acanthosentis Verma \& Datta, 1929
Acanthogyrus (Acanthosentis) phillipi (Mashego, 1988) Amin, 2005
Acanthosentis phillipi Mashego, 1988

Host. Enteromius neefi (Greenwood, 1962) (syn. Barbus neefi) (Sidespot Barb) (Cyprinidae) (type host).

Locality. Lingwe River, Venda, Limpopo Province, South Africa (type locality) (Mashego 1988).

Type specimens. Holotype in Transvaal Museum no. TM14659; Paratypes TM5 at University of Limpopo, Zoology, 5.

Acanthogyrus sp.

Host. Oreochromis mossambicus (Peters, 1852) (Mozambique Tilapia) (Cichlidae).
Locality. Molepo Dam, Limpopo Province, South Africa (Kunutu et al. 2013).

Order: Neoechinorhynchida Southwell \& Macfie, 1925
Family: Neoechinorhynchidae (Ward, 1917) Van Cleave, 1928
Genus: Neoechinorhynchus Stiles \& Hassall, 1905
Subgenus: Neoechinorhynchus Hamann, 1892
Neoechinorhynchus (Neoechinorhynchus) dorsovaginatus Amin \& Christison, 2005
Host. Argyrosomus japonicus (Temminck \& Schlegel, 1843) (Japanese Meagre, Dusky Kob) Sciaenidae) (type host).

Locality. Breede River Estuary, Western Cape Province, South Africa (type locality) (Amin and Christison 2005).

Type specimens. No. SAMCTA29536 (holotype male and allotype female; same slide), nos SAMCTA29537-29545 (paratypes), USNPC no. 94918 (paratypes).

Class: Palaeacanthocephala Meyer, 1931
Order: Echinorhynchida Southwell \& Macfie, 1925
Family: Pomphorhynchidae Yamaguti, 1939
Genus: Longicollum Yamaguti, 1935
Longicollum chabanaudi Dollfus \& Golvan, 1963
Host. Barnardichthys fulvomarginata (Gilchrist, 1904) (syn. B. fulvomarginatus) (Soleidae) (Sole).

Locality. False Bay, Western Cape Province, South Africa (Dollfus and Golvan 1963).

Longicollum sp. innom.

Host. Pegusa nasuta (Pallas, 1814) (syn. Solea bleekeri) (Blackhand Sole) (Soleidae).
Locality. Klein River estuary, Hermanus, Western Cape Province, South Africa (Bray 1974).

Remarks. Three contracted and immature specimens were found in one fish and one male in another fish. Thus it could not be identified to species level (Bray 1974).

Family: Rhadinorhynchidae Lühe, 1912
Genus: Rhadinorhynchus Lühe, 1911
Rhadinorhynchus cadenati (Golvan \& Houin, 1964) Golvan, 1969
Nipporhynchus cadenati Golvan \& Houin, 1964

Host. Thyrsites atun (Euphrasen, 1791) (Snoek) (Gempylidae).
Locality. South Africa's West and South coasts (Nunkoo et al. 2016).

Rhadinorhynchus capensis Bray, 1974
Host. Pegusa nasuta (Pallas, 1814) (syn. Solea bleekeri) (Blackhand Sole) (Soleidae) (type host)

Locality. Heuninges River estuary, near Cape Agulhas, Western Cape Province, South Africa (type locality) (Bray 1974).

Type specimens. British Museum, Registration number 1974.521-550.

Rhadinorbynchus sp.

Host. Ruvettus pretiosus Cocco, 1833 (Oilfish) (Gempylidae).
Locality. South Africa's West coast, Atlantic Ocean (Nunkoo et al. 2017).

Order: Polymorphida Petrochenko, 1956

Family: Centrorhynchidae Van Cleave, 1916 (Golvan, 1960)
Genus: Centrorhynchus Lühe, 1911
Centrorhynchus sarehae Smales \& Halajian, 2017
Host. Kaupifalco monogrammicus (Temminck, 1824) (Lizard Buzzard) (Accipitridae) (type host).

Locality. Makhado (Louis Trichardt), Limpopo Province, South Africa (type locality) (Smales et al. 2017).

Type Specimens. Holotype male SAM AHC 47858; allotype female SAM AHC 47859; paratypes SAM AHC 47860.

Centrorbynchus clitorideus (Meyer, 1931) Golvan, 1958
Gordiorhynchus clitorideus Meyer, 1931 (nec clitorideum)
Host. Bubo africanus(Temminck, 1821) (Spotted Eagle Owl) (Strigidae).
Locality. Zandrivierspoort Farm, Polokwane, Limpopo Province, South Africa.

Centrorbynchus sp.

Host. Felis catus L., 1758 (Domestic Cat) (Felidae).
Locality. Pretoria, Gauteng Province, South Africa (Baker et al. 1989).

Centrorhynchus sp.

Host. Mungos mungo (Gmelin, 1788) (Banded Mongoose) (Herpestidae).
Locality. Polokwane, Limpopo Province, South Africa.

Family: Plagiorhynchidae Golvan, 1960
Genus: Plagiorhynchus Lühe, 1911
Subgenus: Prosthorhynchus Kostylew, 1915

Plagiorhynchus (Prosthorhynchus) cylindraceus (Goeze, 1782) Schmidt \& Kuntz, 1966

Echinorhynchus cylindraceus Goeze, 1782
E. pici Gmelin, 1791 fide Florescu and Ienistea 1984
E. merulae Gmelin, 1791 fide Florescu and Ienistea 1984
E. transversus (Rudolphi, 1819) Travassos 1926
E. obliquus Dujardin, 1845 fide Florescu and Ienistea 1984

Centrorhynchus cylindraceus (Goeze 1782) Kostylew, 1914
C. fasciatus (Westrumb, 1821) Travassos, 1926 fide de Marval 1905
C. rostratus de Marval, 1902 fide Florescu and Ienistea 1984

Prosthorhynchus rosai (Porta, 1910) Meyer, 1932
Prosthorhynchus rostratus (de Marval, 1902) Meyer, 1932
Plagiorhynchus formosus Van Cleave, 1918 fide Amin et al. 1999
Plagiorhynchus taiwanensis Schmidt et Kuntz, 1966 fide Amin et al. 1999.

Host. Calidris ferruginea (Pontoppidan, 1763) (Curlew Sandpiper); Charadrius pecuarius Temminck, 1823 (Kittlitz's Plover); Charadrius tricollaris Vieillot, 1818 (Threebanded Plover) (Charadriidae).

Locality. Berg River, Western Cape Province, South Africa (Amin et al. 1999).
Host. Crecopsis egregia (Peters, 1854) (syn. Crex egregia) (African Crake) (Rallidae).
Locality. Blouberg, Limpopo Province, South Africa.
Host. Vanellus armatus (Burchell, 1822) (Blacksmith Lapwing) (Charadriidae).
Locality. Berg River, Western Cape Province, South Africa (Amin et al. 1999).

Unidentified plagiorhynchid

Host. Charadrius marginatus Vieillot, 1818 (White-fronted Plover), Charadrius pallidus Strickland, 1852 (Chestnut-banded Plover); Charadrius pecuarius Temminck, 1823 (Kittlitz's Plover); Himantopus himantopus (L., 1758) (Black-winged Stilt); Vanellus armatus (Burchell, 1822) (Blacksmith Lapwing)

Locality. Berg River, Western Cape Province, South Africa (Amin et al. 1999).

Family: Polymorphidae Meyer, 1931

Genus: Andracantha Schmidt, 1975

Andracantha tunitae (Weiss, 1914) Zdzitowiecki, 1989

Corynosoma tunitae Weiss, 1914

Host. Microcarbo africanus (Gmelin, 1789) (Long-tailed Cormorant) (Phalacrocoracidae).
Locality. Dyer Island, South Africa (Van Cleave 1937).
Notes. Van Cleave (1937) is mentioning that he looked at a large number of immature worms and he tentatively assigning them to C. tunitae.

Genus: Arhythmorhynchus Lühe, 1911

Skrjabinorhynchus Petrochenko, 1956

Arbythmorbynchus turbidus (Van Cleave, 1937) Golvan, 1994

Corynosoma turbidum Van Cleave, 1937

Host. Phalacrocorax neglectus (Wahlberg, 1855) (Bank Cormorant) (Phalacrocoracidae) (type host).

Locality. Dyer Island, South Africa (type locality) (Van Cleave 1937).
Type specimens. Holotype female $(1737,3)$ and one paratype female $(1737,1)$ in GNM. One paratype female $(1737,2)$ in the collection of H.J. Van Cleave, Urbana, Illinois, U.S.A.

Genus: Bolbosoma Porta, 1908

Bolbosoma capitatum (von Linstow, 1880) Porta, 1908

Echinorhynchus capitatum von Linstow, 1880
Bolbosoma physeteris Gubanov, 1952 (fide Amin \& Margolis, 1998)

Host. Ruvettus pretiosus Cocco, 1833 (Oilfish) (Gempylidae).
Locality. South Africa's West coast, Atlantic Ocean (Nunkoo et al. 2017).

Bolbosoma vasculosum (Rudolphi, 1819) Porta, 1908

Echinorhynchus vasculosum Rudolphi, 1819
Bolbosoma annulatus Molin, 1858
B. aurantiacus Risso, 1826
B. pellucidus Leukart, 1828
B. serrani Linton, 1888
B. thunni Harada, 1935 (fide Petrochenko 1958)

Host. Thyrsites atun (Euphrasen, 1791) (Snoek) (Gempylidae).
Locality. South Africa's West and South coasts (Nunkoo et al. 2016).

Genus: Corynosoma Lühe, 1904 (fide Van Cleave, 1945)

Chentrosoma Monticelli, 1905
Centrosoma Lühe, 1912
Coryusoma Railliet \& Henry, 1907 (misprint)
Echinosoma Porta, 1907

Corynosoma australe Johnston, 1937
Corynosoma otariae Morini \& Boero, 1961
Host. Thyrsites atun (Euphrasen, 1791) (Snoek) (Gempylidae).
Locality. South Africa's West and South coasts (Nunkoo et al. 2016).

Host-Parasite List

Host	Parasite	Locality Country/ Reference
Class Aves		
Order Accipitriformes		
Family Accipitridae		
Kaupifalco monogrammicus (type host)	Centrorhynchus sarehae (Centrorhynchidae)	Makhado (Louis Trichardt), Limpopo Province, South Africa
Order Bucerotiformes		
Family Bucerotidae		
Tockus leucomelas	Mediorhynchus taeniatus (Gigantorhynchidae)	Limpopo Province, South Africa
Order Charadriiformes		
Family Charadriidae		
Calidris ferruginea	Plagiorhynchus (Prosthorhynchus) cylindraceus (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Charadrius marginatus	Unidentified plagiorhynchid acanthocephalan (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Charadrius pallidus	Unidentified plagiorhynchid acanthocephalan (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Charadrius pecuarius	Plagiorhynchus (Prosthorhynchus) cylindraceus (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
	Unidentified plagiorhynchid acanthocephalan (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Charadrius tricollaris	Plagiorhynchus (Prosthorhynchus) cylindraceus (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Vanellus armatus	Plagiorhynchus (Prosthorhynchus) cylindraceus (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
	Unidentified plagiorhynchid acanthocephalan (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Family Recurvirostridae		
Himantopus himantopus	Unidentified plagiorhynchid Acanthocephalan (Plagiorhynchidae)	Berg River, Western Cape Province, South Africa (Amin et al. 1999)
Order Galliformes		
Family Numididae		
Numida meleagris (type host)	Mediorhynchus africanus (previously identified as Mediorhynchus gallinarum) (Gigantorhynchidae)	Kruger National Park, Mpumalanga Province, South Africa (Junker and Boomker 2006); Vicinity of Petrus Steyn, Free State Province, South Africa (Davies et al. 2008); Musina, Limpopo Province, South Africa (Junker and Boomker 2007; Junker et al. 2008)
	Mediorhynchus numidae (Gigantorhynchidae)	Pretoria, Gauteng Province, South Africa (Oosthuizen and Markus 1967)
	Mediorhynchus taeniatus (Gigantorhynchidae)	Rooipoort farm, Kimberley, Northern Cape Province, South Africa (Crowe 1977)
Order Gruiformes		
Family Rallidae		
Crecopsis egregia	Plagiorhynchus (Prosthorhynchus) cylindraceus (Plagiorhynchidae)	Blouberg, Limpopo Province, South Africa
Order Passeriformes		
Family Turdidae		
Turdus smithi (type host)	Mediorhynchus mokgalongi (Gigantorhynchidae)	Polokwane, Limpopo Province, South Africa (type locality) (Smales et al. 2018)

Host	Parasite	Locality Country/ Reference
Order Strigiformes		
Family Strigidae		
Bubo africanus	Centrorhynchus clitorideus (Centrorhynchidae)	Zandrivierspoort Farm, Polokwane, Limpopo Province, South Africa
Order Suliformes		
Family Phalacrocoracidae		
Microcarbo africanus	Andracantha tunitae (Polymorphidae)	Dyer Island, South Africa (Van Cleave 1937)
Phalacrocorax neglectus (type host)	Arhythmorhynchus turbidus (Polymorphidae)	Dyer Island, South Africa (type locality) (Van Cleave 1937)
Class Actinopterygii		
Order Cypriniformes		
Family Cyprinidae		
Enteromius neefi	Acanthogyrus (Acanthosentis) phillipi (Quadrigyridae)	Lingwe River, Venda, Limpopo Province, South Africa (Mashego 1988)
Order Perciformes		
Family Cichlidae		
Oreochromis mossambicus	Acanthogyrus sp. (Quadrigyridae)	Molepo dam, Limpopo Province, South Africa (Kunutu et al. 2013)
Family Gempylidae		
Ruvettus pretiosus	Bolbosoma capitatum (Polymorphidae)	South Africa's West coast, Atlantic Ocean (Nunkoo et al. 2017)
	Rhadinorhynchus sp. (Rhadinorhynchidae)	South Africa's West coast, Atlantic Ocean (Nunkoo et al. 2017)
Thyrsites atun	Bolbosoma vasculosum (Polymorphidae)	South Africa's West and South coasts (Nunkoo et al. 2016)
	Corynosoma australe (Polymorphidae)	South Africa's West and South coasts (Nunkoo et al. 2016)
	Rhadinorhynchus cadenati (Rhadinorhynchidae)	South Africa's West and South coasts (Nunkoo et al. 2016)
Family Sciaenidae		
Argyrosomus japonicus (type host)	Neoechinorhynchus (Neoechinorhynchus) dorsovaginatus (Neoechinorhynchidae)	Breede River Estuary, Western Cape Province, South Africa (type locality) (Amin and Christison 2005)
Order Pleuronectiformes		
Family Soleidae		
Pegusa nasuta (Solea bleekeri) (type host)	Rhadinorhynchus capensis (Rhadinorhynchidae)	Heuninges River estuary (Bray 1974)
	Longicollum sp. innom. (Pomphorhynchidae)	Klein River estuary (Bray 1974)
Barnardichthys fulvomarginata (type host)	Longicollum chabanaudi (Pomphorhynchidae)	False Bay, Western Cape Province (Dollfus and Golvan 1963)
Class Mammalia		
Order Afrosoricida		
Family Chrysochloridae		
Chrysospalax trevelyani (type host)	Heptamegacanthus niekerki (Oligacanthorhynchidae)	Nqadu Forest, Transkai, Eastern Cape Province, South Africa (Spencer Jones 1990)
Order Carnivora		
Family Felidae		
Felis catus	Centrorhynchus sp. (Centrorhynchidae)	Pretoria, Gauteng Province, South Africa (Baker et al. 1989)

Host	Parasite	Locality Country/ Reference
Family Herpestidae		
Mungos mungo	Centrorhynchus sp. (Centrorhynchidae)	Polokwane, Limpopo Province, South Africa.
Order Eulipotyphla		
Family Erinaceidae		
Atelerix frontalis (Aethechinus frontalis)	Moniliformis kalahariensis (Moniliformidae)	Mohlonong village and University of Limpopo, Limpopo Province, South Africa (Amin et al. 2014)
	Moniliformis moniliformis (Moniliformidae)	Hammanskraal, Gauteng Province, South Africa (Le Roux 1930)
Order Primates		
Family Galagidae		
Otolemur crassicaudatus	Moniliformis sp. (Moniliformidae)	Venda, Limpopo Province, South Africa
Order Rodentia		
Family Muridae		
Gerbilliscus leucogaster	Moniliformis acomysi (Moniliformidae)	Vyeboom village, Limpopo Province, South Africa
Mastomys natalensis	Moniliformis acomysi (Moniliformidae)	Bloemhof, Free State Province
Mus minutoides	Moniliformis acomysi (Moniliformidae)	Hoopstad, Free State Province, South Africa
Class Reptilia		
Order Squamata		
Family Varanidae		
Varanus albigularis	Oligacanthorhynchidae sp. (Oligacanthorhynchidae)	Tzaneen; Tolwe, Limpopo Province, South Africa

Results and discussion

A total of twenty-one species of acanthocephalans, from thirteen genera from ten families of seven orders, comprise this updated checklist of acanthocephalans in South Africa. Representatives of three of the four classes of acanthocephalans (Amin 2013) have been reported in South Africa, with only the Polyacanthocephala Amin, 1987 not having been recorded yet. The composition of reported acanthocephalan fauna shows that the Polymorphidae is the most represented family with five named species parasitic in marine fish and wild birds.

In South Africa, birds have the highest species richness of acanthocephalans to this date with nine named species (from five genera) and five records only identified to group level, followed by fish with eight named species (from six genera) and two species only identified to genus level, mammals with four named species (from two genera) and three species only identified to genus level and finally reptiles with a single species only identified to group level. No acanthocephalans have been reported in amphibians to date. During the current study 110 frog specimens belonging to 19 species were examined but none harboured any acanthocephalans. However, this forms a small part of the entire amphibian fauna of the country which includes 128 described frog species (Frost 2018).

Only a small fraction of the vertebrate fauna of South Africa has been surveyed for acanthocephalans and we expect that in future additional acanthocephalan species will be discovered and described. For example it is estimated that many of South Africa's marine fish parasites have yet to be discovered (Smit and Hadfield 2015). South Africa has an extremely rich biodiversity (Huntley et al. 2005), with nearly 8% of the world's known species of birds, 6% of mammal species and 5% of reptile species (Driver et al. 2012). Therefore we might expect a more diverse acanthocephalan fauna compared to that of Brazil which has 23 genera and 34 species (from only 119 fish species) (Santos et al. 2008) or Iran with 30 described species (Tavakol et al. 2015). The lower species richness reported for South Africa probably reflects sampling effort rather than the true diversity of the acanthocephalan fauna. Until more data are available it will not be possible to determine the true species richness of the South African acanthocephalan assemblage.

Acknowledgements

We would like to thank all the scientists who assisted us to access literature, particularly Geoffrey Allan Boxshall and David Gibson, and all those who helped AH with roadkill animals, especially Kgethedi Michael Rampedi and K David Kunutu. Special thanks are due to Ms Lorna Modiba (Librarian, University of Limpopo). Thanks also to Paul Skelton for his advice on fish species name changes. This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (NRF) of South Africa (Grant No 101054). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard.

References

Amin OM (2013) Classification of the Acanthocephala. Folia Parasitologica 60(4): 273-305. https://doi.org/10.14411/fp.2013.031
Amin OM, Canaris AG, Kinsella JM (1999) A taxonomic reconsideration of the genus Plagiorhynchus s. lat. (Acanthocephala: Plagiorhynchidae), with descriptions of South African Plagiorhynchus (Prosthorhynchus) cylindraceus from shore birds and P. (P.) malayensis, and a key to the species of the subgenus Prosthorhynchus. Journal of Helminthological Society of Washington 66: 123-132.
Amin OM, Christison KW (2005) Neoechinorhynchus (Neoechinorhynchus) dorsovaginatus n. sp. (Acanthocephala: Neoechinorhynchidae) from the dusky kob Argyrosomus japonicus (Scienidae) on the southern coast of South Africa. Systematic Parasitology 61: 173-179. https://doi.org/10.1007/s11230-005-3130-1

Amin OM, Evans P, Heckmann RA, El-Naggar AM (2013) The description of Mediorhynchus africanus n. sp. (Acanthocephala: Gigantorhynchidae) from galliform birds in Africa. Parasitology Research 112: 2897-2906. https://doi.org/10.1007/s00436-013-3461-9
Amin OM, Heckmann RA, Halajian A, El-Naggar AM, Tavakol S (2014) Description of Moniliformis kalahariensis (Acanthocephala: Moniliformidae) from the South African Hedgehog, Atelerix frontalis (Erinaceidae) in South Africa. Comparative Parasitology 81(1): 3343. https://doi.org/10.1654/4664.1

Apps P (2012) Smither's mammals of southern Africa: a field guide. Penguin Random House, South Africa, 392 pp.
Baker MK, Lange L, Verster A, Van der Plaat S (1989) A survey of helminths in domestic cats in the Pretoria area of Transvaal, Republic of South Africa. Part 1: The prevalence and comparison of burdens of helminths in adult and juvenile cats. Journal of The South African Veterinary Association 60(3): 139-142.
Bray R (1974) Acanthocephala in the flatfish Solea bleekeri (Soleidae) from Cape Province, South Africa. Journal of Helminthology 48: 179-185. https://doi.org/10.1017/ S0022149X00022811
Clements JF, Schulenberg TS, Iliff MJ, Roberson D, Fredericks TA, Sullivan BL, Wood CL (2016). The eBird/Clements checklist of birds of the world: v2016. Downloaded from http://www.birds.cornell.edu/clementschecklist/download/
Crowe TM (1977) Variation in intestinal helminth infestation of the helmeted guineafowl. South African Journal of Wildlife Research 7(1): 1-3.
da Silva JM, Willows-Munro S (2016) A review of over a decade of DNA barcoding in South Africa: a faunal perspective. African Zoology 51(1): 1-12. https://doi.org/10.1080/15627 020.2016 .1151377

Davies OR, Junker K, Jansen R, Crowe TM, Boomker J (2008) Age- and sex-based variation in helminth infection of helmeted guineafowl (Numida meleagris) with comments on Swainson's spurfowl (Pternistis swainsonii) and Orange River francolin (Scleroptila levaillantoides). South African Journal of Wildlife Research 38(2): 163-170. https://doi. org/10.3957/0379-4369-38.2.163
Dollfus RP, Golvan YJ (1963) Extension a l`Afrique du sud de la distribution geographique du genre Longicollum S. Yamaguti 1935; L. chabanaudin. sp. (Palaeacanthocephala, Pomphorhynchidae) parasite d’un Barnardichthys. (Soleidae). Bulletin de la Société Zoologique de France 88: 65-70.
Driver A, Sink KJ, Nel JN, Holness S, Van Niekerk L, Daniels F, Jonas Z, Majiedt PA, Harris L, Maze K (2012) National Biodiversity Assessment 2011: An assessment of South Africa’s biodiversity and ecosystems. Synthesis Report. South African National Biodiversity Institute and Department of Environmental Affairs, Pretoria.
Froese R, Pauly D (Eds) (2017) FishBase. World Wide Web electronic publication. www.fishbase.org, version 10/2017.
Frost DR (2018) Amphibian Species of the World: an Online Reference. Version 6.0. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

Hamer M (2013) A national strategy for zoological taxonomy (2013-2020). South African National Biodiversity Institute, Pretoria, 53 pp.
Huntley PM, Van Noort S, Hamer M (2005) Giving increased value to invertebrates through ecotourism, South African Journal of Wildlife Research 35(1): 53-62.
Junker K, Boomker J (2006) Mediorhynchus gallinarum (Acanthocephala: Gigantorhynchidae) in Helmeted guineafowls, Numida meleagris, in the Kruger National Park, South Africa. Onderstepoort Journal of Veterinary Research 73: 283-292.
Junker K, Boomker J (2007) Helminths of guineafowls in Limpopo Province, South Africa, Onderstepoort Journal of Veterinary Research 74: 265-280.
Junker K, Debusho L, Boomker J (2008) The helminth community of Helmeted guineafowls, Numida meleagris (Linnaeus, 1758), in the north of Limpopo Province, South Africa. Onderstepoort Journal of Veterinary Research 75: 225-235. https://doi.org/10.4102/ojvr.v75i3.98
Khalil LF (1971) Check list of the helminth parasites of African freshwater fishes. Commonwealth Agricultural Bureaux, Farnham Royal, Slaugh, England, 80 pp.
Khalil LF, Polling L (1997) Check list of the helminth parasites of African freshwater fishes. Department of Zoology/Biology, University of the North, Sovenga, South Africa, 185 pp.
Kunutu KD, Luus-Powell WJ, Tavakol S, Halajian A, Hattingh HE, Geldenhuys G, Sara JR (2013) Fish health and parasites from Molepo dam, Limpopo province: new geographical and host records. $42^{\text {nd }}$ PARSA Conference, Parys (South Africa), September 22-24, 45.
Le Roux PL (1930) A new nematode (Rictularia aethechini, sp. nov.), a Physaloptera and an acanthocephalan from the hedgehog (Aethechinus frontalis), $16^{\text {th }}$ Report of the Director of Veterinary Services and Animal Industry, Uniuon of South Africa, 217-227.
Mashego SN (1988) A new species of Acanthosentis Verma \& Datta, 1929 (Acanthocephala: Quadrigyridae) from Barbus neefi in South Africa. Annals of the Transvaal Museum 34: 545-549.
Nunkoo MAI, Reed CC, Kerwath SE (2016) Community ecology of the metazoan parasites of snoek Thyrsites atun (Euphrasen, 1791) (Perciformes: Gempylidae) off South Africa. African Journal of Marine Science 38(3): 363-371. https://doi.org/10.2989/181423 2X.2016.1216892
Nunkoo I, Weston MJ, Reed CC, van der Lingen CD, Kerwath S (2017) First account of the metazoan parasite fauna of oilfish Ruvettus pretiosus Cocco, 1829 (Perciformes: Gempylidae) in South African waters. African Zoology 52(4): 237-241. https://doi.org/10.1080/1562 7020.2017.1411831

Oosthuizen JH, Markus, MB (1967) The haematozoa of South African birds. I: Blood and other parasites of two species of game birds. Ibis 109: 115-117. https://doi.org/10.1111/ j.1474-919X.1967.tb00009.x

Santos CP, Gibson DI, Tavares LE, Luque JL (2008) Checklist of acanthocephalan associated with the fishes of Brazil. Zootaxa 1938: 1-22.
Skelton PH (2001) A complete guide to the freshwater fishes of Southern Africa, $2^{\text {nd }}$ ed. Southern Book Publishers, Cape Town, 395 pp.
Skelton PH (2016) Name changes and additions to the southern African freshwater fish fauna. African Journal of Aquatic Science 41(3): 1-7. https://doi.org/10.2989/16085914.2016. 1186004

Smit NJ, Hadfield KA (2015) Marine fish parasitology in South Africa: history of discovery and future direction. African Zoology 50(2): 79-92. https://doi.org/10.1080/15627020. 2015.1043644

Spencer Jones ME (1990) Heptamegacanthus niekerki n.g., n. sp. (Acanthocephala: Oligacanthorhynchidae) from the south-east African insectivore Chrysospalax trevelyani (Günther, 1857). Systematic Parasitology 15: 133-140. https://doi.org/10.1007/BF00009991

Smales LR, Halajian A, Mokgawa MP, Luus-Powell WJ (2017) A new species of Centrorhynchus Lühe, 1911 (Acanthocephala: Centrorhynchidae) from the lizard buzzard Kaupifalco monogrammicus (Temminck) (Aves: Acciptridae) in South Africa. Systematic Parasitology 94: 423-430. https://doi.org/10.1007/s11230-017-9710-z
Smales LR, Halajian A, Luus-Powell WJ, Tavakol S (2018) Acanthocephalans, including the description of a new species of Mediorhynchus (Giganthorhynchidae) and a redescription of Centrorhynchus clitorideus (Centrorhynchidae) from vertebrate hosts from South Africa. Comparative Parasitology 85(1): 95-106. https://doi.org/10.1654/1525-2647-85.1.95
Tavakol S, Amin OM, Luus-Powell WJ, Halajian A (2015) The acanthocephalan fauna of Iran, a check list. Zootaxa 4033(2): 237-258. https://doi.org/10.11646/zootaxa.4033.2.3
Van Cleave HJ (1937) Acanthocephala of the genus Corynosoma from birds of Dyer Island, South Africa. Göteborgs Kungl. Vetenskaps och Vitterhets-Samhälles Handlingar. Ser. B. 5(2): 1-6.
Wilson DE, Reader DM (2005) Mammal Species of the World (3 ${ }^{\text {rd }}$ edn). Johns Hopkins University Press, Baltimore, 2142 pp .

A new feather mite species of the genus Trouessartia Canestrini, 1899 (Acarina,Trouessartiidae) an integrative description (morphology and DNA barcoding data)

Ioana Cristina Constantinescu', Oana Paula Popa', Luis Ovidiu Popa', Ioana Cobzaru², Mukhim D. Khlur B. ${ }^{3}$, Costică Adam ${ }^{1}$
I "Grigore Antipa" National Museum of Natural History, Sos. Kiseleff no.1, 011341 Bucharest 1, Romania $\mathbf{2}$ Ecology, Taxonomy and Nature Conservation Department, Institute of Biology, Romanian Academy, Splaiul Independentei no. 296, 060031 Bucharest, Romania 3 Department of Zoology, Lady Keane College, 793001 Shillong, Meghalaya, India

Corresponding author: Ioana Cristina Constantinescu (cristinactinescu@yahoo.com)

Academic editor: Vladimir Pesic | Received 26 June 2018 | Accepted 7 August 2018 | Published 10 October 2018
http://zoobank.org/35DED857-605C-47F1-90A4-06CE4697FDF6
Citation: Constantinescu IC, Popa OP, Popa LO, Cobzaru I, Khlur B MD, Adam C (2014) A new feather mite species of the genus Trouessartia Canestrini, 1899 (Acarina, Trouessartiidae) - an integrative description (morphology and DNA barcoding data). ZooKeys 789: 19-35. doi: 10.3897/zookeys.789.27829

Abstract

A new species of the feather mite genus Trouessartia (Trouessartiidae) is described from the Large Niltava Niltava grandis (Blyth) (Passeriformes, Muscicapidae) in Northeast India (Meghalaya, Jaintia Hills, Shnongrim village). Trouessartia niltavae Constantinescu, sp. n. is morphologically closely related (no phylogenetic meaning) to T. bulligera Gaud, 1968 from Clytorhynchus hamlini (Mayr) (Passeriformes: Monarchidae), sharing in males a unique character within the genus, by having setae e on legs IV hemispheroid, with spine-shaped apex. Males of the new species have the prodorsal shield without ornamentation, the prohysteronotal shield and lobar shield connected, and the terminal cleft parallel sided. Females have the posterior half of the hysteronotal shield ornamented with large ovate lacunae in central area and small elliptical lacunae marginally. To the morphological description of this new feather mite species we added sequence data on the mitochondrial cytochrome c oxidase subunit I gene fragment (COI). The phylogenetic relationships between Trouessartia species are briefly discussed.

Keywords

Feather mite, new species, taxonomy, Trouessartia

Introduction

The feather mite genus Trouessartia Canestrini, 1899 comprises about 120 described species associated predominantly with birds of the order Passeriformes. A world revision of this genus, including 71 species was performed by Santana (1976); other presently known species were described in the subsequent 40 years by various authors (Mauri and de Alzuet 1968, Černý and Lukoschus 1975, Gaud 1977, Černý 1979, Mironov 1983, Gaud and Atyeo 1986, 1987, Mironov and Kopij 1996, 2000, Mironov and Galloway 2002, O'Connor et al. 2005, Carleton and Proctor 2010, Constantinescu et al. 2013, 2016a, 2016b, 2017, 2018, Mironov and González-Acuña 2013, Hernandes 2014, 2017, Hernandes and Valim 2015, Mironov and Overstreet 2016, Mironov and Palma 2016, Mironov and Bermúdez 2017, Hernandes and OConnor 2017). A number of undetermined Trouessartia species were reported from the following areas of the world: 22 species from Colombia (Barreto et al. 2012), 15 species from Brazil (Silva et al. 2015) and 162 species from Southeast Asia (McClure and Ratanaworabhan 1973).

The bird genus Niltava Hodgson belongs to the family of Old World Flycatchers (Passeriformes: Muscicapidae) and currently includes six valid species distributed in the Indo-Malayan biogeographic region (Clements et al. 2016). Feather mites were previously recorded only on two of these species: Analges sp., Anisodiscus sp., Mesalgoides sp., Proctophyllodes cotyledon Trouessart, 1899, Bicentralges distinctus Orwig, 1968, Proterothrix chachulae Constantinescu, 2017 and Trouessartia sp. from Niltava grandis (Blyth); Analges sp., Proctophyllodes elegans Atyeo and Braasch, 1966, Proterothrix sp., Therisalges sp., Trouessartia sp., and Xolalges sp. from Niltava sundara Hodgson (Atyeo 1973, Atyeo and Braasch 1966, Constantinescu et al. 2017, Orwig 1968).

The main goals of this paper are to realise the description of a new species of Trouessartia and to analyse its relationships within the genus based on molecular data. This is the first species of Trouessartia described from a host of the genus Niltava, although, as mentioned above, two presumably new species of Trouessartia have been reported by Atyeo (McClure and Ratanaworabhan 1973) from N. grandis and N. sundara, but they have never been described.

The new species of Trouessartia described herein cannot be referred to any of the seven species groups previously established in the genus (Santana 1976, Mironov and Kopij 1996, 2000), because of having a specific combination of characters.

Materials and methods

The material used in the present paper was collected near Shnongrim (Meghalaya, India) in January 2014. The birds were captured using mist nets, identified and visually checked for the presence and collection of mites and released back to the wild. Mite specimens were collected manually with a needle and placed in tubes with 96% ethanol. Later, in laboratory conditions, mite specimens selected for morphological analysis were cleared in 90% lactic acid for 24 hours and mounted on microscope
slides in Hoyer's medium. Some specimens preserved in ethanol were used for genetic analysis. Drawings were made using an Olympus CX21 microscope, with a camera lucida drawing device. The bird specimens were identified according to Rasmussen and Anderton (2012) and Grimmett et al. (2011), and the taxonomy of the birds follows Clements et al. (2016). The body setation of mites follows that of Griffiths et al. (1990) with the modifications by Norton (1998) concerning coxal setae, while the setation of legs follows Gaud and Atyeo (1996). Description of the new species of Trouessartia is given according to the standards proposed for mites of this genus and related genera (Orwig 1968, Santana 1976), and the measuring techniques of particular structures follow Mironov and González-Acuña (2013). We give the full set of measurements for a holotype (male) and a range of measurements for corresponding paratypes. All measurements are in micrometers ($\mu \mathrm{m}$). The holotype and paratypes of the new species are deposited in the Acarological Collection of the "Grigore Antipa" National Museum of Natural History, Bucharest, Romania (MGAB). The inventory numbers are given in parentheses for all type specimens.

Three paratype specimens of Trouessartia niltavae sp. n. (one male ANA838 and two females ANA839, ANA840) were used to isolate DNA using DNAeasy Tissue Kit (Qiagen). All four specimens used for molecular analyses were mounted and kept as reference vouchers for morphological examination. The specimens preserved in ethanol 96% were transferred in 180μ l ATL Buffer with 20μ l of Proteinase K and incubated overnight at $56^{\circ} \mathrm{C}$ on a shaking thermoblock. After $24 \mathrm{~h}, 5 \mu \mathrm{l}$ of Proteinase K were added and incubation was continued until 72 h . For the rest of the protocol we followed the manufacturer specifications and the modification suggested by Dabert et al. (2008).

As DNA barcode we used a region near the $5^{`}$ terminus of the COI gene, amplified by PCR with the degenerate primers bcdF05 (5`- TTTTCTACHAAYCATAAA-GATATTGC-3`) and bcdR04 (5` - TATAAACYTCDGGATGNCCAAAAAA-3`), according to Dabert et al. (2008). The PCR genotyping reaction was performed in a $50 \mu \mathrm{~L}$ total volume containing DNA template, 1X Green GoTaq Flexi Buffer, 2.5 mM MgCl 2 , each dNTP at 0.1 mM , each primer at $0.5 \mu \mathrm{M}$ (the primers were M13 tailed) and 1.5 units of GoTaq DNA polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) (Promega, Madison, USA). The PCR products were isolated from samples containing visible bands and sent for sequencing to Macrogen (Seoul, South Korea).

Sequence chromatograms were edited and assembled with CodonCode Aligner version 3.7.1. For the phylogenetic analysis we used a dataset comprising three sequences obtained from the new species Trouessartia niltavae and 74 sequences belonging to 17 species of Trouessartia genus available in GenBank and BOLD data system and four sequences belonging to genus Calcealges (see Tabel 1), to be used as outgroup.

MEGA version 7 software (Kumar et al. 2016) was used to identify the most appropriate substitution model, which was subsequently used to generate phylogenetic trees using the Maximum Likelihood (ML) and Neighbor-Joining (NJ) methods. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (10000 replicates) was also computed. The same software was used to compute intraspecific pairwise distances between sequences using K2P distance model (Kimura 1980).

Results

Family Trouessartiidae Gaud, 1957
 Genus Trouessartia Canestrini, 1899

Trouessartia niltavae Constantinescu, sp. n.

http://zoobank.org/4FB1A0C6-E767-4D46-AF88-B3BAB0E4ACD1
Figs 1-6

Type material. Male holotype (ANA663), 5 male (ANA661, ANA662, ANA664, ANA665, ANA838) and 8 female (ANA666, ANA667, ANA668, ANA669, ANA670, ANA839, ANA840) paratypes, 27.01.2014, from the Large Niltava Niltava grandis grandis (Blyth) (Passeriformes, Muscicapidae); INDIA: Meghalaya, Jaintia Hills, Shnongrim village, ($25^{\circ} 21^{\prime} 12.36^{\prime \prime} \mathrm{N}, 92^{\circ} 31^{\prime} 3.06^{\prime \prime} \mathrm{E}$); 1151 m ; subtropical forest; collector D. K. B. Mukhim.

Description. Male (Figs 1; 2; 3A-E; holotype, range for four paratypes in parentheses): length of idiosoma from anterior end to bases of setae h3 384 (404-424), greatest width at level of humeral shields 182 (194-202). Length of hysterosoma from sejugal furrow to bases of setae h3 250 (260-272). Prodorsal shield: length along midline 130 (130-142), greatest width in posterior part 144 (142-148), lateral margins not fused with scapular shields, antero-lateral extensions almost extending to bases of epimerites Ia between legs I and II, surface without ornamentation (Fig. 1). Internal scapular setae si spiculiform, 32 (30-32) long, separated by 48 (42-46); external scapular setae se situated on prodorsal shield, separated by 80 (88-93). Vertical setae ve represented by alveoli. Humeral shield with setae $c 2$ spiculiform, 44 (42-46) long. Setae $c 3$ narrowly lanceolate with acute apex, 23 (20-25) long. Dorsal hysterosoma with prohysteronotal shield and lobar shield connected, delimited from each other by lateral incisions immediately posterior to setae e2. Prohysteronotal shield: length 162 (156-162), width at anterior margin 133 (126-132), lateral margins, each with two shallow incisions at level of trochanters III, dorsal hysterosomal apertures (DHA) absent. Dorsal setae $d 1, d 2$ present, minute. Length of lobar shield excluding lamellae 90 (90-102). Opisthosomal lobes approximate, separated by narrow parallel-sided terminal cleft; length of this cleft from anterior end to apices of lamellae 42 (44-46), width in anterior part 6 (6-8). Lamellae smooth, slightly attenuate apically, length from bases of setae $h 3$ to lamellar apices $28(30-32)$. Setae $h 1$ anterior to setae $h 2$. Distance between dorsal setae: c2-d2 80 (80-82), d2-e2 82 (84-87), e2-h2 70 (70-76), h2-h3 22 (20-22), h2-h2 36 (34-38), h3-h3 29 (26-28), d1-d2 30 (24-30), e1-e2 38 (38-44).

Epimerites I free. Rudimentary sclerites rEpIIa present, roughly rounded. Genital apparatus situated between levels of trochanters III and IV, length excluding basal sclerite 38 (37-40), greatest width 14 (10-14) (Fig. 2). Epiandrum present, setae g long and filiform, contiguous at bases, postgenital plaque present. Adanal apodemes heavily sclerotised, with narrow lateral membrane and a pair of apophysis. Translobar apodeme present. Adanal shields very small, teardrop-shaped, bearing setae ps3. Anal

Figure I. Trouessartia niltavae Constantinescu, sp. n., male holotype: dorsal view of idiosoma.
suckers $12(12-13)$ in diameter. Anterior ends of epimerites IV extending beyond level of setae $4 b$; epimerites IVa short, not extending to level of genital apparatus. Setae $4 b$ situated anterior to level of setae $3 a$, setae g situated posterior to level of setae $4 a$. Distance between ventral setae: $46-3 a 31$ (30-36), 4b-g 72 (74-80), g-ps3 48 (44-50), ps3-h3 86 (86-94). Setae $s R$ of trochanters III narrowly lanceolate, with acute apex 20 (19-24) long, setae $c G$ and $m G$ of genua I, II filiform, not thickened basally. Tarsus IV 36 (34-36) long; seta d barrel-shaped, with discoid cap; seta e with hemispheroid base and stick-shaped apical part, situated subapically (Fig. 3D). Legs IV with ambulacral disc extending to level of setae $h 3$.

