Research Article
Print
Research Article
First record of the flat-skulled woolly bat Kerivoula depressa and the Indochinese woolly bat K. dongduongana (Chiroptera, Vespertilionidae) in China
expand article infoXiaoling Liang, Huixian Xie, Yannan Li, Zhenglanyi Huang, Song Li§, Yi Wu, Wenhua Yu
‡ Guangzhou University, Guangzhou, China
§ Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
Open Access

Abstract

Recent studies have revealed that the Kerivoula depressa complex should be divided into two species, K. depressa distributed mainly in Myanmar, Vietnam, Laos and Cambodia, and K. dongduongana found only in the Annamite Mountains of Vietnam, Laos and Cambodia. In November 2018 and April 2019, 24 woolly bats were collected by two-band harp traps in Xishuangbanna, Yunnan, China. Based on morphological, morphometric, and phylogenetic (COI, Cytb, and RAG2 gene sequences) analyses, these bats were identified as K. depressa and K. dongduongana, representing two new species records for the country. Including the new records, six Kerivoula species have been recorded in China, namely K. depressa, K. dongduongana, K. furva, K. kachinensis, K. picta and K. titania. To facilitate their identification and biological research in the future, we have provided an up-to-date key to all Kerivoula species occurring in China.

Keywords

COI, Cytb, Kerivoula dongduongana, morphology, morphometric analyses, new records, phylogenetic inferences, RAG2, Yunnan

Introduction

The genus Kerivoula (Gray, 1842) contains 27 species in the Indomalaya-Australasia and Afrotropic ecozones (Wilson and Mittermeier 2019). Among these, Kerivoula hardwickii (sensu stricto) (Horsfield 1824), the most widespread species of the genus has long been treated as a species complex, with up to six recognized subspecies (Ellerman and Morrison-Scott 1951; Hill 1965; Corbet and Hill 1992). Because of the lack of comparative material, Corbet and Hill (1992), Sinha (1999), and Simmons (2005) did not acknowledge any subspecies of K. hardwickii. Subsequently, Bates et al. (2007) divided the species into two morphological types, K. hardwickii (with domed skull) and K. depressa (Miller, 1906) (with flattened skull). However, molecular phylogenies indicate that the taxonomy and systematics of the K. hardwickii complex are still ambiguous because of the occurrence of multiple divergent lineages (Francis et al. 2007, 2010; Khan et al. 2010; Douangboubpha et al. 2016; Nguyen et al. 2016). Recent genetic analyses revealed that K. depressa can be divided into two distinct clades (Kuo et al. 2017). Tu et al. (2018) described K. depressa and K. dongduongana (Tu et al. 2018) based on phylogenetic analyses using COI, Cytb, and RAG2 sequences from newly obtained specimens and those from previous studies across the Indo-China Peninsula and the Philippines (Hoofer et al. 2003; Stadelmann et al. 2004; Francis et al. 2010; Khan et al. 2010; Wu et al. 2012; Kruskop 2013; Kuo et al. 2014; Kuo et al. 2017). Currently, the K. hardwickii complex contains five species: K. hardwickii (sensu stricto), K. kachinensis (Bates et al., 2004), K. furva (Kuo et al., 2017), K. depressa, and K. dongduongana (Kuo et al. 2017; Tu et al. 2018).

In China, four species of woolly bats from the genus Kerivoula have been recorded, including K. picta (Pallas, 1767), K. furva, K. kachinensis, and K. titania (Bates et al., 2014) (Wu et al. 2012; Kuo et al. 2017; Tu et al. 2018; Yu et al. 2018; Wilson and Mittermeier 2019; Yu et al. 2022). In November 2018 and April 2019, a series of chiropteran surveys were conducted in the southwestern region of Yunnan Province, and 24 Kerivoula individuals were sampled. Based on morphology, morphometric analyses, and phylogenetic inferences using COI, Cytb, and RAG2 sequences, they were identified as K. depressa and K. dongduongana, which represent two new records of Kerivoula in China. In this paper, we provided details about these findings, new distribution information and an up-to-date key to identify all Kerivoula species occurring in China.