Female (Figs 4; 5; 6A-E; range for five paratypes): length of idiosoma from anterior end to apices of lamellar lobar processes 452-468, greatest width 148-200. Length of hysterosoma from sejugal furrow to apices of lamellar lobar processes 308-324. Prodorsal shield shaped as in male, 130-140 in length, 144-152 in width, surface without ornamentation. Setae si spiculiform, 29-34 long, separated by 44-48; external scapular setae se situated on prodorsal shield, separated by $90-94$. Humeral shields with setae $c 2$ spiculiform, 42-44 long. Setae $c 3$ narrowly lanceolate, with acute apex, 22-24 in length. Hysteronotal shield: length from anterior margin to bases of setae h3 270-300, width at anterior margin 128-132, lateral margins with shallow concavity at level of trochanters III, bottom of these concavities with dark sclerotisation, DHA absent. Posterior half of hysteronotal shield with distinct ornamentation: with large ovate lacunae in median area and few small elliptical lacunae arranged marginally (Fig. 4). Dorsal setae $d 1$ and $d 2$ present. Setae $h 1$ thick, lanceolate, surrounded by small ovoid area of unsclerotised tegument, 24-28 long, situated antero-mesal to bases of setae $h 2,20-24$ from each lateral margin of hysteronotal shield. Setae $p s 1$ positioned dorsally on opisthosomal lobes, equidistant from outer and inner margins of lobe, close to bases of setae h3. Distance from bases of setae $h 3$ to membranous apices of lobes 29-32. Setae $f 2$ present. Supranal concavity open posteriorly into terminal cleft. Length of terminal cleft together with supranal concavity 102-120, width of cleft at level of setae h3 38-48. Interlobar membrane occupying anterior $1 / 3$ of terminal cleft, distance from free margin of interlobar membrane to membranous lobar apices 78-88. External copulatory tube minute, 1-2 long, situated on free margin of interlobar membrane. Spermatheca with short collar, primary spermaduct without enlargements, secondary spermaducts with small verrucosities in distal half, length 26-30 (Fig. 6E). Distance between dorsal setae: c2-d2 76-80, d2-e2 82-92, e2-h2 50-56, h2-h3 58-64, h2-h2 68-80, h3-h3 50-60, d1-d2 29-34, e1-e2 45-52, h1-h2 18-21, h1-h1 38-46, ps1-h3 9-10.

Epimerites I free. Epigynum 36-38 in length, 76-80 in width (Fig. 5). Epimerites IVa present, short. Setae $s R$ of trochanters III narrowly lanceolate, with acute apex, 18-21 long, setae $c G$ and $m G$ of genua I, II filiform, not thickened basally. Legs IV with ambulacral disc extending to midlevel between setae $h 2$ and $h 3$.

Etymology. The specific name niltavae is derived from the generic name of the type host and is a noun in the genitive case.

Remarks. Trouessartia niltavae sp. n. is morphologically close to T. bulligera Gaud, 1968 from Clytorhynchus hamlini (Mayr) (Passeriformes: Monarchidae), shar-

Figure 2. Trouessartia niltavae Constantinescu, sp. n., male holotype: ventral view of idiosoma.

Figure 3. Trouessartia niltavae Constantinescu, sp. n., A-D details of male legs, dorsal view: A-leg I, B-leg II, C-leg III, D-leg IV; E-opisthosoma of male, ventral view. Abbreviations: bs - basal sclerite, ea - epiandrum, gp - genital papillae, pm - parameres, pp - postgenital plaque.
ing in males a unique character within the genus: setae e on tarsi IV are hemispheroid with stick-like apex. Additionally, in both sexes of these species, setae $d 1$ are present, setae $c 2$ and $s R$ III are narrowly lanceolate, with acute apex and the dorsal hysterosomal apertures (DHA) is absent. Both sexes of T. niltavae differ from those of T. bulligera by the shape of setae $c 2$, which are spiculiform in the first species ver-

Figure 4. Trouessartia niltavae Constantinescu, sp. n., female paratype: dorsal view of idiosoma.

Figure 5. Trouessartia niltavae Constantinescu, sp. n., female paratype: ventral view of idiosoma.

Figure 6. Trouessartia niltavae Constantinescu, sp. n., A-D details of female legs, dorsal view: A-leg I, B-leg II, C-leg III, D-leg IV; E-spermatheca and spermaducts of female; Abbreviations: hs - head of spermatheca; pd - primary spermaduct; sd - secondary spermaduct.
sus needle-like in the second. Males of both species have the prohysteronotal shield without ornamentation, the lamellae of opisthosomal lobes are attenuate apically and with entire margins, the translobar apodeme is present, setae g are contiguous at bases and situated on postgenital plaque. In males of T. niltavae, the prodorsal shield

Figure 7. Evolutionary relationship between Trouessartia species inferred using the Neighbor-Joining method. The bootstrap test result (10000 replicates) is shown next to each branch.

Figure 8. Evolutionary relationship between Trouessartia species inferred using the Maximum Likelihood method based on the Tamura-Nei model. The bootstrap test (10000 replicates) shown next to the branches.

Table I. Analysed sequences of Trouessartia spp. from BOLD and GenBank databases.

Species	GenBank Accession Number	Species	GenBank Accession Number	Species	GenBank Accession Number
T. appendiculata	KP193765	T. rubecula	KP193799	T. rosterii	KP193796
T. bifurcata	KP193766	T. rubecula	KP193801	T. rosterii	KP193797
T. bifurcata	KP193767	T. rubecula	KP193802	T. rosterii	KP193798
T. inexpectata	KP193768	T. rubecula	KP193803	T. reguli	MG411516
T. jedliczkai	KP193769	T. rubecula	KP193804	T. reguli	MG409826
T. jedliczkai	KP193770	T. rubecula	KP193805	T. reguli	MG409631
T. jedliczkai	KP193771	T. rubecula	KP193806	T. reguli	MG414726
T. jedliczkai	KP193772	T. rubecula	KP193807	T. reguli	MG413144
T. jedliczkai	KP193773	T. rubecula	KP193808	T. reguli	MG410216
T. jedliczkai	KP193774	T. rubecula	KP193809	T. reguli	MG412618
T. kratochvili	KP193776	T. rubecula	KU203092	T. reguli	MG411130
T. kratochvili	KP193777	T. simillima	KP193810	T. reguli	MG416767
T. kratochvili	KP193778	T. simillima	KP193811	T. reguli	MG414272
T. kratochvili	KU203094	T. simillima	KP193812	T. reguli	KP193788
T. microcaudata	KP193779	T. swidwiensis	KP193813	T. reguli	KP193789
T. microcaudata	KP193780	T. tenuipilata	KP193814	T. reguli	KP193790
T. microcaudata	KP193781	T. tenuipilata	KP193815	T. reguli	KP193791
T. microcaudata	KP193782	T. tenuipilata	KP193816	T. reguli	KU203095
T. minuscula	KP193783	T. trouessarti	KP193817	T. reguli	KU203096
T. motacillae	KP193784	T. trouessarti	KP193818	T. niltavae sp. n.	MH094247*
T. motacillae	KP193785	T. trouessarti	KP193819	T. niltavae sp. n.	MH094248*
T. motacillae	KP193786	T. rosterii	KT025283	T. niltavae sp. n.	MH094249*
T. motacillae	KP193787	T. rosterii	KT025284	Calcealges sp.	MG410916
T. ripariae	KP193792	T. rosterii	KT025288	Calcealges sp.	MG412689
T. ripariae	KP193793	T. rosterii	KT025289	Calcealges sp.	KU203091
T. ripariae	KP193794	T. rosterii	KP193795	Calcealges sp.	MG409226

* sequences produced in the present study.
is without ornamentation, the prohysteronotal shield and lobar shield have wide median connection, the terminal cleft is parallel-sided and 44-46 $\mu \mathrm{m}$ long, and terminal lobes are separated by $6-8 \mu \mathrm{~m}$. In males of T. bulligera, the prodorsal shield has ornamentation with faint, interconnecting network of irregular lines, the prohysteronotal shield is completely separated from the lobar shield, the terminal cleft is divergent in posterior half and $75 \mu \mathrm{~m}$ in length, and terminal lobes are separated by $12 \mu \mathrm{~m}$. In females of both species, setae $h 1$ are lanceolate, the external copulatory tube is present, the supranal concavity is open posteriorly into terminal cleft, and the interlobar membrane occupies the anterior $1 / 3$ of terminal cleft. In females of T. niltavae setae $f 2$ are present, the posterior half of the hysteronotal shield is ornamented with large ovate lacunae in the central area and small elliptical lacunae marginally arranged. In females of T. bulligera setae $f 2$ are absent, the posterior half of the hysteronotal shield has ornamentation with small elliptical lacunae in the central area and large ovate lacunae marginally arranged.

DNA barcode. Representative DNA sequences: molecular voucher specimens ANA838 male (GenBank accession number MH094247), ANA839 female (Gen-

Bank accession number MH094248), ANA840 female (GenBank accession number MH094249).

We sequenced a $586-\mathrm{pb}$ fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene for two females and one male paratypes. All three sequences belong to a single haplotype. The calculated intra-specific genetic distances (K2P) for other species of Trouessartia was as follows: Trouessartia rosterii $0,8 \%$, T. reguli $1,4 \%$, T. kratochvili 1%, T. rubecula $0,5 \%$, T. simillima 0.4%, T. ripariae $0,4 \%$, T. microcaudata $0,7 \%$, T. tenuipillata $0,6 \%$, T. jedliczkai 1,6\%, T. trouessarti 1.4%, T. motacillae 1.1%, T. bifurcata $11,5 \%$.

The best-fit base substitution model for the analyzed data was determined to be TN93+G+I. The NJ and ML trees exhibited similar topologies and branching structures (see Figures 7 and 8). In both trees our new species was grouped with Trouessartia rubeculd and T. simillima, also described from the Muscicapidae family. Our analysis resolved well the analysed Trouessartia species with the exception of T. motacillae and T. jedliczkai, which were poorly resolved in both analyses. Another noticeable feature of our analysis refers to the species T. bifurcata, identified on two avian families: Sylviidae and Acrocephalidae. The two sequences of T. bifurcata introduced in our analysis exhibit a high intraspecific diversity which can be a signal of two cryptic species presently identified as T. bifurcata.

Acknowledgments

We are grateful to the Additional Principal Chief Conservator of Forests, Wildlife \& Chief Wildlife Warden from Shillong (Meghalaya, India) for the permission to catch birds (permission No. FWC.G/173/Pt.). Ioana Cobzaru was supported by the Institute of Biology Bucharest of Romanian Academy (project no. RO1567-IBB04/2016).

References

Atyeo WT, Braasch NL (1966) The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophyllodidae). Bulletin of the University of Nebraska State Museum 5: 1-353.
Barreto M, Burbano ME, Proctor HC, Mironov SV, Wauthy G (2012) Feather mites (Acariformes: Psoroptidia) from Colombia: Preliminary list with new records. Zootaxa 3516: 1-68.
Carleton RE, Proctor HC (2010) Feather mites associated with Eastern Bluebirds (Sialia sialis L.) in Georgia, including the description of a new species of Trouessartia (Analgoidea: Trouessartiidae). Southeastern Naturalist 9: 605-623. http://doi.org/10.1656/058.009.0317
Černý V (1979) Feather mites (Sarcoptiformes: Analgoidea) of some warblers from Czechoslovakia. Folia Parasitologica 26: 81-84.
Černý V, Lukoschus FS (1975) Parasitic mites of Surinam XXXIII. Feather mites (Analgoidea). Studies on the Fauna of Suriname and other Guyanas 58: 184-203. http://doi. org/10.1007/978-94-017-7106-1_3

Clements JF, Schulenberg TS, Iliff MJ, Roberson D, Fredericks TA, Sullivan BL, Wood CL (2016) The eBird/Clements checklist of birds of the world: v2016. http://www.birds.cornell.edu/clementschecklist/download/ [accessed January 2016]
Constantinescu IC, Chișamera G, Pocora V, Stanciu C, Adam C (2013) Two new species of feather mites (Acarina: Analgoidea) from the Moustached Warbler, Acrocephalus melanopogon (Passeriformes, Acrocephalidae) in Romania. Zootaxa 3709: 267-276. http://doi. org/10.11646/zootaxa.3709.3.5
Constantinescu IC, Cobzaru I, Mukhim DKB, Adam C (2016a) Two new species of the genus Trouessartia (Acari, Trouessartiidae) from laughingthrushes (Passeriformes, Leiothrichidae) ZooKeys 571: 59-79. http://doi.org/10.3897/zookeys.571.7724
Constantinescu IC, Cobzaru I, Mukhim DKB, Adam C (2016b) Two new species of the feather mite genus Trouessartia (Acari: Trouessartiidae) from Asia. Zootaxa 4137: 357-374. http://doi.org/10.11646/zootaxa.4137.3.4
Constantinescu IC, Cobzaru I, Geamana NA, Mukhim DKB, Adam C (2017) Two new species of feather mites (Acarina: Psoroptidia) from the blue-throated blue flycatcher, Cyornis rubeculoides (Passeriformes: Muscicapidae). Journal of Natural History 51: 277-297. doi. org/10.1080/00222933.2017.1280194
Constantinescu IC, Chişamera GB, Petrescu A, Adam C (2018) Two new species of feather mites (Acarina: Psoroptidia) from the Oriental Magpie-Robin, Copsychus saularis (Passeriformes: Muscicapidae). Acarologia 58: 313-331. http://doi.org/10.24349/acarologia/20184244
Dabert, J, Ehrnsberger R, Dabert M (2008) Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719: 41-52.
Gaud J (1977) La faune terrestre de l'Île de Sainte Hélène. 4.3. Acariens Sarcoptiformes Plumicoles parasites d'oiseaux. Annales du Musée Royale de l'Afrique Centrale, Sciences Zoologiques 220: 260-269.
Gaud J, Atyeo WT (1986) Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l'Ancien Monde. I. Le Groupe appendiculata. Acarologia 27: 263-274.
Gaud J, Atyeo WT (1987) Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l'Ancien Monde. I. Le Groupe minutipes. Acarologia 28: 367-379.
Gaud J, Atyeo WT (1996) Feather mites of the world (Acarina, Astigmata): the supraspecific taxa. Musée Royal de l'Afrique Centrale, Annales Sciences Zoologiques 277: 1-191.
Griffiths DA, Atyeo WT, Norton RA, Lynch CA (1990) The idiosomal chaetotaxy of astigmatid mites. Journal of Zoology 220: 1-32. http://doi.org/10.1111/j.1469-7998.1990. tb04291.x
Grimmett R, Inskipp C, Inskipp T (2011) Helm Field Guides: Birds of the Indian Subcontinent. Christopher Helm, London, 528 pp.
Hernandes FA (2014) Five new species of the feather mite genus Trouessartia Canestrini from South America (Acari: Trouessartiidae). Zootaxa 3856: 50-72. http://doi.org/10.11646/ zootaxa.3856.1.2
Hernandes FA (2017) Two new species of Trouessartia Canestrini, 1899 (Astigmata: Trouessartiidae) from passeriform birds in Brazil. Systematic Parasitology 94: 1019-1032. http:// doi.org/10.1007/s1 1230-017-9755-z

Hernandes FA, OConnor BM (2017) Out of Africa: the mite community (Arachnida: Acariformes) of the common waxbill, Estrilda astrild (Linnaeus, 1758) (Passeriformes: Estrildidae) in Brazil. Parasites \& Vectors 10: 299. doi.10.1186/s13071-017-2230-5
Hernandes FA, Valim MP (2015) A new species of the genus Trouessartia Canestrini (Acari: Trouessartiidae) from Neotropical passerines (Aves: Tyrannidae). International Journal of Acarology 41: 382-388. http://doi.org/10.1080/01647954.2015.1046921
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution Julay 33: 1870-1874. http://doi.org/10.1093/molbev/msw054
Mauri R, De Alzuet AB (1968) Una nueva espécie de Trouessartia Canestrini, 1899 (Acarina: Proctophyllodidae). Revista del Museo de La Plata, nueva serie, 10, Zoología 85: 169-172.
McClure HE, Ratanaworabhan N (1973) Some ectoparasites of the birds of Asia, Applied Scientific Research, Jintana Printing Ldt, Bangkok, 219 pp.
Mironov SV (1983) Feather mites of the genus Trouessartia of the USSR fauna and descriptions of new species (Analgoidea). Parazitologiya 17: 361-369.
Mironov SV, Bermúdez S (2017) Feather mites (Acariformes: Analgoidea) associated with the hairy woodpecker Leuconotopicus villosus (Piciformes: Picidae) in Panama. Acarologia 57: 941-955. http://doi.org/10.24349/acarologia/20174218
Mironov SV, Galloway TD (2002) New feather mite taxa (Acarina: Analgoidea) and mites collected from native and introduced birds of New Zealand. Acarologia 42: 185-201.
Mironov SV, González-Acuña DA (2013) A new feather mite species of the genus Trouessartia Canestrini, 1899 (Acariformes: Trouessartiidae) from the White-Crested Elaenia Elaenia albiceps (Orbigney et Lafresnaye) (Passeriformes: Tyrannidae) in Chile. Acarina 21: 123-132.
Mironov SV, Kopij G (1996) New feather mite species (Acarina: Analgoidea) from some starlings (Passeriformes: Sturnidae) of South Africa. Journal of African Zoology 110: 257-269.
Mironov SV, Kopij G (2000) New feather mites species of the genus Trouessartia (Acari: Analgoidea: Trouessartiidae) from South African passerines (Aves: Passeriformes). Mitteilungen aus dem Hamburgischen Museum und Institut 97: 99-115.
Mironov SV, Overstreet RM (2016) A new feather mite species of the genus Trouessartia Canestrini (Acariformes: Trouessartiidae) from the northern rough-winged swallow Stelgidopteryx serripennis (Passeriformes: Hirundinidae) in Pennsylvania. Acarina 24: 3-9.
Mironov SV, Palma RL (2016) A new feather mite of the genus Trouessartia Canestrini 1988 Acariformes: Trouessartiidae) from the Seychelles magpie-robin, Copsychus sechellarum (Passeriformes: Muscicapidae). Acta Parasitologica 61: 629-635. http://doi.org/10.1515/ ap-2016-0084
Norton AR (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Experimental \& Applied Acarology 22: 559-594. http://doi. org/10.1023/A:1006135509248

OConnor BM, Foufopoulos J, Lipton D, Lindström K (2005) Mites associated with the small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae), from the Galápagos Islands. Journal of Parasitology 91(6): 1304-1313. http://doi.org/10.1645/ge-581r. 1
Orwig KR (1968) The genera and species of the feather mite Subfamily Trouessartiinae except Trouessartia (Acarina: Proctophyllodidae). Bulletin of the University of Nebraska State Museum 8: 1-179.
Rasmussen PC, Anderton JC (2012) Birds of South Asia. The Ripley Guide, vols 1 and 2, 2 ${ }^{\text {nd }}$ Ed. National Museum of Natural History, Smithsonian Institution, Michigan State University and Lynx Edicions, Washington, D.C., Michigan and Barcelona, vol. 1: 684 pp., vol. 2: 378 pp .
Santana FJ (1976) A review of the genus Trouessartia (Analgoidea: Alloptidae). Supplements to the Journal of Medical Entomology 1: 1-128.
Silva HM, Hernandes FA, Pichorim M (2015) Feather mites (Acari, Astigmata) associated with birds in an Atlantic Forest fragment in Northeastern Brazil. Brazilian Journal of Biology 75: 726-735. http://doi.org/10.1590/1519-6984.23313

Three new species of the spider genus Asceua from Malaysia (Araneae, Zodariidae)

Bao-Shi Zhang ${ }^{1,2}$, Feng Zhang ${ }^{3}$
I College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China 2 Department of Biochemistry, Baoding University, Baoding, Hebei 071051, P. R. China $\mathbf{3}$ The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, P. R. China
Corresponding author: Feng Zhang (dudu06042001@163.com)

Academic editor: S. Li | Received 6 February 2018 | Accepted 10 August 2018 | Published 10 October 2018
http://zoobank.org/2266A014-E7FC-44DC-AE91-334B06C8BD9D
Citation: Zhang B-S, Zhang F (2018) Three new species of the spider genus Asceua from Malaysia (Araneae, Zodariidae). ZooKeys 789: 37-49. https://doi.org/10.3897/zookeys.789.24261

Abstract

Three new species of the genus Asceua Thorell, 1887, from the natural forests of Malaysia, are described as from Malaysia for the first time.

Keywords

description, distribution, Southeast Asia, taxonomy, Zodariid

Introduction

Members of the ant spider family Zodariidae Thorell, 1881 are small to mediumsized. It contains 85 genera and 1141 known species worldwide (World Spider Catalog 2018). Among them, 40 species are attributed to 5 genera (Heliconilla Dankittipakul, Jocqué \& Singtripop, 2012, Heradion Dankittipakul \& Jocqué, 2004, Malayozodarion Ono \& Hashim, 2008, Mallinella Strand, 1906, and Workmania Dankittipakul, Jocqué \& Singtripop, 2012) which have been reported from Malaysia. The genus Asceua
was established by Thorell in 1887, with the type being A. elegans Thorell, 1887 from Myanmar. It was removed from synonymy with Storena Walckenaer, 1805 (Bosmans and van Hove 1986; Jocqué 1986). Jocqué (1991) later synonymized the genera Suffucia Simon, 1893 and Doosia Kishida, 1940 with Asceua. Members of this genus can be distinguished from other zodariids by their small size, laterally compressed bulb, developed cymbial fold, and the long and meandering copulatory ducts (Jocqué 1991).

At present, the genus includes 26 species worldwide (World Spider Catalog 2018). Among these, 22 are known from Southeast Asian countries that are close to Malaysia, including Japan, China (Southern part), Vietnam, Myanmar, Cambodia, Philippines and Indonesia; three are known from African countries and islands (Congo, GuineaBissau and the Comoros); and one is from Australia. Up until now, one described species is based on the specimen of unknown sex, eight are only known from female specimens and one only from male specimen. The species of this genus should be abundant, but are generally less well-known, and are worthy of further investigation in the future.

During the examination of spider collections from Malaysia, three new Asceua species were recognized and are described here as Asceua bifurca sp. n., A. curva sp. n., and A. trimaculata sp. n.

Materials and methods

All specimens have been kept in 75% ethanol and were examined, drawn, and measured under a Tech XTL-II stereomicroscope equipped with an Abbe drawing device. Photos were taken with a Leica M205A stereomicroscope fitted with a Leica DFC550 Camera and LAS software (Ver. 4.6). Carapace length was measured medially from the anterior margin to the rear margin of the carapace. Eye sizes were measured as the maximum diameter of the lens in dorsal or frontal view. The measurements of legs are shown as total length (femur, patella, tibia, metatarsus, tarsus). Only one specimen of paratypes was measured. The epigynes were cleared in a warm solution of potassium hydroxide, and transferred to 75% ethanol for drawing. All measurements are in millimeters. All specimens studied are deposited in the Museum of Hebei University (MHBU), Baoding, China.

The following abbreviations are used:

ALE anterior lateral eyes;
AME anterior median eyes;
C conductor;
CD copulatory ducts;
dRTA dorsal apophysis of retrolateral tibial apophysis;
E embolus;
MA median apophysis;

MOA median ocular area;
PLE posterior lateral eyes;
PME posterior median eyes;
RTA retrolateral tibial apophysis;
S spermatheca;
T tegulum;
vRTA ventral apophysis of retrolateral tibial apophysis.

Taxonomy

Family Zodariidae Thorell, 1881

Genus Asceua Thorell, 1887 (Type species: Asceua elegans Thorell, 1887)

Asceua bifurca sp. n.

http://zoobank.org/20CC40AA-232A-4157-B9A5-F7508F1EB525
Figs 1-3

Type material. Holotype δ^{λ}, Malaysia, Sabah, Jalan Tambunan, Penampang, $05^{\circ} 48.739^{\prime} \mathrm{N}, 116^{\circ} 20.522^{\prime}$ E, elev. $1583 \mathrm{~m}, 16$ October 2015, Z.Z. Gao leg. Paratypes: $1 \widehat{\sigma}$ and 2 , same data as holotype.

Diagnosis. The males of A. bifurca are very similar to those of A. radiosa Jocqué, 1986 (from the Comoro Islands) in having a large concavity on the basal embolus and a short conductor. The two species can be easily distinguished by the conductor being bifurcated in the new species, while it is not bifurcated in A. radiosa. The posterior part of the dorsal abdomen has three white median bands in the new species that are absent in A. radiosa (Figs 1A, B, 2A-C, 3A-C). The females of this new species resemble those of A. piperata Ono, 2004 (from Vietnam) in having a hillock between the two copulatory openings, but the two spermathecae are spaced by copulatory ducts in the new species while they are adjacent in A. piperata (Figs 2D, E, 3D, E).

Etymology. The specific name is taken from the Latin word bifurca, in reference to the bifurcated tip of the conductor; adjective.

Description. Male total length 2.11-2.18. Holotype total length 2.18; carapace 1.13 long, 0.86 wide; opisthosoma 1.00 long, 0.74 wide. Habitus shown as in Fig. 1A-B. Carapace shiny, brown, lateral margins dark brown, tegument smooth, median part with a wide V-shaped black patch in front of black fovea, posterior middle bright. Radial grooves dark brown. Clypeus 0.16 high, brown. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.09, PLE 0.09; AME-AME 0.04, AME-ALE 0.04, ALE-ALE 0.37, PME-PME 0.06, PME-PLE 0.08, PLE-PLE 0.47 , ALE-PLE 0.02 . MOA 0.22 long, frontal width 0.19 , back width 0.24 . Chelicerae brown, with 2 promarginal teeth and 1 retromarginal tooth, and terminal part armed with black hairs. Endites yellow brown, apices bright and furnished with dense black hairs. Labium triangular, 0.13 long, 0.12 wide, brown, median part with a semi-circular dark brown patch. Sternum 0.58 long, 0.50 wide, brown, lateral margin dark, median part bright and shiny, furnished with sparse black setae. Coxae of legs white, other sections brown, each femur with two dorsal spines, the distal part of tibia I bright. Measurements of legs: I $2.02(0.40+0.20+0.61+0.38+0.43)$, II $1.84(0.43+0.14$ $+0.49+0.40+0.38)$, III $2.17(0.62+0.21+0.51+0.46+0.37)$, IV 3.03 (0.61 $+0.33+0.72+0.95+0.42)$. Leg formula: 4312. Opisthosoma oval, covered with black short hairs, with a shiny and lanceolate dorsal scutum. Dorsum of opisthosoma black, with a pair of white median patches, followed by three transversal median bands, the first two bands wide and the third one narrow; anterior part of venter

Figure I. Asceua bifurca sp. n., male holotype ($\mathbf{A}-\mathbf{B}$) and female paratype ($\mathbf{C}-\mathbf{D}$) Habitus (\mathbf{A}, \mathbf{C} dorsal view \mathbf{B}, \mathbf{D} ventral view).

Figure 2. Asceua bifurca sp. n., male holotype (A-C) and female paratype (D-E) A-C Left male palp (A prolateral view \mathbf{B} ventral view \mathbf{C} retrolateral view) D Epigyne, ventral view E Epigyne, dorsal view.

Figure 3. Asceua bifurca sp. n., male holotype (A-C) and female paratype (D-E) A-C Left male palp (A prolateral view \mathbf{B} ventral view \mathbf{C} retrolateral view) \mathbf{D} Epigyne, ventral view \mathbf{E} Epigyne, dorsal view. Abbreviations: cs, cuticularized sheet; mh, median hillock.
yellowish, posterior part white, and with a pair of lateral black patches, spinnerets brown, ringed with black.

Palp (Figs 2A-C, 3A-C). Coxae of palps white, other sections brown; length to width ratio of femur 2.6 , length to width ratio of patella 1.2 ; RTA broad, ventral
pointed apophysis broad and with trifurcate top, one of the forks longer than the other two forks, dorsal pointed apophysis thumb-like, with a cuticularized sheet situated between ventral and dorsal apophyses; cymbium with broad lateral fold which is wrinkly and with some hairs; conductor short, the tip bifurcated and sclerotized; distal median apophysis bifurcated; embolic base broad and almost an inverted triangle, with a large concavity on the apical margin.

Female total length 2.21-2.34. One of the paratypes total length 2.34; carapace 1.10 long, 0.84 wide; opisthosoma 1.25 long, 0.92 wide. Habitus as in Fig. 1C-D. Clypeus 0.15 high. Eye sizes and inter-distances: AME 0.07, ALE 0.09, PME 0.09, PLE 0.09 ; AME-AME 0.04, AME-ALE 0.03, ALE-ALE 0.37, PME-PME 0.05, PME-PLE 0.09 , PLE-PLE 0.47 , ALE-PLE 0.04 . MOA 0.24 long, frontal width 0.17 , back width 0.20 . Labium 0.21 long, 0.24 wide. Sternum 0.53 long, 0.55 wide. Measurements of legs: I 2.07 $(0.44+0.17+0.59+0.47+0.40)$, II $1.77(0.44+0.11+0.41+0.47+0.34)$, III 1.99 $(0.51+0.16+0.41+0.59+0.32)$, IV $2.53(0.59+0.23+0.73+0.65+0.33)$. Leg formula: 4132. Dorsum of opisthosoma black, anterior median part dark brown and lacklustre, followed by a pair of white patches and three transversal bands, lateral parts with a pair of white oblique patches. Color of ventral opisthosoma and spinnerets as in male.

Epigyne (Figs 2D, E, 3D, E). Plate of epigyne approx. 1.9 times wider than long, the posterior margins of copulatory openings and the anterior margin of median hillock W-shaped; spermathecae small and oval, almost as wide as the copulatory ducts, situated posteriorly and well-spaced (approx. 6 times the spermathecal diameter).

Distribution. Malaysia (Sabah).

Asceua curva sp. n.

http://zoobank.org/280DE826-2A03-4081-87AC-EB17C530FCA2
Figs 4-5

Type material. Holotype $\widehat{\delta}^{\top}$, Malaysia, Sabah, Pitas, $06^{\circ} 29.598^{\prime} \mathrm{N}, 117^{\circ} 18.499^{\prime} \mathrm{E}$, elev. 45 m, 20 October 2015, Z.Z. Gao leg.

Diagnosis. The male of this species resembles A. wallacei Bosmans \& Hillyard, 1990 (from Sulawesi, Indonesia) in having the very complicated copulatory organ. The two species can be easily distinguished by: the thinner and longer retrolateral pointed processes of the distal conductor in the new species, which is shorter and bifurcated in A. wallace i; the longer posterior projection of the cymbium in the new species, which is shorter in A. wallacei; and the hook-like median apophysis which is almost straight in A. wallacei (Figs 4C-F, 5A-C).

Etymology. The specific name is from the Latin word curvus, in reference to the shape of the posterior projection of the cymbium; adjective.

Description. Male (holotype): Total length 3.15; carapace 1.39 long, 1.12 wide; opisthosoma 1.49 long, 1.17 wide. Habitus as in Fig. 4A-B. Carapace shiny, brown, lateral margins dark brown, part of carapace swollen, radial grooves inconspicuous. Clypeus 0.30 high, brown. Eye sizes and inter-distances: AME 0.11, ALE 0.08, PME

Figure 4. Asceua curva sp. n., male holotype (A-F). A-B Habitus (\mathbf{A} dorsal view \mathbf{B} ventral view) $\mathbf{C}-\mathbf{E}$ Left male palp (\mathbf{C} prolateral view \mathbf{D} ventral view \mathbf{E} retrolateral view) \mathbf{F} posterior projection of cymbium.

Figure 5. Asceua curva sp. n. (A-C). Left palp of the male holotype (\mathbf{A} prolateral view \mathbf{B} ventral view C retrolateral view). Abbreviations: pp, posterior projection; msp, median semi-circular projection.
0.08, PLE 0.13; AME-AME 0.05, AME-ALE 0.02, ALE-ALE 0.43, PME-PME 0.11, PME-PLE 0.10, PLE-PLE 0.59, ALE-PLE 0.02. MOA 0.27 long, frontal width 0.25 , back width 0.27 . Chelicerae brown, with two promarginal teeth and one retromarginal tooth, and terminal part armed with black hairs. Endites brown, apices bright and furnished with dense black hairs. Labium triangular, 0.20 long, 0.25 wide, brown, median part with a semicircular dark brown patch. Sternum 0.68 long, 0.66 wide, brown, lateral margin slightly dark brown, furnished with sparse black setae. Coxae of legs white, other sections brown, each femur with two dorsal spines, tibiae with long longitudinal dark stripes. Measurements of legs: I $3.74(0.77+0.31+1.24+1.07+0.35)$, II $3.45(0.89+$ $0.36+0.94+0.88+0.38)$, III $3.46(0.78+0.34+0.85+1.02+0.47)$, IV $3.80(0.79$ $+0.36+1.28+0.99+0.38)$. Leg formula: 4132 . Opisthosoma covered with grey short hairs, dorsal scutum violin-like, dark brown. Dorsum of opisthosoma black, with a pair of white transversal chevrons, followed by three pairs of transversal stripes, the first two pairs being conjoint in the middle of the opisthosoma; anterior part of venter yellow, posterior part grey and lateral with two pairs of black oblique stripes, spinnerets brown.

Palp (Figs 4C-F, 5A-C). Tibia with two broad apophyses: dorsal apophysis and ventral apophysis, with a large concavity between them, in which fits a posterior projection of the cymbium; cymbium with a median semi-circular projection, which appears to be strongly excavated below in lateral view; tip of median apophysis hook-like; conductor large and semi-circular, with retrolateral and posterior pointed processes, not very chitinised except for the retrolateral processes; embolar base triangular; thread-like embolus very long, at first running to dorsal cymbium, then turning to ventral palp and following dorsal margin of conductor.

Female unknown.
Distribution. Malaysia (Sabah).
Remarks. Eight described Asceua species from nearby countries are only based on female specimens: A. amabilis Thorell, 1897 (from Myanmar), A. anding Zhang, Zhang \& Jia, 2012 (from China), A. daoxian Yin, 2012 (from China), A. elegans Thorell, 1887 (from Myanmar), A. kunming Song \& Kim, 1997 (from China), A. longji Barrion et al. 2013 (from China), A. piperata Ono, 2004 (from Vietnam), and A. quinquestrigata (Simon, 1905) (from Java). The patterns of the dorsal opisthosoma of these species are different by comparisons of illustrations and descriptions. The first pair of transversal chevrons are reniform in the new species, but are oval or long ovoid in all the other species, except for A. quinquestrigata. However, the new species can be distinguished from A. quinquestrigata by the broad bands on its posterior opisthosoma, which are only small in A. quinquestrigata. Also, the other white patches and transversal stripes on the opisthosoma of the new species contrasts with the lack of stripes in the other seven species except for A. piperata. However, the new species can be distinguished from A. piperata by its immaculate carapace. This new species is thus less likely to be conspecific with any of these 8 species that are only known from female specimens.

Asceua trimaculata sp. n.

http://zoobank.org/3212AFBA-61D7-439B-99C9-83E096C934BD
Fig. 6

Type material. Holotype Q, Malaysia, Pahang, Cameron Highlands, Tanah Rata, $04^{\circ} 27.791^{\prime} \mathrm{N}, 101^{\circ} 22.091^{\prime} \mathrm{E}$, elev. $1380 \mathrm{~m}, 22$ October 2015, Z.Z. Gao leg. Paratype: 1 \& same data as holotype.

Diagnosis. The females of this new species resemble those of A. lejeunei Jocqué, 1991 (from Congo) in having widely spaced copulatory openings, but can be distinguished by the absence of the paired patches of dorsal opisthosoma which are present in A. lejeunei (Fig. 6A-F).

Etymology. The specific name is from the Latin words tri- and maculata, in reference to the three patches on the dorsal opisthosoma.

Description. Female total length 2.33-2.48. Holotype total length 2.48; carapace 1.21 long, 0.91 wide; opisthosoma 1.24 long, 0.95 wide. Habitus as in Figs 6A-B. Carapace, dark brown, median part with a black V-shaped patch and a longitudinal black thin band, radial grooves black. Clypeus 0.24 high, dark brown. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.08, PLE 0.09; AME-AME 0.02, AME-ALE 0.02, ALE-ALE 0.34, PME-PME 0.05, PME-PLE 0.12, PLE-PLE 0.46, ALE-PLE 0.05 . MOA 0.26 long, frontal width 0.16 , back width 0.21 . Chelicerae dark brown, with two promarginal teeth and one retromarginal tooth, and terminal part armed with black hairs. Endites yellow brown, apices bright and furnished with dense black hairs. Labium triangular, 0.25 long, 0.28 wide, dark brown. Sternum 0.59 long,

Figure 6. Asceua trimaculata sp. n., female holotype (A-F) A-B Habitus (A dorsal view \mathbf{B} ventral view) $\mathbf{C - F}$ Epigyne (\mathbf{C}, \mathbf{D} ventral view \mathbf{E}, \mathbf{F} dorsal view). Abbreviation: r, ridge.
0.61 wide, dark brown, median part shiny, furnished with sparse black setae. Coxae of legs yellowish, other sections brown. Measurements of legs: leg I $2.82(0.84+0.29+$ $0.67+0.59+0.43)$, II $2.35(0.68+0.23+0.49+0.58+0.37)$, III $2.06(0.65+0.16$ $+0.34+0.52+0.39)$, IV $2.93(0.89+0.16+0.50+1.03+0.35)$. Leg formula: 4123 . Opisthosoma covered with black short hairs, lanceolate dorsal scutum dark brown and with blunt edge. Dorsum of opisthosoma black, with three transverse white bands; anterior part of venter yellow brown, posterior part yellowish and with a pair of lateral black patches, spinnerets brown and ringed with black.

Epigyne (Fig. 6C-F). Plate of epigyne approx. 1.3 times wider than long, copulatory openings situated almost at the middle part of epigyne, posterior epigynum with a pair of ridges; long and winding copulatory ducts visible through integument; spermathecae small, situated posteriorly and well-spaced (approx. 8 times the spermathecal diameter).

Male unknown.
Distribution. Malaysia (Pahang).
Remarks. Asceua septemmaculata (Simon, 1893a) was described based only on a male specimen from Cambodia. The patterning of the dorsal opisthosoma differ, in that the pairs of white patches present in A. septemmaculata are absent in the new species, and it is unlikely that the latter is conspecific with A. septemmaculata.

Comments. There are five Asceua species in the adjacent region that are lacking illustrations: A. bimaculata (Simon, 1904) (from Vietnam), A. heliophila (Simon, 1893b) (from Philippines), A. septemmaculata, A. amabilis and A. quinquestrigata. The descriptions of the sexual organs were very simple. The three new species described here have to be distinguished by different patterns of the dorsal opisthosoma. Asceua trimaculata sp. n. lacks pairs of white patches that all the five known species above possess. Asceua bifurca sp. n. differs from the five species by the rectangular white bands on its dorsal opisthosoma. Asceua curva sp. n. differs from them by possessing the chevron patterning.

Acknowledgements

We are grateful to Dr. Shuqiang Li, Dr. Yuri Marusik and Zhisheng Zhang for valuable suggestions, and to the linguistic editor for improving the English. We are also grateful to Zhizhong Gao for the collection of specimens. This study was supported by funding from the National Natural Science Foundation of China (31471969) and by the Natural Science Foundation of Hebei Province (C2017104011) to Bao-Shi Zhang.

References

Barrion AT, Barrion-Dupo ALA, Catindig JLA, Villareal SC, Cai D, Yuan QH, Heong KL (2013) New species of spiders (Araneae) from Hainan Island, China. UPLB Museum Publications in Natural History 3: 1-103.

Bosmans R, Hillyard P (1990) Spiders of the family Zodariidae from Sulawesi, Indonesia (Arachnida: Araneae: Zodariidae). Bulletin of the British Arachnological Society 8: 147160.

Bosmans R, van Hove M (1986) A revision of the afrotropical representatives of the genus Langbiana Hogg (Araneae: Zodariidae). Bulletin of the British Arachnological Society 7: 17-28.
Jocqué R (1986) Ant-eating spiders from the Comoros (Araneae, Zodariidae). Revue de Zoologie Africaine 100: 307-312.
Jocqué R (1991) A generic revision of the spider family Zodariidae (Araneae). Bulletin of the American Museum of Natural History 201: 1-160.
Ono H (2004) Spiders of the family Zodariidae (Araneae) from Dambri, Lam Dong Province, southern Vietnam. Bulletin of the National Science Museum, Tokyo (A), 30: 67-75.
Simon E (1893a) Histoire naturelle das araignées. Paris 1: 257-488.
Simon E (1893b) Arachnides. In: Voyage de M. E. Simon aux îles Philippines (Mars et Avril 1890). Ge Mémoire. Annales de la Société Entomologique de France 62: 65-80.