Materials and methods

Specimen sampling and morphological measurements and analyses

In November 2018 and April 2019, 24 Kerivoula bats were collected using two-band harp traps during field surveys in Xishuangbanna Tropical Botanical Garden, Yunnan, China (21°57'17"N, 101°15'26"E and 21°30'58"N, 101°30'38"E). All field survey and sample collection protocols complied with the current laws of Yunnan Province, China. We followed the guidelines of the American Society of Mammalogists (Sikes 2016) for the care and use of animals. All voucher specimens were determined to be adults based on the degree of epiphyseal-diaphyseal fusion (Brunet-Rossinni and Wilkinson 2009). The specimens were preserved in 75% ethanol and deposited at the School of Life Sciences, Guangzhou University, China.

External and skull measurements were taken with a digital caliper to the nearest 0.01 mm following Bates and Harrison (1997) and Bates et al. (2004). Body mass was measured with an electronic scale. Twenty-four adult specimens were examined using six external and eight craniodental measurements following Tu et al. (2018) and Yu et al. (2018), and further morphometric analyses were performed using 20 specimens (Table 1). We conducted a principal component analysis (PCA) and discriminant analysis of principal components (DAPC) of craniodental measurements using the R Core Team (2013) and R add-in packages: psych (Revelle 2013), ade4 (Dray et al. 2007), adegenet (Jombart 2008), FactoMineR (Le et al. 2008), and ggplot2 (Wickham 2016).

Phylogenetic inference

We followed the DNA extraction, amplification, and sequencing procedures according to Yu et al. (2022). Three gene sequences from all 24 voucher Kerivoula specimens were obtained (GenBank accession numbers: COI: OM716930OM716952; Cytb: OM735691OM735714; RAG2: OM735715OM735736). These sequences were compared with 87 COI, 38 Cytb, and 28 RAG2 sequences of the subfamily Kerivoulinae from NCBI nucleotide databases and with the three outgroup species, including Myotis muricola (Gray, 1846), Harpiocephalus harpia (Temminck, 1840), and Murina cyclotis (Dobson, 1872) (Hoofer et al. 2003; Khan et al. 2010; Ruedi et al. 2012). Newly generated and downloaded sequences are detailed in Appendix 1. The final matrices of COI, Cytb, and RAG2 contained 110 taxa and 734 bp, 62 taxa and 1220 bp, and 50 taxa and 1267 bp, respectively. We inferred phylogenetic relationships using both Bayesian and maximum likelihood (ML) approaches. Sequences were aligned with MUSCLE (Edgar 2004). Bayesian analyses were performed using MrBayes v.3.2.7 (Ronquist et al. 2012), and the best-fitting models of sequence evolution were selected by MrModeltest v.2.4 (Nylander 2004) using the Akaike information criterion (GTR+I+G for COI, HKY+I+G for Cytb, HKY+G for RAG2). Four independent Markov chains were run, and 10,000,000 Metropolis-coupled Markov Chain Monte Carlo generations with sampling every 1000 generations were set. The first 25% samples were discarded. ML analyses were performed in IQ-TREE (Minh et al. 2020) with the best model setting in ModelFinder (Kalyaanamoorthy et al. 2017) using Bayesian information criterion (TPM2+F+I+G4 for COI and Cytb, HKY+F+R2 for RAG2).

Results

Morphological examination

Kerivoula depressa is a moderate-sized species with a forearm (FA) length of 30.75 ± 1.08 mm. Ears are small and rounded, and the posterior margin of the pinnae has a deep, smoothly concave emargination just below the apex. Overall pelage color is buff brown to dark brown. The lower part of ventral hair is dark brown, whereas its tip is light brownish yellow. Dorsal fur is of black base but with dark brown tip (Fig. 1A–C). The domed skull is small, with the greatest length of 13.75 ± 0.17 mm. The mid-portion of the braincase exceeds the frontal region in height. Its lateral profile is flattened from the rostrum to the forehead. A sagittal crest is not evident, and the lambdoid crests are relatively weak. The dental formula is I 2/3, C 1/1, P 3/3, M 3/3. The second upper incisor (I3) is about half of the first upper incisor (I2) in height, and the latter is one half the height of the upper canine. The third upper premolar (P4) is distinctly higher than the anterior two. The third upper molar (M3) is degenerated. The crown area of the first and second lower molars is approximately equal and slightly larger than the last molar (M3).