Simon E (1904) Arachnides recueillis par M. A. Pavie en Indochine - Mission Pavie en Indochine 1879-1895. III. Recherches sur l'histoire naturelles de l'Indochine Orientale. Paris, 270-295.
Simon E (1905) Arachnides de Java, recueillis par le Prof. K. Kraepelin en 1904. Mitteilungen aus dem Naturhistorischen Museum in Hamburg 22: 49-73.
Song DX, Kim JP (1997) On seven new species of the family Zodariidae (Araneae) from China. Korean Arachnologica 13(1): 7-17.
Thorell T (1887) Viaggio di L. Fea in Birmania e regioni vicine. II. Primo saggio sui ragni birmani. Annali del Museo Civico di Storia Naturale di Genova 25: 5-417.
Thorell T (1897) Viaggio di Leonardo Fea in Birmania e regioni vicine. LXXIII. Secondo saggio sui Ragni birmani. I. Parallelodontes. Tubitelariae. Annali del Museo Civico di Storia Naturale di Genova (2)17[37]: 161-267.
World Spider Catalog (2018) World Spider Catalog. Natural History Museum Bern. http:// wsc.nmbe.ch [version 19.0; Accessed 17 January 2018]
Yin CM, Peng XJ, Yan HM, Bao YH, Xu X, Tang G, Zhou QS, Liu P (2012) Fauna Hunan: Araneae in Hunan, China. Hunan Science and Technology Press, Changsha, 1590 pp.
Zhang BS, Zhang F, Jia XM (2012) Two new species of the ant spider genus Asceua Thorell, 1887 (Araneae: Zodariidae) from China. Zootaxa 3307: 62-68.

The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae)

Bernhard A. Huber', Jonas Eberle ${ }^{1}$, Dimitar Dimitrov ${ }^{23,4}$
I Alexander Koenig Research Museum of Zoology, Adenauerallee 160, 53113 Born, Germany 2 Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 3 Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway 4 Current address: Department of Natural History, University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway

Corresponding author: Bernhard A. Huber (b.huber@leibniz-zfmk.de)

Academic editor: J. Miller | Received 5 December 2017 | Accepted 20 August 2018 | Published 10 October 2018
http://zoobank.org/496949FC-A96A-4489-A094-0182520DAB6C
Citation: Huber BA, Eberle J, Dimitrov D (2018) The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789: 51-101. https://doi.org/10.3897/zookeys.789.22781

Abstract

With almost 600 species, the latest molecular phylogeny of pholcid spiders (Eberle et al. 2018, BMC Evolutionary Biology) more than triples the largest previously available molecular phylogeny of the family. At the level of genera, the coverage is high (86%, i.e., 75 of the 87 named genera), and at the level of subfamilies it is complete. The present paper is an effort to critically evaluate the implications of this phylogeny for pholcid systematics. The analyses largely support the division of Pholcidae into five subfamilies: Ninetinae, Arteminae, Modisiminae, Smeringopinae, and Pholcinae. Their compositions are largely unchanged except that Chisosa Huber, 2000 is moved from Ninetinae to Arteminae. The positions of Artema Walckenaer, 1837 and Priscula Simon, 1893 in this system remain dubious. Relationships among subfamilies remain weakly supported, except for the sister group relationship between Smeringopinae and Pholcinae. Several major clades within subfamilies are separated from each other along geographical boundaries; for example within Modisiminae a South American clade and a Central + North American + Caribbean clade, and within Smeringopinae a Sub-Saharan clade and a clade ranging from the Mediterranean to Central Asia. Central + North American + Caribbean clades in both Ninetinae and Modisiminae may originate from South American ancestors.

[^0]Many taxonomic changes are suggested by the data, some of which are formally implemented herein. Two new genera result from the splitting of Calapnita Simon, 1892 and Panjange Deeleman-Reinhold \& Deeleman, 1983, respectively: Nipisa Huber, gen. n.; and Apokayana Huber, gen. n. Nine new genera result from splitting of Pholcus: Cantikus Huber, gen. n.; Kelabita Huber, gen. n.; Kintaqa Huber, gen. n.; Muruta Huber, gen. n.; Meraha Huber, gen. n.; Paiwana Huber, gen. n.; Pribumia Huber, gen. n.; Teranga Huber, gen. n.; and Tissabamia Huber, gen. n. Two genera are newly synonymized: Platnicknia Özdikmen \& Demir, 2009 is synonymized with Modisimus Simon, 1893; Sihala Huber, 2011 is synonymized with Pholcus Walckenaer, 1805. Pholcus agadir Huber, 2011 is moved to Micropholcus Deeleman-Reinhold \& Prinsen, 1987, resulting in the new combination Micropholcus agadir (Huber, 2011).

Keywords

Biogeography, phylogeny, systematics, taxonomy

Introduction

Pholcidae is among the most species-rich spider families (World Spider Catalog 2018) and includes some of the spiders best known to the general public due to their occurrence in houses all over the world. Large amounts of morphological, taxonomic, behavioural, and biogeographic data on pholcids have been gathered and published over the last decades (http://www.pholcidae.de). Pholcidae is emerging as an ecologically highly diverse family that includes representatives with exceptional morphology and behaviour (e.g., asymmetric genitalia, ocular area modifications; highly regular webs; wrapping of prey with sticky silk; Huber and Nuñeza 2015, Huber et al. 2016c, Deeleman-Reinhold 1986a, Huber 2005b, Japyassú and Macagnan 2004), and that in some parts of the world is either extremely abundant (e.g., in East African forests; Sørensen et al. 2002) or has extreme levels of endemism (e.g., in Brazil's Atlantic Forest; Huber and Rheims 2011, Huber 2015, 2016, 2018). However, convincing evolutionary interpretations are often impeded by insufficient phylogenetic resolution and by large gaps in the taxon sampling. The most recent molecular phylogeny of Pholcidae (Eberle et al. 2018) is undoubtedly a major step forward. Under the assumption that a good sample of taxa is possibly more important than an increase of characters/genes (cf. Graybeal 1998, Heath et al. 2008) we more than tripled the number of species as compared to the previous phylogeny of Dimitrov et al. (2013); many genera and major species groups were included for the first time. As far as the percentage of named genera included is concerned (86\%), this is probably the most comprehensive molecular phylogeny of any major spider family so far. Despite this substantial increase in taxon sampling which has greatly improved our understanding of pholcid relationships, our tree remains a mosaic of 'good' and 'bad' parts: some nodes receive high support, others receive low or essentially no support. Revealingly, some support values changed dramatically among preliminary analyses of the present data. For example, unexpected clades with maximum support but contradicting any other evidence (e.g., morphology) suggested the existence of paralog
sequences. In other cases, doubts persist but we were not able to identify problems with the molecular data. The idea of the present paper is thus to complement the primary phylogenetic data in Eberle et al. (2018) with a detailed account of arachnological implications and to look not only at but also beyond support values; we compare the molecular phylogeny with phylogenies derived from cladistic analysis of morphological characters and other information, and distinguish between clades that we consider a solid basis for further work and clades that we consider in need of further phylogenetic research.

Material and methods

The trees presented here are derived from mitochondrial and nuclear gene sequences ($12 \mathrm{~S}, 16 \mathrm{~S}, 18 \mathrm{~S}, 28 \mathrm{~S}, \mathrm{CO} 1, \mathrm{H} 3$) gathered from 597 species of Pholcidae plus 32 outgroup species representing nine entelegyne and ten non-entelegyne families. For detailed specimen data, primers, lab protocols, alignment and tree inference algorithms, see Eberle et al. (2018). The present evaluation is based on four trees resulting from maximum likelihood analyses of data sets with varying degrees of missing data and unstable taxa, using two algorithms (RAxML, Stamatakis 2014; IQ-TREE, Nguyen et al. 2015). For the complete set of taxa, RAxML found the tree with the highest likelihood while the tree inferred with IQ-TREE was in better concordance with the known morphological evidence as suggested by cladistic analyses of morphological data and by qualitative character assessment (detailed in the respective sections below). Further trees were inferred with RAxML based on a reduced data set without rogue taxa (RogueNaRok, Wilkinson 1996, Sanderson and Shaffer 2002, Aberer et al. 2013) and on a " $4+$ genes" data set, including only those taxa for which four or more of the six target genes were available.

We calculated three types of branch support values for all trees: standard bootstrapping (SBS), rapid bootstrapping (RBS; Stamatakis et al. 2008), and Shimo-daira-Hasegawa-like approximate likelihood ratio test (SH-like aLRT; Guindon et al. 2010). Terminal taxa are composed of a consistent string of five variables: (1) unique specimen code; (2) genus name, either scientific name, unique code, or "Gen. n." for putatively new genera; (3) species name, either scientific name or unique code; (4) code for vial containing the specimen; (5) x's and o's, to respectively clarify the presence or absence of loci in the following order: $12 \mathrm{~S}, 16 \mathrm{~S}, 18 \mathrm{~S}$, 28S, CO1, H3.

We chose the tree from the IQ-TREE analysis for illustration and annotation because it appears more congruent with morphology. For the sake of clarity, only the RBS support is shown here; it may reflect true support most accurately (Anisimova et al. 2011). The same tree with all support values but without additional annotations is available as Supplementary file, together with the trees derived from RAxML from the complete and the two reduced, i.e., RogueNaRok, and "4+ genes" data sets.

Figure I. Backbone of the pholcid tree shown in Figs 2-12, derived from IQ-TREE analysis of the complete dataset.

To avoid overloading the text with numbers, we generally refer to the RBS support as follows: "low" (<70), "modest" (70-79), "reasonable" (80-94), "high" (95-99), or "full" (100) support. Even though the resolution of pholcid phylogeny has improved dramatically since 2011, the formal classification (Huber 2011b) into five subfamilies is not changed (Figure 1). Between the taxonomic levels of subfamilies and species we prefer to use informal names rather than tribes, subtribes, etc. Such unranked and formally unnamed taxa are less likely to burden future work as long as several major groups are still weakly supported and likely to change in composition or to be entirely rejected. The word "clade" is used like monophylum; thus, a clade can consist of subclades and those subclades are clades that again can consist of subclades. In general, colours in the phylogenies have no meaning beyond supporting the visual recognition of clades. The only exception is with Belisana Thorell, 1898, where litter and leafdwelling representatives are marked with different colours. Genus and species counts include the formal taxonomic changes herein. All measurements are in mm.

Systematic accounts

Subfamily Ninetinae Simon, 1890

Figure 2
Ninetinae Simon, 1890: 95. Type genus Ninetis Simon, 1890, by monotypy. Huber 2011b: 212.

Remarks. Ninetinae are small to tiny ground-dwelling spiders that are largely restricted to arid environments (Huber and Brescovit 2003; BA Huber, unpublished data). With only 31 described extant species, the subfamily is by far the smallest of the five currently recognized subfamilies in Pholcidae. Ninetinae seem to be diverse in the New World (ten named genera + about four unnamed genera; BA Huber,

Figure 2. Ninetinae and Arteminae a Artema sp. n. "Om14" (Oman) b Gen. n. (Ninetinae) sp. n. "Om6" (Oman) c Chisosa diluta (USA) d Gen. n. (Arteminae) sp. n. "Ind82" (Sulawesi).
unpublished data) where they represent the most southern (Argentina) and most northern (Canada) autochthonous pholcid records worldwide. Only two genera (Ninetis Simon, 1890 and one unnamed; BA Huber, unpublished data) are known from the Old World.

Their short legs make them superficially strikingly different from 'typical' longlegged pholcids. This distinctness was recognized as early as 1893 , when Eugène Simon classified the only ninetine species available to him in a separate subfamily "Ninetidinae", as opposed to all other pholcids classified in Pholcinae (Simon 1893). Subsequent morphological and molecular phylogenies have partly supported this view (Huber 2000, Dimitrov et al. 2013) but never convincingly with strong support.

Our present analyses include 15 species representing eight of the eleven described genera, originating from both the New World and the Old World (Figure 2). A sistergroup relationship between Ninetinae and all other pholcids is not supported by our analyses. Instead, all four analyses put Ninetinae as sister to Artema Walckenaer, 1837, and this clade is in turn sister to all other pholcids. For reasons discussed below (under Arteminae), we consider this relationship between Artema and Ninetinae dubious. The conclusion here is that Ninetinae are 'basal', either with Artema or without, but in any case the external relationships of Ninetinae remain unsatisfactorily resolved and need further study.

The monophyly of the subfamily receives high to full support in all analyses but the composition is slightly different from previous concepts: the North American Chisosa Huber, 2000, originally thought to be a representative of Ninetinae (Huber 2000), is moved to Arteminae. This move is also supported by male genitalic characters (massive palpal femur; procursus with dorsal apophysis and ventral pocket) and by somatic characters (exposed tarsal organ; reduction of epiandrous spigots; Huber 2000). Another genus that was previously (Huber and El Hennawy 2007, Huber 2011b) thought to be a member of Ninetinae is Nita Huber \& El Hennawy, 2007. As already suggested in a previous analysis (Dimitrov et al. 2013), Nita is not a member of Ninetinae but of Arteminae.

The internal relationships of Ninetinae suggested by the molecular data are difficult to evaluate: they are mostly neither supported nor contradicted by morphological data. Two details are remarkable because they suggest that South America may not only be the most diverse region as far as Ninetinae are concerned but also the ancestral region of the subfamily. First, the analyses fully support a monophyletic North and Central American/Caribbean clade (Pholcophora Banks, 1896; Papiamenta Huber, 2000; and unidentified taxa from Cuba and Puerto Rico; "clade 2e" in Huber 2011b) that is either nested among South American ancestors or is sister to the South American Ibotyporanga Mello-Leitão, 1944 (with reasonable support in the $4+$ genes tree only). Based on its geographic distribution, we predict that the Mexican Tolteca is also a member of this clade. Second, the two Old World genera (Ninetis and an undescribed genus from Oman) are also sister taxa (with low to modest support) and in all analyses (except for the 4+ genes analysis where Ninetis is missing) nested among South American taxa.

Subfamily Arteminae Simon, 1893

Figure 2
Artemeae Simon, 1893: 463. Type genus Artema Walckenaer, 1837, by monotypy. Arteminae Simon; Huber 2011b: 212.

Remarks. All our analyses exclude the name-giving genus Artema from the clade containing all other Arteminae and invariably place Artema as sister to Ninetinae (Figure 2), formally precluding the use of the name Arteminae for this clade. We do not propose a new subfamily name for this clade but treat it as 'other Arteminae' because we consider the position of Artema dubious. Artema shares with 'other Arteminae' a unique pair of structures on the procursus: a ventral pocket and a dorsal apophysis. These structures are associated with asymmetric palp insertion in both species studied with respect to this detail [Physocyclus globosus (Taczanowski, 1874), Artema nephilit Aharon et al., 2017: Huber and Eberhard 1997, Aharon et al. 2017]. The structures are present in all Arteminae, even in taxa that were previously thought to be representatives
of other subfamilies, such as Chisosa and Nita (previously in Ninetinae; see above), and Wugigarra Huber, 2001 (previously in Modisiminae; see below) (Huber 2000, 2001, Huber and El Hennawy 2007). By contrast, these structures are apparently absent in all other Pholcidae. Curiously and unexplainable to us, previous molecular analyses have supported a position of Artema among 'other Arteminae' (Astrin et al. 2007: fig. 1, Dimitrov et al. 2013).

Some of the 99 currently known species of Arteminae are relatively large spiders with long, strong legs and high globose abdomens. The genus Artema, in particular, includes probably the largest pholcids in terms of body mass (Aharon et al. 2017). However, tiny species that were previously assigned to Ninetinae partly because of their size (Chisosa, Nita) are now included in Arteminae, and their 'basal' position in the cladogram suggests that ancestral Arteminae may in fact have been tiny. Just like Ninetinae, Arteminae often occur in rather dry regions, sometimes even in deserts like the Australian Trichocyclus Simon, 1908. They have a wide distribution, but are apparently absent from Sub-Saharan Africa and from South America (except for "Geneve59", a tiny undescribed species representing a new undescribed genus on Curaçao and Aruba).

The monophyly of 'other Arteminae' is supported in all our analysis, even though with low support (possibly because of the dubious position of Artema, see above). Similar to our previous analysis (i.e. except for the position of Artema; Dimitrov et al. 2013), 'other Arteminae' is sister to Modisiminae, with variable support (reasonable support only in the RogueNaRok tree; in other trees, bootstrap support is low but SH values range from 82 to 99). This sister group relationship is weakly supported by morphology: 'other Arteminae' and Modisiminae lack epiandrous spigots. However, epiandrous spigots have been lost several times convergently in Pholcidae (Huber 2000, BA Huber, unpubl. data).

Internal relationships in 'other Arteminae' are partly resolved with reasonable support. The data suggest a large Indomalayan-Australasian clade, including the genera Trichocyclus and Wugigarra (Australia), Holocneminus Berland, 1942 (SE Asia and Pacific; excluding the misplaced and highly isolated H. huangdi Tong $\& \mathrm{Li}$, 2009), and a new undescribed genus (without any described species; ranging from Eastern Indonesia to the Pacific). Sister to this clade is either the New World genus Physocyclus Simon, 1893 alone or Physocyclus together with the Middle-Eastern monotypic Nita. However, support values for any of these options are low and morphological data do not favour (nor contradict) any of them. Finally, the 'basal' branches, i.e., those leading to the taxa outside the Indomalayan-Australasian clade and Physocyclus (and Nita in the case of the IQ-TREE analysis) lead to a group of North American and Caribbean taxa (the North American genus Chisosa being sister to a tiny undescribed species representing a new undescribed genus on Curaçao and Aruba: "Geneve59"), and to the SE-Asian Holocneminus huangdi, an isolated species that appears misplaced also by morphological criteria (A ValdezMondragón, pers. comm., Nov. 2015).

Subfamily Modisiminae Simon, 1893

Figs 3-5
Modisimeae Simon, 1893: 484. Type genus Modisimus Simon, 1893, by subsequent designation (Huber 2011b).
Modisiminae Simon; Huber 2011b: 216.

Remarks. Modisiminae are the typical pholcids of the humid Neotropics, where they occupy a wide variety of microhabitats from leaf litter to high among the vegetation. This ecological variability is paralleled by a wide range of body forms, from tiny ground-dwelling forms (e.g., Gertsch 1982, Huber and Rheims 2011) to some of the largest pholcids with leg spans of over 15 cm (e.g., Huber and Astrin 2009, Huber 2015, 2018). With currently 480 species in 24 genera, Modisiminae is one of the two large subfamilies of Pholcidae, with several species-rich genera (e.g., Anopsicus Chamberlin \& Ivie, 1938; Psilochorus Simon, 1893; Modisimus Simon, 1893; Mesabolivar González-Sponga, 1998; Carapoia González-Sponga, 1998) and many undescribed species.

All previous analyses have supported this group (Huber 2000, 2001, Bruvo Mađarić et al. 2005, Dimitrov et al. 2013), even though with minor differences in composition. The equivalent 'New World clade' in Huber (2001) still included the Australian Wugigarra, a genus that has since been moved to Arteminae (Dimitrov et al. 2013). As a result, Modisiminae is now considered to be restricted to the New World.

Our analyses all recover Modisiminae, but with very low support values. This is possibly due to the mysterious Andean genus Priscula Simon, 1893 (Figure 3) that is either included in Modisiminae (IQ-TREE) or not (RAxML). The position of Priscula has always been considered problematic. Simon (1893) created a separate taxon "Prisculeae" for this genus; Brignoli (1981) synonymized it with Physocyclus; the first morphological cladistic analysis (Huber 2000) supported the position of Priscula near Physocyclus but this result was explicitly doubted (Huber 2000: 129). In the molecular analysis of Dimitrov et al. (2013) Priscula was excluded because the positions of the included species varied dramatically among different types of analyses. Morphologically, Priscula differs from (other) Modisiminae by the presence of ALS piriform gland spigots and by the absence of a retrolateral apophysis on the male palpal coxa (Huber 2000), i.e., it has retained plesiomorphic characters. A sister-group relationship between Priscula and other Modisiminae appears thus plausible from a morphological point of view.

Despite the low support values, we thus consider Modisiminae (including Priscula or not) a likely monophyletic group. Several morphological characters support Modisiminae (incl. Priscula): an exposed tarsal organ; the reduction of epiandrous spigots (shared with 'other Arteminae'; see above); and a large distance between ALE and PME (Huber 2000). As indicated above (section Arteminae) our data weakly support a sister-group relationship between 'other Arteminae' and Modisiminae.

Within Modisiminae, many support values are extremely low, and the suggested relationships are thus unreliable (Figure 3). In addition, taxon sampling is very uneven,

Figure 3. ‘Basal' Modisiminae a Gen. n., sp. n. "Br16-50" (Brazil) b Priscula andinensis? (Venezuela) c Gen. n., sp. n. "Br16-196" (Brazil) d Tupigea sp. n. "Br14-47" (Brazil) e Pisaboa silvae (Brazil) f Psilochorus imitatus (USA) \mathbf{g} Modisimus incertus (Cuba).
with some genera well represented (e.g., Carapoia, Mesabolivar, Modisimus), and others poorly represented or entirely missing (see below). However, several results are consistent among analyses and noteworthy for various reasons: they suggest groups that appear feasible in terms of biogeography; they suggest interesting evolutionary scenarios; and they suggest formal taxonomic changes, some of which have been suggested before based on morphology.

Apart from Priscula, the 'basal' branches within Modisiminae lead to small South American unnamed taxa (Figure 3). In particular, the two species "Br16-44" and
"MACN270" are both tiny, with body lengths of 0.9 and 1.3 mm , respectively. Other 'basal' branches lead to an unnamed Amazonian genus ("Br16-178" and "Br16-50"; body lengths: $1.5-1.8 \mathrm{~mm}$) and the Atlantic Forest genus Tupigea Huber, 2000 (body lengths: 1.3-1.9 mm; Huber 2000, Huber and Rheims 2011). This suggests a similar evolutionary scenario as proposed for 'other Arteminae' above, i.e., that ancestral Modisiminae may have been small ground-dwelling species. Priscula is once again the disturbing factor in this scenario: all known representatives of Priscula are medium-size to large spiders (Huber 2000), possibly surpassed (as far as body mass is concerned) by Artema only. In both Arteminae and Modisiminae, the emerging picture is one of medium-sized forms missing or disappearing early, large forms experiencing little subsequent changes in body shape and poor subsequent speciation (Artema: currently eight species; Priscula: currently 17 species), and small forms diversifying dramatically in size, shape, and numbers ('other Arteminae': currently 91 species; Modisiminae without Priscula: currently 463 species).

The next branch (Figure 3; Chibchea Huber, 2000 to Pisaboa Huber, 2000) includes several South American genera, some of them diverse but poorly represented in our analyses (e.g., Chibchea). The close relationship between Pisaboa and Waunana Huber, 2000 was already suggested in the original descriptions of these genera (Huber 2000), even though based on highly homoplastic characters (vertical hairs on male leg tibiae in high density; shape of apophysis on male palpal femur). A close relationship of these two genera with Chibchea either receives very low support (IQ-TREE, RAxML) or is not recovered (RogueNaRok); it is neither supported nor contradicted by morphology. Clearly, this clade needs a much denser sampling and the addition of missing taxa that are possibly related (e.g., Pomboa).

The next clade (Figure 3) includes all North and Central American and Caribbean taxa, suggesting that the ancestor of this clade arrived in the region from South America. This scenario was explicitly rejected by Dimitrov et al. (2013) based on the supposed age of the group $(\sim 120-170 \mathrm{Ma})$. However, our upcoming analysis has not been able to confirm this age (Eberle et al. 2018; we were not able to calculate convincing absolute ages from the data). The clade is recovered in most analyses (it is paraphyletic in the $4+$ genes tree) but always with low support (only SH values are reasonable to high). The only geographic outlier in this clade is South American 'Psilochorus'. North American ('true') Psilochorus and South American 'Psilochorus' each receive high to full support but are never resolved as sister taxa. Whether South American 'Psilochorus' are ancestral within this large clade or represent a case of back-colonization is currently impossible to say; the internal nodes in this clade have partly too low support to favour a particular scenario. The inclusion of the Central American Ixchela Huber, 2000 in this clade fits the geographic pattern and contradicts a previous speculation (in Hu ber 2000) that Ixchela might be close to the South American genus Aymaria Huber, 2000. In much the same way, the only Central American representative of Coryssocnemis Simon, 1893 included in our analyses is placed in this group, far away from 'true' South American Coryssocnemis (the polyphyly of Coryssocnemis has long been suspected: Gertsch 1971, Brignoli 1981, Huber 1998, 2000). The Cuban endemic
genus Platnicknia Özdikmen \& Demir, 2009 is deeply nested within the large genus Modisimus. It is resolved as sister to a distinctive group of Hispaniolan leaf-dwelling representatives of Modisimus (the "leaf-dwelling species group" in Huber et al. 2010) and synonymized below. Finally, the large genus Anopsicus (63 described species) is poorly represented in our analyses. The three species included are all undescribed, do not group together, and are nested among Modisimus. Since neither the type species of Anopsicus is included nor is a potential close relative (or at least another species from Yucatán), the monophyly and position of Anopsicus both remain dubious.

Sister to the previous North and Central American and Caribbean clade is another large, entirely South American clade (Figure 3, bottom). The sister-group relationship is very poorly supported, but the monophyly of the South American clade has modest (4+ genes) to reasonable (RogueNaRok) support. It is divided into three subclades with reasonable to full support plus the genus Aymaria that is represented by a single species and whose position within this clade is not convincingly resolved. The first subclade included is here informally called the 'Mesabolivar clade' (Figure 4); the second subclade is largely Venezuelan and thus called 'Venezuelan clade' (Figure 5); the third subclade is the genus Carapoia (Figure 5).

Within the 'Mesabolivar clade' (Figure 4), our analyses suggest two specific relationships that are likely to have drastic taxonomic consequences. First, Litoporus Simon, 1893 is nested among 'true' northern South American Mesabolivar. This has been suggested before (Dimitrov et al. 2013), but that previous analysis included a single species of Litoporus whose generic identity was uncertain (Huber et al. 2013). The present analyses include several unambiguous (Amazonian) representatives of Litoporus. Our data support the monophyly of Litoporus (full support) but also its position within Mesabolivar (reasonable to high support). Second, Mesabolivar is composed of two sub-clades: 'true' northern South American Mesabolivar, and southern South American (largely Atlantic Forest) 'Mesabolivar'. The southern sub-clade includes the monotypic genus Teuia Huber, 2000 (synonymized with Mesabolivar in Huber 2018; the type species of Teuia is not included but a putatively closely related species: M. sepitus). Potential formal taxonomic changes are discussed in the Taxonomy section below. The close relationship between Otavaloa Huber, 2000 and Mesabolivar is neither supported nor contradicted by morphological data.

The 'Venezuelan clade' (Figure 5) receives high to full support and is composed of several genera that are either known from Venezuela only (Systenita Simon, 1893, Stenosfemuraia González-Sponga, 1998), from Venezuela and Trinidad and Tobago (Coryssocnemis), or from Venezuela plus neighboring countries (Mecolaesthus Simon, 1893). A close relationship among these genera had been suspected before based on morphology (Huber 2000), and molecular data have always supported this (BruvoMađarić et al. 2005: 28S data and combined analysis; Dimitrov et al. 2013). Our data suggest that Coryssocnemis may be nested within Mecolaesthus, but our taxon sampling is weak, the topology is unstable (Systenita is either nested within Mecolaesthus or not), and several internal nodes in the clade have low support. Formally, Coryssocnemis still includes several obviously misplaced species: several Central American species (see

Figure 4. Mesabolivar clade a Otavaloa lisei (Brazil) b Mesabolivar maraba (Brazil) c Litoporus sp. n. "Br16-153" (Brazil) d Mesabolivar cyaneotaeniatus (Brazil) e Mesabolivar kathrinae (Brazil) f Mesabolivar saci (Brazil).

Figure 5. Venezuelan clade + Aymaria + Carapoia a Mecolaesthus yawaperi (Brazil) b Aymaria sp. n. "Br16-188" (Brazil) c Carapoia rubra (Brazil) d Carapoia kaxinawa (Brazil) e Carapoia pulchra (Brazil) f Carapoia agilis (Brazil).
above), and several Atlantic Forest (Brazilian) species whose identity is probably impossible to resolve (poor descriptions, lost types; see Huber 2000, 2018).

The third subclade in the South American clade is Carapoia (Figure 5). Unlike Mesabolivar it is monophyletic and apparently less problematic, but just as Mesabolivar, the genus has become very difficult to diagnose, mainly because of 'untypical' species added to the genus based in large part on the present molecular data (Huber 2018). Both for Mesabolivar and Carapoia our analyses suggest several species groups that are also supported by morphological data. For a detailed discussion of these groups, see Huber (2018).

Subfamily Smeringopinae Simon, 1893

Figure 6
Smeringopodeae Simon, 1893: 474. Type genus Smeringopus Simon, 1890, by subsequent designation (Huber 2011b).
Smeringopinae Simon; Huber 2011b: 217.

Remarks. Smeringopinae is a relatively homogeneous subfamily (with respect to body shapes, colour, webs, and microhabitats), and in this sense similar to Ninetinae and Arteminae but very unlike Modisiminae and Pholcinae. Most of the 125 known species of Smeringopinae are medium-size to large, have long legs, elongated to cylindrical abdomens, and all have eight eyes. Another similarity to Ninetinae and Arteminae is that Smeringopinae are often found in rather arid regions. The most obvious exception is the largely humid tropical genus Smeringopina Kraus, 1957, which is also the genus with the smallest and largest representatives in the subfamily (with body lengths ranging from $2.5-10 \mathrm{~mm}$) and with the widest range of microhabitats used (leaf litter to large sheltered spaces) (Huber 2013). The original distribution of the subfamily is Africa, the Mediterranean, and the Middle East. Three species have attained much wider distributions, resulting from human-mediated dispersal (Huber 2011b).

As in previous molecular analyses (Bruvo-Mađarić et al. 2005, Astrin et al. 2007, Dimitrov et al. 2013), Smeringopinae is sister to Pholcinae (Figure 1) with reasonable to high support. This relationship is also supported by morphology: the two taxa share tarsus IV comb-hairs spread over the entire length of the tarsus (Huber and Fleckenstein 2008).

The monophyly of Smeringopinae receives reasonable to high support in all our analyses. Previous molecular analyses have partly supported Smeringopinae, but also suggested rather obscure relationships [e.g., the position of Holocnemus pluchei (Scopoli, 1763) among Ninetinae in Astrin et al. 2007]. Holocnemus pluchei was included in preliminary analyses of the present data but its position was drastically unstable, so we decided to exclude it from the final analyses. Smeringopinae monophyly is rather weakly supported by morphology, i.e., by the presence of a large thoracic pit on the carapace (rather than a narrow furrow or an evenly domed carapace; cf. Huber 2011b).

Figure 6. Smeringopinae a Hoplopholcus sp. n. "Mar66" (Turkey) b Stygopholcus absoloni? (Bosnia and Herzegovina) c Crossopriza sp. n. "Om11" (Oman) d Smeringopus pallidus (Philippines) e Smeringopina pulchra (Ghana) f Smeringopina ankasa (Ghana).

Within Smeringopinae, our data strongly support a basal split between a northern clade (Mediterranean, northern Africa, Middle East, Central Asia) and a southern clade (Sub-Sahara) (Figure 6). This basal split was also recovered in a morphological cladistic analysis (Huber 2012). Within the northern clade, Hoplopholcus Kulczynski, 1908 is sister to all other genera and not close to Stygopholcus Kratochvil, 1932 as repeatedly claimed by Brignoli $(1971,1976,1979)$ but contested by Senglet (1971, 2001). The genera Hoplopholcus, Stygopholcus, and Crossopriza Simon, 1893 all receive full support, but the small Mediterranean genus Holocnemus Simon, 1873 (only three described species) continues to be problematic even after the exclusion of H . pluchei. The two species of Holocnemus included in our analyses never group together, and no morphological synapomorphy is known to suggest their sister-group relationship (in fact, Holocnemus has never been revised).

The southern (Sub-Saharan) clade includes Smeringopus Simon, 1890 and Smeringopina, and is also supported by a unique number of epiandrous spigots (two) (Huber 2012). The paraphyly of Smeringopus has been suggested before (Dimitrov et al. 2013), and our larger data set supports this view, but with low support values. Two of the species groups of Smeringopus proposed in Huber (2012) appear closer to Smeringopina than to other Smeringopus: the chogoria group and the rubrotinctus group. Morphological data do not support this view but they neither strongly contradict it: the two species groups lack the distinctive arrangement of pores on the pore plates (in groups or 'islands') and the retrolateral furrow on the male palpal femur present in all other species of Smeringopus (Huber 2012). Remarkably, Smeringopus and Smeringopina are largely separated geographically, with Smeringopus being most diverse in southern and eastern Africa, and Smeringopina in western and central Africa (Huber 2012, 2013). The chogoria and rubrotinctus groups are geographically restricted to an area where Central Africa (the Guineo-Congolian center of endemism) meets East Africa (Huber 2012). Other than that, our sampling in Smeringopus is not dense enough to test the species groups proposed in Huber (2012). Remarkably, though, the isolated 'basal' position of S. ngangao Huber, 2012 is supported by the present analyses.

Our analyses include 30 of the 44 described species of Smeringopina (68\%), and all species groups proposed in Huber (2013) except two monotypic 'groups' (S. fon Huber, 2013; S. ngungu Huber, 2013). Even though for some species only one gene (CO1) was sequenced, our analyses support several species groups and deeper relationships proposed previously (Huber 2013), based on cladistic analysis of morphological characters. Morphology placed the West African guineensis group as sister to all other Smeringopina; all our analyses support both the monophyly of the guineensis group and its sister-group relationship with all other congeners. The next two branches are composed of representatives of the lekoni group, which is thus here considered paraphyletic rather than monophyletic. The ankasa and cornigera groups are both supported, as is their sister group relationship to each other. The attuleh group is supported, but not as sister to the ankasa + cornigera groups but as sister to the following group. The last clade is composed of representatives of the simplex and beninensis groups, but the clear dichotomy in the molecular trees is not equivalent to these groups. Instead, the simplex group includes all 'basal' representatives originally assigned to the beninensis group; the beninensis group includes only those species that have a light transversal element ventrally on the abdomen (character 9 in Huber 2013, which is thus less homoplastic than previously thought).

Subfamily Pholcinae C.L. Koch, 1850

Figs 7-12
Pholcidae CL Koch, 1850: 31. Type genus Pholcus Walckenaer, 1805, by monotypy. Pholcinae CL Koch; Simon 1893: 461; Huber 2011b: 218.

Remarks. Pholcinae resemble Modisiminae in several respects. Their highest diversity is in the humid tropics and subtropics, and a large variety of body forms reflect adaptations to different microhabitats. With currently 922 species in 26 genera, Pholcinae is also similar to Modisiminae in diversity. In contrast to Modisiminae, Pholcinae is largely restricted to the Old World, with the notable exception of the New World endemic genus Metagonia Simon, 1893 and a few possibly relict species in Pholcus and Micropholcus (Huber 2011a, Huber et al. 2014). While only a single species of Modisiminae has followed humans around the globe [Modisimus culicinus (Simon, 1893)] and one further species has spread widely in Europe and neighboring regions [Psilochorus simoni (Berland, 1911)], several synanthropic species in Pholcinae have attained worldwide distributions or extended their ranges to another continent [most notably Pholcus phalangioides (Fuesslin, 1775); Spermophora senoculata (Dugès, 1836); Micropholcus fauroti (Simon, 1887); Pholcus manueli Gertsch, 1937].

The sister-group relationship between Pholcinae and Smeringopinae is well established (see above). The same is true for the monophyly of Pholcinae. All our analyses support this subfamily (reasonable to high support), and morphological data have also supported this group (presence of male lateral proximal cheliceral apophyses, Huber 1995, 2000; tarsus IV comb hairs in a single row, Huber and Fleckenstein 2008).

Even though Pholcinae are well represented in our analyses (317 of 597 species, i.e., 53%) internal relationships in this subfamily continue to be problematic. Several 'basal' nodes are poorly supported (Figure 1); in part the topology is highly sensitive to different algorithms of analysis; and some details appear dubious from the perspective of morphology. However, many details are strongly supported by morphology, including some deep nodes (e.g., the Pholcus group of genera); and some nodes, even though weakly supported or in conflict with morphology, provide reasonable and testable predictions for further research (e.g., the polyphyly of Spermophora Hentz, 1841; the close relationship of certain Sri Lankan taxa with African rather than Southeast Asian taxa; the monophyly of African Pholcus).

The subfamily is here divided into three operational groups, more for the sake of convenience than as a reflection of the support values they receive. Actually, support is low for all of them, but much of this division is consistent among different analyses and may well reflect real major groups. 'Group 1' (Figs 7, 8) is entirely composed of small six-eyed taxa, and is roughly equivalent to what was originally subsumed under the name Spermophora. 'Group 2’ (Figure 9 part) is also entirely composed of six-eyed taxa and is remarkable because it places the exclusively New World genus Metagonia close to African and Madagascan taxa. 'Group 3’ (Figure 9 part, Figs 10-12) includes the fully supported Pholcus group of genera as proposed previously (Huber 2011a) and its sister genus Quamtana Huber, 2003, a sister-group relationship that has also been proposed before (Huber 2003c). In the tree shown here (and in the RogueNaRok tree), the 'Spermophora' dieke group has an isolated position outside of the three operational groups. In the other trees, it is part of 'group 1 '.

Pholcinae 'group 1'

Figs 7, 8
Remarks. This group includes some genera named long ago, like Spermophora, Belisana, and Paramicromerys Millot, 1946. Most other genera were described relatively recently and resulted either from splitting of Spermophora (e.g., Spermophorides Wunderlich, 1992; Buitinga Huber, 2003; Savarna Huber, 2005; Khorata Huber, 2005) or from the discovery and description of new species (Aetana Huber, 2005; Wanniyala Huber \& Benjamin, 2005; Hantu Huber, 2016).

A Southeast Asian clade that is consistently resolved with high to full support but variably placed either inside 'group 1' (IQ-TREE, RogueNaRok) or outside of the three operational groups as an isolated fourth group ($4+$ genes, $R A x M L$) is composed of Aetana, Southeast Asian 'Spermophora', and an undescribed new genus from Indonesia ("Ind206"). Morphological data have suggested a close relationship of Aetana with Savarna, Khorata, and Hantu (Huber et al. 2015). The positions of those three genera in our molecular trees are all unstable and problematic (see below). Thus, we consider it premature to conclude that the morphological data were misleading, and suggest that the positions of Savarna, Khorata, and Hantu need further analysis. A similar problem occurs with Southeast Asian 'Spermophora'. The monophyly of the five species included receives reasonable to high support, but this group does not seem to be close to the type species S. senoculata. However, the position of S. senoculata varies strongly among analyses, and the idea that Southeast Asian taxa are in fact congeneric with S. senoculata (Huber 2005a) should not yet be discarded based on the present molecular data.

In Aetana, our analyses include 16 of 18 (89%) described species plus two undescribed species. The monophyly of the genus is highly to fully supported even though morphological support appeared weak (Huber et al. 2015). All four species groups proposed after cladistic analysis of morphological characters (Huber et al. 2015) are supported, but with different relationships among each other. Most of these relationships among species groups receive low support, but the kiukoki group is resolved as sister of the omayan group (with modest support) and this is in conflict with the results from morphology (Huber et al. 2015). The two unnamed subgroups within the kinabalu group and within the omayan group, respectively, proposed in Huber et al. (2015) are all recovered (with modest to full support).

The next clade within 'group 1' (Figure 7) includes three taxa whose position varies strongly among different analyses (see above): the type species of Spermophora, S. senoculata, and the Southeast Asian genera Khorata and Savarna. Spermophora senoculata is alternatively resolved as sister to the African 'Spermophora' akwamu group (RAxML) or to the African 'Spermophora' kyambura Huber \& Warui, 2012 (4+ genes, RogueNaRok). Its sister group is essentially unknown. As indicated above, a close relationship with Southeast Asian 'Spermophora', even though never recovered by our analyses, should not be definitely discarded. Khorata and Savarna are sister taxa in some analyses (low support; IQ-TREE, RogueNaRok), but wide apart in

Figure 7. Pholcinae 'group 1' (Spermophora and relatives) a Gen. n., sp. n. "Ind206" (Halmahera); b, Spermophora sp. n. "Ind27" (Sumatra) c Aetana baganihan (Philippines) d Spermophora senoculata (Turkey) e Savarna tessellata (Thailand) f Wanniyala agrabopath (Sri Lanka).
others. The former result is considered more plausible for two reasons: (1) morphology supports a close relationship between Khorata and Savarna (Huber et al. 2015); (2) the alternative topology ($4+$ genes, RAxML) places the Southeast Asian Savarna as sister to an East African clade.

The large Asian genus Belisana (Figure 8) is well represented in our analyses (30 species) but seems to suffer from rogue taxa, paralogs, and/or other unidentified problems. Only the RogueNaRok tree resolves a monophyletic Belisana. In other analysis, either Hantu (RAxML) or Hantu and 'Spermophora' kyambura are nested within Belisana (IQ-TREE). A close relationship between Belisana and Hantu (that is also suggested in the RogueNaRok tree) is strongly contradicted by morphology: several
characters support a close relationship between Hantu, Khorata, and Savarna (Huber et al. 2015). We have no explanation for the position of Hantu in our trees. Intriguingly, H. niah Huber, 2016 (but not H. kapit Huber, 2016) was placed in a clade together with Khorata and Savarna in preliminary analyses of the present data. On the other hand, the African 'Spermophora' kyambura might indeed be close to Belisana. In fact, had it been collected in Southeast Asia, it would probably have been assigned to Belisana. It was tentatively assigned to Spermophora because African 'Spermophora' were polyphyletic anyway and because the closest known record of Belisana was from India, more than 5000 km east. However, the position of 'Spermophora' kyambura varies among analyses and should be considered unresolved.

Our sample of Belisana includes numerous representatives from different microhabitats (litter and leaves) and with different types of webs ('usual' pholcid domed sheets and highly regular 'curtain' webs; Figs 8e-f; see also Deeleman-Reinhold 1986a, Huber 2005b). The present data suggest multiple microhabitat shifts within Belisana, but note that many nodes within the genus have very low support values. These low values also impede a proper interpretation of the fact that the two species with a 'usual' domed web (marked with D in Figure 8) included in the analyses (B. "Mal77", B. tambligan Huber, 2005) are not 'basal' but nested among species with highly regular 'curtain' webs (marked with R in Figure 8) [confirmed for B. bohorok Huber, 2005; B. leuser Huber, 2005; B. "Bor85"; B. junkoae (Irie, 1997); B. sabah Huber, 2005; BA Huber, unpubl. data].

Except for the Sri Lankan genus Wanniyala, all remaining taxa of Pholcinae 'group 1' (Figure 7) are African, Madagascan, and Mediterranean. They are grouped together but with very low support. South African and Madagascan 'Spermophora' were not available for sequencing and are thus not included in our analyses; we predict they are members of this clade. As mentioned above, some analyses (RAxML, 4+ genes) placed the East Asian genus Savarna within this clade; we consider this topology dubious.

A close relationship between the West African 'Spermophora' tonkoui group and Wanniyala is suggested in all our analyses, even though with low support (only SH values are consistently at 96-97). This relationship is also supported by morphology: the two taxa share a hinged procursus with a membranous process arising from the proximal part (see Huber and Benjamin 2005: fig. 7, Huber 2003b: fig. 293, Huber and Kwapong 2013: fig. 101).

The following clade (Figure 7) places the Central African 'Spermophora' awalai group as sister to the Macaronesian and Mediterranean genus Spermophorides, both together sister to the Madagascan genus Paramicromerys, and all together sister to an undescribed Madagascan genus ("CAS13"). Support for these relationships is modest, and the clade is different in composition in the $4+$ genes tree (Spermophorides is missing from this analysis).

The last clade in Pholcinae 'group 1' is highly to fully supported in all analyses and includes the East African genus Buitinga and East African 'Spermophora', each with full support in all analyses. The sister group relationship between these two taxa makes sense geographically but is not evident from morphology.

Figure 8. Belisana and Hantu. For Belisana, the background colours signify microhabitat: red = ground; green = leaf. D, domed web; R, highly regular 'curtain' web. Photos a Hantu niah (Sarawak) b Hantu kapit (Sarawak) c Belisana sandakan (Sumatra) d Belisana sabah (Sabah) e domed web of Belisana sp. n. "Mal77" (Malaysia) fregular 'curtain' web of Belisana bohorok (Sarawak).

Pholcinae 'group 2'

Figure 9
Remarks. This operational group (Figure 9 part, i.e., without the 'Spermophora' dieke group and Quamtana) is similar to 'group 1' in that it is composed entirely of six-eyed species. It is weakly supported, indicating that the exact placement of its two clades among other Pholcinae remains dubious. The two clades, however, both receive high to full support in all analyses. The first clade unites the African genera Anansus Huber, 2007 and Nyikoa Huber, 2007 with the Madagascan genus Zatavua Huber, 2003. In a cladistic analysis of morphological characters (Huber 2007), the group was also recovered (even though as paraphyletic) when using successive character weighting (but not when using equal character weights). The character supporting this close relationship was the proximal cheliceral apophyses that point backwards in Anansus just as in Nyikoa and Zatavua (Huber 2007). The idea that these genera might be 'basal' in Pholcinae, i.e., sister to all other Pholcinae (Huber 2003a, 2007) is not supported by our analyses, but considering the low support values at deeper nodes within the subfamily it is neither strongly contradicted.

The second clade is the New World genus Metagonia. The genus is species-rich (currently 85 species) and ranges from Argentina to Mexico. The monophyly of the genus has never been seriously contested, and its position among the otherwise almost exclusively Old World Pholcinae has been strongly supported before, both using morphology (Huber 2000) and molecules (Bruvo-Mađarić et al. 2005, Dimitrov et al. 2013). Our analyses include 30 species of Metagonia, and provide for the first time a

Figure 9. Pholcinae 'group 2' (Zatavua and relatives, Metagonia), and Quamtana (marked: non-South African species). Photos a Metagonia taruma (Brazil) b Metagonia sp. n. "Br07-1" (Brazil) c Metagonia bifida? (Brazil) d Quamtana sp. n. (cf. mabusai) (Germany).
test of the operational species groups proposed in Huber (2000: 54-55). Even though those groups were not based on formal cladistic analysis (such an analysis has not yet been performed for Metagonia) but on overall and specific similarities, all of them appear mostly or entirely congruent with the present analyses (the only exception is the single aberrant M. globulosa). They are listed here in the sequence in which they appear in Figure 9, with newly proposed informal names. (1) taruma group (group " 3 " in Huber 2000); a South American group that is here resolved as monophyletic and not as a paraphyletic 'basal' group as speculated before (Huber 2000); (2) petropolis group (no species was known in 2000); a group of litter-dwelling species restricted to the Brazilian Atlantic Forest (Huber et al. 2005b); (3) bifida group (group "1" in Huber 2000); this South American group includes the type species M. bifida Simon, 1893; all species included share a sclerotized epigynum and (except for the 'basal' undescribed species "G062") a distinctively bifid abdomen; (4) potiguar group (not recognized in Huber 2000); this group includes cave dwelling species in Brazil (M. potiguar Ferreira et al. 2011) and Jamaica (M. jamaica Gertsch, 1986) and the aberrant litter-dwelling M. globulosa Huber, 2000 (which was misplaced in group " 5 " in Huber 2000); rica group (group " 4 " in Huber 2000); a mainly North and Central American
group, possibly ranging into South America, but not including all Caribbean and Central American species as speculated previously (Huber 2000; see previous group); (5) furcata group (group " 5 " in Huber 2000, together with M. globulosa); includes only M. furcata Huber, 2000 and the undescribed species "Br09-55"; as suspected previously (Huber 2000), it is close to (sister of) the next group; (6) delicata group (group " 2 " in Huber 2000); this group is composed of very small species and ranges from Mexico to northern Argentina.

Pholcinae 'group 3'

Figs 9-12
Remarks. A sister-group relationship between the African genus Quamtana and the Pholcus group of genera (Figure 9) is recovered in all our analyses. Support values are low, but a morphological cladistic analysis has partly suggested the same relationship (based on a distinct sclerite connecting the genital bulb to the palpal tarsus; Huber 2003c). The monophyly of Quamtana is highly supported in all analyses (except for the $4+$ genes analysis). It was also supported by morphological data when using character weighting (but not in the equal weights analysis; Huber 2003c).

Within Quamtana (Figure 9), our data suggest that there is no simple geographic pattern with respect to South African species (the large majority) versus species from other parts of Africa (marked in Figure 9). By contrast, three species groups with reasonable to full support include species from both South Africa and other regions: the South African Q. filmeri Huber, 2003 is sister to the Madagascan undescribed species "CAS5"; the South African Q. vidal Huber, 2003 and Q. umzinto Huber, 2003 are placed in a group with species from East and Central Africa (Q. kabale Huber, 2003, "Cam117"); and the group including the South African Q. embuleni Huber, 2003 and Q. bonamanzi Huber, 2003 also includes species from East and Central Africa (Q. kitahurira Huber, 2003, Q. oku Huber, 2003). We suspect that Quamtana was once widely distributed throughout Africa but largely replaced by more modern taxa in humid regions and extinguished in northern Africa. The Paris amber fossil Quamtana buberi Penney, 2007 supports this view, but its generic assignment is uncertain (Penney 2007).

All remaining clades together (Figs 10-12) represent the Pholcus group of genera sensu Huber (2011a). This clade was first proposed in Huber \& Fleckenstein (2009) based on the distinctive simplified shape of the tarsus IV comb-hairs, and later supported in a cladistic morphological analysis by an additional character (female epigynal 'knob') (Huber 2011a). All our analyses fully support this clade. The previous morphological analysis (Huber 2011a) identified two major problems within this clade: (1) relationships among genera were basically unresolved, resulting in large polytomies; and (2) several species groups assigned to Pholcus appeared more closely related to other genera. The present analysis strongly supports the polyphyly of Pholcus in its previous composition, and it provides for the first time a reasonable framework to redefine generic limits in this large group (currently 501 species).

The first major clade within the Pholcus group of genera (Figure 10) is composed of three Southeast Asian genera (Calapnita, Panjange, Uthina Simon, 1893) as well as several Southeast Asian and Sri Lankan species groups that were originally tentatively assigned to Pholcus (Huber 2011a; Huber et al. 2016a, 2016b, Huber and Dimitrov 2014). We informally call it the 'Calapnita-Panjange clade' because many species in this group are leaf-dwellers, and representatives of Calapnita and Panjange are particularly strongly adapted to life on green leaves. Remarkably, even some of the species collected in the leaf litter (under large dead leaves on the ground) look like leaf-dwellers rather than litter dwellers (i.e., they have long abdomens, long legs, light colouration; e.g., Kintaqa satun (Huber, 2011) and K. schwendingeri (Huber, 2011); and Malaysian representatives of Tissahamia, previously the Pholcus ethagala group). Ancestral character state reconstruction suggests that the ancestor of the entire clade was leaf-dwelling (Eberle et al. 2018).

The present analyses reject the monophyly of Calapnita (Figure 10). A recent cladistic analysis of morphological data (Huber 2017) resolved Calapnita as monophyletic but with low support (< 50 using Jackknifing). On the other hand, support for the two subgroups, previously called phyllicola group and vermiformis group, is full in all analyses. The two species groups have been identified long ago (Deeleman-Reinhold 1986b), and have been supported by cladistic analysis (Huber 2017). Our analyses strongly suggest that the vermiformis group is closer to species previously in Pholcus than to the phyllicola group (see below). The phyllicola group is thus elevated to genus rank (Nipisa; see Taxonomy section below).

Within Nipisa (Figure 10), the internal relationships proposed previously (Huber 2017) are mostly supported even though data gaps are severe in this genus (several species with only two genes): (1) N. lehi (Huber, 2017) [but not N. kubah (Huber, 2017)] is a 'basal' species, i.e., sister to all other species (reasonable to high support); (2) a clade including the species with egg-sacs that have all eggs aligned in a single row (weak support, possibly because N. kubah is included, which is contradicted by morphology and egg-sac shape); (3) a clade including N. semengoh (Huber, 2011) and its sister group, characterized by the position of the tarsal organ on a turret, a serrate embolus, and the shape of the pore-plates (full support).

The relationships within 'true' Calapnita (previously vermiformis group) proposed in Huber (2017) are only partly supported: (1) a clade with a continuous connection between epigynal plate and 'knob' (all species in the present analysis except C. bario Huber, 2017 and C. saluang Huber, 2011; high support); (2) within the previous clade, a clade characterized by a prolateral process at the tip of the procursus (in the present analysis: C. nunezae Huber, 2017 and C. dinagat Huber, 2017; full support).

The present analyses also reject the monophyly of Panjange (Figure 10). They split the genus into two unrelated lineages, one of which is equivalent to what was previously called the nigrifrons group; the other is equivalent to the previous vermiformis + cavicola groups (Deeleman-Reinhold and Platnick 1986, Huber and Nuñeza 2015). Our analyses place each group with reasonable to full support in clades together with species previously assigned to Pholcus. A morphological cladistic analysis has recently
supported the monophyly of Panjange based on the presence of parallel ridges ventrally on the procursus and on the reduction of the bulbal uncus (Huber and Nuñeza 2015). However, the monophyly was lost when using specific weighting parameters (implied weighting with $\mathrm{K}=1$ and $\mathrm{K}=2$), and some morphological characters do in fact support the split of Panjange: (1) the loss of distal cheliceral apophyses in 'true' Panjange and its closest relatives according to the present analyses; (2) the loss of an uncus in 'true' Panjange and its closest relatives according to the present analyses. The nigrifrons group is thus elevated to genus rank (Apokayana; see Taxonomy section below).

Apokayana is recovered with full support. This is remarkable considering the fact that in the morphological analysis its equivalent (the Panjange nigrifrons group) was supported by a single homoplastic character only (Huber and Nuñeza 2015). Within the genus, our analyses identify two subgroups with full support each. These groups do not correspond to the relationships suggested in Huber and Nuñeza (2015). In that analysis, each node was based on a single character, some of them not particularly convincing. We thus tend to prefer the present grouping even though our matrix is particularly incomplete in this genus (we did not manage to get 28 S and CO 1 sequences for any of the six species included).

The monophyly of 'true' Panjange (vermiformis + cavicola groups) is supported by several morphological characters (Huber and Nuñeza 2015), and receives high support in our present analyses (except for the $4+$ genes analysis). The cavicola group (including also the two undescribed species "Ind103" and "Ind109") was recovered as paraphyletic in Huber and Nuńeza (2015) but is here resolved as monophyletic. By contrast, the lanthana group which was supported by two morphological characters, one of them considered particularly strong (the unique direction of the embolus, pointing in the opposite direction of the appendix) is resolved as monophyletic only in the RogueNaRok tree; in the IQ-TREE and RAxML trees it is paraphyletic with respect to the cavicola group (actually, these trees suggest a basal trichotomy). Within the lanthana group, three species (P. malagos Huber, 2015; P. casaroro Huber, 2015; P. camiguin Huber, 2015) share asymmetric male pedipalps, a character that is extremely rare in spiders (Huber et al. 2007, Huber and Nuñeza 2015). This group is not recovered in any of the present analyses, where it consistently includes the symmetric P. lanthana Deeleman-Reinhold \& Deeleman, 1983 (requiring a regain of symmetry or two origins of asymmetry). Only the sister group relationship between P. dinagat Huber, 2015 and P. marilog Huber, 2015 is strongly supported by both morphology and molecules. In conclusion, alternative topologies within the lanthana group are supported by seemingly strong molecular and morphological data, respectively.

Ten species groups previously assigned to Pholcus (in Huber 2011a, Huber et al. 2016a, 2016b) are representatives of the 'Calapnita-Panjange clade' (Figure 10). Of these, nine are entirely Southeast Asian; only the ethagala group (now Tissahamia) has representatives in Southeast Asia and Sri Lanka. For some of these species groups, our data provide strong evidence about the sister-group or close relatives. All of these groups are here transferred from Pholcus to new genera (see Taxonomy section below).

Figure 10. Calapnita-Panjange clade a Kintaqa satun (Malaysia) b Meraha narathiwat (Thailand) c Calapnita vermiformis (Philippines) d Apokayana kapit (Sarawak) e Uthina sp. n. "Ind121" (Indonesia) f Panjange casaroro (Philippines).

A sister-group relationship between Kelabita (previously the Pholcus andulau group) and Apokayana (previously the Panjange nigrifrons group) is fully supported in all our analyses (except for the $4+$ genes tree where Kelabita is not represented). Both genera are restricted to Borneo and share habitus, colouration, web structure, and microhabitat (Huber and Leh Moi Ung 2016, Huber et al. 2016a).

The western Indonesian 'Pholcus kerinci group’ (Huber 2011a) and the Philippine 'Pholcus domingo group' (Huber et al. 2016b) are both fully supported, as is their sister-group relationship (Figure 10). They are joined in the new genus Teranga (see Taxonomy section below). Together with Tissahamia (previously the Pholcus ethagala group) and with 'true' Panjange they form a clade that is recovered in all analyses with reasonable support. This clade was supported in almost exactly the same composition by morphological cladistic analysis (Huber 2011a) except that the 'Panjange' nigrifrons
group was also included (the 'Pholcus domingo group' was not yet known in 2011). The clade is supported by the loss of the bulbal uncus and by the loss of distal male cheliceral apophyses [in Huber 2011a, the latter character supports a more inclusive taxon (including Leptopholcus Simon, 1893) that is strongly rejected by the present molecular data]. Tissahamia consists of two subgroups, a Sri Lankan subgroup and a Southeast Asian (Malaysian Peninsula, Sumatra) subgroup. The subgroups are consistently recovered in all our analyses with modest to reasonable support, but the monophyly of the entire group is only recovered in the IQ-TREE analysis (low support). Morphological analysis recovered the group, but with varying support depending on weighting regime (Huber 2011a).

Three genera composed of species that were previously assigned to Pholcus are consistently placed in a highly supported clade together with 'true' Calapnita (Figure 10): Paiwana (previously not assigned to a group), Muruta (previously the Pholcus tambunan group; Huber et al. 2016b), and Meraha (previously the Pholcus krabi group; Huber et al. 2016b). We know of no convincing morphological synapomorphy for this group but note two interesting similarities: representatives of 'true' Calapnita and of Meraha share the loss of piriform gland spigots on the anterior lateral spinnerets (Huber 2011a, 2017, Huber et al. 2016b); representatives of 'true' Calapnita and of Muruta and Paiwana share the distinctive shape of the epigynum (roughly triangular, with 'knob' directed towards anterior; Huber et al. 2016b, Huber 2017; Huber and Dimitrov 2014).

For two further genera composed of species previously assigned to Pholcus the present analysis supports the monophyly but gives not clear indication about their closest relatives within the 'Calapnita-Panjange clade' (Figure 10): Pribumia (previously the Pholcus minang group; Huber 2011a) and Kintaqa (previously the Pholcus buatong group; Huber et al. 2016a). All analyses except the IQ-TREE analysis place Kintaqa as sister to Uthina, but with low support. We know of no potential morphological synapomorphy that links these two groups. Pribumia is in our analysis represented by four species. Of these, P. diopsis (Simon, 1901) is never placed within the group; together with P. atrigularis (Simon, 1901) it is detected as a rogue taxon and excluded in the RogueNaRok tree. External relationships of Pribumia remain dubious. The hypothesis that the genus might be close to Tissahamia (previously the 'Pholcus ethagala group'; Huber 2011a) is supported by numerous distinctive morphological similarities but it is not supported by the present data. However, note that in our analysis Pribumia suffers seriously from missing data (we were not able to sequence 28 S for any of the four species).

The second major clade within the Pholcus group of genera (Figure 11) is composed of four 'old' genera (Micropholcus; Leptopholcus; Micromerys Bradley, 1877; Pehrforsskalia Deeleman-Reinhold \& van Harten, 2001) and Cantikus (previously the Pholcus halabala group; Huber 2011a, Huber et al. 2016a). Except for one clade of Neotropical Micropholcus, all representatives are Old World taxa. We informally call it the 'Micropholcus-Leptopholcus clade'. This clade receives full support in all our analyses, and major internal relationships are also well resolved. Three subclades are

Figure I I. Micropholcus-Leptopholcus clade a Micropholcus sp. n. "Br15-152" (Brazil) b Canticus sepaku (East Kalimantan) c Micromerys baiteta (West Papua) d Leptopholcus borneensis (Singapore).
fully supported each: Micropholcus; Cantikus; and a subclade including Leptopholcus, Micromerys, and Pehrforsskalia. All analyses put Micropholcus as sister to Cantikus, but with modest support.

Micropholcus is ecologically diverse, including ground-dwelling as well as rock- and leaf-dwelling species, and together with Pholcus it is also the only genus with autochthonous species in both the New and Old World. Our analysis rejects the previous idea that Micropholcus is 'basal' in the Pholcus group of genera (i.e., in a basal trichotomy, with Sibala occupying the second branch and all other taxa the third branch; Huber 2011a). Within Micropholcus, our analyses all support a monophyletic New World clade, but with low support values (reasonable support in the $4+$ genes analysis). Within the New World clade, a Caribbean clade is fully supported. A remarkable sister-group relationship that is highly supported by the present data is between the Moroccan 'Pholcus' agadir (now transferred to Micropholcus; see Taxonomy section below) and the undescribed Philippine species "Phi114". Both have very limited distributions; only one further species of Micropholcus (other than the pantropical M. fauroti) is known from between Morocco and the Philippines: M. jacominae Deeleman-Reinhold \& van Harten, 2001 from Yemen. We suspect that Micropholcus in the Old World has a relict distribution, just as it has been hypothesized for South American Micropholcus (Huber et al. 2005a, 2014).

Cantikus was recently revised (as 'Pholcus' halabala group; Huber et al. 2016a) and divided into a 'core group' that was supported by numerous morphological and behavioral similarities, and a group of species that were assigned to the group tentatively.

This tentative assignment was based mainly on preliminary results from the present molecular analysis; a putative morphological synapomorphy for the entire genus Cantikus was and is not known. The present analyses fully support both the entire genus and the core group; the genus includes C. quinquenotatus (Thorell, 1878), making the quinquenotatus group proposed in Huber (2011a) obsolete; and it highly to fully supports the sister group relationship between the two rock-dwelling species C. kuhapimuk Huber, 2016 and C. khaolek Huber, 2016.

The clade including Leptopholcus, Micromerys, and Pehrforsskalia (Figure 11) was only partly supported in a previous cladistic analysis of morphological data (Huber 2011a): while Leptopholcus and Micromerys were consistently seen as sister taxa (with a mono- or paraphyletic Leptopholcus), the position of Pehrforsskalia varied widely. The characters supporting a close relationship among the three genera are the distal position of the lateral apophyses on the male chelicerae, and the absence of frontal cheliceral apophyses (Huber 2011a). The present analyses fully support this clade. Within the clade, 'basal' relationships are unresolved, essentially resulting in a tetrachotomy: (1) 'Leptopholcus' podophthalmus (Simon, 1893) is not clearly included in 'true' Leptopholcus. (2) The Australasian Micromerys receives full support in all analyses. (3) The African Pehrforsskalia is only represented by its type species. (4) 'True' Leptopholcus receives reasonable to full support and includes both African and Asian representatives but not the Asian L. podophthalmus (and its putative close relative L. tanikawai Irie, 1999 that is not included in our analyses). Within Leptopholcus, our data provide little resolution, but an Asian clade (represented by L. borneensis Deeleman-Reinhold, 1986 and L. kandy Huber, 2011) receives reasonable support. Among these four clades, Pehrforsskalia is the only one that does not share the distinctively serrated tip of the male palpal trochanter apophysis (Huber 2011b), suggesting that it may be sister to the other three clades.

The third and last major clade within the Pholcus group of genera is 'true' Pholcus (Figure 12). Support for this group is very low in the IQ-TREE analysis, which reflects the fact that one of the two basal subclades (including the phungiformes and bidentatus groups and P. mentawir Huber, 2011) is closer to the Micropholcus-Leptopholcus clade than to 'true' Pholcus in some analyses (RAxML, RogueNaRok). By contrast, the 4+ genes analysis recovers the monophyly of 'true' Pholcus with reasonable support, suggesting that the poor support or non-monophyly of 'true' Pholcus in some analyses may result from the many missing data in our full matrix.

Even after removing the eleven species groups that are here placed in the CalapnitaPanjange clade and in the Micropholcus-Leptopholcus clade, Pholcus continues to be the most species rich genus in Pholcidae. It now contains 321 species, most of which are distributed in tropical and subtropical Old World regions. The only exception is the kingi group with ten species in the southeastern USA (Huber 2011a). Most species of Pholcus resemble the synanthropic type species P. phalangioides in being relatively large, long-legged, brown, and in having a cylindrical abdomen; most or all of these species build their webs in large sheltered spaces. However, the genus is ecologically diverse and includes small litter dwellers with relatively short legs, rock- and ground dwellers with oval abdomens, and pale leaf-dwellers with worm-shaped abdomens.

Figure 12. Pholcus a P. creticus (Crete) b P. camba (Sulawesi) c P. mulu (Sarawak) d P. baka (Gabon) e P. sp. n. "SL43" (Sri Lanka).

In a first effort to structure the known diversity of Pholcus, the genus was divided into 29 operational species groups (Huber 2011a), including 25 species groups in the 'core group', i.e., in 'true' Pholcus. Even though the aim was to identify monophyla, some groups were explicitly proposed as 'waste baskets groups' (e.g., the bamboutos group) or as "probably not monophyletic" (e.g., the circularis group). The present analysis clarifies a number of relationships, it supports several of the species groups and rejects others, and it confirms the non-monophyly of some groups as suspected. However, we acknowledge that internal relationships in Pholcus remain highly uncertain and need considerably more work. Our data seem to suffer from two main problems that result in variable topologies among different types of analyses: (1) Even though Pholcus is in our analyses represented by more species than any other genus (59), our sample is still highly incomplete, including only 18% of the described species and entirely missing seven of the previously suggested species groups (alticeps, nenjukovi, ponticus, zham, yichengicus, taishan, and nagasakiensis groups). (2) The percentage of missing sequences is high in Pholcus, partly due to the fact that we identified paralogs for 28 S and 18 S that we excluded, partly due to other unidentified problems.

Of the 25 operational species groups within 'true' Pholcus proposed previously (Huber 2011a), ten are supported by the present data: phungiformes group, bidentatus group, calligaster group, Macaronesian group, gracillimus group (excl. P. mentawir), bicornutus group, chappuisi group, lamperti group, debilis group (incl. P. nkoetye Huber, 2011 and P. kribi Huber, 2011), and guineensis group. Four groups are represented by single species (taarab group, ancoralis group, phalangioides group, kingi group). Seven groups are missing in the analyses (see above). For the remaining four groups, the present analyses reject the monophyly: (1) The bamboutos group is polyphyletic as expected and the six species in our analyses split into four parts; of these P. kribi is moved to the debilis group; P. bamboutos Huber, 2011 is close to the guineensis group; the affinities of the other four species are unclear. (2) The circularis group is represented by three species; of these, P. nkoetye is moved to the debilis group; P. leruthi Lessert, 1935 and P. rawiriae Huber, 2014 are sister species and close to the guineensis group. (3/4) The opilionoides and crypticolens groups are both rejected, but together with the North American kingi group they form a monophylum with reasonable to high support (except for the 4+ genes analysis) but with unknown affinities with other groups.

The present analysis identifies two major clades within 'true' Pholcus that are remarkable even though support values are low to modest. (1) A clade combining the ancoralis, gracillimus, and bicornutus groups is composed of large dark Southeast Asian and Australasian species; a close relationship between the ancoralis group and the bicornutus group has been suspected before, based on male ocular area modifications (Hu ber 2011a: 314). (2) A large clade including all Subsaharan African taxa. This clade has low bootstrap support but SH values range from 81 to 96 , so we consider this a first tentative indication that tropical African Pholcus might form a large monophylum. The two species that disrupt this picture were both identified as rogue taxa: P. taarab Huber, 2011 (which is not included in the clade but is African), and P. phalangioides (which is included but is most probably not originally African). On the other hand, the inclusion of the Sri Lankan genus Sihala Huber, 2011 in this clade is plausible, even though weakly supported. Our data highly support the inclusion of Sihala in 'true' Pholcus, but neither morphology nor molecules seem to give an indication about its sister taxon.

Notes on genera not included in the present analyses

Aucana Huber, 2000. This Chilean genus (four species; formally including the mysterious New Caledonian A. kaala Huber, 2000) was previously thought to be a member of Ninetinae (Huber 2000, 2011b). However, the procursus (dorsal apophysis and corresponding ventral pocket) suggests a placement in Arteminae. Within Arteminae, it shares an exposed tarsal organ with Chisosa and Nita (Huber 2000, 2011b).
Blancoa Huber, 2000. A small Venezuelan genus (two species), probably member of Modisiminae (Huber 2000), but the sister group remains entirely obscure.
Canaima Huber, 2000. Also probably member of Modisiminae, with only two species restricted to Trinidad and Venezuela (Huber 2000). The shape of the ventral apo-
physis on the male palpal femur is reminiscent of the Venezuelan clade including Mecolaesthus, Stenosfemuraia, Systenita, and 'true' Coryssocnemis.
Cenemus Saaristo, 2001. A small Seychellois genus (three species), member of Smeringopinae; a morphological cladistic analysis (Huber 2012) suggested a placement in the 'northern clade' of Smeringopinae even though the Seychelles are geographically much closer to the 'southern clade'.
Enetea Huber, 2000. A monotypic Bolivian genus, member of Ninetinae (Huber 2000); the sister group remains entirely obscure.

Galapa Huber, 2000. A small genus (two species) restricted to the Galapagos Islands, member of Ninetinae (Huber 2000); the sister group remains entirely obscure.
Ossinissa Dimitrov \& Ribera, 2005. A monotypic genus from the Canary Islands, member of the Pholcus group of genera (Huber 2011a); the sister group is dubious, but we suspect a close relationship with other Canary Island cavernicole species in 'true' Pholcus (P. baldiosensis Wunderlich, 1992; P. corniger Dimitrov \& Ribera, 2006).

Pomboa Huber, 2000. Member of Modisiminae, with currently four species restricted to Colombia. The vertical hairs in high density on the leg tibiae suggest an affinity to Pisaboa and Waunana (Huber 2000).
Queliceria González-Sponga, 2003. A monotypic Venezuelan genus, probably member of Modisiminae; the sister group remains entirely obscure.
Tibetia Zhang, Zhu \& Song, 2006. A monotypic Chinese (Tibetan) genus, probably member of Arteminae; the sister group remains entirely obscure.
Tolteca Huber, 2000. A small Mexican genus (two species), member of Ninetinae. We predict that Tolteca is member of the North and Central American \& Caribbean clade (Figure 2), together with Pholcophora and Papiamenta. The frontal humps on the male sternum and the shape of the procursus are reminiscent of Pholcophora (Huber 2000).

Taxonomy

The present data suggest a large number of new undescribed genera. Twelve of them are composed entirely of undescribed new species; these will be described separately: three in Ninetinae (in our analyses: "Br15-159", "Om6", Ven01"); two in Arteminae ("Geneve59", "Ind82"-"Ind96"); five in Modisiminae ("Br16-44", MACN270", "Br16-178" + "Br16-50", "Br16-196", "Br15-45"); and two in Pholcinae ("CAS13", "Ind206").

Other new genera will result from splitting of known genera. Of these, several receive high support but taxonomic changes will not be implemented here for various reasons:
(1) taxonomic work on these taxa is currently in progress and the formal taxonomic changes will be published in that context ['Holocneminus' huangdi, South American 'Psilochorus', Holocnemus caudatus (Dufour, 1820)].
(2) The included species need to be restudied in order to assess the scope of the new genera and to formulate diagnoses (Central American 'Coryssocnemis').

Some potentially new genera are suggested by the present data but with low support values and/or without clear support from morphology. We suggest that these cases should be re-evaluated in detail in separate studies.
(1) For the southern clade of Mesabolivar, our analyses suggest two options: either to synonymize Mesabolivar and Otavaloa with Litoporus (resulting in a huge, very heterogeneous group), or to split Mesabolivar. The latter would preserve the names Litoporus, Mesabolivar, and Otavaloa, and possibly revalidate the name Kaliana Huber, 2000 (synonymized with Mesabolivar in Astrin et al. 2007), but possibly result in a morphologically non-diagnosable genus for the southern clade of Mesabolivar; Teuia would be an available name for this group.
(2) The Smeringopus chogoria and rubrotinctus groups together could either form a new genus, stay in Smeringopus, or be moved to Smeringopina.
(3) Leptopholcus podophthalmus (and its close relative L. tanikawai) may or may not represent a separate genus.

For Spermophora, our data strongly suggest the polyphyly of the genus and possibly five or more new genera: for four African taxa ('S.' kyambura, tonkoui group, awalai group, East African 'Spermophora') and for East Asian 'Spermophora'. However, several important species groups are missing in our analyses, such as South African, Madagascan, and Middle Eastern representatives. We strongly suggest including at least those groups before deciding on how to split Spermophora.

For Calapnita and Panjange, morphological cladistic analyses have weakly supported the monophyly of each genus, but also the existence of two distinctive subgroups in each (Huber and Nuñeza 2015, Huber 2017). The present analyses reject the monophyly of each of the two genera. Since the present analyses also strongly support the two subgroups in each genus, we feel that the pros of splitting (monophyletic genera in the most complete available analysis of Pholcidae relationships) outweighs the cons (weak morphological support of monophyly; the two subgroups of Calapnita are largely indistinguishable in the field).

Finally, our data strongly support the splitting of Pholcus, and this is largely in agreement with previous morphological cladistic analysis (Huber 2011a). The species groups that are here formally described as new genera have all been revised recently, and the diagnosis for Pholcus in Huber (2011a) that was explicitly valid for the 'core group' only, finally applies to the entire genus.

The present data also suggest a number of synonymies and new combinations, some of which are not formalized here.
(1) Anopsicus appears nested within Modisimus. However, neither the type species of Anopsicus is included in our analyses nor is a potential close relative; we conclude that the monophyly and position of Anopsicus both remain dubious.
(2) Our data suggest that Coryssocnemis and Systenita may both be synonyms of Mecolaesthus, but our taxon sampling is weak, the topology is unstable (see above), and several internal nodes in the clade have low support. The morphologically very diverse genus Mecolaesthus and its closest relatives clearly need more work.
(2) In most of our analyses, Hantu is nested within Belisana. For reasons detailed above we strongly doubt this result.

For other synonyms and transfers, we consider the available data strong enough to justify formal changes:
(1) The Cuban endemic genus Platnicknia Özdikmen \& Demir, 2009 is newly synonymized with Modisimus Simon, 1893, syn. n. Our analyses do not include the type species P. coxana (Bryant, 1940) but two very similar undescribed species from near the type locality of P. coxana ("Cu12-99" and "Cu12-100"). Our analyses strongly support a sister group relationship of Platnicknia with a Hispaniolan group of leaf-dwelling Modisimus. Both together are deeply nested within other groups of Modisimus (Figure 3).
(2) The Moroccan Pholcus agadir is nested within Micropholcus. This placement receives high support in our analyses, while the previous assignment to Pholcus (Huber 2011a) was tentative; Micropholcus agadir (Huber, 2011), comb. n.
(3) The southern Indian/Sri Lankan genus Sihala Huber, 2011 is synonymized with Pholcus Walckenaer, 1805, syn. n. The position of Pholcus ceylonicus O. PickardCambridge, 1869 (comb. re-established) in Pholcus had long been doubted (e.g., Brignoli 1972). The male genitalia of the two formally described species [P. ceylonicus and P. alagarkoil (Huber, 2011) comb. n.] are dramatically different from 'usual' Pholcus (shapes of trochanter apophysis and of femur; small and simple procursus without ventral 'knee'; bulb without uncus, with large massive appendix; Huber and Benjamin 2005, Huber 2011a). It was thus no surprise when a morphological cladistic analysis suggested a placement far away from the core group of Pholcus (Huber 2011a). However, our present analyses include three species of Sihala, two of them without missing genes, and Sihala was consistently placed in 'true' Pholcus.

Finally, the two changes at the level of subfamily suggested by all or some of our analyses are not implemented:
(1) All our analyses suggest that Artema is an isolated genus and single representative of Arteminae and that 'other Arteminae' should receive a new subfamily name. For reasons detailed above we consider the position of Artema in our analyses dubious and do not propose a new subfamily for 'other Arteminae'.
(2) Some of our analyses suggest an isolated position of the Andean genus Priscula: it may be either a 'basal' representative of Modisiminae or a separate subfamily. Since the relevant nodes in our analyses all receive low support values, we prefer to keep Priscula in Modisiminae until more convincing data become available.

Subfamily Pholcinae C.L. Koch, 1850

Nipisa Huber, gen. n.
http://zoobank.org/EB3A11CC-FE6C-4451-AA9A-8E582242C441
Calapnita phyllicola group: Deeleman-Reinhold 1986b: 212. Huber 2011a: 43. Huber 2017: 7.

Type species. Calapnita phyllicola Deeleman-Reinhold, 1986.
Etymology. The name is derived from the Malay word nipis (thin), and refers to the long and thin abdomen. Gender feminine.

Diagnosis (adapted from Huber 2017). Leaf-dwelling, pale whitish, long-legged pholcids with six eyes and long cylindrical abdomen (Huber 2017: figs 3-19). Distinguished from Calapnita by (1) tibia $2 /$ tibia 4 length >1.05 (vs. <0.95 in Calapnita); (2) ALS with eight spigots each (vs. two in Calapnita) (Huber 2017: figs 31, 41, 78); (3) proximal lateral processes on male chelicerae in 'usual' proximal position ($v s$. distal in Calapnita) (Huber 2017: figs 23, 35); (4) simple apophysis on male palpal trochanter (vs. hooked and sclerotized in Calapnita) (Huber 2017: figs 21, 34); (5) male palpal femur barely modified (vs. with series of three ventral sclerotized processes in Calapnita) (Huber 2017: figs 21, 34); (6) epigynum roughly rectangular or trapezoidal with folded cuticle and posterior 'knob' (vs. triangular with anterior 'knob' in Calapnita) (Huber 2017: figs 24, 32, 36, 43). For characters distinguishing Nipisa from similar species in other genera see Diagnosis of Calapnita in Huber (2017).

Distribution. Southeast Asia (Huber 2017: figs 281 and 282).
Composition. Ten species, all newly transferred from Calapnita: N. anai (Huber, 2017); N. bankirai (Huber, 2017); N. bidayuh (Huber, 2017); N. deelemanae (Huber, 2011); N. kubah (Huber, 2017); N. lehi (Huber, 2017); N. phasmoides (Deeleman-Reinhold, 1986); N. phyllicola (Deeleman-Reinhold, 1986); N. semengoh (Huber, 2017); N. subphyllicola (Deeleman-Reinhold, 1986).

Apokayana Huber, gen. n.

http://zoobank.org/3C3E969C-F000-4596-86B9-60F6C600C2FE
Panjange nigrifrons group: Deeleman-Reinhold and Platnick 1986: 561. Huber 2011a: 109. Huber and Leh Moi Ung 2016: 3.

Type species. Panjange kapit Huber, 2011.
Etymology. Named for the Apo Kayan people, one of the Dayak people groups that are spread throughout Sarawak, East Kalimantan, and North Kalimantan. Gender feminine.

Diagnosis (adapted from Huber and Leh Moi Ung 2016). Easily distinguished from Panjange by presence of distal male cheliceral apophyses (Huber and Leh Moi Ung 2016: fig. 18) and by ventral apophysis on male palpal femur (Huber and Leh Moi Ung 2016: fig. 30); also by absent or short epigynal scape. From representatives of Pribumia by ridges ventrally on procursus (Huber and Leh Moi Ung 2016: figs 17, 26, 34, 49; absent in A. tahai), by ventral apophysis on male palpal femur, and possibly by wide opening of palpal tarsal organ (Huber 2011a: figs 481, 686). From other similar genera on Borneo (Calapnita, Leptopholcus, Kelabita) by combination of: male colouration (Huber and Leh Moi Ung 2016: figs 8, 61; male ocular area and palps black; similar only in Kelabita), by bipartite distal apophyses on male chelicerae (Huber and Leh Moi Ung 2016: figs 35, 47; similar only in some Calapnita), by cylindrical rather than worm-shaped abdomen (Huber and Leh Moi Ung 2016: figs 8-15, 61-68; in contrast to Calapnita and Leptopholcus).

Distribution. Borneo (Huber and Leh Moi Ung 2016: fig. 1).
Composition. Ten species, all newly transferred from Panjange: A. bako (Huber, 2011); A. iban (Huber, 2011); A. kapit (Huber, 2016); A. kubah (Huber, 2016); A. niah (Huber, 2016); A. nigrifrons (Deeleman-Reinhold \& Deeleman, 1983); A. pueh (Huber, 2016); A. sedgwicki (Deeleman-Reinhold \& Platnick, 1986); A. seowi (Huber, 2016); A. tahai (Huber, 2011).

Pribumia Huber, gen. n.

http://zoobank.org/8BC96288-E983-4EAC-8015-7A6A26F5D729
Pholcus minang group: Huber 2011a: 144.

Type species. Pholcus singalang Huber, 2011.
Etymology. The name is derived from Pribumi, a name for native Indonesians. Gender feminine.

Diagnosis (adapted from Huber 2011a). Distinguished from other genera in Pholcinae by the combination of the following characters: elongate abdomen, six eyes, eye triads on stalks, male chelicerae with proximal and distal apophyses, distal apophyses 'divided' (consisting of two parts; Huber 2011a: figs. 640, 664), male palpal femur proximo-ventrally enlarged (Huber 2011a: figs. 628, 650), bulb with uncus, with complex sclerotized embolus, without appendix, epigynum weakly sclerotized, with small 'knob'.

Distribution. Malay Peninsula and Sumatra (Huber 2011a: fig. 626; note that Pholcus tahai in that figure is now in Apokayana).

Composition. The Pholcus minang group originally included seven species. Of these, Pholcus tahai is now in Apokayana (see above); the six others are newly transferred from Pholcus: P. minang (Huber, 2011); P. singalang (Huber, 2011); P. hurau
(Huber, 2011); P. bohorok (Huber, 2011); P. atrigularis (Simon, 1901); assigned tentatively: P. diopsis (Simon, 1901).

Tissahamia Huber, gen. n.
http://zoobank.org/14CB661D-B5F3-4DA8-B624-F02FF0AFC21E

Pholcus ethagala group: Huber 2011a: 171.

Type species. Pholcus ethagala Huber, 2011.
Etymology. Named for Wanniyalaeto chief Uru Warige Tissahami (1903-1996), who struggled (without success) against the government to keep the land of his ancestors. Gender feminine.

Diagnosis (adapted from Huber 2011a). Distinguished from other genera in Pholcinae by the combination of the following characters: elongate abdomen that is slightly pointed or elevated dorso-posteriorly, six eyes, eye triads on stalks, male chelicerae with proximal apophyses in frontal position, without distal apophyses (Huber 2011a: figs. 795, 811, 816), male palpal trochanter with short retrolateral and longer ventral apophyses, palpal tarsus with dorsal elongation (except T. phui), bulb with large and complex appendix and weakly sclerotized embolus, without uncus, procursus highly complex, epigynum weakly sclerotized, with 'knob'.