Figure 1. 

Photographs of K. depressa (A–C voucher GZHU 19202, male) and K. dongduongana (D–F voucher GZHU 19198, female) representing their lateral view (A, D), ventral pelage (B, E) and dorsal pelage (C, F).

Kerivoula dongduongana, with FA of 34.02 ± 0.94 mm, is slightly larger than K. depressa. Its ears are rounded with a tiny, smooth depression near the tip. Kerivoula dongduongana is obviously yellower than K. depressa in pelage coloration (Fig. 1D–F). The ventral pelage is golden brown, and the base and middle portions are medium brown with golden-brown tips. The dorsal pelage is dark brown with golden-brown tips. Craniodental features are similar to K. depressa, but K. dongduongana is characterized by a flatter and longer skull (Fig. 2C, G; Table 1).

Table 1.

External and craniodental measurements (mm) and body mass (g) of studied Kerivoula species, and variable loadings on principal components (PCs) and contribution of original variables in discriminant functions (DFs).

Characters Kerivoula depressa Kerivoula dongduongana
Yunnan, China Vietnam and Cambodia Yunnan, China Vietnam and Cambodia PC1 PC2 DF1 DF2
(This study) Tu et al. 2018 (This study) Tu et al. 2018
Mean ± SD (n) (Range) Mean ± SD (n) (Range) Mean ± SD (n) (Range) Mean ± SD (n) (Range)
MASS 3.53±0.49 (12) (3.00–4.50) 4.05±0.25 (12) (3.50–4.40) 4.50 (1)
HB 36.88±2.31 (12) (32.99–39.74) 38.43±2.84 (12) (34.40–42.75)
TL 39.13±1.35 (12) (36.68–41.49) 39.97±1.90 (12) (37.20–44.50) 38.00 (1)
E 11.55±0.91 (12) (9.96–13.15) 12.05±0.89 (12) (10.83–14.04)
HF 6.98±0.65 (12) (6.09–7.83) 7.57±0.48 (12) (7.00–8.43)
FA 30.75±1.08 (12) (28.82–32.29) 32.08±0.15 (4) (32.00–32.30) 34.02±0.94 (12) (32.56–35.86) 32.00±1.73 (3) (30.00–33.00)
TIB 15.95±0.44 (12) (15.38–16.61) 16.37±0.58 (11) (15.70–17.44) 18.00 (1)
GTL 13.75±0.17 (10) (13.57–14.08) 13.65±0.27 (5) (13.34–13.98) 14.28±0.30 (10) (13.71–14.59) 13.51±0.38 (7) (12.70–13.79) 0.98 –0.14 0.21 0.01
CCL 12.14±0.17 (10) (11.88–12.43) 12.51±0.23 (5) (12.17–12.75) 12.79±0.31 (10) (12.34–13.43) 12.43±0.36 (7) (11.68–12.76) 0.95 –0.24 0.41 0.13
M3–M3 4.90±0.16 (10) (4.70–5.16) 5.09±0.16 (5) (4.84–5.24) 5.12±0.14 (10) (4.92–5.37) 4.99±0.17 (7) (4.70–5.15) 0.97 –0.02 0.04 0.01
ZB 7.95±0.18 (10) (7.71–8.35) 8.22±0.21 (5) (7.89–8.45) 8.29±0.35 (10) (7.63–8.67) 8.18±0.24 (7) (7.72–8.49) 0.98 –0.10 0.05
GBB 6.99±0.11 (10) (6.85–7.15) 7.12±0.05 (5) (7.06–7.19) 6.99±0.11 (10) (6.85–7.15) 7.14±0.20 (7) (6.73–7.31)
BH 4.91±0.10 (10) (4.74–5.06) 4.97±0.16 (5) (4.86–5.25) 4.47±0.29 (10) (3.98–4.97) 4.81±0.20 (7) (4.57–5.13) 0.60 0.80 0.29 0.75
C1–M3 5.11±0.09 (10) (4.94–5.22) 5.37±0.13 (5) (5.17–5.49) 5.23±0.14 (10) (5.00–5.50) 5.25±0.13 (7) (5.06–5.45) 0.97 0.07 0.04
ML 9.17±0.28 (10) (8.61–9.56) 9.52±0.21 (5) (9.17–9.75) 9.46±0.29 (10) (8.97–9.88) 9.42±0.26 (7) (9.00–9.78) 0.98 0.02 0.06
C1–M3 5.47±0.14 (10) (5.26–5.65) 5.71±0.15 (5) (5.48–5.86) 5.40±0.22 (10) (4.92–5.71) 5.46±0.15 (7) (5.29–5.76) 0.96 –0.07 0.02
Figure 2. 

Skull morphology of K. depressa (A–D voucher GZHU 19222, female) and K. dongduongana (E–H voucher GZHU 19308, female). Scale bar: 10 mm.

Multivariate comparison analysis

PCA based on eight craniodental measurements revealed 96.2% of the total variance from the first two principal components (PCs) (86.9% and 9.3% for PC1 and PC2, respectively) in the scatter plot of the six morphological groups (Fig. 3A). For PC1, all measurements had positive loadings (Table 1), reflecting the skull size. Larger bats were characterized by higher PC1 scores; thus, specimens of K. kachinensis clustered to the right compared with those of other taxa (Fig. 3A). For PC2, all measurements had low loadings except for the braincase height (BH) (Table 1). Therefore, based on PC2, K. picta and K. titania, which had a larger BH, were clustered to the top of the plot, whereas K. dongduongana and K. kachinensis were assigned to the bottom (Fig. 3). For DAPC, we entered the first two PCs from the PCA results and obtained two discriminant functions (DFs) to distinguish among studied Kerivoula specimens. PCA and DAPC scatter plots showed that K. depressa and K. dongduongana specimens formed distinct and separated clusters (pale pink and green triangles in Fig. 3), although some scatter values overlapped with those from K. furva. Meanwhile, K. picta, K. titania, and K. kachinensis clustered into three distinguishable groups (Fig. 3).

Figure 3. 

Two-dimensional PCA and DAPC plots of Kerivoula species based on nine craniodental measurements A PCA plots for K. depressa, K. dongduongana, K. furva, K. kachinensis, K. picta, and K. titania showing projections of individual specimens and variable loadings on the first two principal components B projections of 46 specimens and variable loadings on two discriminant functions obtained from external and craniodental measurements.

Phylogenetic relationships of Kerivoula

Bayesian and ML trees using COI, Cytb, and RAG2 matrices highly supported monophyly of the genus Kerivoula (Fig. 4) [posterior probabilities (PP)/bootstrap values (BS), 1/99 for COI and Cytb, 1/97 for RAG2] and revealed a similar well-supported topology. Kerivoula picta and K. papillosa occurred outside of the clade uniting all other examined species within Kerivoula. All inferences clustered our sequences with K. depressa (PP = 1 in COI/Cytb; BS: 99 for COI, 100 for Cytb) and K. dongduongana (PP = 1 in COI/Cytb/RAG2; BS: 99 for COI, 100 for Cytb, 97 for RAG2), thus verifying our morphological species identification results (Fig. 4). However, interspecific relationships of K. depressa, K. dongduongana, K. kachinensis, K. furva, and K. hardwickii (sensu stricto) remain ambiguous and could not be resolved herein.

Figure 4. 

Bayesian and ML trees from analysis of COI, Cytb, and RAG2 sequences for the K. hardwickii complex. Values on the branches indicate posterior probabilities and bootstrap values, respectively. The terminals K. picta, K. papillosa, K. titania, K. hardwickii (sensu stricto), K. kachinensis, and K. furva each include multiple samples (see Appendix 1).

Discussion

The major interspecific phylogenetic relationships of our analyses are comparable with those reported by Kuo et al. (2017) and Tu et al. (2018). Our studies similarly confirmed the monophyly of K. depressa and K. dongduongana. However, the topology of the phylogenetic tree based on the RAG2 gene remains unresolved and needs further study. Finally, combining the results of external and craniodental examination and multivariate analyses, 24 specimens were determined as K. depressa and K. dongduongana (Table 1).