Distribution. Sri Lanka, Malay Peninsula, and Sumatra (Huber 2011a: fig. 718 - note that Pholcus schwendingeri in that figure is now in Kintaqa; Huber et al. 2016a: fig. 1).

Composition. The Pholcus ethagala group originally included seven species. Of these, Pholcus schwendingeri is now in Kintaqa (see below); five species have been added recently, resulting in eleven species, all newly transferred from Pholcus: T. ethagala (Huber, 2011); T. kottawagamaensis (Yao \& Li, 2016); T. maturata (Huber, 2011). Assigned tentatively: T. barisan (Huber, 2016); T. bukittimah (Huber, 2016); T. gombak (Huber, 2011); T. ledang (Huber, 2011); T. phui (Huber, 2011); T. tanahrata (Huber, 2016); T. uludong (Huber, 2016); T. vescula (Simon, 1901).

Teranga Huber, gen. n.

http://zoobank.org/E67A0726-CF19-4CE3-ADFE-2D903D2778CB
Pholcus kerinci group: Huber 2011a: 166.
Pholcus domingo group: Huber et al. 2016b: 34.

Type species. Pholcus kerinci Huber, 2011.
Etymology. The name is derived from the Malay word terang (bright, light), and refers to the light colouration of the spiders. Gender feminine.

Diagnosis. Medium-sized, long-legged spiders (body length $\sim 3.5-4.5$, leg 1:~3040) with slender elongate abdomen that is slightly elevated posteriorly (Huber 2011a: figs 606-609, Huber et al. 2016b: figs 131-139). Easily distinguished from similar relatives in other genera (Panjange, Tissahamia, Apokayana, Paiwana) by unmodified or barely modified male chelicerae Huber 2011a: fig. 722; Huber et al. 2016b: fig. 142); also by combination of: eight eyes, triads only slightly elevated; male palpal trochanter with long ventral apophysis (Huber 2011a: figs 720, 737; Huber et al. 2016b: figs 141, 158); male genital bulb without uncus but with massive appendix (Huber 2011a: figs 719, 736; Huber et al. 2016b: figs 140, 150, 157); epigynum weakly sclerotized, with numerous transversal folds, with 'knob' (Huber 2011a: figs 733, 739; Huber et al. 2016b: figs 143, 156, 159).

Distribution. Known from Indonesia (Sumatra, Java) and the Philippines (Mindanao) (Huber 2011a: fig. 718, Huber et al. 2016b: fig. 1).

Composition. The genus includes the four species originally described in the Pholcus kerinci and domingo groups. They are all newly transferred from Pholcus: T. cibodas (Huber, 2011); T. domingo (Huber, 2016), T. kerinci (Huber, 2011); T. matutum (Huber, 2016).

Paiwana Huber, gen. n.

http://zoobank.org/BAFDACD1-7142-4909-98E0-359BDC812698

Type species. Pholcus pingtung Huber \& Dimitrov, 2014.
Etymology. Named for the Paiwan, an indigenous people of Taiwan. Gender feminine.

Diagnosis. Large, long-legged spiders with six eyes and cylindrical abdomen (Huber and Dimitrov 2014: figs 1-4). Easily distinguished from similar species in other genera (Teranga, Pholcus, Muruta) by unique modifications of male chelicerae (pair of weakly sclerotized lateral apophyses and two pairs of distinctive frontal apophyses: proximal pair flat and pointed, distal pair finger-shaped, both without modified hairs; Huber and Dimitrov 2014: fig. 19); from most genera (except Muruta, Calapnita) also by shape of epigynum (roughly triangular plate, 'knob’ directed towards anterior) (Huber and Dimitrov 2014: fig. 20).

Distribution. Taiwan (Huber and Dimitrov 2014: fig. 34).
Composition. Only two species newly transferred from Pholcus: P. chengpoi (Huber \& Dimitrov, 2014); P. pingtung (Huber \& Dimitrov, 2014).

Muruta Huber, gen. n.

http://zoobank.org/E06DDC46-92E6-4740-BFCA-B2AD7807B9D5
Pholcus tambunan group: Huber et al. 2016b: 25.

Type species. Pholcus tambunan Huber, 2016.
Etymology. Named for the Murut, an indigenous ethnic group inhabiting northern inland regions of Borneo. Gender feminine.

Diagnosis (adapted from Huber et al. 2016b). The two species included in this genus are medium-sized, long-legged spiders (body length -4 , male leg 1 length: $-35-40$), distinguished from other genera in Pholcinae by the combination of the following characters: elongate abdomen angular dorso-posteriorly (Huber et al. 2016b: figs 94, 98); six eyes; male chelicerae with distinctive distal apophyses (flat sclerites without modified hairs; Huber et al. 2016b: figs 103, 108, 120); most palpal structures unusually long (in particular genital bulb; Huber et al. 2016b: figs 101, 121); male bulb without uncus; epigynum weakly sclerotized, scape directed towards anterior with terminal 'knob' (Huber et al. 2016b: figs 104, 123); female internal genitalia with pair of highly distinctive three-layered telescopic tubes (Huber et al. 2016b: figs 105, 124).

Distribution. Northern Borneo (Huber et al. 2016b: fig. 1).
Composition. Only two species newly transferred from Pholcus: M. tambunan (Huber, 2016); M. bario (Huber, 2016).

Meraha Huber, gen. n.

http://zoobank.org/14C88D64-C69D-4AB6-810B-45D93560B816
Pholcus krabi group: Huber et al. 2016a: 30.

Type species. Pholcus krabi Huber, 2016.
Etymology. The name is derived from the Malay word merah (red), and refers to the red or orange colour of the male pedipalps. Gender feminine.

Diagnosis. Medium size, light coloured pholcids with long legs and cylindrical abdomen (Huber et al. 2016a: figs 102-109); distinguished from similar species in other genera (Kelabita, Apokayana, Teranga, Muruta) by combination of: six eyes; absence of modified hairs on distal male cheliceral apophyses (Huber et al. 2016a: fig. 118); reduction of ALS spigots to two (Huber 2011a: fig. 566, Huber et al. 2016a: fig. 122); reddish to orange male palps (Huber et al. 2016a: figs 102, 106, 108). In the field they can be distinguished from most other genera (except Kelabita) by their domed webs relatively high among the vegetation ($0.5-2 \mathrm{~m}$ above the ground), usually with the apex of the dome attached to the underside of a leaf.

Distribution. Mainland Southeast Asia and Borneo (Huber et al. 2016a: fig. 110).
Composition. Seven species newly transferred from Pholcus: M. chiangdao (Huber, 2011); M. khene (Huber, 2011); M. kinabalu (Huber, 2011); M. kipungit (Huber, 2016); M. krabi (Huber, 2016); M. narathiwat (Huber, 2016); M. shuye (Yao \& Li, 2017).

Kelabita Huber, gen. n.

http://zoobank.org/D88513D8-B25E-4CE6-94D6-B7BF215B2AA7
Pholcus andulau group: Huber et al. 2016a: 47.

Type species. Pholcus andulau Huber, 2011.
Etymology. Named for the Kelabit, an indigenous Dayak people of the Sarawak/ North Kalimantan highlands of Borneo with a minority in the neighboring state of Brunei. Gender feminine.

Diagnosis. Medium size, light coloured pholcids with long legs, six eyes, cylindrical abdomen (Huber et al. 2016a: figs 193-196). Distinguished from similar species in other genera (Meraha, Apokayana, Teranga, Muruta) by unique, partly sclerotized embolus with strong sclerotized pointed processes (Huber 2011a: fig. 570; Huber et al. 2016a: figs 200, 210); also by combination of: male chelicerae with pair of pointed apophyses close to median line and directed toward each other (Huber 2011a: fig. 572; Huber et al. 2016a: fig. 202); ALS with eight spigots each (Huber 2016a: figs 217, 218); male palps not reddish or orange; large unsclerotized 'knob' on posterior edge of female external genitalia, directed toward anterior (Huber 2011a: fig. 573; Huber et al. 2016a: figs 203, 213). In the field they can be distinguished from most other genera (except Meraha) by their domed webs among the vegetation (up to 2 m above the ground), usually with the apex of the dome attached to the underside of a leaf.

Distribution. Northern Borneo (Huber et al. 2016a: fig. 153).
Composition. Only two species newly transferred from Pholcus: K. andulau (Huber, 2011); K. lambir (Huber, 2016).

Kintaqa Huber, gen. n.

http://zoobank.org/F4C48066-1FEC-4E3B-958F-359242174F1B
Pholcus buatong group: Huber et al. 2016a: 38.

Type species. Pholcus buatong Huber, 2011.
Etymology. The name honours the Kintaq, a Mon-Khmer ethnic group in Thailand. Gender feminine.

Diagnosis. Medium size, light coloured pholcids with long legs, six or eight eyes, and cylindrical abdomen (Huber et al. 2016a: figs 143-152). Distinguished from similar species in other genera (Tissahamia, Cantikus, Pribumia) by distinctive dorsal bulging of male palpal patella (Huber 2011a: figs 581, 823; Huber et al. 2016a: fig. 155) and by epigynum with large, heavily sclerotized 'knob' (Huber et al. 2016a: figs 184, 187, 190); also by combination of: complete reduction of distal anterior apophyses on male chelicerae (Huber 2011a: figs 582, 825; Huber et al. 2016a: fig. 156); ALS with eight spigots each (Huber et al. 2016a: figs 166, 183); male palps not reddish or orange.

Distribution. Southern Thailand and northern mainland Malaysia (Huber et al. 2016a: fig. 153).

Composition. Five species, all newly transferred from Pholcus: K. buatong (Huber, 2016); K. fuza (Yao \& Li, 2017); K. mueangensis (Yao \& Li, 2017); K. satun (Huber, 2011); K. schwendingeri (Huber, 2011).

Cantikus Huber, gen. n.

http://zoobank.org/A71947B6-1279-4F84-8DB7-9B037D1BC70B
Pholcus halabala group: Huber 2011a: 126. Huber et al. 2016a: 3.
Pholcus quinquenotatus group: Huber 2011a: 290.

Type species. Pholcus halabala Huber, 2016.
Etymology. The name is derived from the Malay word cantik (beautiful), and refers to the colour patterns on the abdomen of several species. Gender masculine.

Diagnosis (adapted from Huber et al. 2016a): The core group of eight species (see below) includes medium-sized, long-legged spiders (body length $-3-4$, male leg 1 length $\sim 30-40$); distinguished from other genera in Pholcinae by the combination of the following characters: elongate abdomen pointed dorso-posteriorly, with distinctive dorsal pattern of black and whitish or yellowish marks in life specimens (Huber et al. 2016a: figs 1-16); eight eyes; male ocular area with conspicuous modified hairs (setae), which may appear as stiff bristles or stout curved spines, or both (Huber et al. 2016a: figs 19, 23, 43); male chelicerae with proximal and distal apophyses, distal apophyses with two cone-shaped teeth (modified hairs) each (Huber et al. 2016a: fig. 28); male bulb with uncus and appendix; procursus with distinctive dorsal flap (Huber et al. 2016a: fig. 35; absent in C. erawan); epigynum weakly sclerotized, with 'knob'.

Distribution. Widely distributed in Southeast Asia, from Myanmar and southern China to Sumatra, Borneo, and Bali.

Composition. 27 species, all newly transferred from Pholcus: C. anaiensis (Yao \& Li, 2016); C. erawan (Huber, 2011); C. halabala (Huber, 2011); C. lintang (Huber, 2016); C. sabah (Huber, 2011); C. sepaku (Huber, 2011); C. ubin (Huber, 2016); C. zhuchuandiani (Yao \& Li, 2016).

Assigned tentatively. C. ballarini (Yao \& Li, 2016); C. cheni (Yao \& Li, 2017); C. chiangmaiensis (Yao \& Li, 2016); C. elongatus (Yin \& Wang, 1981); C. exceptus (Tong \& Li, 2009); C. gou (Yao \& Li, 2016); C. khaolek (Huber, 2016); C. kuhapimuk (Huber, 2016); C. namou (Huber, 2011); C. pakse (Huber, 2011); C. phami (Yao, Pham \& Li, 2015); C. pyu (Huber, 2011); C. quinquenotatus (Thorell, 1878); C. subwan (Yao \& Li, 2017); C. sudhami (Huber, 2011); C. taptaoensis (Yao \& Li, 2016); C. tharnlodensis (Yao \& Li, 2016); C. wan (Yao \& Li, 2016); C. youngae (Huber, 2011).

Outlook

Even though the present tree of Pholcidae is a significant step forward in terms of comprehensiveness and resolution, we have identified above many weak points and aspects that need further study. Here we list a subjective 'top-ten' selection of projects that in our view might fill the most obvious gaps and provide the most valuable next steps.

1. Ninetinae external and internal relationships. The poorly known Ninetinae seem to differ from 'typical' pholcids in many respects, including body size and proportions, diversity, ecological requirements, and probably also biology. Ninetinae might be sister to all other pholcids and might have retained ancestral character states. Resolving external and internal relationships of Ninetinae is thus of particular interest but will probably require a genome-scale phylogenetic approach.
2. Position of Artema. Our analyses suggest an isolated position of Artema, not within or as sister to other Arteminae. We question this result but cannot explain it. Resolving the position of Artema will probably need a genome-scale phylogenetic approach.
3. Position of Priscula. The mysterious Andean genus Priscula is similar to Artema in including some of the largest pholcids and in defying placement in the phylogeny. As for Artema, a genome-scale phylogenetic approach will probably be necessary to resolve its position.
4. Andean Modisiminae. Most Pholcidae from anywhere in the world can now be quickly and reliably assigned to an existing genus. The only major exception is Modisiminae from northwestern South America, in particular Peru, Ecuador, Colombia, and Venezuela. Our analyses include a minimal sample of species from this megadiverse region that is still relatively poorly explored even at generic level.
5. Monophyly and position of Anopsicus. Our analyses suggest that Anopsicus might just be a group of dwarfed ground-dwelling Modisimus. However, our sample includes only three species of Anopsicus and none of them appears close to the type species. A much larger sample of this species-rich genus will thus be necessary to evaluate its monophyly and phylogenetic position.
6. Holocnemus. The type species of Holocnemus, H. pluchei, was excluded from our dataset because its position was drastically unstable in preliminary analyses. The two other species of Holocnemus are both included but do not group together. We suggest a genome-scale phylogenetic approach, including the three species of Holocnemus together with representatives of Hoplopholcus, Stygopholcus, and Crossopriza to solve this problem.
7. Spermophora. Even though many species originally described as Spermophora have been transferred to other or new genera, the genus continues to be polyphyletic. Our analyses suggest that five or more genera may need to be created to account for the relationships among the included species. A reanalysis of Spermophora should
focus on including South African and Madagascan taxa as well as Middle Eastern taxa that we predict are the closest relatives of the type species S. senoculata.
8. Belisana. Belisana is particularly interesting for including representatives in different microhabitats and with different types of webs. However, our sample of species is limited, web data are available for relatively few species, and several nodes in our tree have low support. Thus, a much denser sampling combined with field observations will be necessary to reconstruct microhabitat shifts and the evolution of web designs within Belisana.
9. Pholcus. Our sample includes only 18% of the described species of Pholcus and several species groups are entirely missing. As a result, internal relationships of this largest genus in the family remain highly uncertain and need considerably more study.
10. Missing genera. The eleven described genera that are missing from our analyses contain a total of only 24 known species, but some of them are of particular interest and should be added in future analyses. (1) Aucana, originally described as a Ninetinae genus, is predicted to be a member of Arteminae. (2) Cenemus is geographically closer to the 'southern clade' of Smeringopinae, but predicted to be a member of the 'northern clade'. (3) Ossinissa, possibly a close relative of cavernicole 'true' Macaronesian Pholcus, and thus a generic synonym. (4) Tibetia, probably member of Arteminae, possibly a dwarfed Artema. (5) Tolteca, predicted to be a member of the North and Central American and Caribbean clade of Ninetinae.

Acknowledgements

This study was only possible through the cooperation during the last two decades of countless people who supported the first author during expeditions or who provided individual specimens or sequences from their own research. For a detailed list see Eberle et al. (2018). We thank G. Hormiga, M. Rix, and W. Maddison for their constructive criticism and for their help in improving the manuscript. Financial support was provided by the German Research Foundation (DFG, project HU 980/11-1). DD received further support as Mercator Fellow under the DFG project HU 980/11-1 and by the Danish National Research Foundation grant DNRF96 to the Center for Macroecology Evolution and Climate.

References

Aberer AJ, Krompass D, Stamatakis A (2013) Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology 62: 162-166. https://doi. org/10.1093/sysbio/sys078
Aharon S, Huber BA, Gavish-Regev E (2017) Daddy-long-leg giants: Revision of the spider genus Artema Walckenaer, 1837 (Araneae, Pholcidae). European Journal of Taxonomy 376: 1-57. https://doi.org/10.5852/ejt.2017.376

Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology 60: 685-699. https://doi.org/10.1093/ sysbio/syr041
Astrin JJ, Misof B, Huber BA (2007) The pitfalls of exaggeration: molecular and morphological evidence suggests Kaliana is a synonym of Mesabolivar (Araneae: Pholcidae). Zootaxa 1646: 17-30.
Brignoli PM (1971) Beitrag zur Kenntnis der mediterranen Pholcidae (Arachnida, Araneae). Mitteilungen des Zoologischen Museums Berlin 47(2): 255-267. https://doi.org/10.1002/ mmnz. 19710470203
Brignoli PM (1972) Ragni di Ceylon I. Missione biospeleologica Aellen-Strinati (1970) (Arachnida, Araneae). Revue suisse de Zoologie 79(2): 907-929. https://doi.org/10.5962/ bhl.part. 97143
Brignoli PM (1976) Ragni di Grecia IX. Specie nuove o interessanti delle famiglie Leptonetidae, Dysderidae, Pholcidae ed Agelenidae (Araneae). Revue suisse de Zoologie 83(3): 539-578.
Brignoli PM (1979) Spiders from Lebanon, V. On Hoplopholcus cecconii Kulczynski, 1908 (Pholcidae). Bulletin of the British arachnological Society 4(8): 350-352.
Brignoli PM (1981) Studies on the Pholcidae, I. Notes on the genera Artema and Physocyclus (Araneae). Bulletin of the American Museum of Natural History 170(1): 90-100
Bruvo-Mađarić B, Huber BA, Steinacher A, Pass G (2005) Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules. Molecular Phylogenetics and Evolution 37: 661-673. https://doi.org/10.1016/j.ympev.2005.08.016
Deeleman-Reinhold CL (1986a) Leaf-dwelling Pholcidae in Indo-Australian rain forests. In: Eberhard WG, Lubin YD, Robinson BC (Eds) Proceedings of the Ninth International Congress of Arachnology (Panama), 1983. Smithsonian Tropical Research Institute, Balboa, Republic of Panama, 45-48.
Deeleman-Reinhold CL (1986b) Studies on tropical Pholcidae II. Redescription of Micromerys gracilis Bradley and Calapnita vermiformis Simon (Araneae, Pholcidae) and description of some related new species. Memoirs of the Queensland Museum 22(2): 205-224.
Deeleman-Reinhold CL, Platnick NI (1986) A new Panjange from northern Borneo (Araneae, Pholcidae). Journal of the New York Entomological Society 94(4): 559-561.
Dimitrov D, Astrin JJ, Huber BA (2013) Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. Cladistics 29: 132146. https://doi.org/10.1111/j.1096-0031.2012.00419.x

Eberle J, Dimitrov D, Valdez-Mondragón A, Huber BA (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: 141. https://doi. org/10.1186/s12862-018-1244-8
Gertsch WJ (1971) A report on some Mexican cave spiders. Association for Mexican Cave Studies, Bulletin 4: 47-111.
Gertsch WJ (1982) The spider genera Pholcophora and Anopsicus (Araneae, Pholcidae) in North America, Central America and the West Indies. Association for Mexican Cave Studies, Bulletin 8: 95-144 / Texas Memorial Museum, Bulletin 28: 95-144.

Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47: 9-17. https://doi.org/10.1080/106351598260996
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321. https://doi.org/10.1093/sysbio/syq010
Heath T, Hedtke S, Hillis D (2008) Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46: 239-57. https://doi.org/10.3724/ SP.J.1002.2008.08016
Huber BA (1995) Copulatory mechanism in Holocnemus pluchei and Pholcus opilionoides, with notes on male cheliceral apophyses and stridulatory organs in Pholcidae (Araneae). Acta Zoologica, Stockholm 76(4): 291-300. https://doi.org/10.1111/j.1463-6395.1995.tb01001.x
Huber BA (1998) Genital mechanics in some neotropical pholcid spiders (Araneae: Pholcidae), with implications for systematics. Journal of Zoology, London 244: 587-599. https://doi. org/10.1111/j.1469-7998.1998.tb00063.x
Huber BA (2000) New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254: 1-348. https://doi. org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2
Huber BA (2001) The pholcids of Australia (Araneae; Pholcidae): taxonomy, biogeography, and relationships. Bulletin of the American Museum of Natural History 260: 1-144. https:// doi.org/10.1206/0003-0090(2001)260\<0001:TPOAAP\>2.0.CO;2
Huber BA (2003a) Cladistic analysis of Malagasy pholcid spiders reveals generic level endemism: Revision of Zatavua n. gen. and Paramicromerys Millot (Pholcidae, Araneae). Zoological Journal of the Linnean Society 137: 261-318. https://doi.org/10.1046/j.10963642.2003.00046.x

Huber BA (2003b) High species diversity in one of the dominant groups of spiders in East African montane forests (Araneae: Pholcidae: Buitinga n. gen., Spermophora Hentz). Zoological Journal of the Linnean Society 137: 555-619. https://doi.org/10.1046/j.10963642.2003.00053.x

Huber BA (2003c) Southern African pholcid spiders: revision and cladistic analysis of Quamtana gen. nov. and Spermophora Hentz (Araneae: Pholcidae), with notes on male-female covariation. Zoological Journal of the Linnean Society 139: 477-527. https://doi. org/10.1046/j.0024-4082.2003.00082.x
Huber BA (2005a) Revision of the genus Spermophora Hentz in Southeast Asia and on the Pacific Islands, with descriptions of three new genera (Araneae: Pholcidae). Zoologische Mededelingen 79/2(4): 61-172.
Huber BA (2005b) High species diversity, male-female coevolution, and metaphyly in Southeast Asian pholcid spiders: the case of Belisana Thorell 1898 (Araneae, Pholcidae). Zoologica 155: 1-126.
Huber BA (2007) Two new genera of small, six-eyed pholcid spiders from West Africa, and first record of Spermophorides for mainland Africa (Araneae: Pholcidae). Zootaxa 1635: 23-43.
Huber BA (2011a) Revision and cladistic analysis of Pholcus and closely related taxa (Araneae, Pholcidae). Bonner zoologische Monographien 58: 1-509.

Huber BA (2011b) Phylogeny and classification of Pholcidae (Araneae): an update. Journal of Arachnology 39: 211-222. https://doi.org/10.1636/CA10-57.1
Huber BA (2012) Revision and cladistic analysis of the Afrotropical endemic genus Smeringopus Simon, 1890 (Araneae: Pholcidae). Zootaxa 3461: 1-138.
Huber BA (2013) Revision and cladistic analysis of the Guineo-Congolian spider genus Smeringopina Kraus (Araneae, Pholcidae). Zootaxa 3713: 1-160. https://doi.org/10.11646/ zootaxa.3713.1.1
Huber BA (2015) Small scale endemism in Brazil's Atlantic Forest: 14 new species of Mesabolivar (Araneae, Pholcidae), each known from a single locality. Zootaxa 3942: 1-60. https:// doi.org/10.11646/zootaxa.3942.1.1
Huber BA (2016) Spider diversity and endemism in a South American hotspot: 20 new species of Carapoia (Araneae: Pholcidae) from Brazil's Atlantic Forest. Zootaxa 4177: 1-69. https://doi.org/10.11646/zootaxa.4177.1.1
Huber BA (2017) Revision and cladistic analysis of the Southeast Asian leaf-dwelling spider genus Calapnita (Araneae, Pholcidae). Zootaxa 4219: 1-63. https://doi.org/10.11646/ zootaxa.4219.1.1
Huber BA (2018) The South American spider genera Mesabolivar and Carapoia (Araneae, Pholcidae): new species and a framework for redrawing generic limits. Zootaxa 4395: 1-178. https://doi.org/10.11646/zootaxa.4395.1.1
Huber BA, Astrin JJ (2009) Increased sampling blurs morphological and molecular species limits: revision of the Hispaniolan endemic spider genus Tainonia (Araneae: Pholcidae). Invertebrate Systematics 23: 281-300. https://doi.org/10.1071/IS09017
Huber BA, Benjamin S (2005) The pholcid spiders from Sri Lanka: redescription of Pholcus ceylonicus and description of Wanniyala new genus (Araneae: Pholcidae). Journal of Natural History 39(37): 3305-3319. https://doi.org/10.1080/00222930500145123
Huber BA, Brescovit AD (2003) Ibotyporanga Mello-Leitão: tropical spiders in Brazilian semiarid habitats (Araneae: Pholcidae). Insect Systematics and Evolution 34: 15-20. https:// doi.org/10.1163/187631203788964926
Huber BA, Dimitrov D (2014) Slow genital and genetic but rapid non-genital and ecological differentiation in a pair of spider species (Araneae, Pholcidae). Zoologischer Anzeiger 253: 394-403. https://doi.org/10.1016/j.jcz.2014.04.001
Huber BA, Eberhard WG (1997) Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Canadian Journal of Zoology 74: 905-918. https://doi. org/10.1139/z97-109
Huber BA, Fleckenstein N (2008) Comb-hairs on the fourth tarsi in pholcid spiders (Araneae, Pholcidae). Journal of Arachnology 36: 232-240. https://doi.org/10.1636/CSh07-71.1
Huber BA, El Hennawy H (2007) On Old World ninetine spiders (Araneae: Pholcidae), with a new genus and species and the first record for Madagascar. Zootaxa 1635: 45-53.
Huber BA, Kwapong P (2013) West African pholcid spiders: an overview, with descriptions of five new species (Araneae, Pholcidae). European Journal of Taxonomy 59: 1-44. https:// doi.org/10.5852/ejt. 2013.59
Huber BA, Leh Moi Ung C (2016) The Panjange nigrifrons group in Borneo (Araneae: Pholcidae): high diversity in Sarawak, apparent absence in Sabah. European Journal of Taxonomy 184: 1-32. https://doi.org/10.5852/ejt.2016.184

Huber BA, Nuñeza OM (2015) Evolution of genital asymmetry, exaggerated eye stalks, and extreme palpal elongation in Panjange spiders (Araneae: Pholcidae). European Journal of Taxonomy 169: 1-46. https://doi.org/10.5852/ejt.2015.169
Huber BA, Rheims CA (2011) Diversity and endemism of pholcid spiders in Brazil's Atlantic Forest, with descriptions of four new species of the Atlantic Forest endemic genus Tupigea (Araneae: Pholcidae). Journal of Natural History 45: 275-301. https://doi.org/10.1080/0 0222933.2010.524319

Huber BA, Pérez-G, A, Baptista RLC (2005a) Leptopholcus (Araneae: Pholcidae) in continental America: rare relicts in low precipitation areas. Bonner zoologische Beiträge 53(1/2): 99-107.
Huber BA, Rheims CA, Brescovit AD (2005b) Two new species of litter-dwelling Metagonia spiders (Araneae, Pholcidae) document both rapid and slow genital evolution. Acta Zoologica (Stockholm) 86: 33-40. https://doi.org/10.1111/j.0001-7272.2005.00184
Huber BA, Sinclair B, Schmitt M (2007) The evolution of asymmetric genitalia in spiders and insects. Biological Reviews 82: 647-698. https://doi.org/10.1111/j.1469185X.2007.00029.x
Huber BA, Fischer N, Astrin JJ (2010) High level of endemism in Haiti's last remaining forests: a revision of Modisimus (Araneae: Pholcidae) on Hispaniola, using morphology and molecules. Zoological Journal of the Linnean Society 158: 244-299. https://doi.org/10.1111/ j.1096-3642.2009.00559.x

Huber BA, Pérez-González A, Astrin JJ, Blume C, Baptista R (2013) Litoporus iguassuensis Mello-Leitão, 1918 (Araneae, Pholcidae): camouflaged retreat, sexual dimorphism, female color polymorphism, intra-specific genital variation, and description of the male. Zoologischer Anzeiger 252: 511-521. https://doi.org/10.1016/j.jcz.2012.12.001
Huber BA, Carvalho LS, Benjamin SP (2014) On the New World spiders previously misplaced in Leptopholcus: molecular and morphological analyses and descriptions of four new species (Araneae, Pholcidae). Invertebrate Systematics 28: 432-450. https://doi.org/10.1071/IS13050
Huber BA, Nuñeza OM, Leh Moi Ung C (2015) Revision, phylogeny, and microhabitat shifts in the Southeast Asian spider genus Aetana (Araneae, Pholcidae). European Journal of Taxonomy 162: 1-78. https://doi.org/10.5852/ejt. 2015.162
Huber BA, Petcharad B, Leh Moi Ung C, Koh JKH, Ghazali ARM (2016a) The Southeast Asian Pholcus halabala species group (Araneae, Pholcidae), new data from field observations and ultrastructure. European Journal of Taxonomy 190: 1-55. https://doi.org/10.5852/ ejt. 2016.190
Huber BA, Koh JKH, Ghazali ARM, Nuñeza O, Leh Moi Ung C, Petcharad B (2016b) New leaf- and litter-dwelling species of the genus Pholcus from Southeast Asia (Araneae, Pholcidae). European Journal of Taxonomy 200: 1-45. https://doi.org/10.5852/ejt. 2016.200
Huber BA, Nuñeza OM, Leh Moi Ung C (2016c) The Philippine hair wax spiders and their relatives: Revision of the Pholcus bicornutus species group (Araneae, Pholcidae). European Journal of Taxonomy 225: 1-34. https://doi.org/10.5852/ejt.2016.225
Japyassú HF, Macagnan CR (2004) Fishing for prey: the evolution of a new predatory tactic among spiders (Araneae, Pholcidae). Revista de Etologia 6 (2): 79-94.
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300

Penney D (2007) The oldest pholcid and selenopid spiders (Araneae) in lowermost Eocene amber from the Paris Basin, France. Journal of Arachnology 34: 592-598. https://doi. org/10.1636/H05-61.1
Sanderson MJ, Shaffer HB (2002) Troubleshooting molecular phylogenetic analyses. Annual Review of Ecology and Systematics 33: 49-72. https://doi.org/10.1146/annurev.ecolsys.33.010802.150509
Senglet A (1971) Note sur les Pholcidae (Arachn.) de Grèce. Bulletin de la Société entomologique de Suisse 44(3/4): 345-359.
Senglet A (2001) Copulatory mechanisms in Hoplopholcus, Stygopholcus (revalidated), Pholcus, Spermophora and Spermophorides (Araneae, Pholcidae), with additional faunistic and taxonomic data. Mitteilungen der schweizerischen entomologischen Gesellschaft 74: 43-67.
Simon E (1890) Etudes arachnologiques. 22e Mémoire. XXXIV. Etude sur les arachnides de l'Yemen. Annales de la Société Entomologique de France (6) 10: 77-124.
Simon E (1893) Histoire Naturelle des Araignées, $2^{\text {eme }}$ ed. 1 (2): 256-488. Paris.
Sørensen LL, Coddington JA, Scharff N (2002) Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environmental Entomology 31(2): 319-330. https://doi.org/10.1603/0046-225X-31.2.319
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1333. https://doi.org/10.1093/bioinformatics/ btu033
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758-771. https://doi.org/10.1080/10635150802429642
Wilkinson M (1996) Majority-rule reduced consensus trees and their use in bootstrapping. Molecular Biology and Evolution 13: 437-444. https://doi.org/10.1093/oxfordjournals. molbev.a025604
World Spider Catalog (2018) World Spider Catalog. Natural History Museum Bern. http:// wsc.nmbe.ch [version 19.0, accessed on 9 May 2018]

Appendix I. Summary of formal taxonomic acts, in alphabetical order.

Apokayana Huber, gen. n.; all species newly transferred from Panjange
Apokayana bako (Huber, 2011), comb. n.
Apokayana iban (Huber, 2011), comb. n.
Apokayana kapit (Huber, 2016), comb. n.
Apokayana kubah (Huber, 2016), comb. n.
Apokayana niah (Huber, 2016), comb. n.
Apokayana nigrifrons (Deeleman-Reinhold \& Deeleman, 1983), comb. n.
Apokayana pueh (Huber, 2016), comb. n.
Apokayana sedgwicki (Deeleman-Reinhold \& Platnick, 1986), comb. n.
Apokayana seowi (Huber, 2016), comb. n.
Apokayana tahai (Huber, 2011), comb. n.
Cantikus Huber, gen. n.; all species newly transferred from Pholcus

Cantikus anaiensis (Yao \& Li, 2016), comb. n.
Cantikus ballarini (Yao \& Li, 2016), comb. n.
Cantikus cheni (Yao \& Li, 2017), comb. n.
Cantikus chiangmaiensis (Yao \& Li, 2016), comb. n.
Cantikus elongatus (Yin \& Wang, 1981), comb. n.
Cantikus erawan (Huber, 2011), comb. n.
Cantikus exceptus (Tong \& Li, 2009), comb. n.
Cantikus gou (Yao \& Li, 2016), comb. n.
Cantikus halabala (Huber, 2011), comb. n.
Cantikus khaolek (Huber, 2016), comb. n.
Cantikus kuhapimuk (Huber, 2016), comb. n.
Cantikus lintang (Huber, 2016), comb. n.
Cantikus namou (Huber, 2011), comb. n.
Cantikus pakse (Huber, 2011), comb. n.
Cantikus phami (Yao, Pham \& Li, 2015), comb. n.
Cantikus pyu (Huber, 2011), comb. n.
Cantikus quinquenotatus (Thorell, 1878), comb. n.
Cantikus sabah (Huber, 2011), comb. n.
Cantikus sepaku (Huber, 2011), comb. n.
Cantikus subwan (Yao \& Li, 2017), comb. n.
Cantikus sudhami (Huber, 2011), comb. n.
Cantikus taptaoensis (Yao \& Li, 2016), comb. n.
Cantikus tharnlodensis (Yao \& Li, 2016), comb. n.
Cantikus ubin (Huber, 2016), comb. n.
Cantikus wan (Yao \& Li, 2016), comb. n.
Cantikus youngae (Huber, 2011), comb. n.
Cantikus zhuchuandiani (Yao \& Li, 2016), comb. n.

Kelabita Huber, gen. n.; all species newly transferred from Pholcus Kelabita andulau (Huber, 2011), comb. n.
Kelabita lambir (Huber, 2016), comb. n.

Kintaqa Huber, gen. n.; all species newly transferred from Pholcus
Kintaqa buatong (Huber, 2016), comb. n.
Kintaqa fuza (Yao \& Li, 2017), comb. n.
Kintaqa mueangensis (Yao \& Li, 2017), comb. n.
Kintaqa satun (Huber, 2011), comb. n.
Kintaqa schwendingeri (Huber, 2011), comb. n.
Meraha Huber, gen. n.; all species newly transferred from Pholcus
Meraha chiangdao (Huber, 2011), comb. n.
Meraha khene (Huber, 2011), comb. n.
Meraha kinabalu (Huber, 2011), comb. n.

Meraha kipungit (Huber, 2016), comb. n.
Meraha krabi (Huber, 2016), comb. n.
Meraha narathiwat (Huber, 2016), comb. n.
Meraha shuye (Yao \& Li, 2017), comb. n.

Micropholcus agadir (Huber, 2011), comb. n., transferred from Pholcus

Modisimus coxanus (Bryant, 1940), comb. n., newly transferred from Platnicknia
Modisimus incertus (Bryant, 1940), comb. n., newly transferred from Platnicknia
Muruta Huber, gen. n.; all species newly transferred from Pholcus
Muruta bario (Huber, 2016), comb. n.
Muruta tambunan (Huber, 2016), comb. n.
Nipisa Huber, gen. n.; all species newly transferred from Calapnita
Nipisa anai (Huber, 2017), comb. n.
Nipisa bankirai (Huber, 2017), comb. n.
Nipisa bidayuh (Huber, 2017), comb. n.
Nipisa deelemanae (Huber, 2011), comb. n.
Nipisa kubah (Huber, 2017), comb. n.
Nipisa lehi (Huber, 2017), comb. n.
Nipisa phasmoides (Deeleman-Reinhold, 1986), comb. n.
Nipisa phyllicola (Deeleman-Reinhold, 1986), comb. n.
Nipisa semengoh (Huber, 2017), comb. n.
Nipisa subphyllicola (Deeleman-Reinhold, 1986), comb. n.
Paiwana Huber gen. n.; all species newly transferred from Pholcus
Paiwana chengpoi (Huber \& Dimitrov, 2014), comb. n.
Paiwana pingtung (Huber \& Dimitrov, 2014), comb. n.
Pholcus alagarkoil (Huber, 2011), comb. n., newly transferred from Sihala
Pholcus ceylonicus O. Pickard-Cambridge, 1869, comb. re-established, transferred from Sihala

Platnicknia Özdikmen \& Demir, 2009 = Modisimus Simon, 1893, syn. n.

Pribumia Huber, gen. n.; all species newly transferred from Pholcus
Pribumia atrigularis (Simon, 1901), comb. n.
Pribumia bohorok (Huber, 2011), comb. n.
Pribumia diopsis (Simon, 1901), comb. n.
Pribumia hurau (Huber, 2011), comb. n.
Pribumia minang (Huber, 2011), comb. n.
Pribumia singalang (Huber, 2011), comb. n.

Sihala Huber, 2011 = Pholcus Walckenaer, 1805, syn. n.
Teranga Huber gen. n.; all species newly transferred from Pholcus
Teranga cibodas (Huber, 2011), comb. n.
Teranga domingo (Huber, 2016), comb. n.
Teranga kerinci (Huber, 2011), comb. n.
Teranga matutum (Huber, 2016), comb. n.
Tissahamia Huber gen. n.; all species newly transferred from Pholcus
Tissahamia barisan (Huber, 2016), comb. n.
Tissahamia bukittimah (Huber, 2016), comb. n.
Tissahamia ethagala (Huber, 2011), comb. n.
Tissahamia gombak (Huber, 2011), comb. n.
Tissahamia kottawagamaensis (Yao \& Li, 2016), comb. n.
Tissahamia ledang (Huber, 2011), comb. n.
Tissahamia maturata (Huber, 2011), comb. n.
Tissahamia phui (Huber, 2011), comb. n.
Tissahamia tanahrata (Huber, 2016), comb. n.
Tissahamia uludong (Huber, 2016), comb. n.
Tissahamia vescula (Simon, 1901), comb. n.

Supplementary material I

Figure S1. Maximum-likelihood tree of the complete set of taxa inferred with IQTREE

Authors: Bernhard A. Huber, Jonas Eberle, Dimitar Dimitrov
Data type: molecular data
Explanation note: This tree is identical to the one shown in Figs 2-12 except that it includes all outgroups and all support values are shown (in the sequence SBS / RBS / SH-like aLRT).
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.788.22781.suppl1

Supplementary material 2

Figure S2. Maximum-likelihood tree of the complete set of taxa inferred with RAxML
Authors: Bernhard A. Huber, Jonas Eberle, Dimitar Dimitrov
Data type: molecular data
Explanation note: Support values as in Figure S1.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.788.22781.suppl2

Supplementary material 3

Figure S3. Maximum-likelihood tree (RAxML) of a reduced set of taxa (excluding rogue taxa with RogueNaRok)
Authors: Bernhard A. Huber, Jonas Eberle, Dimitar Dimitrov
Data type: molecular data
Explanation note: In the text we refer to this tree as 'RogueNaRok tree'. Support values: RBS. Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.788.22781.suppl3

Supplementary material 4

Figure S4. Maximum-likelihood tree (RAxML) of a reduced set of taxa (excluding taxa for which less than four genes were available)
Authors: Bernhard A. Huber, Jonas Eberle, Dimitar Dimitrov
Data type: molecular data
Explanation note: In the text we refer to this tree as ' $4+$ genes tree'. Support values as in Figure S1.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.788.22781.suppl4

First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla)

Ya-Li Jin', Yun Bu'
I Natural History Research Center, Shanghai Natural History Museum, Shanghai Science \& Technology Museum, Shanghai, 200041, China
Corresponding author: Yun Bu (buy@sstm.org.cn)

Academic editor: Pavel Stoev | Received 12 June 2018 | Accepted 16 August 2018 | Published 10 October 2018
http://zoobank.org/8737EB89-629A-4DA2-B998-5F46F2C5E4B5
Citation: Jin Y-L, Bu Y (2018) First record of Scolopendrellopsis from China with the description of a new species (Myriapoda, Symphyla). ZooKeys 789: 103-113. https://doi.org/10.3897/zookeys.789.27356

Abstract

The genus Scolopendrellopsis Bagnall, 1913 is recorded from China for the first time and Scolopendrellopsis glabrus sp. n. is described and illustrated. The new species is characterized by the short central rod on head, third tergite complete, four kinds of sensory organs present on antenna, and the cerci rather short and covered with a low number of straight setae.