Our discovery of K. depressa and K. dongduongana in China indicates that six species of Kerivoula live in China. According to morphological analyses, K. picta is easily distinguished by its unique pelage color pattern and skull shape (Wilson and Mittermeier 2019), whereas K. kachinensis is the largest species with a distinctly flattened skull (Bates et al. 2004; Tu et al. 2018; Yu et al. 2022). As for the remaining four similar-sized species, K. titania has a distinctly longer tibia and higher braincase than the others (Kuo et al. 2017; Tu et al. 2018). In pelage coloration, K. furva has the darkest fur color, varying from black brown to black gray, whereas K. depressa and K. dongduongana are pale brown. Among the four species, K. dongduongana has the shortest BH (Kuo et al. 2017; Tu et al. 2018). A key to the Kerivoula species occurring in China is provided in Appendix 2.

Until recently, Kerivoula species were considered forest-dependent (Wilson and Mittermeier 2019). They are known in the south of China across Yunnan to Taiwan, and from Hainan to Chongqing. It is worth noting that five of the “Chinese” Kerivoula species are found in the southwest region of Yunnan Province, which is often treated as a biodiversity hotspot near Myanmar, Laos, and Vietnam. Its unique terrain, vegetation, and environmental conditions, including a low latitude, warm and tropical forest, and humid micro-climate, appear suitable for inhabitation and colonization (Kruskop 2013; Wilson and Mittermeier 2019; Qian et al. 2020). The high diversity of woolly bats in tropical forest areas may indicate the origin in their diversification progress.

Based on a comparison of the recorded Kerivoula diversity from the bordering countries of Myanmar (five species), Laos (seven species), and Vietnam (eight species) (Wilson and Mittermeier 2019), we suggest that there is still a risk of underestimating the diversity of Kerivoula in China. More surveys should therefore be conducted, especially on the border/unexplored region and using effective sampling tools such as multi-bank harp traps.

Acknowledgements

The authors thank National Nature Reserve Administration of Xishuangbanna Dai Autonomous Prefecture for their guides and help during the field survey. We also thank Ruichang Quan from Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, for the assistance in the field survey. This study was financially supported by the National Sciences Foundation of China (31970394, 32192421), The Special Foundation for National Science and Technology Basic Research Program of China [2021FY100303].

References

  • Bates PJJ, Harrison DL (1997) Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, Kent, 212–215.
  • Bates PJJ, Struebig MJ, Rossiter SJ, Kingston T, Oo SSL, Mya KM (2004) A New Species of Kerivoula (Chiroptera: Vespertilionidae) from Myanmar (Burma). Acta Chiropterologica 6(2): 219–226. https://doi.org/10.3161/001.006.0203
  • Bates PJJ, Struebig MJ, Hayes BD, Furey NM, Mya KM, Thong VD, Tien PD, Son NT, Harrison DL, Francis CM, Csorba G (2007) A new species of Kerivoula (Chiroptera: Vespertilionidae) from Southeast Asia. Acta Chiropterologica 9(2): 323–337. https://doi.org/10.3161/1733-5329(2007)9[323:ANSOKC]2.0.CO;2
  • Brunet-Rossinni AK, Wilkinson GS (2009) Methods for age estimation and the study of senescence in bats. In: Kunz TH, Parsons S (Eds) Ecological & behavioral methods for the study of bats. The Johns Hopkins University Press, Baltimore, 315–325.
  • Corbet GB, Hill JE (1992) The Mammals of Indomalayan Region: a Systematic Review. Oxford University Press, Oxford, 488 pp.
  • Douangboubpha B, Bumrungsri S, Satasook C, Wanna W, Soisook P, Bates PJJ (2016) Morphology, genetics and echolocation calls of the genus Kerivoula (Chiroptera: Vespertilionidae: Kerivoulinae) in Thailand. Mammalia 80(1): 21–47. https://doi.org/10.1515/mammalia-2014-0004
  • Dray S, Dufour AB, Chessel D (2007) The ade4 Package– II. Two-table and K-table Methods. 7: 6–6.
  • Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
  • Ellerman JR, Morrison-Scott TC (1951) Check list of Palaearctic and Indian mammals 1758 to 1946. British Museum, Natural History, London, 810 pp.
  • Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, Guillén-Servent A, Kruskop SV, Mackie I, Hebert PDN (2010) The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia. PLoS ONE 5: e12575. https://doi.org/10.1371/journal.pone.0012575
  • Hoofer SR, Reeder SA, Hansen EW, Van Den Bussche RA (2003) Molecular phylogenetics and taxonomic review of Noctilionoid and Vespertilionoid bats (Chiroptera: Yangochiroptera). Journal of Mammalogy 84(3): 809–821. https://doi.org/10.1644/BWG-034
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
  • Khan FAA, Solari S, Swier VJ, Larsen PA, Abdullah MT, Baker RJ (2010) Systematics of Malaysian woolly bats (Vespertilionidae: Kerivoula) inferred from mitochondrial, nuclear, karyotypic, and morphological data. Journal of Mammalogy 91(5): 1058–1072. https://doi.org/10.1644/09-MAMM-A-361.1
  • Kruskop SV (2013) Bats of Vietnam: Checklist and an Identification Manual (2nd edn.). Tovarishchestvo nauchnykh izdaniĭ KMK, Moscow,154–160.
  • Kuo HC, Chen SF, Fang YP, Flanders J, Rossiter SJ (2014) Comparative range wide phylogeography of four endemic Taiwanese bat species. Molecular Ecology 23(14): 3566–3586. https://doi.org/10.1111/mec.12838
  • Kuo HC, Soisook P, Ho YY, Csorba G, Wang CN, Rossiter SJ (2017) A Taxonomic Revision of the Kerivoula hardwickii Complex (Chiroptera: Vespertilionidae) with the Description of a New Species. Acta Chiropterologica 19(1): 19–19. https://doi.org/10.3161/15081109ACC2017.19.1.002
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
  • Nguyen ST, Motokawa M, Oshida T, Endo H (2016) A morphological analysis of the skull size and shape of Kerivoulinae (Chiroptera: Vespertilionidae) from Vietnam. The Journal of Veterinary Medical Science 78(2): 187–198. https://doi.org/10.1292/jvms.15-0270
  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  • Revelle W (2013) Psych: Procedures for psychological, psychometric, and personality Research, 1. R Package Version 1.0–95.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruedi M, Biswas J, Csorba G (2012) Bats from the wet: two new species of tube-nosed bats (Chiroptera: Vespertilionidae) from Meghalaya, India. Revue Suisse de Zoologie 119(1): 111–135. https://doi.org/10.5962/bhl.part.150145
  • Sikes RS (2016) the Animal Care Use Committee of the American Society of Mammalogists Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97: 663–688. https://doi.org/10.1093/jmammal/gyw078
  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (Eds) Mammal Species of the World: a Taxonomic and Geographic Reference (3rd ed. ). Johns Hopkins University Press, London, 312–529.
  • Sinha YR (1999) Records of the zoological survey of India: contribution to the knowledge of bats (Mammalia: Chiroptera) from North East Hills, India. Zoological Survey of India, Calcutta, 52 pp.
  • Stadelmann B, Jacobs DS, Schoeman C, Ruedi M (2004) Phylogeny of African Myotis Bats (Chiroptera, Vespertilionidae) Inferred from Cytochrome b Sequences. Acta Chiropterologica 6(2): 177–192. https://doi.org/10.3161/001.006.0201
  • Tu VT, Hassanin A, Furey NM, Son NT, Csorba G (2018) Four species in one: multigene analyses reveal phylogenetic patterns within Hardwicke’s woolly bat, Kerivoula hardwickii-complex (Chiroptera, Vespertilionidae) in Asia. Hystrix, the Italian Journal of Mammalogy 29(1): 111–121. https://doi.org/10.4404/hystrix-00017-2017
  • Wilson DE, Mittermeier RA (2019) Handbook of the Mammals of the World (Vol. 9). Bats. Lynx Edicions, Barecelona, 894–900.
  • Wu Y, Li YC, Lin LK, Harada M, Chen Z, Motokawa M (2012) New Records of Kerivoula titania (Chiroptera: Vespertilionidae) from Hainan Island and Taiwan. Mammal Study 37(1): 69–72. https://doi.org/10.3106/041.037.0109
  • Yu WH, Li F, Csorba G, Xu ZX, Wang XY, Guo WJ, Li YC, Wu Y (2018) A revision of Kerivoula hardwickii and occurrence of K. furva (Chiroptera: Vespertilionidae) in China. Zootaxa 4461(1): 45–45. https://doi.org/10.11646/zootaxa.4461.1.2
  • Yu W, Lin C, Huang Z, Liu S, Wang Q, Quan R, Li S, Wu Y (2022) Discovery of Kerivoula kachinensis and a validity of K. titania (Chiroptera: Vespertilionidae) in China. Mammalia 86(3): 303–308. https://doi.org/10.1515/mammalia-2021-0102