Keywords

antennal sensory organ, chaetotaxy, taxonomy, tergal process, Tömösváry organ

Introduction

There are 204 symphylan species known in the world to date (Szucsich and Scheller 2011; Domínguez Camacho and Vandenspiegel 2012; Bu and Jin 2018); however, only few publications deal with those from Asia. Hansen firstly described five species of Symphyla from Southeast Asia (Hansen 1903). After that several species were described from India (Scheller 1971), Indonesia (Scheller 1988), USSR (Scheller and Golovatch 1982), Russian Far East (Scheller and Mikhaljova 2000) and Iran (Scheller et al. 2011). Symphyla is poorly studied in China with only Hanseniella caldaria from Zhejiang province and Geophilella orientalis from Hebei province recorded (Zhang and Wang 1992; Bu and Jin 2018). Three genera, Scutigerella, Scolopendrelloides, and Symphylella,
were also mentioned for China, but without determined species recorded (Zhang and Wang 1992). During our ecological survey of soil animals of Zhejiang, Jiangsu, and Hainan provinces in recent years, many symphylans were obtained. Among them, one new species of Scolopendrellopsis was identified and is described in the present paper.

Materials and methods

Most specimens were collected during a project for soil animal survey of Gutian Mountain of Zhejiang Province during the years 2012 to 2013; others were collected in Jiangsu province and Hainan province recently. All were extracted by means of the Tullgren funnels from soil and humus samples and preserved in 75% ethanol. They were mounted under slides using Hoyer's solution and dried in an oven at $60{ }^{\circ} \mathrm{C}$. Observations were made with a phase contrast microscope (Leica DM 2500). Photographs were taken by a digital camera installed on the microscope (Leica DMC 4500). Line drawings were drawn using a drawing tube. All specimens are deposited in the collections of Shanghai Natural History Museum (SNHM) and Shanghai Entomological Museum (SEM), Shanghai, China.

Taxonomy

Family Scolopendrellidae Bagnall, 1913

Genus Scolopendrellopsis Bagnall, 1913, new record

Diagnosis. Habitus slender. First pair of legs present, 3-segmented and with claws, not more than one-half length of the following pairs. Trunk with 16 or 17 tergites and most of tergites with a pair of posterior processes, without any striped band between each pair of processes on tergites, some tergites transversely divided.

Distribution. The genus Scolopendrellopsis includes fifteen species and is subcosmopolitan, widely distributed in Palaearctic, Nearctic, Neotropical, Ethiopian, Oriental, and Australian regions (Szucsich and Scheller 2011). It is newly recorded from China in this paper.

Scolopendrellopsis glabrus sp. n.

http://zoobank.org/95E5B444-5DEF-49CB-A699-E9730BD69528
Figs 1-3. Tables 1-3

Diagnosis. Scolopendrellopsis glabrus sp. n. is characterized by the short central rod on head, $3^{\text {rd }}$ tergite not divided and with only weak middle indentation, rod-like sensory
organs with setae surrounded on dorsal side of $3^{\text {rd }}-17^{\text {th }}$ antennal segments, cavityshaped organs on dorsal side of subapical 5-6 antennal segments, mushroom-shaped organs at lateral side of subapical 4-7 segments and bladder-shaped organs on subapical 3-6 antennal segments, first pair of legs longer than the tarsus of the last pair of legs, cerci short and covered with a low number of straight setae.

Material examined. Holotype, female (slide no. ZJ-GTS-SY2012017) (SNHM), China, Zhejiang Province, Gutian Mountain, extracted from soil samples in broad-leaved forest, Alt. $1000 \mathrm{~m}, 29^{\circ} 15^{\prime} \mathrm{N}, 118^{\circ} 06^{\prime} \mathrm{E}, 11-\mathrm{IV}-2012$, coll. Y. Bu et al. Paratypes, 2 female (slides nos. ZJ-GTS-SY2012010, ZJ-GTS-SY2012016) (SNHM), same date as holotype; 1 female (slide no. ZJ-GTS-SY2012051) (SEM), ibidem, 14-X-2012; 2 females (slides nos. ZJ-GTS-SY2012055, ZJ-GTS-2012060) (SNHM), ibidem, 17-XI-2012; 1 female (slide no. ZJ-GTS-SY2013015) (SNHM), ibidem, 24-IV-2013; 1 male (slide no. JS-WX-SY2017001) (SNHM), China, Jiangsu Province, Wuxi, Daji Mountain, extracted from soil samples in bamboo forest, Alt. $5 \mathrm{~m}, 31^{\circ} 32^{\prime} \mathrm{N}, 120^{\circ} 12^{\prime} \mathrm{E}, 9-\mathrm{X}-2017$, coll. Y. Bu. Other material (SNHM): 8 juveniles with 8-10 pairs of legs (slides nos. ZJ-GTS-SY2012002, ZJ-GTSSY2012004, ZJ-GTS-SY2012006, ZJ-GTS-SY2012012-ZJ-GTS-SY2012015, ZJ-GTS-SY2012019), same data as holotype; 1 juvenile with 10 pairs of legs (slide no. ZJ-GTS-SY2012023), ibidem, 19-VI-2012, coll. Y. Bu et al; 6 juveniles with 8-11 pairs of legs (slides nos. ZJ-GTS-SY2012028-ZJ-GTS-SY2012032, ZJ-GTS-SY2012039), ibidem, 15-VII-2012, coll. Y. Bu et al; 2 juveniles with 9 and 10 pairs of legs (slides nos. ZJ-GTS-SY2012046, ZJ-GTS-SY2012051), ibidem, 14-X-2012, coll. Y. Bu et al; 2 juveniles with 10 and 9 pairs of legs respectively (slides nos. ZJ-GTS-SY2012052, ZJ-GTS-SY2012055), ibidem, 17-XI-2012, coll. Y. Bu et al; 3 juveniles with 8-10 pairs of legs (slides nos. ZJ-GTS-SY2012064-ZJ-GTS-SY2012066), ibidem, 12-XII-2012, coll. Y. Bu et al; 1 juvenile with 8 pairs of legs (slide no. ZJ-GTS-SY2013004), ibidem, 23-II-2013, coll. Y. Bu et al; 6 juveniles with $8-10$ pairs of legs (slides nos. ZJ-GTS-SY2013005, ZJ-GTSSY2013009, ZJ-GTS-SY2013011, ZJ-GTS-SY2013013-ZJ-GTS-SY2013015), ibidem, 27-III-2013, coll. Y. Bu et al; 1 juvenile with 9 pairs of legs (slide no. HN-SY-SY2017001), China, Hainan Province, Sanya, Yalong bay tropical paradise forest park, extracted from soil samples in bamboo forest, Alt. $67 \mathrm{~m}, 18^{\circ} 15^{\prime} \mathrm{N}$, $109^{\circ} 37^{\prime}$ E, 22-III-2017, coll. Y. Bu.

Description. Adult body 1.57 mm long in average ($1.45-1.65 \mathrm{~mm}, \mathrm{n}=8$), holotype 1.65 mm (Figure 1A). Head longer than wide, length $145-175 \mu \mathrm{~m}$, width 133-170 $\mu \mathrm{m}$, with widest part a little behind the middle on a level with the points of articulation of mandibles. Central rod distinct and with anterior part absent, length 45-49 $\mu \mathrm{m}$, approximately one-third of head. Dorsal side of head covered with sparse setae of different length, longest setae $(12-17 \mu \mathrm{~m})$ located at the anterior part of head, approx. 3.0 times as long as central ones $(4-5 \mu \mathrm{~m})$. Cuticle around Tömösváry organ and anterolateral part of head with rather coarse granulation. Central and posterior part of head with dense pubescence (Figs 1B, 3A).

Figure I. Scolopendrellopsis glabrus sp. n. (Holotype) A habitus B head, dorsal view C right antenna, $3^{\text {th }}-6^{\text {th }}$ segments, dorsal view \mathbf{D} right antenna, $12^{\text {th }}-16^{\text {th }}$ segments, ventral view \mathbf{E} right antenna, $11^{\text {h }}-16^{\text {th }}$ segments, dosal view \mathbf{F} left Tömösváry organ \mathbf{G} stylus on base of $6^{\text {th }} \operatorname{leg}$ (arrow indicated) \mathbf{H} stylus on base of $11^{\text {th }} \operatorname{leg}$ (arrow indicated) I first pair of legs $\mathbf{J} 3^{\text {rd }} \operatorname{leg}$ and coxal sac $\mathbf{K} 9^{\text {th }} \operatorname{leg}$ and coxal sacs \mathbf{L} cerci, dorsal view. ro-rod-like sensory organs with surrounded setae, co-cavity-shaped organ, mo-mushroom-shaped organ, bo-bladder-shaped organ. Scale bars: $100 \mu \mathrm{~m}(\mathbf{A}), 20 \mu \mathrm{~m}(\mathbf{B}-\mathbf{L})$.

Tömösváry organ oval, maximum diameter $17.0-22.5 \mu \mathrm{~m}$, somewhat shorter than the greatest diameter of $3^{\text {rd }}$ antennal segment $(20-23 \mu \mathrm{~m})$, opening at front position, with diameter $(4-5 \mu \mathrm{~m})$ approx. one-fourth of $3^{\text {rd }}$ segment of antennae (Figs 1F, 3A).

Mandible with eleven teeth and divided into two parts by a gap, with five anterior and six posterior teeth respectively. First maxilla has two lobes, inner lobe with four

Figure 2. Scolopendrellopsis glabrus sp. n. (Holotype) A first and second maxilla $\mathbf{B} 1^{\text {st }}$ and $2^{\text {nd }}$ tergite \mathbf{C} $3^{\text {rd }}$ tergite $\mathbf{D} 4^{\text {th }}$ tergite $\mathbf{E} 6^{\text {th }}$ tergite, left side $\mathbf{F} 8^{\text {th }}$ tergite, left side $\mathbf{G} 9^{\text {th }}$ tergite, left side $\mathbf{H} 12^{\text {th }}$ tergite, left side I $14^{\text {th }}$ tergite, left side $\mathbf{J} 15^{\text {th }}$ tergite, left side. Scale bars: $20 \mu \mathrm{~m}$.
hook-shaped teeth, palp bud-like with two distal points close to outer lobe (Figure 3B). Anterior part of second maxilla with many small protuberances and posterior part with sparse setae. Cuticle of second maxilla covered with pubescence (Figure 2A).

Antennae 15-19 segments (16 in holotype), length $250-350 \mu \mathrm{~m}$ ($320 \mu \mathrm{~m}$ in holotype), approx. 0.2 of the length of the body. First segment cylindrical, greatest diameter

Figure 3. Scolopendrellopsis glabrus sp. n. (Holotype) A head and $1^{\text {st }}-4^{\text {th }}$ tergites \mathbf{B} mandible and first maxilla $\mathbf{C} 1^{\text {st }}-5^{\text {th }}$ segments of right antenna $\mathbf{D}-\mathbf{E} 13^{\text {th }}-16^{\text {th }}$ of right antenna \mathbf{D} dorsal view \mathbf{E} ventral view \mathbf{F} first leg $\mathbf{G} 12^{\text {th }} \operatorname{leg} \mathbf{H}$ left sense calicles, dorsal view \mathbf{I} right sense calicles, dorsal view \mathbf{J} stylus on base of $11^{\text {th }} \operatorname{leg} \mathbf{K}$ right cercus, dorsal view. Scale bars: $50 \mu \mathrm{~m}(\mathbf{A}), 20 \mu \mathrm{~m}(\mathbf{B}-\mathbf{I}, \mathbf{K}), 5 \mu \mathrm{~m}(\mathbf{J})$.
a little wider than long (20-26 $\mu \mathrm{m}: 16-25 \mu \mathrm{~m})$, with four setae in one whorl, the longest seta $(6-11 \mu \mathrm{~m})$ inserted at the inner side and distinctly longer than outer ones (5-8 $\mu \mathrm{m})$. Second segment wider $(20-30 \mu \mathrm{~m})$ than long ($18-22 \mu \mathrm{~m}$), with six or seven setae evenly inserted around the segment and inner setae $(6-10 \mu \mathrm{~m})$ a little longer than outer ones $(5-7 \mu \mathrm{~m})$. Chaetotaxy of $3^{\text {rd }}$ segment similar to preceding ones (Figure 3C). Setae on the basal segments $1-3$ are slender and on proximal and distal segments rather short. Basal and median parts of the antennae with only primary whorl of setae, in subapical

Table I. Numbers of setae and sensory organs of antennae (holotype).

Segments	Nos. of primary whorl setae	Nos. of secondary whorl setae	Rod-like organ with setae surrounded	Cavity- shaped organs	Mushroom- shaped organs	Bladder-shaped organs	
$1^{\text {st }}$	4					Dorsal	Ventral

segments one or two minute setae present in secondary whorl (Figure 3E). Four kinds of sensory organs present on antenna: rod-like sensory organs with setae surrounded present on dorsal side of $3^{\text {rd }}-17^{\text {th }}$ segments (Figs $1 \mathrm{C}, 3 \mathrm{C}, 3 \mathrm{D}$); cavity-shaped organs present on dorsal side of subapical 5-6 segments (Figs 1E, 3D); mushroom-shaped organs present on lateral side of subapical 4-7 segments and bladder-shaped organs on subapical 3-6 segments (Figs 1D, 1E, 3D, 3E). Apical segment subspherical, width $21-22 \mu \mathrm{~m}$, length $19-20 \mu \mathrm{~m}$, with $10-12$ short setae and wide connection to preceding segment and with two fire-shaped and three baculiform organs present on apex (Figs 1D, 3D, E). All segments covered with short pubescence. Chaetotaxy and sensory organs of antennae are given in Table 1.

Trunk: seventeen dorsal tergites present, with $6^{\text {th }}, 9^{\text {th }}, 12^{\text {th }}$, and $15^{\text {th }}$ tergites transversely divided, longer than preceding ones (Figs 2E, 2G, 2H, 2J). Intertergal zones between former and later tergites present, except for $14^{\text {th }}$ and $15^{\text {th }}, 16^{\text {th }}$, and $17^{\text {th }}$ tergites. Tergites $2^{\text {th }}-13^{\text {th }}$ and $15^{\text {th }}$ each with one pair of slender chitinous processes, slightly fin-ger-like. Basal distances between processes are approx. the same length as their length from base to tip, which is longer than its basal width. All tergites pubescent and the margins of apical part of processes ornamented with rowed coarse granules. Apical seta on processes slightly anteriorly located and anterolateral setae slightly longer than other setae. No seta between apical and inner basal setae (Figs 2B-2H).

Tergites: $1^{\text {st }}$ tergite reduced to a narrow short plate with a pair of diagonal bands and with six short setae in a row (Figs 2B, 3A). Second tergite complete, broader than long, with two slender posterior processes, $1+1$ axial setae and $7+6$ lateral setae (asymmetrically lack one lateral seta in holotype, $7+7$ lateral setae in all paratypes), with anterolateral setae slightly longer than others, processes approx. 1.5 times as long as
broad, basal distance between processes approx. the same as long as their length (Figs 2B, 3A). Third tergite entire with weak middle indentation, broader and longer than preceding one with the ratios mentioned nearly 1.6 and 0.8 respectively, $2+2$ axial setae and $9+9$ lateral setae (Figs 2C, 3A). Fourth tergite broader than $3{ }^{\text {rd }}$ tergite, with the ratios approx. 1.2 and 0.9 respectively, $2+2$ axial setae and $6+6$ lateral setae (Figs 2D, $3 A)$. The shape and chaetotaxy of $5^{\text {th }}-7^{\text {th }}, 8^{\text {th }}-10^{\text {th }}$, and $11^{\text {th }}-13^{\text {th }}$ tergites similar as $2^{\text {nd }}-$ $4^{\text {th }}$ tergites. $14^{\text {th }}$ tergite without processes and relevant area replaced by two roundish tubercles with four setae inserted on (Figure 2I). $15^{\text {th }}$ tergite shorter than $3^{\text {rd }}, 6^{\text {th }}, 9^{\text {th }}$, and $12^{\text {th }}$ tergites, with smaller processes (Figs 2C, 2E, 2G, 2H, 2J). Chaetotaxy and measurements of tergites are given in Tables 2 and 3.

Legs: all twelve pairs of legs with claws. $1^{\text {st }}$ pair of legs short, 3-segmented, length $35-45 \mu \mathrm{~m}$, not more than the length of $2^{\text {th }}$ pair of legs, but longer than the tarsus ($30-$ $32 \mu \mathrm{~m})$ of last pair of legs; femur at least 1.2 times wider than long ($15-22 \mu \mathrm{~m}: 12-15$ $\mu \mathrm{m}$), with two setae at the outer side; tibia approx. 1.4 times wider than long (14-20 $\mu \mathrm{m}: 10-14 \mu \mathrm{~m})$, with dorsal seta $(8-10 \mu \mathrm{~m})$ longer than ventral one $(4-6 \mu \mathrm{~m})$; tarsus longer than wide ($12-19 \mu \mathrm{~m}: 10-17 \mu \mathrm{~m}$), with four setae, three dorsal $(5-7 \mu \mathrm{~m})$ and one ventral $(6-8 \mu \mathrm{~m})$; claws simple and the anterior one a little larger and broader than posterior (Figs 1I, 3F). $12^{\text {th }}$ pairs of legs approx. three-fourths as long as the length of the head. Trochanter longer than wide ($30-40 \mu \mathrm{~m}: 23-31 \mu \mathrm{~m}$), with 6 subequal setae; femur approx. as long as wide (19-25 $\mu \mathrm{m}: 19-25 \mu \mathrm{~m}$), with three setae transversely, one $(10-14 \mu \mathrm{~m})$ distinctly longer than other two $(6-9 \mu \mathrm{~m})$; tibia longer than wide (19-25 $\mu \mathrm{m}: 15-21 \mu \mathrm{~m})$, with four dorsal setae, of which one $(10-14 \mu \mathrm{~m})$ distinctly longer than others $(6-9 \mu \mathrm{~m})$; tarsus not more than 3 times as long as wide ($30-32 \mu \mathrm{~m}$: $11-15 \mu \mathrm{~m}$) with $8-9$ setae, of which 3 are protruding and 2 depressed, longest setae $(12 \mu \mathrm{~m})$ approx. as long as the greatest width of the joint. Claws rather curved, anterior one a little longer and broader than posterior one ($10 \mu \mathrm{~m}: 8 \mu \mathrm{~m}$) (Figure 3G). All legs covered with dense pubescence (Figs 1I, J, K).

Coxal sacs present at bases of $3^{\text {rd }}-9^{\text {th }}$ pairs of legs, fully developed, each with 3 setae (Figs 1J, 1K).

Styli present at base of $3^{\text {rd }}-12^{\text {th }}$ pairs of legs, reduced into small knobs with tuft of setae, on $9^{\text {th }}-12^{\text {th }}$ legs larger than on former legs, especially on $11^{\text {th }} \operatorname{legs}(5-6 \mu \mathrm{~m})$, distinctly longer than anterior ones ($2-4 \mu \mathrm{~m}$) (Figs 1G, 1H, 3J).

Sense calicles with smooth margin to pit, length nearly two times longer than outer diameter $(25-35 \mu \mathrm{~m}: 12-16 \mu \mathrm{~m})$. Sensory seta inserted in the center of cup, extremely long, length $100-120 \mu \mathrm{~m}$, at least 8.5 times longer than other two lateral setae (11-14 $\mu \mathrm{m}, 7-10 \mu \mathrm{~m}$ respectively) that inserted at the edge of cup (Figs $3 \mathrm{H}, \mathrm{I}$).

Cerci subuliform, short, approx. half as long as head, somewhat shorter than $12^{\text {th }}$ pairs of legs, length at least three times as long as its greatest width $(80-95 \mu \mathrm{~m}: 25-30 \mu \mathrm{~m})$, sparsely covered with long and straight setae, with the longest one ($12.5-17 \mu \mathrm{~m}$) approx. half of the greatest width of the cerci, terminal area $(10-13 \mu \mathrm{~m})$ short, with length at most half of the greatest width of the cerci and circled by 6-8 layers of curved ridges. Terminal setae length 18-20 $\mu \mathrm{m}$, distinctly longer than terminal area (Figure 1L, 3K).

Table 2. Chaetotaxy of tergites (holotype).

Tergites	Axial setae	Lateral setae
$1^{\text {st }}$	$3+3$	-
$2^{\text {nd }}$	$1+1^{1}$	$7+6^{8}$
$3^{\text {rd }}$	$2+2^{2}$	$9+9^{9}$
$4^{\text {th }}$	$2+2$	$6+6$
$5^{\text {th }}$	$2+2$	$5+5$
$6^{\text {th }}$	$3+3$	$9+9^{10}$
$7^{\text {th }}$	$2+2^{3}$	$6+6$
$8^{\text {th }}$	$2+2^{4}$	$5+5$
$9^{\text {th }}$	$3+3$	$9+9^{11}$
$10^{\text {th }}$	$2+2$	$6+6$
$11^{\text {th }}$	$2+2^{4}$	$5+5$
$12^{\text {th }}$	$3+3^{4}$	$9+9^{12}$
$13^{\text {th }}$	$2+2$	$6+6^{13}$
$14^{\text {th }}$	$3+3^{5}$	$4+4^{14}$
$15^{\text {th }}$	$3+3^{6}$	$7+7^{15}$
$16^{\text {th }}$	$1+1^{7}$	$2+2^{16}$
$17^{\text {th }}$		$5+5^{17}$

Notes on chaetotaxy variations: ${ }^{1}$ with single middle seta (in 5 specimens) or without setae (1); ${ }^{2}$ asymmetrically lack one seta (3) or lack one pair of seta (1). ${ }^{3}$ with $1+1$ setae (1); ${ }^{4}$ asymmetrically present of one additional seta (1); ${ }^{5}$ with $2+2$ setae (5); ${ }^{6}$ with $1+1$ or $2+2$ setae (4); ${ }^{7}$ asymmetrically present of one additional setae (1); ${ }^{8}$ with $7+7$ setae in all paratypes (7); ${ }^{9}$ asymmetrically lack 1 or 2 setae (2); ${ }^{10}$ with $7+7$ setae (1); ${ }^{11}$ asymmetrically present of one additional setae (1); ${ }^{12}$ asymmetrically lack one or present of one additional seta (2), or with $10+10$ setae (1); ${ }^{13}$ with $4+4$ setae (2); ${ }^{14-16}$ asymmetrically present of one additional seta (2); ${ }^{17}$ asymmetrically lack one or two seta (2).

Table 3. Measurements of tergites and processes (holotype in brackets) (in $\mu \mathrm{m}$).

No. of tergites	Length	Width	Length of processes	Width of processes	Basal distance between processes
$1^{\text {st }}$	$30-40(40)$	$75-100(80)$	-	-	-
$2^{\text {nd }}$	$45-55(55)$	$78-100(100)$	$25-45(31)$	$15-35(20)$	$25-35(30)$
$3^{\text {rd }}$	$50-85(82)$	$95-130(112)$	$30-48(40)$	$23-30(25)$	$28-35(33)$
$4^{\text {th }}$	$45-61(61)$	$100-125(122)$	$30-50(50)$	$30-40(40)$	$35-45(45)$
$5^{\text {th }}$	$41-59(59)$	$103-125(107)$	$50-55(50)$	$25-30(30)$	$40-50(40)$
$6^{\text {th }}$	$55-123(116)$	$130-150(140)$	$40-58(55)$	$25-35(35)$	$40-55(55)$
$7^{\text {th }}$	$60-71(71)$	$140-160(160)$	$50-65(50)$	$40-50(50)$	$40-66(66)$
$8^{\text {th }}$	$55-75(75)$	$110-135(110)$	$50-65(55)$	$25-35(33)$	$58-68(68)$
$9^{\text {th }}$	$100-110(110)$	$150-170(160)$	$60-70(60)$	$25-40(30)$	$70-80(80)$
$10^{\text {th }}$	$67-71(71)$	$150-187(166)$	$40-70(70)$	$30-50(50)$	$45-74(74)$
$11^{\text {th }}$	$60-75(68)$	$130-138(138)$	$30-65(50)$	$33-40(33)$	$55-70(60)$
$12^{\text {th }}$	$75-120(120)$	$150-165(160)$	$54-60(55)$	$25-40(33)$	$55-65(64)$
$13^{\text {th }}$	$45-69(69)$	$110-180(156)$	$30-50(50)$	$25-50(50)$	$50-60(60)$
$14^{\text {th }}$	$55-80(65)$	$95-140(140)$	-	-	-
$15^{\text {th }}$	$70-98(85)$	$110-150(140)$	$38-45(40)$	$25-30(30)$	$35-50(42)$
$16^{\text {th }}$	$35-43(38)$	$95-130(115)$	-	-	-
$17^{\text {th }}$	$58-65(65)$	$75-125(90)$	-	-	-

Etymology. The species name glabrus, meaning bald, to indicate the lower number of setae on cerci.

Distribution. China (Zhejiang, Jiangsu, Hainan).
Remarks. Scolopendrellopsis glabrus sp. n. is similar to S. hirta (Scheller, 1971) and S. spinosa (Sheller, 1979) in the shape of $3^{\text {rd }}$ tergite which is not divided, shape of processes on tergites, shape of sensory organs on antennae. It differs from the latter two species in the absence of anterior part of central rod (anterior part present but indistinct in S. hirta, distinct in S. spinosa), chaetotaxy of the $2^{\text {nd }}$ and $3^{\text {rd }}$ tergites (with four and five lateromarginal setae in S. glabrus respectively, five and six in the other two species), cerci with lower number of setae (more setae in S. hirta and S. spinosa), all setae on cerci long and straight (setae on inner side of cerci slightly curved in S. hirta, most setae on cerci short and curved in S. spinosa). It is also similar to the worldwide species S. subnuda in the shape of the first three tergites, number of lateromarginal setae of the $3^{\text {rd }}$ tergite, shape and number of setae of the cerci, but differs in the absence of anterior part of central rod (anterior part present in S. subnuda), apical seta on processes slightly anteriorly located (rather close to the apex in S. subnuda).

Acknowledgements

We give our great gratitude to Dr. Xin Ke for his fund supports during the collection in Gutian Mountain. We also appreciate Professor José G. Palacios-Vargas (Mexico) for his linguistic corrections of the manuscript as well as his valuable advices. We specially thank Professor Hong Ying Song (China) and Dr. Miguel Domínguez Camacho (Spain) for their careful revisions and valuable comments that greatly improved our manuscript. This study was supported by the National Natural Science Foundation of China (no. 31772509), the Natural Science Foundation of Shanghai (no. 17ZR1418700), the project for construction of Chinese forest biodiversity monitoring network (no. CforBio20120106) and the strategic biological resources service network project of the Chinese Academy of Sciences (no. ZSBZ-003).

References

Bagnall RS (1913) On the classification of the order Symphyla. Journal of the Linnean Society London Zoology 32: 195-199. https://doi.org/10.1111/j.1096-3642.1913.tb01775.x
Bu Y, Jin YL (2018) Progress on the systematic study of Symphyla. Chinese Bulletin of Life Sciences 30(5): 500-509. [In Chinese with English summary]
Domínguez Camacho M, Vandenspiegel D (2012) Scolopendrellidae (Myriapoda, Symphyla) from the Afrotropics with descriptions of seven new species. European Journal of Taxonomy 32: 1-28. https://doi.org/10.5852/ejt.2012.32
Edwards CA (1959) Keys to the genera of the Symphyla. Journal of the Linnean Society Zoology 44: 164-169. https://doi.org/10.1111/j.1096-3642.1959.tb01603.x

Hansen HJ (1903) The genera and species of the order Symphyla. Quarterly Journal of Microscopical Science 47: 1-101.
Michelbacher AE (1938) The biology of the Garden Centipede, Scutigerella immaculate. Hilgardia 11: 55-148. https://doi.org/10.3733/hilg.v11n03p055
Scheller U (1971) Symphyla from Ceylon and Peninsular India. Entomologica scandinavica Supplement 1: 98-187.
Scheller U (1979) The Pauropoda and Symphyla of the Geneva Museum VI. Symphyla from Rhodesia and South Africa (Myriapoda). Revue Suisse de Zoologie 86(4): 947-955. https://doi.org/10.5962/bhl.part. 82352
Scheller U (1988) Two new species of Symphyla from the Krakatau Islands and the Ujung Kulon Peninsula (Myriapoda: Symphyla: Scolopendrellidae, Scutigerellidae). Zoological Expedition to the Krakatau Islands 1984 and 1985. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 322(1211): 401-411. https://doi. org/10.1098/rstb. 1988.0134
Scheller U, Golovatch SI (1982) Myriapods of the class Symphyla in the USSR. Zoologicheskiĭ Zhurnal 61(1): 143-145. [In Russian with English summary]
Scheller U, Kavianpour MR, Esfandiari M (2011) First record of Symphyla (Myriapoda) from Iran, with description of a new species in Scolopendrellopsis (Scolopendrellidae). Zootaxa 3041: 66-68.
Scheller U, Mikhaljova EV (2000) New records of Symphyla (Myriapoda) from the Russian Far East. Arthropoda Selecta 9(1): 29-30.
Szucsich N, Scheller U (2011) Symphyla. In: Minelli A (Ed.) Treatise on Zoology-Anatomy, Taxonomy, Biology: The Myriapoda (Vol. 1). Brill, Leiden, 445-466. https://doi. org/10.1163/9789004188266_021
Zhang CZ, Wang DQ (1992) Symphyla. In: Yin WY, et al. (Eds) Subtropical Soil animals of China. Science Press, Beijing, 383-387. [In Chinese]

The Oriental flat bug genus Libiocoris Kormilev, 1957 revisited: re-examination, synonymy, and description of a new genus (Heteroptera, Aradidae)

Xiaoshuan Bai', Ernst Heiss ${ }^{2}$, Wanzhi Cai ${ }^{3}$
I Institute of Life Science and Technology, Inner Mongolia Normal University, Zhaowuda Road 81, Huhhot, 010022, Inner Mongolia, China 2 Entomological Research Associate, Tiroler Landesmuseum, 2a Josef Schraff Strasse, A-6020 Innsbruck, Austria 3 Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing, 100094, China

Corresponding author: Ernst Heiss (aradus@aon.at)

Academic editor: G. Zhang | Received 25 April 2018 | Accepted 14 June 2018 | Published 10 October 2018
http://zoobank.org/871136F2-EA3F-45A9-91DC-F86E3057DC5B
Citation: Bai X, Heiss E, Cai W (2018) The Oriental flat bug genus Libiocoris Kormilev, 1957 revisited: re-examination, synonymy, and description of a new genus (Heteroptera, Aradidae). ZooKeys 789: 115-137. https://doi.org/10.3897/ zookeys.789.26165

Abstract

Re-examination of type specimens of Libiocoris Kormilev 1957, L. poecilus from New Guinea and other taxa assigned to this genus, the Chinese Libiocoris heissi Bai, Yang \& Cai, 2006 and Libiocoris sinensis Bai, Yang \& Cai, 2006 proved to be synonyms, thus L. heissi $=$ L. sinensis syn. n. They are, however, different from Libiocoris Kormilev, 1957 to which they were originally assigned and a new genus Paralibiocoris gen. n. is proposed for them. Therefore Paralibiocoris heissi comb. n. = Libiocoris heissi Bai et al., 2006 = Libiocoris sinensis Bai et al., 2006, syn. n. From Hainan Island, China, the following new species, P. roundangulus sp. n., P. hainanensis sp. n., and P. limuensis sp. n., are described and figured and a key to species is provided.

Keywords

Aradidae, Carventinae, China, Heteroptera, Libiocoris, new combination, new genus, new species, new synonymy, Paralibiocoris

Introduction

The genus Libiocoris was erected by Kormilev, 1957 for the species poecilus from New Guinea. Usinger \& Matsuda, 1959 improved the generic description based on the new species L. antennatus from Papua (New Guinea) and added L. angulatus, also from New Guinea to this genus. Later, L. lobatus Kormilev, 1968 and L. pilicornis Kormilev, 1972 were described again from New Guinea. Heiss (1982) described the species L. indicus from north India and two more species, L. heissi and L. sinensis, were described by Bai et al. (2006) from Hainan Island in south sast China.

The distribution pattern of these eight species within the Indo-Pacific region seems restricted to two biogeographically different areas: the Indo-China region (L. indicus, L. heissi, and L. sinensis) and the Papuasian region (L. poecilus, L. antennatus, L. angulatus, L. lobatus, and L. pilicornis), which raises questions about their assignment to the same genus of apterous Carventinae, all having very limited distribution ranges.

As a result of the re-examination of the genus-type species L. poecilus (holotype male, allotype female, HMHN), of L. angulatus (holotype female, MCSM), and of L. antennatus (paratype female, CEHI ex. coll. Kormilev), the original descriptions of L. lobatus and L. pilosus as well as the types of other species assigned to this genus, we can now confirm the following results:

1 After removal of the waxy incrustation obscuring the dorsal structures and examination of the female holotypes of heissi and sinensis it was evident that both belong to the same taxon and are synonyms.
2 The Chinese species heissi and sinensis differ in essential morphological characters from Libiocoris sensu Kormilev, 1957, for which a new genus Paralibiocoris gen. n. is proposed. A further three new species from China belonging to this genus are recognized and described herein.
3 The single species L. indicus Heiss, 1982 described from north India, tentatively assigned to Libiocoris, is not congeneric with Libiocoris sensu Kormilev, 1957 nor to Paralibiocoris gen. n. erected for the Chinese species.
4 Inconsistencies and remarkable differences in the descriptions of angulatus, antennatus, lobatus, and pilosus raise questions about their congeneric assignment when compared with poecilus.

Materials and methods

Depositories of type material examined:

MNHUK Museum of Natural History, London, Great Britain
CAU China Agricultural University, Beijing, China
CEHI Collection Ernst Heiss, Tiroler Landesmuseum Innsbruck, Austria

EMIH Entomological Museum of Inner Mongolia Normal University, Huhhot, China

HNHM Hungarian Natural History Museum, Budapest Hungary
MCSM Museo Civico di Storia Naturale "Giacomo Doria", Genoa, Italy
MHNG Muséum d' Histoire Naturelle, Geneva, Switzerland

Photographs were taken through Keyence VHX-1000 equipment. Measurements were made using a calibrated micrometre; all measurements are given in millimetres. Abbreviations used as follows:

deltg	dorsal external laterotergite (connexivum);
$\mathbf{m t g}$	mediotergite;
$\mathbf{p t g}$	paratergite;
$\mathbf{v l t g}$	ventral laterotergite.

Taxonomy

Synonymy

Type specimens of L. heissi and L. sinensis are conspecific, thus the following synonymy Libiocoris heissi Bai, Yang \& Cai, 2006: 41 = Libiocoris sinensis Bai, Yang \& Cai, 2006: 43 syn. n. is here established, heissi having priority.

Paralibiocoris gen. n.

http://zoobank.org/BE3C5C3E-DE96-418B-A434-A60EBC5E0FB8

Type species. Libiocoris heissi Bai, Yang \& Cai, 2006.
Diagnosis. General aspect similar to Libiocoris Kormilev, 1957 but is distinguished from the type species Libiocoris poecilus (characters in brackets) by the following set of morphological characters:

- position of spiracles: II ventral, III-VII lateral and visible from above (II-III ventral IV-V sublateral not visible from above, VI-VII lateral and visible);
- fused deltg II + III shorter, reaching only posterior border of metanotum (Figs 1, 3) (extending forward to half-length of mesonotum which is not shown in Fig. 1 of Kormilev's (1957) description but mentioned by Usinger and Matsuda's (1959) redescription, and verified at types (Figs 81, 82);
- presence of a smooth oblique callus on vltg VII of male which is independent of spiracle VII (Figure 12) (lacking and not developed, fig. 4 of Kormilev 1957);
- fused median longitudinal sclerite reaching from pronotum to tergal plate bottleshaped along meso- and metanotum, then restricted along mtg I+II and carinate,
the fusion line between metanotum - mtg I+II marked by a suture (Figs 5, 7) (narrow and subparallel along meso-metanotum with a longitudinal sulcus, fused to but without a suture between metanotum - mtg I+II) (Figs 81, 82);
- median ridge of abdomen distinctly elevated along midline (flat, not developed), dorsally reflexed vltg VII subrectangular (produced posteriorly, long and acute in male, shorter and acute in female);
- shape of male pygophore pyriform, produced posteriorly (wide and short).

Paralibiocoris gen. n. is very similar to Bruneiaptera Heiss, 2011 from Borneo, sharing basic habitus and dorsal thoracic structures; however, in Brunneiaptera all spiracles (II-VII) are lateral and visible from above.

Description. Apterous, of small size $4.4-5.8 \mathrm{~mm}$; habitus elongate-oval; legs and antennae beset with small setigerous granules; coloration yellowish to reddish or blackish brown.

Head. Subquadrangular, longer or as wide as distance across eyes; clypeus short, genae slightly produced; antenniferous tubercles short with acute apices; antennae long and slender, first and third and second and fourth segments subequal in length, first stout, incrassate, second and third cylindrical, fourth fusiform; eyes small, granulate; postocular tubercles distinct; rostrum arising from a slit-like atrium, not reaching limits of rostral groove.

Thorax. Pronotum short and wide; anterolateral angles produced forward beyond collar forming large blunt or rounded lobes; disc with a median sulcus; separated from mesonotum by a transverse intersegmental furrow; meso- and metanotum separated only laterally, the elevated median ridge smooth without sulcus; lateral sclerites with longitudinal elevations; metanotum separated from fused mtg I+II by a narrow transverse sulcus;

Abdomen. Mtg I and II fused together; mtg III to VI fused into a subquadrangular tergal plate, elevated along midline with usual pattern of large and small callous spots and dots; mtg VII strongly elevated posteriorly in male and slightly elevated in female; pygophore cordate; paratergites VIII clavate or lobiform.

Venter. Prosternum raised and with Y-shaped median carina; meso- and metasternum and sternum II+III fused and flattened medially. Spiracles II ventral, III-VII lateral on dorsally reflexed vltg III-VII and visible from above; spiracle VIII terminal on ptg VIII.

Legs. long and slender, without spine, preapical comb on fore tibia present, femora subcylindrical, claws with fine pulvilli.

Etymology. From "para-" close to (Greek) and Libiocoris.

Key to species Paralibiocoris gen. n. from China.

1 Antennal segment I as long as III 2

- Antennal segment I longer than III 3

Antennae longer, 2.1 times as long as width of head, anterolateral lobes of pronotum narrow and produced (Figs 1, 3), abdomen of female egg shaped, widely rounded (Figs 1, 2); abdomen of male more slender, ratio length of body / width of abdomen 2.15 (Figure 3) and deltg VII angularly produced posterolaterally (Figs 11, 12) \qquad heissi (Bai et al., 2006), comb. n.

- Antennae shorter, approx. 1.9 times as long as width of head, anterolateral lobes of pronotum wider and less produced (Figs 39, 41), abdomen of female evenly rounded (Figs 40, 41), abdomen of male wider, ratio length of body / width of abdomen 2.0 and deltg VII less produced and rounded (Figs 47, 48)
hainanensis sp. \mathbf{n}.
3 Pronotum narrower 2.86 times wider than long, anterolateral lobes widely rounded (Figs 18, 20, 22, 24), median thoracic plate of meso-metanotum wider and lateral borders subparallel basally and at conical anterior part (Figs 18, 20, 22, 24) roundangulus sp. n .
- Pronotum wider, more than three times as wide as long, anterolateral lobes narrower (Figs 60, 62, 64, 66), median thoracic plate of meso- metanotum narrower and distinctly leaf- shaped, diverging posteriorly, apical part attenuated anteriorly (Figs 60, 62, 64, 66)
. limuensis sp. n.

Paralibiocoris heissi (Bai, Yang \& Cai, 2006), comb. n.

Figs 1-17
Libiocoris heissi Bai, Yang \& Cai 2006: 41, figs 1, 3-7 (CAU).
Libiocoris sinensis Bai, Yang \& Cai 2006: 43, figs 2, 8-12 (CAU) syn. n.

Type material. Holotype (q): China, Hainan, Baisha, Yinggeling, 1050 m, 10.IX.2005, L. S. Chen leg. (EMIH). Additional material examined. §, China, Hainan, Baisha,Yinggeling, 950 m, 2.VIII.2007, Bai X.S.; $\widehat{0}$, China, Hainan, Wuzhi mountain, 8.V.2008, Bai X.S.; , China, Hainan, Baisha,Yinggeling, 950m, 2.VIII.2007, Bai X.S.; 2q, China, Hainan, Ledong, Jianfengling, $900 \mathrm{~m}, 21 . \mathrm{VII} .2004$, Wu Jie (EMIH, CAU); J̊, \uparrow China, Baisha, / Yinggeling $1200 \mathrm{~m} / 9^{\circ} 03^{\prime} 16^{\prime \prime} \mathrm{N}, 109^{\circ} 33^{\prime} 53^{\prime \prime} \mathrm{E}$ /2.VIII.2007, Bai X.S. (CEHI ex CAU).

As both taxa were described on single females and males are now available, the holotype of heissi is redescribed and additional features of the male added.

Diagnosis. As generic description.
Redescription. Apterous female, incrustation removed to recognise dorsal structures.
Head. Slightly longer than wide across eyes (1.0/0.9); clypeus short reaching basal one-third of first antennal segment, strongly raised anteriorly, with tubercle near apex; genae slightly produced over clypeus; antenniferous tubercles short, dilated, apices acute, diverging anteriorly; antennae 2.1 times as long as width of head across eyes, length of antennal segments I to IV $=0.65,0.30,0.65,0.30$; eyes small, not protruding; postocular tubercles small but distinct, not reaching outer margin of eyes; pos-

Figures I-4. Paralibiocoris heissi. Holotype female (I, 2) dorsal and ventral view; male $(\mathbf{3}, 4)$ dorsal and ventral view. Scale bar: 1 mm .
tocular borders behind tubercles straight and converging to constricted collar; vertex with Y -shaped granulate carina flanked by $\mathrm{two}(1+1)$ large, ovate infraocular callosities; rostrum short, rostral groove wide and deep, closed posteriorly.