Appendix 1

Table A1.

Sample used in molecular analyses, with GenBank accession numbers for COI, Cytb and RAG2 genes provided. Newly generated sequences in this study are shown in bold.

Taxon Voucher GenBank accession numbers Location Reference
COI Cytb RAG2
Kerivoula depressa GZHU 18213 OM716942 OM735703 OM735730 Yunnan, China This study
GZHU 18246 OM735713 OM735736 Yunnan, China This study
GZHU 19082 OM716943 OM735707 OM735727 Yunnan, China This study
GZHU 19083 OM716948 OM735704 OM735729 Yunnan, China This study
GZHU 19122 OM716946 OM735712 OM735731 Yunnan, China This study
GZHU 19133 OM716947 OM735714 OM735734 Yunnan, China This study
GZHU 19173 OM716944 OM735708 OM735732 Yunnan, China This study
GZHU 19174 OM716949 OM735710 OM735725 Yunnan, China This study
GZHU 19202 OM716950 OM735709 OM735728 Yunnan, China This study
GZHU 19218 OM716952 OM735705 OM735735 Yunnan, China This study
GZHU 19222 OM716951 OM735706 OM735733 Yunnan, China This study
GZHU 19325 OM716945 OM735711 OM735726 Yunnan, China This study
Kerivoula dongduongana GZHU 19134 OM716941 OM735697 OM735715 Yunnan, China This study
GZHU 19150 OM716940 OM735696 OM735720 Yunnan, China This study
GZHU 19197 OM716936 OM735691 OM735717 Yunnan, China This study
GZHU 19198 OM716937 OM735692 OM735721 Yunnan, China This study
GZHU 19200 OM716938 OM735693 OM735722 Yunnan, China This study
GZHU 19201 OM716939 OM735694 OM735724 Yunnan, China This study
GZHU 19301 OM716930 OM735698 OM735718 Yunnan, China This study
GZHU 19302 OM716931 OM735699 OM735719 Yunnan, China This study
GZHU 19305 OM716932 OM735700 Yunnan, China This study
GZHU 19306 OM716933 OM735701 Yunnan, China This study
GZHU 19307 OM716935 OM735695 OM735723 Yunnan, China This study
GZHU 19308 OM716934 OM735702 OM735716 Yunnan, China This study
Murina cyclotis VN11-1199 KF772775 MH137367 MH137498 Viet Nam Tu et al. 2018
Harpiocephalus harpia VN11-1288 MH137300 MH137366 MH137497 Viet Nam Tu et al. 2018
Myotis muricola VN11-1186 MH137299 MH137365 MH137496 Viet Nam Tu et al. 2018
Kerivoula picta VN11-1565 MH137303 Cambodia Tu et al. 2018
VN11-1576 MH137304 MH137370 MH137501 Cambodia Tu et al. 2018
VN11-1577 MH137305 MH137371 MH137502 Cambodia Tu et al. 2018
Kerivoula papillosa 20467 MH137301 MH137368 MH137499 Thailand Tu et al. 2018
21719 MH137302 MH137369 MH137500 Cambodia Tu et al. 2018
K. dongduongana ROM 110828 JF443952 Vietnam Tu et al. 2018
CPV10-295 MH137318 Cambodia Tu et al. 2018
CPV10-297 MH137319 MH137382 MH137510 Cambodia Tu et al. 2018