Pronotum. 2.8 times as wide as long (1.4/0.5); collar narrow, anterolateral angles produced forward beyond collar as two (1+1) large, blunt, granulate lobes; disc with a longitudinal median furrow flanked by ovate callosities; posterior margin of pronotum slightly convex posteriorly, separated from mesonotum by a deep furrow.

13

Figures 5-I 7. Paralibiocoris heissi. Holotype female $(\mathbf{5}, \mathbf{6}, \mathbf{9}, \mathbf{1 0})$ dorsal and ventral thorax and abdomen; male $(\mathbf{7}, \mathbf{8}, \mathbf{I I}, \mathbf{I 2})$ dorsal and ventral thorax and abdomen; pygophore dorsal and lateral view $(\mathbf{I 3}, \mathbf{I 4})$; right paramere in three positions ($\mathbf{I 5}, \mathbf{1 6}, \mathbf{I 7}$). Scale bars: $0.5 \mathrm{~mm}(\mathbf{5 - 1 4}), 0.1 \mathrm{~mm}(\mathbf{I 5} \mathbf{- I 7})$.

Mesonotum. Wider than pronotum, separated from metanotum by two (1+1) deep furrows laterally; across meso- and metanota medially with an elongate, subpentagonal bottle-shaped ridge, 1.53 times as long as wide ($0.87 / 0.57$), subrounded anteriorly and truncate posteriorly, smooth and without longitudinal sulcus; lateral of median ridge disc with four $(2+2)$ longitudinal sclerites, lateral margins granulate.

Metanotum. Wider than mesonotum; separated from fused mtg I+II by a slightly sinuate thin sulcus; lateral of median ridge with two $(1+1)$ large subtriangular callosities, $2(1+1)$ longitudinal ridges lateral of callosity discs, lateral margins granulate, similar to those of mesonotum.

Abdomen. Mtg I and II completely fused, depressed at middle, there with a median longitudinal ridge laterally separated by deep furrows from wide oblique lateral plates, sloping posteriorly and sideways, further laterally with two $(1+1)$ large subtriangular depressions; tergal plate with a slightly raised median ridge on mtg III, a pentagonal elevation on mtg IV then tapering posteriorly.

Venter. Sterna III to VI raised along posterior border, depressed along anterior border, and with triangular, smooth spots medially, flanked by two $(1+1)$ large, transversely ovate depressions, these bearing two $(1+1)$ round callous spots; laterally four $(2+2)$ smaller round callous spots present; spiracles II ventral, III-VIII lateral and visible from above.

Legs. Long and slender, without spines, preapical comb on fore tibia present, femora subcylindrical, claws with fine pulvilli.

Male. Morphological features similar to female but of smaller size. Head as long as wide across eyes; median plate of meso- metanotum more elongate 1.82 times as long as wide ($0.73 / 0.40$); mtg VII strongly elevated posteriorly; reflexed vltg VII forming triangular lobes posterolaterally, ventral side with a distinct oblique smooth callus, reaching lateral margin; ptg VIII short and clavate much shorter than cordate pyriform pygophore (Figs 13, 14); parameres slender (Figs 15-17).

Measurements [in mm, $\widehat{o}^{\lambda}(\mathrm{n}=2) / q(\mathrm{n}=3)$, holotype in parentheses]. Body length 4.4-4.45/5.1-5.8 (5.6); maximal width of abdomen 2.05-2.2/2.65-3.05 (3.05). Head length 0.8-0.85/0.9-1.05 (1.0), width 0.8/0.8-0.95 (0.9). Pronotum length $0.4 / 0.45-$ 0.5 (0.5), width 1.15-1.2/1.3-1.45 (1.4). Mesonotum width 1.5-1.6/1.7-1.95 (1.8). Metanotum width 1.8-1.9/2.05-2.3 (2.25). Length of antennal segments I-IV = 0.60, $0.25,0.60,0.30 / 0.6-0.7,0.3-0.35,0.6-0.7,0.3-0.35$ ($0.65,0.30,0.65,0.30$).

Distribution. China (Hainan).
Comments. As the generic characters and diagnosis are valid for all hereafter described new congeneric taxa, common features are not repeated except those differing in structure of thoracic median plate, size, and measurements distinctive for the specific taxa.

Paralibiocoris roundangulus sp. n .

http://zoobank.org/7B6A48C4-B46F-49A5-BE47-635F083B0DFA
Figs 18-38

Type material. Holotype: $\overparen{ }^{\lambda}$, China, Hainan, Jianfeng, Tianchi, 810 m, 16.VIII.2007, Zhang \& Bai (EMIH). Paratypes. 2才, China, Hainan, Jianfeng, Tianchi, 810 m ,

Figures 18-2I. Paralibiocoris roundangulus sp. n. Holotype male (18, 19) dorsal and ventral view; female ($\mathbf{2 0}, \mathbf{2 I}$) dorsal and ventral view. Scale bar: 1 mm .
16.VIII.2007, Zhang \& Bai; đ̂, China, Hainan, Tongzha, Wuzhishan, 6.V.2009, Zhang \& Yang; 2中, China, Hainan, Jianfeng, Beiganxian, 820 m, 9.VIII.2007, Bai, X. S. (EMIH); $3 \AA^{\top}, 3 q$ collected with holotype (CEHI ex CAU).

Diagnosis. General aspect similar to Paralibiocoris heissi, but distinguished from it by a wider pronotum, 2.86 times as wide as long (2.80 in P. heissi), anterolateral lobes

Figures 22-30. Paralibiocoris roundangulus sp. n. Holotype male (22, 23, 26, 27, 30) dorsal and ventral thorax and abdomen; female $(\mathbf{2 4}, \mathbf{2 5}, \mathbf{2 8}, \mathbf{2 9})$ dorsal and ventral thorax and abdomen. Scale bars: $0.5 \mathrm{~mm}(\mathbf{2 2 - 3 0})$.

Figures 31-38. Paralibiocoris roundangulus sp. n. Holotype male (3I) ventral thorax and abdomen; female $(\mathbf{3 2}, \mathbf{3 3})$ dorsal and ventral thorax and abdomen; pygophore dorsal and lateral view $(\mathbf{3 4}, \mathbf{3 5})$; right paramere in three positions ($\mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}$). Scale bars: $0.5 \mathrm{~mm}(\mathbf{3 I} \mathbf{- 3 5}), 0.1 \mathrm{~mm}(\mathbf{3 6 - 3 8})$.
widely rounded (narrow and more produced), shorter antennae 1.79 times as long as width of head (2.1). Paralibiocoris roundangulus sp. n. differs from P. hainanensis sp. n. and P. limuensis sp. n . by a different shape of the median ridge of meso- and metanotum (Figs 22,24) and shorter antennae which are 1.79 times as long as width of head (1.89 and 1.82 respectively).

Description. Male. Basic morphological structures as of P. heissi. Head. As long as wide across eyes ($0.82 / 0.82$); antennae 1.79 times as long as width of head across eyes, length of antennal segments I to $\mathrm{IV}=0.48,0.24,0.44,0.31$.

Pronotum. 2.86 times as wide as long (1.23/0.43); collar narrow; anterolateral angles produced forward beyond collar as two $(1+1)$ widely rounded granulate lobes; disc with a longitudinal median furrow flanked by $2(1+1)$ large, subtriangular and smaller callosities; lateral margin granulate.

Mesonotum. Wider than pronotum (1.60/1.23); separated from metanotum by two ($1+1$) deep furrows laterally; across meso- and metanota medially with an elongate, smooth bottle-shaped plate similar to P. heissi, 1.56 times as long as wide (0.67/0.43).

Metanotum. Wider than mesonotum (1.83/1.60); separated from mtg I by a slightly sinuate thin sulcus.

Abdomen. Mtg I and II completely fused, disc with a wide, smooth rectangular plate at middle flanked by two $(1+1)$ large oblique plates, sloping posteriorly and sideways, laterally with two $(1+1)$ small subtriangular depressions; deltg II and III fused, the following separated by fine sulci; posterolateral angles of deltg V to VII progressively angularly protruding; paratergites clavate, short, not reaching beyond posterolateral angles of deltg VII; pygophore elongate cordate, surface rugose (Figs 34, 35); parameres slender (Figs 36-38).

Venter. Sterna III to VI raised along posterior border, depressed along anterior border, and with triangular, smooth spots medially, flanked by $2(1+1)$ shallow, transversely ovate depressions, these bearing $2(1+1)$ round callous spots; $4(2+2)$ smaller round callous spots present laterally; vltg VII with a small callus near spiracle VII; spiracles II ventral, III-VIII lateral and visible from above.

Female. Morphological features similar to male but of larger size; head slightly longer than wide across eyes ($0.93 / 0.87$); length of antennal segments I to IV $=0.48$, $0.24,0.44,0.31$; pronotum wider than long (1.47/0.43); width of mesonotum 1.90; width of metanotum 2.16, anterior lobe of median plate across meso- and metanota truncate, 1.2 times as long as wide ($0.78 / 0.65$); mtg VII moderately elevated posteriorly, the posterolateral angles forming triangular lobes; ptg VIII lobiform, reaching basal half of segment IX.

Measurements. [in mm, $\widehat{J}(\mathrm{n}=4) / Q(\mathrm{n}=2)$, holotype in parentheses]. Body length 4.1-4.15/4.9-5.1 (4.1); maximal width of abdomen 2.05-2.1/2.55-2.75 (2.1). Head length 0.82/0.9-0.93 (0.82), width 0.82/0.8-0.87 (0.82). Pronotum length 0.43/0.43 (0.43), width 1.23/1.4-1.47 (1.23). Mesonotum width 1.55-1.6/1.85-1.90 (1.60). Metanotum width 1.83-1.9/2.1-2.16 (1.83). Length of antennal segments I$\mathrm{IV}=0.48,0.24,0.44,0.31 / 0.48,0.24,0.44,0.31$ ($0.48,0.24,0.44,0.31$).

Etymology. The name of species refers to the widely rounded anterolateral angles of pronotum.

Distribution. China (Hainan).

Paralibiocoris hainanensis sp. n.

http://zoobank.org/0E59DCF2-1EE8-4D07-90FF-9F14731E277F
Figs 39-59
Type material. Holotype (δ^{\top}): China, Hainan, Jianfeng, Tianchi, 810 m, 16.VIII.2007, Zhang \& Bai; (EMIH). Paratypes: $2 \widehat{ }$, China, Hainan, Changjiang, Bawangling, 13.IX.2008, Zhang W. J.; 2入, 3q China, Hainan, Jianfeng, Tianchi, 810 m , 16.VIII.2007, Zhang \& Bai; 3才, China, Hainan, Tongzha, Wuzhishan, 6.V.2009, Zhang \& Yang; §, China, Hainan, Wanning, Shimeiwan, 12.VIII.2007, Bai, X. S.; q, China, Hainan, Jianfeng, Nanya, 644 m, 22.VIII.2007, Bai, X. S. (EMIH); $2{ }^{\top}, 2 q$ collected with holotype (CEHI ex CAU).

Figures 39-42. Paralibiocoris hainanensis sp. n. Holotype male $(\mathbf{3 9}, \mathbf{4 0})$ dorsal and ventral view; female $(41,42)$ dorsal and ventral view. Scale bar: 1 mm .

Diagnosis. General aspect similar to Paralibiocoris heissi, but distinguished from the latter by the wider pronotum, 2.91 times as wide as long (2.80 in P. heissi) and more rounded less produced anterolateral lobes (produced and blunt), shorter anten-

Figures 43-5I. Paralibiocoris hainanensis sp. n. Holotype male (43, 44, 47, 48, 5 I) dorsal and ventral thorax and abdomen; female $(\mathbf{4 5}, \mathbf{4 6}, \mathbf{4 9}, \mathbf{5 0})$ dorsal and ventral thorax and abdomen. Scale bars: 0.5 mm .

Figures 52-59. Paralibiocoris hainanensis sp. n. Holotype male (52) ventral thorax and abdomen; female $(\mathbf{5 3}, \mathbf{5 4})$ dorsal and ventral thorax and abdomen; pygophore dorsal and lateral view $(\mathbf{5 5}, \mathbf{5 6})$; right paramere in three positions $(\mathbf{5 7}, \mathbf{5 8}, \mathbf{5 9})$. Scale bars: $0.5 \mathrm{~mm}(\mathbf{5 2 - 5 6}), 0.1 \mathrm{~mm}(\mathbf{5 7}-\mathbf{5 9})$.
nae 1.89 times as long as width of head (2.1) and by posterolateral angles of deltg V to VII slightly protruding and rounded in female. Paralibiocoris hainanensis sp. n. differs from P. roundangulus sp . n. and P. limuensis sp . n. by a different shape of the median ridge of meso- and metanotum (Figs 43, 45 vs. Figs 22, 24 and Figs 64, 66, respectively) and antennal segment I as long as III (III shorter than I).

Description. Male. Basic morphological structures as of P. heissi and other congeners. Head. Slightly longer than wide across eyes (0.8/0.78); antennae 1.89 times as long as width of head across eyes, length of antennal segments I to $\mathrm{IV}=0.47$, $0.24,0.47,0.30$.

Pronotum. 2.91 times as wide as long (1.25/0.43); collar narrow; anterolateral lobes produced forward beyond collar as two $(1+1)$ widely rounded granulate lobes; disc with a longitudinal median furrow flanked by $2(1+1)$ large, subtriangular and smaller callosities, lateral margin granulate, converging anteriorly.

Mesonotum. Wider than pronotum (1.60/1.25); separated from metanotum by two ($1+1$) deep furrows laterally; across meso- and metanota medially with an elongate, smooth bottle - shaped plate as P. heissi, 1.63 times as long as wide (0.70/0.43).

Metanotum. Wider than mesonotum (1.80/1.60); separated from mtg I by a slightly sinuate thin sulcus.

Abdomen. Mtg I and II completely fused, disc depressed at middle with a flat rectangular sclerite separated from lateral ovate plates by deep furrows; tergal plate with a slightly elevated granulate ridge which is widest on mtg III, sloping posteriorly; pygophore elongate cordate, surface rugose (Figs 55, 56); parameres slender (Figs 57-59).

Venter. Vltg VII with a small shiny callus, near spiracle VII; spiracles II ventral, III-VIII lateral and visible from above.

Female. Morphological features similar to male but of larger size. Head slightly longer than wide across eyes ($0.80 / 0.78$); length of antennal segments I to IV $=0.46$, $0.27,0.46,0.33$; pronotum wider than long (1.27/0.43); width of mesonotum 1.60; bottle-shaped median thoracic plate 1.56 times as wide as long ($0.67 / 0.43$); width of metanotum 1.93.

Measurements [in mm, $\widehat{\sigma}^{\lambda}(\mathrm{n}=9) / Q(\mathrm{n}=4)$, holotype in parentheses]. Body length 3.65-4.2/4.2-4.55 (4.2); maximal width of abdomen 1.75-2.1/2.2-2.4 (2.1). Head length 0.7-0.8/0.75-0.8 (0.8), width 0.65-0.78/0.7-0.78 (0.78). Pronotum length 0.35-0.43/ 0.4-0.45 (0.43), width 1.05-1.25/1.2-1.3 (1.25). Mesonotum width 1.4-1.6/1.45-1.6 (1.6). Metanotum width 1.5-1.8/1.65-1.9 (1.8). Length of antennal segments I-IV = $0.44-0.47,0.24,0.44-0.47,0.3 / 0.47,0.24-0.27,0.47,0.3-0.34(0.47,0.24,0.47,0.3)$.

Etymology. The name refers to the Island of Hainan, the type locality.
Distribution. China (Hainan).

Paralibiocoris limuensis sp. n.

http://zoobank.org/10341EE3-0E54-4128-880D-304F8D2CD496
Figs 60-80

Type material. Holotype (${ }^{\text {§ }}$): China, Hainan, Limu, Montain, 6.V.2008, Bai, X. S.; (EMIH). Paratypes. 2 § ${ }^{\top}$, China, Hainan, Limu, Montain, 6.V.2008, Bai, X. S.; 2 , China, Hainan, Limu, Montain, 6.V.2008, Bai, X. S. (EMIH).

Diagnosis. General aspect similar to Paralibiocoris heissi, but distinguished from the latter by wider pronotum 3.06 times as wide as long (2.80) and more rounded less produced anterolateral lobes (produced and blunt), shorter antennae 1.82 times as long as width of head (2.1) and by antennal segment I longer than III (of same lengths in heissi). Paralibiocoris limuensis sp. n. differs from P. roundangulus sp. n. and P.hainanensis sp. n. by a wider pronotum (3.06 vs. 2.86 and 2.91 respectively) and a leaf-like shape of the median ridge of meso- and metanotum (Figs 60, 62) and smaller size.

Description. Male. Basic morphological structures as of P. heissi and other congeners. Head. Slightly longer than wide across eyes ($0.75 / 0.68$); antennae 1.82 times as long as width of head across eyes, length of antennal segments I to $I V=0.40,0.20$, $0.37,0.27$.

Figures 60-63. Paralibiocoris limuensis sp. n. Holotype male (60,61) dorsal and ventral view; female $(62,63)$ dorsal and ventral view. Scale bars: 1 mm .

Pronotum. 3.06 times as wide as long (1.13/0.37); collar narrow; anterolateral lobes produced forward beyond collar as two $(1+1)$ widely rounded granulate lobes, lateral margins converging anteriorly; structure of disc as in other congeners.

Mesonotum. Wider than pronotum (1.40/1.13); separated from metanotum by two ($1+1$) deep furrow laterally; across meso- and metanota medially with an elongate, anteriorly tapering leaf-like shaped plate, its surface slightly concave, 1.34 times as long as wide (0.63/0.47).

Figures 64-72. Paralibiocoris limuensis sp. n. Holotype male (64, 65, 68, 69, 72) dorsal and ventral thorax and abdomen; female $(\mathbf{6 6}, \mathbf{6 7}, \mathbf{7 0}, \mathbf{7 I})$ dorsal and ventral thorax and abdomen. Scale bars: 0.5 mm .

Metanotum. Wider than mesonotum (1.6/1.40); separated from mtg I by a slightly sinuate thin sulcus.

Abdomen. Mtg I and II completely fused, disc medially with a barrel-shaped sclerite resembling the leaf-stalk of the leaf - shaped ridge, separated from lateral ovate plates

Figures 73-80. Paralibiocoris limuensis sp. n. Holotype male (73) ventral thorax and abdomen; female $(\mathbf{7 4}, \mathbf{7 5})$ dorsal and ventral thorax and abdomen; pygophore dorsal and lateral view $(\mathbf{7 6}, \mathbf{7 7})$; right paramere in three positions $(\mathbf{7 8}, \mathbf{7 9}, \mathbf{8 0})$. Scale bars: $0.5 \mathrm{~mm}(\mathbf{7 3 - 7 7}), 0.1 \mathrm{~mm}(\mathbf{7 8 - 8 0})$.
by deep furrows; tergal plate with a slightly elevated granulate ridge which is widest on mtg III, sloping posteriorly; pygophore elongate cordate, surface rugose (Figs 76, 77); parameres slender (Figs 78-80).

Venter. Vltg VII with a glabrous callus near spiracle VII; spiracles II ventral, spiracles III-VIII lateral and visible from above.

Female. Morphological features similar to male but of larger size; head slightly longer than wide across eyes ($0.80 / 0.75$); length of antennal segments I to IV $=0.44,0.24$, $0.37,0.27$; pronotum wider than long (1.17/0.40); width of mesonotum 1.6 ; width of metanotum 1.73; lateral margins of leaf-like median plate across meso- and metanota bisinuous, converging anteriorly to narrow apex, ratio length/width as of male (Figure 60); mtg VII moderately elevated posteriorly, surface rugose, posterolateral angles truncate.

Measurements. [in mm, $\delta^{(}(\mathrm{n}=3) / \ell(\mathrm{n}=2)$, holotype in parentheses]. Body length 3.7-3.8/4.2-4.4 (3.8); maximal width of abdomen 1.76-1.9/2.2-2.3 (1.9). Head length $0.7-0.75 / 0.8$ (0.75), width $0.65-0.68 / 0.7-0.75$ (0.68). Pronotum length $0.35-0.37 /$ 0.4-0.45 (0.37), width 1.02-1.13/1.17-1.2 (1.13). Mesonotum width 1.3-1.4/1.5-1.6 (1.4). Metanotum width 1.5-1.6/1.73-1.8 (1.6). Length of antennal segments I-IV = $0.40,0.20,0.37,0.27 / 0.4-0.44,0.20-0.24,0.37,0.27(0.40,0.20,0.37,0.27)$.

Etymology. The name of species reflects the locality of this new taxon.
Distribution. China (Hainan).

Figures 81-86. Libiocoris, habitus dorsal view. L. poecilus holotype male (81); ditto paratype female (82); L. angulatus holotype female (83); L. indicus holotype male (84)(after Heiss, 1982); L. antennatus holotype female (85) (after Usinger \& Matsuda, 1959); L. angulatus holotype female, illustration in Usinger \& Matsuda, 1959 with incorrect scale for antennae (86). Scale bar: 1 mm .

The case of Libiocoris indicus Heiss, 1982

Figure 84
Libiocoris indicus Heiss 1982: 248 (description), figs 3-5 (HNHM, CEHI).
The species was described upon two males and a female from Meghalaya State in the north of India, and shares several morphological characters with Libiocoris (habitus, head and antennae, fusion of thoracic segments) and according to the (misleading) redescription of Libiocoris (based on their new species L. antennatus Usinger \& Matsuda, 1959) also the position of spiracles II-VII placed laterally and visible from above. Due to this similarity it was "tentatively" assigned to Libiocoris.

Re-examination of the paratype male of indicus has shown that it belongs neither to Libiocoris sensu Kormilev, 1957 (abbreviated L below) nor to Paralibiocoris gen. n. (abbreviated P below) showing following set of characters:

Map I. Distribution of Paralibiocoris in China, Hainan Island.

- position of spiracles: II-VII lateral and visible from above (not L, not P);
- fused deltg I+II shorter, reaching laterally only to metanotum (as P, not L);
- distinct glabrous oblique callus on vltg VII of male is lacking (as L , not P);
- fused median thoracic ridge of different shape (not L , not P);
- median thoracic ridge is elevated to sulcus of border metanotum, mtg I+II then sloping posteriorly (as P , not L);
- median ridge of abdomen raised along midline (as P , not L);
- dorsally reflexed vltg VII is subrectangular and not produced (as P, not L);
- shape of pygophore pyriform and produced posteriorly (as P, not L).

The position of spiracles, different from both Libiocoris and Paralibiocoris, is recognized as a diagnostic character used in Aradidae taxonomy for distinguishing genera [e.g., Acaricoris from Kolpodaptera; Parapictinus from Mezira (Usinger \& Matsuda, 1959)] which supports a separate generic category for indicus. As other similar specimens from Vietnam and Japan present in our collections need to be included in a separate study, we refrain here from describing a new genus, but this species should be removed from Libiocoris sensu Kormilev, 1957. Inconsistencies and remarkable differences in the descriptions and illustrations of angulatus, antennatus, lobatus, and pilosus compared with poecilus raise questions about their generic assignment.

Libiocoris Kormilev, 1957

Libiocoris Kormilev, 1957 (1956): 390 (original description).
Type species poecilus by original designation, 391: figs $1-5$ male HT, female AT, New Guinea (LP) HNHM (Figs 81, 82).
Libiocoris antennatus Usinger \& Matsuda, 1958: 181, fig. 53 female HT, New Guinea (LA) MNHUK, PT in CEHI ex. coll. Kormilev (Figure 85).
Libiocoris angulatus Usinger \& Matsuda, 1959: 84, fig. 84 female HT, New Guinea (LG) MCSM.
Libiocoris angulatus Heiss, 1989: 349, figs 12a, b (redescription, correction antennae) (Figs 83, 86).
Libiocoris lobatus Kormilev 1968: 593 (description, no figure), New Guinea (LL); not seen.
Libiocoris pilicornis Kormilev, 1972: 568, figs 9, 9A, New Guinea (LPC); not seen.

Comparison of essential morphological characters and their differences

Anterior extension of fused deltg II + III reaching pronotum.
In LP present in types, not shown in Figure 1 of description; figured in LA, LG, LL?, figured only reaching mesonotum in LPC.

Position of spiracles denoted as + for visible from above and - for not visible. In LP II-III, VI-VII lateral +, IV ventral -, V sublateral -; LA II-VII lateral +; LG II-III lateral +, IV-V sublateral -; LL II-III, V-VIII lateral +, IV-V sublateral -; LPC II-VII lateral +.

Shape of median longitudinal ridge: in LP narrow with furrow; LA narrow with furrow; LG narrow, furrow figured; LL?; LPC posteriorly wider, without furrow.

As none of those female type specimens described after Kormilev's definition of Libiocoris shares all these characters, it is questionable as to what might be a valid character state and what is due to variability, and whether they belong to the same generic category. This question can be resolved when further material will be available for study and barcoding.

Acknowledgments

We sincerely thank Tamás Vásárhelyi and David Redei (HNHM) and Roberto Poggi (MCSM) for the loan of types and the reviewers of the manuscript for their comments. This research is supported the National Natural Science Foundation of China (Nos. 31460573) to XB.

References

Bai X, Yang C, Cai W (2006) First record of the genus Libiocoris Kormilev 1957 (Heteroptera: Aradidae) from China, with the description of two new species. Zootaxa 1370: 39-47.
Heiss E (1982) New and little known Aradidae from India in the Muséum d'Histoire naturelle de Genève (Heteroptera). Revue Suisse de Zoologie 89: 245-267. https://doi.org/10.5962/ bhl.part. 82441
Heiss E (1989) Types of Aradidae (Heteroptera) in the Museo Civico di Storia Naturale "Giacomo Doria" Genova, I. Annali del Museo Civico di Storia Naturale Giacomo Doria 87: 325-371.
Heiss E (2011) Bruneiaptera tarmanni nov. gen., nov. sp., a new apterous Carventinae from Brunei Darussalam (Hemiptera: Heteroptera: Aradidae). Linzer Biologische Beiträge 43(1): 331-336.
Kormilev NA (1957) Notes on Aradidae from the Eastern Hemisphere XI (Hemiptera). On some apterous Mezirinae from New Guinea. The Philippine Journal of Science 85: 389-403.
Kormilev NA (1968) Aradidae in the Bishop Museum, Honolulu, III. (Hemiptera: Heteroptera). Pacific Insects 10: 575-597.
Kormilev NA (1972) Aradidae in the Bishop Museum, Honolulu, VI. (Hemiptera: Heteroptera). Pacific Insects 14: 553-570.
Usinger RL, Matsuda R (1959) Classification of the Aradidae, British Museum (Natural History), London, 410 pp .

A new species of the ant genus Lasius Fabricius, 1804 from Crete (Hymenoptera, Formicidae)

Sebastian Salata', Lech Borowiec ${ }^{\prime}$
I Department of Biodiversity and Evolutionary Taxonomy, University of Wroctaw, Przybyszewskiego 65, 51148 Wroctaw, Poland
Corresponding author: Sebastian Salata (sdsalata@gmail.com)

Academic editor: Brian Fisher | Received 28 May 2018 | Accepted 7 August 2018 | Published 10 October 2018
http://zoobank.org/0E40808C-D9E6-43D6-AA8E-D17DD66B63A8
Citation: Salata S, Borowiec L (2018) A new species of the ant genus Lasius Fabricius, 1804 from Crete (Hymenoptera, Formicidae). ZooKeys 789: 139-159. https://doi.org/10.3897/zookeys.789.27022

Abstract

Lasius tapinomoides sp. n. from Crete, Greece, is described and illustrated. It belongs to L. turcicus complex and is well characterized by very small body, extremely shallow metanotal groove and presence of suberect to erect setae on the apical part of scape. New records of Cretan members of the genus Lasius Fabricius, 1804 are provided, their checklist is updated, and the key to their determination is presented.

Keywords

Endemic species, Greece, Lasius, Mediterranean

Introduction

The genus Lasius Fabricius, 1804 is widely distributed throughout the Holarctic. Within its range, it is one of the most abundant of all Formicidae genera and its species are very often dominants of local myrmecofauna (Janda et al. 2004). Forty-three Lasius species are known from Europe and Mediterranean area (Borowiec 2014, Talavera et al. 2015, Seifert and Galkowski 2016), divided in five subgenera (Maruyama et al. 2008). The most numerous is the nominotypical subgenus Lasius s. str. Ruzsky, 1913 - 23 spe-
cies, followed by Chthonolasius Ruzsky, 1913-13 species, Cautolasius Wilson, 1955 - 3 species, Dendrolasius Ruzsky, 1913-2 species, and Austrolasius Faber, 1967-2 species (Borowiec 2014, Talavera et al. 2015, Seifert and Galkowski 2016). Most of these species are characterised by possessing a wide geographical range. Only a few representatives of the subgenus Lasius s. str. are known from narrow area and could be considered as endemic species. Among these are Lasius karpinisi Seifert, 1992, known from Mt. Timfristos in the Greek mainland, Lasius balearicus Talavera, Espadaler \& Vila, 2015 described from Mallorca and Lasius casevitzi Seifert \& Galkowski, 2016 inhabiting Corsica.

Crete, as one of the largest Mediterranean islands, with very diverse, mountainous landscape (Grove and Rackham 1993), has poorly known myrmecofauna and requires more detailed study. Based on the literature, seven Lasius species are known from this island (Forel 1886, 1889, 1910, Neuenschwander et al. 1983, Legakis 2011, Borowiec and Salata 2012). However, presence of some of them requires confirmation. During our fieldwork, performed in different parts of Crete, new ant material was collected. Together with material deposited in the Natural History Museum of Crete it was used to review Cretan Lasius species. As results of this research a new species has been discovered and few other species have been recognised as new records for Crete. Below we describe Lasius tapinomoides, a new Cretan endemic, provide detailed occurrence data of other Cretan Lasius species, and present an identification key.

Materials and methods

Ants were sampled between 2007 and 2014 from sites in different parts of Crete. The method was direct sampling (hand collecting). Individual specimens and nests were collected on the ground, in leaf litter and rock rubble, under stones and tree trunks. All specimens were preserved in $75 \% \mathrm{EtOH}$. Study was supported with material deposited in the Natural History Museum of Crete (Iraklion, Greece).

Examined specimens are housed in the following collections:
BMNH Natural History Museum, London;
DBET Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Poland;
HNHM Hungarian National History Museum, Budapest, Hungary;
MSNG Museo Civico di Storia Naturale, Genova, Italy;
NHMB Naturhistorisches Museum Basel, Switzerland;
NHMC Natural History Museum of Crete, Iraklion;
SMNG Senckenberg Museum für Naturkunde Görlitz, Görlitz, Germany.
Specimens were compared using standard methods of comparative morphology. Photos were taken using a Nikon SMZ 1500 stereomicroscope, Nikon D5200 photo camera, and Helicon Focus software.

All given label data are in original spelling, presented in quotation marks; a slash (/) separates data on different rows and double slash (//) separate labels.

Specimens of Lasius tapinomoides sp. n. were compared with all other known Cre\tan species of the genus Lasius and type material of members of the Lasius alienus group listed below. Type specimens photographs of the Lasius alienus group members are available online on AntWeb (www.AntWeb.org) and are accessible using the unique CASENT or FOCOL identifying specimen code. Moreover, we compared them with samples of members of the Lasius alienus group from other Greek regions. Data concerning distribution of Greek Lasius samples used in the comparison is provided in series of regional checklists (Borowiec and Salata 2012, 2013, 2014, 2017a,b, 2018, Bračko et al. 2016). Therefore, we see no reason to repeat this information. The list of Cretan Lasius species, together with their occurrence data on the island is provided below. This study was also supported by data published in recent revisions of Lasius s. str. (Seifert 1992, Talavera et al. 2015, Seifert and Galkowski 2016).

We decided to list all other ant species collected from the same localities where the new species has been found. In our opinion it provides valuable information about ecosystem structure and species diversity characteristic for habitats preferred by this species. Distribution maps of all recorded Lasius species were created in DivaGis 7.5 (Hijmans et al. 2011).

Measurements:

EL eye length; measured along the maximum vertical diameter of eye;
EW eye width; measured along the maximum horizontal diameter of eye;
HL head length; measured in straight line from mid-point of anterior clypeal margin to mid-point of posterior margin; the head must be carefully tilted to the position with the true maximum; excavations of posterior margin reduce HL;
HTL hind tibia length; maximum length of hind tibia;
HW head width; measured in full-face view directly above the eyes;
ML mesosoma length; measured as diagonal length from the anterior end of the neck shield to the posterior margin of the propodeal lobe;
PNW pronotum width; maximum width of pronotum in dorsal view;
SL maximum straight-line scape length excluding the articular condyle.

Indices:

HI	HW/HL * 100;	EI1	EW/EL * $100 ;$
SI1	SL/HL * 100;	EI2	EW/HL * 100;
SI2	SL/HW * 100;	TI	HW/HTL 100.
MI	HTL/ML * $100 ;$		

Abbreviations:
q. gyne;
w. worker.

Pilosity inclination degree applies to this used in Hölldobler and Wilson (1990). The adpressed $\left(0-5^{\circ}\right)$ hairs run parallel, or nearly parallel to the body surface. Decumbent hairs stand $10-15^{\circ}$, subdecumbent hair stands 30°, suberect hairs stand $35-45^{\circ}$, the erect hairs stand more than 45° from the body surface.

Type material of taxa compared with Lasius tapinomoides sp. n.

Lasius alienus (Foerster, 1850), neotype (w.) (FOCOL0754): "GER: Eifel, 7.9.1991 / 37km SE Aachen / Schleiden / leg. Seifert // Formica aliena / Förtser 1850 / Neotype / des B. Seifert 1992" (SMNG);
L. austriacus Schlick-Steiner, Steiner, Schödl \& Seifert, 2003, paratype (w.) (CASENT0916646): "\#11055: Feldberg near / Pulkau, Austria ($15^{\circ} 51^{\prime} \mathrm{E} / \mathrm{/}$ $48^{\circ} 40^{\prime} \mathrm{N}$), $360 \mathrm{~m} /$ a.s.l., 06.08.2002. // leg. B.C. Schlick-Steiner \& / F.M Steiner // Lasius austriacus / Schlick-Steiner / 2003 / PARATYPE" (HNHM); paratype (q.) (CASENT0916647): "\#11055: Feldberg near / Pulkau, Austria ($15^{\circ} 51^{\prime} \mathrm{E} / / 48^{\circ} 40^{\prime} \mathrm{N}$), $360 \mathrm{~m} /$ a.s.l., 06.08.2002. // PARATYPE / Lasius austriacus / design. Schlick-Steiner, Steiner / Schödl \& Seifert 2003" (HNHM);
L. neglectus Van Loon, Boomsma \& Andrasfalvy, 1990, paratype (w.) (CASENT0903220): "Lasius neglectus // HUNGARY / Budapest / 1.VII. 88 / JJ. Boomsma // ANTWEB / CASENT / 0903220 // BMNH(E) / 1016243 // PARA- / TYPE" (BMNH);

Lasius paralienus Seifert, 1992, paratype (w.) (FOCOL0751): "Germania: Kr. Bautzen / 2 km S Weißenberg; N066 / 11.7.1991, leg. Seifert // Lasius paralienus / Seifert / Holotypus" (SMNG);

Lasius psammophilus Seifert, 1992, holotype (w.) (FOCOL0752): "GER: Kr Weißwasser / 4 km N Steinbach: N 135 / 30.7.1991 leg. Seifert // Lasius psammophilus / Seifert / Holotype" (SMNG);

Lasius turcicus Santschi, 1921, lectotype (w.) (CASENT0912297): "Lasius / turcicus / Santschi / Type / SANTSCHI det. 1920 // lectotype / desig. by / E. O. Wilson // Asie min. / Angora / G. d. Kerville // Sammlung / Dr. F. Santschi / Kairouan // ANTWEB / CASENT / 0912297" (NHMB).

Results

Lasius tapinomoides sp. n.

http://zoobank.org/412DD1F4-21DA-4A85-B4CB-5031FC049560
Figs 1-7

Type material. Holotype (w.): "Lasius / tapinomoides sp. nov. / HOLOTYPE // Collection L. Borowiec / Formicidae / LBC-GR00976 // GREECE, Crete, Rethymno Pr. / Antonios Spilia Gorge / $35^{\circ} 15.245$ N, $24^{\circ} 34.220$ E / 11 V 2013, $342 \mathrm{~m} /$

Table I. Measurements and indices: L. tapinomoides and L. turcicus.

Measurements and indices	L. tapinomoides $\mathbf{N}=\mathbf{1 0}$	L. turcicus $\mathbf{N}=\mathbf{1 0}$
HL	$0.707 \pm 0.02(0.679-0.749)$	$0.891 \pm 0.06(0.782-0.983)$
HW	$0.578 \pm 0.03(0.525-0.637)$	$0.798 \pm 0.06(0.682-0.905)$
SL	$0.668 \pm 0.02(0.625-0.715)$	$0.836 \pm 0.04(0.743-0.95)$
EL	$0.179 \pm 0.008(0.167-0.19)$	$0.214 \pm 0.012(0.201-0.235)$
EW	$0.132 \pm 0.004(0.123-0.136)$	$0.157 \pm 0.015(0.123-0.184)$
ML	$0.791 \pm 0.04(0.726-0.827)$	$1.06 \pm 0.08(0.935-1.18)$
HTL	$0.709 \pm 0.02(0.682-0.76)$	$0.892 \pm 0.05(0.799-0.961)$
PNW	$0.417 \pm 0.018(0.38-0.447)$	$0.558 \pm 0.04(0.48-0.631)$
HI	$81.8 \pm 3.3(73.4-85.0)$	$90.2 \pm 1.8(87.2-92.8)$
SI1	$94.5 \pm 1.5(91.4-96.3)$	$93.9 \pm 2.9(87.8-98.7)$
SI2	$115.7 \pm 4.4(112.2-127.6)$	$104.7 \pm 3.6(97.3-109.3)$
MI	$89.0 \pm 3.1(84.8-95.5)$	$84.5 \pm 3.0(81.1-91.9)$
EI1	$74.0 \pm 3.6(68.7-80.2)$	$73.3 \pm 4.6(61.2-78.3)$
EI2	$18.9 \pm 0.9(17.0-19.9)$	$17.8 \pm 1.3(15.0-19.8)$
TI	$82.0 \pm 2.6(75.8-85.2)$	$89.2 \pm 2.2(85.4-93.8)$

L.Borowiec // CASENT0845075" (DBET); paratypes (6w.,1q.): data same as holotype, CASENT0845076 to CASENT0845082 (DBET, NHMC, NHMB); paratypes (15w.), CASENT0845460 to CASENT0845474: "GREECE, Crete, Rethymno Pr. / Kato Malaki / 35.28333 N,24.4 E / 15 V 2013, $235 \mathrm{~m} / \mathrm{L}$. Borowiec" (DBET, NHMC, BMNH).

Non-type material. 2w. (pin): "Collection L. Borowiec / Formicidae / LBCGR00467 // GREECE, W Crete, 339 m / Plemeniana n. Kandanos / 35.31666 N,23.71666 E / 2 V 2011, L. Borowiec (DBET); 1w. (pin): Collection L. Borowiec / Formicidae / LBC-GR01420 // GREECE, Crete, Rethymno / Orthes Gorge, 318 m / 35.3336 N,24.6848 E / 28 IV 2014, S. Salata" (DBET); 2w. (pin): "Collection L. Borowiec / Formicidae / LBC-GR00993 // GREECE, Crete, Rethymno / n. Argioupolis / 35.28333 N, 24.33333 E / 13 V 2013, 197 m / L. Borowiec" (DBET); 1w. (pin): "GREECE, Crete, Rethymno Pr. / Preveli Beach / 35.16666 N,24.46666 E / 7 V 2013, $10 \mathrm{~m} / \mathrm{L}$. Borowiec" (DBET); 7w. (pin): "GREECE, Crete, Rethymno Pr. / Road to Preveli Beach loc. $1 / 35.16666$ N, 24.45 E / 7 V 2013, 58 m / L. Borowiec" (DBET; 12w. (EtOH), Crete, Lasithi Prov., Gorge of Richtis, 35.16667N, 25.98333E, 245m, 08.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Orthes Gorge, 35.3336N,24.6848E, 318 m, 28.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Antonios Spilia Gorge, $35^{\circ} 15.245 \mathrm{~N}, 24^{\circ} 34.220$, $342 \mathrm{~m}, 11$.v.2013, leg. S. Salata (DBET); 5w. (EtOH), road to Preveli Beach loc. 1, 35.16666N,24.45E, 58m, 7.v.2013, leg. S. Salata (DBET).

Etymology. The name refers to the similarity of this species to species of the Tapinoma genus, caused by a very shallow metanotal groove.

Description. Worker.
Measurements: see Table 1.
Head, mesosoma, petiole and gaster uniformly coloured, brown to dark brown. Antennae, tibiae and tarsi bright brown to orange (Figs 1-4).

Figures I-2. Lasius tapinomoides sp. n., holotype. I Lateral view 2 Dorsal view. Scale bar: 0.5 mm .

Head oval, 1.2 times as wide as long, lateral surfaces above eyes convex, occipital margin of head slightly convex (Figs 3-4). Clypeus shiny and smooth, its anterior margin convex, lacking median anterior notch, covered with sparse, decumbent to erect pubescence, average distance between setae longer than three fourths of their length.

Figures 3-5. Lasius tapinomoides sp. n. $\mathbf{3}$ Holotype, head with antennae $\mathbf{4}$ Holotype, head $\mathbf{5}$ Gyne, head. Scale bar: 0.5 mm .

Masticatory border of mandibles with 7-8 teeth. Eyes medium-sized, oval, 0.25 times as long as length of the head. Antennal scape long, straight or slightly curved on its anterior part, 0.9 times as long as length of the head, exceeding beyond occipital margin of head, in apex gradually widened. Pedicel more than 2.0 times longer than wide, average 2.5 times longer than second segment of funiculus. Other funicular segments from 1.5 to 2.0 times longer than wide (Figs 3-4). Surface of scape with very fine microreticulation, shiny. Its surface covered with thin, dense, adpressed setae, on its apical part several suberect setae also occur.

Genae with few adpressed to suberect setae (Figure 3). Underside of head with thin, dense, adpressed setae and a few long, suberect to erect setae (Figure 1). Whole frontal head surface covered with short, adpressed and dense pubescence and sparse, long, thick suberect to erect setae, the distance between setae at least as long as three fourths of their length (Figs 3-4).

Figures 6-7. Lasius tapinomoides sp. n., gyne. 6 Lateral view $\mathbf{7}$ Dorsal view. Scale bar: 0.5 mm

Mesosoma short, 1.9 times as long as wide. In lateral view, promesonotum low and flattened, metanotal groove very shallow, propodeum very low, propodeal dorsum slightly convex, propodeal declivity convex, less than twice length of propodeal dorsum (Figure 1). Whole mesosoma surface shiny with sparse microreticulation, covered with short, adpressed and dense pubescence, and sparse, long, thick suberect to erect setae, the distance between setae at least as long as half of their length, metapleuron below the level of the propodeal spiracle with more than 5 setae (Figs 1-2).

Petiole scale low, in lateral view with slightly convex sides, its dorsal crest thick and arched (Figure 1). Gaster with very rare and fine microreticulation, shiny, bearing pilosity similar to this covering mesosoma. Legs long, shiny, with fine microreticulation. Surface of tibia and femora with thin, dense, adpressed to subdecumbent setae, extensor profile without erect setae (Figs 1-2).

Description. Gyne.
Measurements and Indices ($\mathrm{n}=1$): HL: 1.03; HW: 1.2; SL: 0.9; EL: 0.3; EW: 0.24; ML: 2.3; HTL: 1.3; PNW: 1.4; HI: 116.5; SI1: 87.4; SI2: 75; MI: 56.5; EI1: 80; EI2:23; TI: 92.

Head, mesosoma, petiole and gaster dark brown. Antennae, tibiae and tarsi bright brown to orange (Figs 5-7).

Head trapezoidal, 1.1 times as wide as long, lateral surfaces above eyes convex, sides of occipital margin of head slightly convex, its central part concave (Figure 5). Clypeus shiny and smooth, its anterior margin convex, lacking median anterior notch, covered with decumbent to erect setae, average distance between setae longer than one third of their length. Masticatory border of mandibles with seven teeth. Eyes mediumsized, oval, 0.3 times as long as length of the head. Antennal scape short, curved on its anterior part, 0.9 times as long as length of the head, slightly exceeding beyond occipital margin of head, in apex gradually widened. Pedicel more than 2.0 times longer than wide, 2.0 times longer than second segment of funiculus. Other funicular segments from 1.5 to 2.0 times longer than wide (Figure 5). Surface of scape with very fine microreticulation, shiny. Its surface covered with thin, dense, adpressed to decumbent pubescence, on its apical part a few short, suberect setae also occur. Genae with thin, dense adpressed pubescence and a few suberect setae (Figure 5). Underside of head with thin, dense, adpressed pubescence and a few long, suberect setae (Figure 6). Whole frontal head surface covered with short, adpressed and dense pubescence and sparse, long, thick suberect to erect setae, the distance between setae at least as long as three fourths of their length (Figs 5-6).

Mesosoma long, 1.6 times as long as wide. In lateral view moderately high, its dorsum slightly convex, propodeal dorsum slightly convex, propodeal declivity convex (Figure 6). Whole mesosoma surface shiny with very sparse microreticulation, covered with short, adpressed and dense pubescence, and sparse, long, thick suberect to erect setae, the distance between setae at least as long as half of their length (Figs 6-7).

Petiole scale low and wide, in lateral view with slightly convex sides, its dorsal crest wide and deeply concave in central part. Gaster with moderately thick and fine microreticulation, shiny, bearing pilosity denser than this covering mesosoma. Legs long, shiny, with fine microreticulation. Surface of tibia and femora with thin, dense, adpressed to subdecumbent setae, extensor profile of tibia with erect setae (Figs 6-7).

Differential diagnosis. Worker. As a member of the L. alienus group it is characterized by dorsal plane of scape, genae, and extensor profile of hind tibiae lacking or having very few erect or suberect setae and, in all species known from Crete, presence of >15 erect setae on the occipital edge of the head. Within the L. alienus group
it can be classified to the L. turcicus complex. This complex can be characterized by small number of mandibular teeth (6-8), usually lack of suberect setae on hind tibia, very sparse clypeal pubescence, and more or less shallow metanotal groove. There are three known species of this complex: L. turcicus, L. neglectus and L. austriacus. Lasius tapinomoides sp. n. differs from all of them in presence of suberect to erect setae on antennal scape covering its apical part (ca. 1/3 upper part of the scape). Additionally from first two relatives it differs also in very shallow metanotal groove and from L. austriacus it differs in more flattened promesonotum, antennal sockets set not very close to posterior clypeal margin and habitat preferences. Lasius austriacus is related with xerothermous sites (Schlick-Steiner et al. 2003, Steiner et al. 2004) while L. tapinomoides inhabits moist, closed canopy forests.

There are two other species of the L. alienus group known from Crete: L. bombycina Seifert \& Galkowski, 2016 and L. turcicus Santschi, 1921. Lasius tapinomoides differs from all of them in very small body size. Nevertheless, at the first glance it can be confused with small workers of L. turcicus, from which it differs in the following measurements (L. tapinomoides sp. n. vs L. turcicus): HI: 81.8 ± 3.3 (73.4-85.0) vs 90.2 ± 1.8 (87.2-92.8), SI2: $115.7 \pm 4.4(112.2-127.6)$ vs 104.7 ± 3.6 (97.3-109.3), TI: 82.0 ± 2.6 ($75.8-85.2$) vs TI: 89.2 ± 2.2 ($85.4-93.8$). For more measurements data see Table 1.

Gyne. During our fieldwork we could observe several gynes of L. tapinomoides and all detected nests were monogynous. Unfortunately, we were able to collect only a single specimen, therefore we provide very scarce data. As a coherent differential diagnosis is impeded, we decided to limit it to the most visible difference. Based on the morphology, L. tapinomoides differs from L. turcicus, L. austriacus and L. neglectus in presence of erect setae on tibiae.

General distribution. Greece: Crete - endemic species.
Biology. Species inhabiting moist, closed canopy forests, which are most often located in stream valleys. Nesting in wet soil, under shallow and small rocks. Nests, most often, located in the vicinity of water sources. Workers were found in the litter or on the rocks surrounding the nest entrance. Colonies monogynous.

The following ant species were recorded in the same areas as L. tapinomoides:
Antonios Spilia Gorge: Aphaenogaster cecconii Emery, A. rugosoferruginea Forel, A. simonellii Emery, Camponotus candiotes Emery, C. lateralis (Olivier), Crematogaster ionia Forel, Messor wasmanni Krausse, Pheidole cf. pallidula, Stigmatomma denticulatum Roger, Temnothorax ariadnae Csősz, Heinze \& Mikó, T. cf. graecus, T. cf. exilis, T. cf. luteus, Tetramorium caespitum (Linnaeus), T. diomedeum Emery;

Plemeniana n. Kandanos: Aphaenogaster rugosoferruginea, A. simonellii, Camponotus candiotes, C. gestroi Emery, C. lateralis, Colobopsis truncata (Spinola), Crematogaster cf. ionia, Lasius lasioides (Emery), Messor ibericus Santschi, Tetramorium caespitum;

Orthes Gorge: Aphaenogaster cecconii, A. cf. subterranea, A. simonellii, Camponotus baldaccii Emery, C. candiotes, C. jaliensis Dalla Torre, C. kiesenwetteri (Roger), C. rebeccae Forel, Crematogaster sordidula (Nylander), Lasius lasioides, Lepisiota nigra Dalla Torre, Messor cf. muticus, M. wasmanni, Tetramorium cf. caespitum, T. kephalosi Salata \& Borowiec
n. Argioupolis: Aphaenogaster cecconii, A. rugosoferruginea, A. simonellii, Camponotus candiotes, C. lateralis, Crematogaster cf. ionia, Lepisiota nigra, Messor cf. muticus, M. wasmanni, Pheidole cf. pallidula, Plagiolepis pallescens sensu Radchenko, Temnothorax cf. luteus, T. ariadnae, T. cf. exilis, T. cf. graecus, Tetramorium cf. caespitum;

Preveli Beach: Aphaenogaster cecconii, Crematogaster ionia, Lasius psammophilus Seifert, Lepisiota melas (Emery), Pheidole cf. pallidula, Tapinoma festae Emery, Tetramorium kephalosi;
road to Preveli Beach loc. 1: Aphaenogaster rugosoferruginea, A. simonellii, Camponotus baldaccii, C. candiotes, C. gestroi, C. kiesenwetteri, C. lateralis, Cardiocondyla mauritanica Forel, Crematogaster cf. ionia, Cryptopone ochracea (Mayr), Lasius lasioides, L. bombycina Seifert \& Galkowski, L. psammophilus, Lepisiota nigra, Messor ibericus, M. wasmanni, Pheidole cf. pallidula, Plagiolepis pallescens sensu Radchenko, Temnothorax cf. luteus, T. cf. graecus, T. recedens (Nylander), Tetramorium cf. caespitum;

Kato Malaki: Aphaenogaster simonellii, Camponotus baldaccii, C. gestroi, C. jaliensis, Crematogaster cf. ionia, Crematogaster sordidula, Messor ibericus, M. wasmanni, Pheidole cf. pallidula, Plagiolepis pallescens sensu Radchenko, Temnothorax ariadnae, T. recedens, Tetramorium diomedeum, Tetramorium punctatum Santschi;

Gorge of Richtis: Aphaenogaster rugosoferruginea, Camponotus candiotes, C. gestroi, C. lateralis, Crematogaster sordidula, Lasius lasioides, Messor wasmanni, Temnothorax cf. exilis, T. cf. graecus, Tetramorium cf. caespitum.

Comments. We examined several hundred specimens of Lasius turcicus from 76 samples across Greece and western Turkey (including initial nest samples), also numerous samples from Crete (see new material listed below). In none of these samples did we find specimens with such a shallow metanotal groove like in L. tapinomoides. This character is constant in all examined specimens and is always correlated with very small body size of workers and preference to humid habitats. Across all the sampled area within Greece and Turkey, where we collected species of the L. turcicus complex, we have not found workers or nests with workers similar to L. tapinomoides. Moreover, L. tapinomoides is the only known member of the L. turcicus complex that have suberect to erect setae on the apical $1 / 3$ part of the antennal scape. This has prompted us to hypothesize that Cretan samples represent a new species.

New records of Cretan members of the genus Lasius

Lasius bombycina Seifert \& Galkowski, 2016

GREECE, Crete: $2 \mathrm{w}(\mathrm{EtOH})$, Omalos, $35.31667 \mathrm{~N}, 23.9 \mathrm{E}, 1122 \mathrm{~m}, 03 . \mathrm{v} .2014$, leg. S. Salata (DBET); 4w. (pin), 03.v.2011, Omalos Plateau, 35.33333N, 23.88333E, 1034 m, leg. L. Borowiec (DBET); 1w. (EtOH), Potamida n. Mythimna, $35.46666 \mathrm{~N}, 23.68333 \mathrm{E}, 37 \mathrm{~m}, 02 . \mathrm{v} .2011$, leg. L. Borowiec (DBET); 1w. (pin), W of Georgioupoli, $35.36666 \mathrm{~N}, 24.25 \mathrm{E}, 17 \mathrm{~m}, 02 . \mathrm{v} .2007$, leg. L. Borowiec (DBET); 8w. (EtOH), Zaros Lake, 35.13333N,24.9E, 409 m, 26.iv.2014, leg. S. Salata
(DBET); 3w. (EtOH), Kato Symi loc. 3, 35.05N, 25.48333E, 818 m, 16.iv.2014, leg. S. Salata (DBET); 4w. (EtOH), Lasithi Platou - Plati, 35.16667N, 25.43333E, 831 m, 01.v.2014, leg. S. Salata (DBET); 2w. (EtOH), Orino, 35.06667N, 25.9E, 523 m, 12.iv.2014, leg. S. Salata (DBET); 2w. (pin), Ag. Joannis Forest loc. 1, $35.23333 \mathrm{~N}, 24.4 \mathrm{E}, 448 \mathrm{~m}, 06 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (pin), Ampelakiou, $35.26666 \mathrm{~N}, 24.46666 \mathrm{E}, 464 \mathrm{~m}, 10 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (EtOH), Fourfouras, $35.21666 \mathrm{~N}, 24.71666 \mathrm{E}, 578 \mathrm{~m}, 14 . \mathrm{v} .2013$, leg. S. Salata (DBET); 5w. (EtOH), n. Velonado, 35.25N,24.36667E, $373 \mathrm{~m}, 13 . v .2013$, leg. S. Salata (DBET); 2w. (EtOH), n. Vilandredo, 35.25N,24.31667E, 354 m, 13.v.2013, leg. S. Salata (DBET); 2w. (EtOH), road to Preveli Beach loc. 1, 35.16666N, 24.45E, 58 m, 7.v.2013, leg. S. Salata (DBET); 3w. (EtOH), Selli-Oros rd., 35.28333N, 24.5E, 473 m, 11.v.2013, leg. S. Salata, (DBET); 1w. (pin), Spili-Gerakari rd. loc. 2, $35.21987 \mathrm{~N}, 24.57144 \mathrm{E}, 804 \mathrm{~m}, 09 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (EtOH), Asi Gonia, 35.25N, 24.26667E, 716 m, 29.v.2001, leg. S. Salata (DBET); 1w. (EtOH), Niato plateau, 35.28333N,24.13333E, $1200 \mathrm{~m}, 19 . v i i .2013$, leg. S. Salata (DBET); 1w. (EtOH), Therisso to Kaloros Mt., 35.35N,23.95E, 1130 m., 31.xii.2013, leg. Simaiakis (NHMC); 1w. (EtOH), Therisso to Kaloros Mt., 35.3667N, 23.9833E, 1134 m., 19.Vii.2013, leg. Simaiakis (NHMC); 1w. (EtOH), Diplori, 35.1667N, 24.9333E, 1350 m., 19.x.1999, leg. Nikolakakis (NHMC); 1w. (EtOH), Dikti Mt., 35.11667N,25.4667E, 1450 m., 9.i.2001, leg. Simaiakis (NHMC); 1w. (EtOH), Tigania, $35.28333 \mathrm{~N}, 24.7333 \mathrm{E}, 1100 \mathrm{~m}$. , 7.iv.2000, leg. Nikolakakis (NHMC).

Lasius myops Forel, 1894

GREECE, Crete: 3w. (pin), 3w. (EtOH), Anopoli, 35.26667N, $24.06667 \mathrm{E}, 1780 \mathrm{~m}$, 22.vii.2006, leg. Chatzaki M. (NHMC, DBET).

Lasius illyricus Zimmermann, 1935

GREECE, Crete: 6w. (pin), Limnakarou platou, 35.13333N,25.46667E, $1130 \mathrm{~m}, ~ 26 . i v .2014$, leg. S. Salata (DBET); 6w. (EtOH), Limnakarou platou, $35.13333 \mathrm{~N}, 25.46667 \mathrm{E}, 1130 \mathrm{~m}, 10 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 2w. (EtOH), Dikti mt., 35.1N,25.46667E, 1750 m, 05.viii.2000, leg. M. Chatzaki (NHMC).

Lasius lasioides (Emery, 1869)

GREECE, Crete: 1w. (pin), Agia, 6 km SW Chania, $35.46666 \mathrm{~N}, 23.91666 \mathrm{E}, 22 \mathrm{~m}$, 03.v.2011, leg. L. Borowiec (DBET); 5w. (pin), Askifou, 35.26666N, 24.16666E, 730 m, 01.v.2007, leg. L. Borowiec \& M.L. Borowiec (DBET); 7w. (EtOH), Diktamos Gorge n. Stilos, $35.43333 \mathrm{~N}, 24.1 \mathrm{E}, 160 \mathrm{~m}, 04 . \mathrm{v} .2011$, leg. L. Borowiec (DBET); 3w. (EtOH), Kalives river, $35.45 \mathrm{~N}, 24.13333 \mathrm{E}, 26 \mathrm{~m}, 01 . v .2014$, leg. S. Salata (DBET); 1w. (pin), Kourna Lake, 35.31666 N, $24.28333 \mathrm{E}, 95 \mathrm{~m}, 03 . \mathrm{v} .2007$, leg. L. Borowiec \& M.L. Borowiec (DBET); 1w. (pin), Koutsomatados-Mili rd., 35.38333N,23.66666E,

308 m, 02.v.2011, leg. L. Borowiec (DBET); 2w. (EtOH), Omalos, 35.31667N, 23.9E, 1122 m, 03.v.2014, leg. S. Salata (DBET); 1w. (pin), Plemeniana n. Kandanos, $35.31666 \mathrm{~N}, 23.71666 \mathrm{E}, 339 \mathrm{~m}, 02 . \mathrm{v} .2011$, leg. L. Borowiec (DBET); 4w. (EtOH), Potamida n. Mythimna, 35.46666N,23.68333E, 37 m , 02.v.2011, leg. L. Borowiec (DBET); 17w. (EtOH), Therisso Gorge, 35.43333N, 23.98333E, 320 m, 01.v.2011, leg. L. Borowiec (DBET); 3w. (EtOH), Ganies-Kalamaki road, 35.28333N, 24.93333E, $439 \mathrm{~m}, 16 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 3w. (EtOH), Iraklion city-walls, $35.31667 \mathrm{~N}, 25.11667 \mathrm{~N}, 46 \mathrm{~m}, 03 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 3w. (EtOH), Kastelli 1 km E, $35.2 \mathrm{~N}, 25,33333 \mathrm{E}, 363 \mathrm{~m}, 15 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 6w. (EtOH), Katofigi, 35.08333N,25.4E, 560 m, 12.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Miamou, 34.96667N,24.93333E, $494 \mathrm{~m}, 24 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 2w. (EtOH), Rouvas Forest loc. 1, 35.15N, 24.93333, 1316 m, 10.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Rouvas Gorge, 35.13333N, 24.9E, 455 m, 26.iv.2014, leg. S. Salata (DBET); 5w. (EtOH), Xanias-Miliarades road, $35.08333 \mathrm{~N}, 25.38333 \mathrm{E}, 504 \mathrm{~m}$, 13.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Dead's Gorge, $35.08333 \mathrm{~N}, 26.25 \mathrm{E}$, 15 m , 09.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Gorge of Richtis, $35.16667 \mathrm{~N}, 25.98333 \mathrm{E}, 245 \mathrm{~m}, 08 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 4w. (EtOH), Hristos-Mathokotsana road, 35.08333N,25.56667E, 703 m, 11.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Kalami-Psari Forada road, $35.016667 \mathrm{~N}, 25.48333$, $419 \mathrm{~m}, 12 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 5w. (EtOH), Kato Symi loc. 1, 35.05N,25.48333E, 1206 m, 12.iv.2014, leg. S. Salata (DBET); 5w. (EtOH), Lasithi Platou - Pinakiano, 35.18333N,25.45E, $806 \mathrm{~m}, 23 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 3w. (EtOH), Lastros, 35.13333N, 25.88333E, 336 m, 06.iv.2014, leg. S. Salata (DBET); 10w. (EtOH), Limnakarou plato, $35.13333 \mathrm{~N}, 25.46667 \mathrm{E}, 1130 \mathrm{~m}$, 26.iv.2014, leg. S. Salata (DBET); 1w. (EtOH), Merisini, 35.16667N, 25.9333E, 309 m , 06.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Mesa Lasithi, 35.16667N, 25.5E, 838 m, 28.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Moni Kapsa, 35.01667N, 26.05E, $1 \mathrm{~m}, 10 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 3w. (EtOH), Neapoli-Vrisses road, 35.2333N,25.6E, $443 \mathrm{~m}, 05 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 2w. (EtOH), PermaKoutounari road, $35.01667 \mathrm{~N}, 25.83333 \mathrm{E}, 0 \mathrm{~m}, 11 . \mathrm{iv} .2014$, S. Salata (DBET); 2w. (EtOH), Schinokapsala-Agios Ioannis road, 35.05N,25.85, $452 \mathrm{~m}, 10 . i v .2014$, leg. S. Salata (DBET); 3w. (EtOH), Tourloti-Mirsini road, 35.15N,25.93333E, 266 m, 06.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Voila, 35.08333N, 26.1E, 578 m, 10.iv.2014, leg. S. Salata (DBET); 12w. (EtOH), Ag. Joannis Forest loc. 2, $35.23333 \mathrm{~N}, 24.4 \mathrm{E}, 480 \mathrm{~m}, 06 . \mathrm{v} .2013$, leg. S. Salata (DBET); 2w. (EtOH), Chromonastiri, $35.326944 \mathrm{~N}, 24.510278 \mathrm{E}, 262 \mathrm{~m}, 10 . \mathrm{v} 2013$, leg. S. Salata (DBET); 1w. (EtOH), Katsifou Gorge, 35.2N,24.38333E, 57 m, 05.v.2013, leg. S. Salata (DBET); 5w. (EtOH), Kissos, $35.18333 \mathrm{~N}, 24.56667 \mathrm{E}, 623 \mathrm{~m}, 09 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (pin), Klisidi, 35.26666N,24.63333E, $642 \mathrm{~m}, 06 . v .2013$, leg. L. Borowiec (DBET); 4w. (EtOH), n. Velonado, 35.25N, 24.36667E, $373 \mathrm{~m}, 13 . \mathrm{v} .2013$, leg. S. Salata (DBET); 1w. (EtOH), n. Vilandredo, 35.25N, 24.31667E, 354 m, 13.v.2013, leg. S. Salata (DBET); 3w. (EtOH), Orthes Gorge, 35.33333N, 24.68333, 318 m, 28.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Plakias, 35.191389N, 24.395E,

4 m, 05.v.2013, leg. S. Salata (DBET); 41w. (EtOH), Plakias; Akrotiri Kakomouri, $35.16667 \mathrm{~N}, 24.398055 \mathrm{E}, 28 \mathrm{~m}, 05 . \mathrm{v} .2013$, leg. S. Salata (DBET); 1w. (pin), road to Preveli Beach loc. 1, $35.16666 \mathrm{~N}, 24.45 \mathrm{E}, 58 \mathrm{~m}, 07 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (pin), Spili, $35.21666 \mathrm{~N}, 24.53333 \mathrm{E}, 537 \mathrm{~m}, 09 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (pin), Vistagi, 35.23333N, 24.68333E, $563 \mathrm{~m}, 06 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 1w. (pin), Xirokambos, $35.110556 \mathrm{~N}, 24.558889 \mathrm{E}, 24 \mathrm{~m}, 12 . \mathrm{v} .2013$, leg. L. Borowiec (DBET); 3w. (EtOH), Kournas lake, 35.31667N,24.26667E, 30 m, 10.vii.1997, leg. P. Lymberakis (NHMC); 1w. (EtOH), Kardaki, 650 m, 35.2N,24.61667E, 21.vii.1999, leg. E. Nikolakakis (NHMC).

Lasius psammophilus Seifert, 1992

GREECE, Crete: 4w. (EtOH), Agia Triada n. Kalamaki, 35.0508N,25.7542E, 1 m, 28.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Moni Kapsa, 35.01667N,26.05E, 1 m, 24.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Episkopi beach, 35.35N, 24.35E, 0 m, 09.iv.2014, leg. S. Salata (DBET); 1w. (pin), Gerakari, 35.21666N, $24.58333 \mathrm{E}, 751 \mathrm{~m}$, 09.v.2013, leg. L. Borowiec (DBET); 1w. (pin), Plakias, 35.191389N,24.395E, 4 m, 05.v.2013, leg. L. Borowiec (DBET); 4w. (pin), Preveli Beach, $35.154444 \mathrm{~N}, 24.472778 \mathrm{E}$, 10 m, 07.v.2013, leg. L. Borowiec (DBET); 1w. (EtOH), Irakleio, 35.33333N, 25.13333E, $10 \mathrm{~m}, ~ 18 . i x .2010$, leg. E. Panagiotou (NHMC); 2w. (EtOH), Chamaitoulo, 35.03333N,26.2E, 06.v.2001, 180 m, leg. E. Nikolakakis (NHMC).

Lasius turcicus Santschi, 1921

GREECE, Crete: $3 \mathrm{w} .(\mathrm{EtOH})$, Kalives river, $35.45 \mathrm{~N}, 24.13333 \mathrm{E}, 26 \mathrm{~m}, 03 . \mathrm{v} .2014$, leg. S. Salata (DBET); 13w. (EtOH), Kato Daratso n. Chania, 35.5N, 23.983333E, 35-40 m, 07.v.2011, leg. L. Borowiec (DBET); 4w. (pin), Koutsomatados-Mili rd., $35.38333 \mathrm{~N}, 23.66666 \mathrm{E}, 308 \mathrm{~m}, 02 . \mathrm{v} .2011$, leg. L. Borowiec (DBET); 1w. (pin), Potamida n. Mythimna, $35.46666 \mathrm{~N}, 23.68333 \mathrm{E}, 37 \mathrm{~m}, 02 . \mathrm{v} .2011$, leg. L. Borowiec (DBET); 1w. (pin), Agia Triada n. Kalamaki, $35.0508 \mathrm{~N}, 25.7542 \mathrm{E}, 1 \mathrm{~m}, 24 . i v .2014$, leg. S. Salata (DBET); 2w. (EtOH), Agios Eirini, 35.26667N,25.15E, 130 m, 02.iv.2014, leg. S. Salata (DBET); 4w. (EtOH), Avgeniki, 35.18333N, 25.01667E, $227 \mathrm{~m}, ~ 03 . v .2014$, leg. S. Salata (DBET); 3w. (EtOH), Kastelli 1 km E, $35.2 \mathrm{~N}, 25.33333 \mathrm{E}, 363 \mathrm{~m}, 16 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 5w. (EtOH), Katofigi, $35.08333 \mathrm{~N}, 25.4 \mathrm{E}, 560 \mathrm{~m}, 13 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 2w. (EtOH), Panastros, $35.11667 \mathrm{~N}, 24.98333 \mathrm{E}, 545 \mathrm{~m}, 03 . \mathrm{v} .2014$, leg. S. Salata (DBET); 5w. (EtOH), Sfendili, 35.25N,25.38333E, 151 m, 06.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Stoli-Louves road, $35.03333 \mathrm{~N}, 25.01667 \mathrm{E}, 197 \mathrm{~m}, 30 . \mathrm{iii} .2014$, leg. S. Salata (DBET); 2w. (EtOH), Xanias-Miliarades road, 35.08333N, 25.38333E, $504 \mathrm{~m}, ~ 25 . i v .2014$, leg. S. Salata (DBET); 3w. (EtOH), Dead's Gorge, 35.08333N,26.25E, 15 m , 09.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Hametoulo, 35.05N, 26.18333E, 520 m, 12.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Kalamafka, 35.06667N, 25.65E, 472 m, 12.iv.2014, leg. S. Salata (DBET); 6w. (EtOH), Lasithi Platou - Pinakiano,
8 \qquad

Figure 8. Distribution of L. tapinomoides sp. n. on Crete.
35.18333N,25.45E, 806 m, 28.iv.2014, leg. S. Salata (DBET); 2w. (EtOH), Praisos, $35.11667 \mathrm{~N}, 26.06667 \mathrm{E}, 193 \mathrm{~m}, 11 . \mathrm{iv} .2014$, leg. S. Salata (DBET); 6w. (EtOH), Ag. Joannis forest loc. $1,35.23333 \mathrm{~N}, 24.4 \mathrm{E}, 448 \mathrm{~m}, 06 . v .2013$, leg. S. Salata (DBET); 2w. (EtOH), Chromonastiri, $35.326944 \mathrm{~N}, 24.510278 \mathrm{E}, 262 \mathrm{~m}, 10 . \mathrm{v} .2013$, leg. S. Salata (DBET); 3w. (EtOH), Frati, 35.2N, 24.46666E, 297 m, 7.v.2013, leg. S. Salata (DBET); 2w. (EtOH), Kissos, 35.18333N, 24.56667E, 623 m, 09.v.2013, leg. S. Salata (DBET); 1w. (EtOH), Kissou Kambros, 35.16666N,24.55E, 514 m, 14.v.2013, leg. S. Salata (DBET); 3w. (EtOH), Palelimnos, 35.3N,24.41666E, 262 m, 15.v.2013, leg. S. Salata (DBET); 4w. (EtOH), Plakias, 35.191389N,24.395E, 4 m, 05.v.2013, leg. S. Salata (DBET); 5w. (EtOH), road to Nida platou, 35.25N,24.88333E, 1166 m, 01.iv.2014, leg. S. Salata (DBET); 3w. (EtOH), Setoures, 35.26667N, 24.38333E, 305 m, 15.v.2013, leg. S. Salata (DBET); 2w. (EtOH), Vistagi, 35.23333N, 24.68333E, 563 m, 16.v.2013, leg. S. Salata (DBET); 1w. (EtOH), Agia lake, 35.46667N, 23.93333E, $40 \mathrm{~m}, ~ 08 . v i i .1997$, leg. P. Lymberakis (NHMC); 2w. (EtOH), Almyros river, $35.33469 \mathrm{~N}, 25.05441 \mathrm{E}, 297 \mathrm{~m}, ~ 03 . v i .2012$, leg. E. Aspradaki (NHMC); 1w. (EtOH), Aposelemis, $35.33333 \mathrm{~N}, 25.33333 \mathrm{E}, 7 \mathrm{~m}, 02 . \mathrm{viii} .2000$, leg. A. Trichas (NHMC); 1w. (EtOH), Dikti mt., 35.11667N,25.46667, 1450 m, 05.viii.2000, leg. S. Simaiakis (NHMC); 2w. (EtOH), Dikti mt., $35.1 \mathrm{~N}, 25.46667 \mathrm{E}, 1750 \mathrm{~m}$, 10.v.2001, leg. M. Chatzaki (NHMC); 2w. (EtOH), Before Amygdali after Neapoli, $35.2 \mathrm{~N}, 25.58333 \mathrm{E}, 561 \mathrm{~m}, 06 . v i i i .1997$, leg. I. Stathi (NHMC); 1w. (EtOH), Agios Titos, $35.18333 \mathrm{~N}, 24.75 \mathrm{E}, 1000 \mathrm{~m}, 14 . \mathrm{iv} .2000$, leg. M. Papadimitrakis (NHMC); 1w. (EtOH), Ano Meros, $35.16667 \mathrm{~N}, 24.65 \mathrm{E}, 750 \mathrm{~m}, 15 . \mathrm{iv} .2000$, leg. I. Stathi (NHMC); 3w. (EtOH), Garazo, 35.33333N,24.78333E, 100 m, 07.iv.2000, leg. E. Nikolakakis (NHMC); 1w. (EtOH), Tigania, 35.28333N,24.73333, 1100 m, 07.iv.2000, leg. E. Nikolakakis (NHMC).

9 \qquad

Figure 9. Distribution of L. bombycina Seifert \& Galkowski on Crete.

10

Figure 10. Distribution of L. myops Forel on Crete.

11

Figure I I. Distribution of L. illyricus Zimmerman on Crete.

12

Figure I2. Distribution of L. lasioides (Emery) on Crete.

13 \qquad
Figure 13. Distribution of L. psammophilus Seifert on Crete.

Figure 14. Distribution of L. turcicus Santschi on Crete.

Figures 15-20. Lateral view. $1 \mathbf{5}$ Lasius myops Forel 16 L. lasioides (Emery) $\mathbf{1 7}$ L. illyricus Zimmerman 18 L. psammophilus Santschi 19 L. turcicus Santschi $\mathbf{2 0}$ L. bombycina Seifert \& Galkowski.

Figures 21-25. Head and scapus. 21 L. lasioides (Emery) 22 L. illyricus Zimmerman 23 L. turcicus Santschi 24 L. bombycina Seifert \& Galkowski 25 L. psammophilus Santschi.

Key to Cretan Lasius species (based on the worker caste)

1. Maxillary palps short, not reaching midpoint between mouth and occipital foramen, body yellow to orange (Fig. 15)............................. L. myops Forel

- Maxillary palps long, distinctly reaching beyond midpoint between mouth and occipital foramen, body brown to black or bicoloured (Figs 1, 16-20) 2

2. Scape, genae and hind tibiae only with perfectly adpressed pubescence, without setae, occipital margin of head usually with 8 erect setae at most (Fig. 21)
L. lasioides (Emery)

- Scape, genae and hind tibiae often with occasional setae, pubescence not perfectly adpressed, occipital margin of head with more than 8 erect setae (Figs 22-25)3

3. Scape with few (>5) erect setae, body bicoloured, hind tibiae with numerous erect setae, mesosoma brighter than head and gaster (Figs 17, 22)
L. illyricus Zimmerman

- Scape without or with maximum 5 erect setae, hind tibiae without or with a few erect setae, body uniformly coloured or head and mesosoma uniformly coloured, brighter than gaster (Figs 18-20, 23-25). 4

4. Clypeus with dense pubescence, average distance between setae 3.5 times shorter than their length (Fig. 24).........L. bombycina Seifert \& Galkowski

- Clypeus with sparse pubescence, average distance between setae equal or longer than a half of their length (Figs 3-4, 23, 25) 5
5 Workers small, ML $0.726-0.827 \mathrm{~mm}$, mesosoma with very shallow metanotal groove, apical part of scape with >5 suberect to erect setae (Figs 1-4)
L. tapinomoides sp. n.
- Workers larger, ML $0.935-1.18 \mathrm{~mm}$, metanotal groove distinct, apical part of scape without or with <5 suberect to erect setae (Figs 18-19, 23, 25) 6
6 Metanotal groove relatively shallow, propodeal dorsum flattened, hind tibia usually without suberect setae, number of mandibular dents < 7.7 (Fig. 19) .
L. turcicus Santschi
- Metanotal groove deeper and sharp, propodeal dorsum convex, hind tibia with few suberect setae, number of mandibular dents >7.7 (Fig. 18)
L. psammophilus Santschi

Discussion

Based on the literature (Forel 1886, 1889, 1910, Neuenschwander et al.1983, Legakis 2011, Borowiec and Salata 2012) there are 7 Lasius species reported from Crete: L. alienus, L. brunneus (Latreille), L. niger (Linnaeus), L. paralienus Seifert, L. lasioides, L. psammophilus, and L. turcicus, all members of the subgenus Lasius s. str. Our study confirmed the presence of the last 3 listed species and shown 4 species new for Cretan fauna: L. bombycina, L. myops, L. illyricus and L. tapinomoides, the latter being endemic to Crete and new to science. The first records of L. alienus and L. niger come from literature pub-
lished in the $19^{\text {th }}$ century (Forel 1886, 1889). Seifert (1992) proved that Crete is beyond the range of occurrence of these species, thus those records probably refer to L. bombycina or L. psammophilus. Based on most recent revisions (Seifert 1992, Seifert and Galkowski 2016) Lasius brunneus and L. paralienus should be also excluded from the list of Cretan species. On Crete they are replaced by L. lasioides and L. bombycina respectively. Lasius myops and L. illyricus were recorded on Crete only from high mountains (above 1000 m a.s.l.). These two species are common on Greek mainland, and most often were recorded from lower altitudes. Cretan record of L. illyricus is so far the southernmost known place of occurrence of this species. It is worth noting that all Lasius species known from Crete manifest independent colony foundation. The updated list of Cretan Lasius is as follows: L. bombycina, L. myops, L. illyricus, L. lasioides, L. psammophilus, L. tapinomoides, and L. turcicus, six members of Lasius s. str. and one representative of Cautolasius.

Acknowledgements

Lech Borowiec would like to thank Jolanta Świętojańska (University of Wrocław) for her assistance during field trips. The authors wish also to thank the curator of NHMC entomological collection Dr. Apostolos Trichas and the NHMC technician Mrs. Ljubica Kardaki for their support and kind assistance during work on the NHMC ant collection. We would like to thank also G. Bračko, X. Espadaler, C. Karaman and one anonymous reviewer for their valuable comments and suggestions.

References

AntWeb (2018) AntWeb. http://www.antweb.org [Accessed 19 June 2018]
Borowiec L (2014) Catalogue of ants of Europe, the Mediterranean Basin and adjacent regions (Hymenoptera: Formicidae). Genus (monograph) 25: 1-340.
Borowiec L, Salata S (2012) Ants of Greece - checklist, comments and new faunistic data (Hymenoptera: Formicidae). Genus 23: 461-563.
Borowiec L, Salata S (2013) Ants of Greece - additions and corrections (Hymenoptera: Formicidae). Genus 24: 335-401.
Borowiec L, Salata S (2014) Redescription of Camponotus nitidescens Forel, 1889, new status and notes on ants from Kefalonia, Greece (Hymenoptera: Formicidae). Genus 25: 499-517.
Borowiec L, Salata S (2017a) New records of ants (Hymenoptera: Formicidae) from Sterea Ellas, Greece. Acta Entomologica Silesiana 25(online 020): 1-3.
Borowiec L, Salata S (2017b) Ants of the Peloponnese, Greece (Hymenoptera: Formicidae). Polish Journal of Entomology 86(3): 193-236. https://doi.org/10.1515/pjen-2017-0013
Borowiec L, Salata S (2018) New records of ants (Hymenoptera: Formicidae) from Epirus, Greece. Acta Entomologica Silesiana 26(online001): 1-22.

Bračko G, Kiran K, Karaman C, Salata S, Borowiec L (2016) Survey of the ants (Hymenoptera: Formicidae) of the Greek Thrace. Biodiversity Data Journal 4(e7945): 1-44.
Forel A (1886) Nouvelles fourmis de Grèce récoltées par M. E. von Oertzen. Annales de la Société Entomologique de Belgique 30: clix-clxviii.
Forel A (1889) [1888] Ameisen aus den Sporaden, den Cykladen und Griechenland gesammelt 1887 von Herrn v. Oertzen. Berliner Entomologischer Zeitschrift 32(2): 255-265.
Forel A (1910) Glanures myrmécologiques. IV. Fourmis de Crète. Annales de la Société Entomologique de Belgique 54: 21-23.
Grove AT, Rackham O (1993) Threatened landscapes in the Mediterranean: examples from Crete. Landscape and Urban Planning 24: 279-292. https://doi.org/10.1016/0169-2046(93)90107-O
Hijmans RJ, Guarino L, Mathur P, Jarvis A, Rojas E (2011) DIVA-GIS. Version 7.5. 0.0.
Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA, 732 pp. https://doi.org/10.1007/978-3-662-10306-7
Janda M, Folková D, Zrzavý J (2004) Phylogeny of Lasius ants based on mitochondrial DNA and morphology, and the evolution of social parasitism in the Lasiini (Hymenoptera: Formicidae). Molecular phylogenetics and evolution 33(3): 595-614. https://doi. org/10.1016/j.ympev.2004.07.012
Legakis A (2011) Annotated list of the ants (Hymenoptera, Formicidae) of Greece. Hellenic Zoological Archives 7: 1-55.
Maruyama M, Steiner F, Stauffer C, Akino T, Crozier RH, Schlick-Steiner BC (2008) A DNA and morphology based phylogenetic framework of the ant genus Lasius with hypotheses for the evolution of social parasitism and fungiculture. BioMed Central Evolutionary Biology 8: e237.
Neuenschwander P, Bigler F, Delucchi V, Michelakis S (1983) Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt. Tephritidae) in Western Crete. I. Bionomics and phenologies. Bollettino del Laboratorio di Zoologia Generale e Agraria 40: 3-32.
Schlick-Steiner B, Steiner F, Schodl S, Seifert B (2003) Lasius austriacus sp. n., a Central European ant related to the invasive species Lasius neglectus. Sociobiology 41(3): 725-736.
Seifert B (1992) A taxonomic revision of the Palaearctic members of the ant subgenus Lasius s. str. (Hymenoptera, Formicidae). Abhandlungen und Berichte des Naturkunde museums Görlitz 66: 1-67.
Seifert B, Galkowski C (2016) The Westpalaearctic Lasius paralienus complex (Hymenoptera: Formicidae) contains three species. Zootaxa 4132(1): 44-58. https://doi.org/10.11646/ zootaxa.4132.1.4
Steiner FM, Schlick-Steiner BC, Schödl S, Espadaler X, Seifert B, Christian E, Stauffer C. (2004) Phylogeny and bionomics of Lasius austriacus (Hymenoptera, Formicidae). Insectes Sociaux 51(1): 24-29. https://doi.org/10.1007/s00040-003-0699-8
Talavera G, Espadaler X, Vila R (2015) Discovered just before extinction? The first endemic ant from the Balearic Islands (Lasius balearicus sp. nov.) is endangered by climate change. Journal of Biogeography 42(3): 589-601. https://doi.org/10.1111/jbi. 12438

[^0]: Copyright Bernhard A. Huber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