K. dongduongana ROM MAM 111278 HM540688 Viet Nam Francis et al. 2010
VN11-1158 MH137320 MH137383 MH137511 Vietnam Tu et al. 2018
VN11-1178 MH137321 MH137384 MH137512 Vietnam Tu et al. 2018
ROM MAM 111298 HM540687 Viet Nam Francis et al. 2010
ROM MAM 111277 HM540704 Viet Nam Francis et al. 2010
CPV10-292 MH137317 Cambodia Tu et al. 2018
ROM MAM 110605 HM540690 Laos Francis et al. 2010
ROM MAM 110604 HM540705 Laos Francis et al. 2010
23028 MH137315 Viet Nam Tu et al. 2018
23036 MH137316 MH137381 MH137509 Viet Nam Tu et al. 2018
Kerivoula titania PSUZC-MM2011.48 KY034089 Thailand Soisook et al. 2016
PSUZC-MM2011.15 KY034108 Thailand Soisook et al. 2016
VN11-0945 MH137361 Viet Nam Tu et al. 2018
VN11-0013 MH137349 Viet Nam Tu et al. 2018
23034 MH137340 MH137396 Viet Nam Tu et al. 2018
VN11-0010 MH137346 Viet Nam Tu et al. 2018
VN11-0025 MH137352 Viet Nam Tu et al. 2018
VN11-0026 MH137353 Viet Nam Tu et al. 2018
VN11-0027 MH137354 Viet Nam Tu et al. 2018
VN11-0030 MH137355 Viet Nam Tu et al. 2018
K. titania VN11-0031 MH137356 Viet Nam Tu et al. 2018
VN11-0944 MH137360 Viet Nam Tu et al. 2018
VN11-1832 MH137364 MH137402 Viet Nam Tu et al. 2018
CPV10-415 MH137343 Cambodia Tu et al. 2018
CPV10-363 MH137341 MH137398 MH137520 Cambodia Tu et al. 2018
CPV10-399 MH137342 MH137399 MH137521 Cambodia Tu et al. 2018
VN11-1188 MH137362 MH137401 MH137523 Viet Nam Tu et al. 2018
VN11-1193 MH137363 Viet Nam Tu et al. 2018
21942 MH137339 MH137395 MH137519 Viet Nam Tu et al. 2018
VN11-0002 MH137344 Viet Nam Tu et al. 2018
VN11-0009 MH137345 Viet Nam Tu et al. 2018
VN11-0011 MH137347 Viet Nam Tu et al. 2018
VN11-0012 MH137348 MH137400 MH137522 Viet Nam Tu et al. 2018
VN11-0014 MH137350 Viet Nam Tu et al. 2018
VN11-0018 MH137351 Viet Nam Tu et al. 2018
VN11-0035 MH137357 Viet Nam Tu et al. 2018
VN11-0040 MH137358 Viet Nam Tu et al. 2018
VN11-0044 MH137359 Viet Nam Tu et al. 2018
23041 MH137397 Vietnam Tu et al. 2018
Kerivoula hardwickii s. str. 21746 MH137306 MH137373 MH137503 Indonesia Tu et al. 2018
VN11-1623 MH137309 MH137376 MH137505 Cambodia Tu et al. 2018
VN11-1593 MH137307 MH137374 MH137504 Cambodia Tu et al. 2018
VN11-1622 MH137308 MH137375 Cambodia Tu et al. 2018
17348 MH137372 Indonesia Tu et al. 2018
K. depressa ROM MAM 118429 HM540670 Laos Francis et al. 2010
AGS980322-65 HM540664 Laos Francis et al. 2010
ROM MAM 118186 HM540671 Laos Francis et al. 2010
ROM MAM 118026 HM540672 Laos Francis et al. 2010
ROM MAM 107721 HM540669 Viet Nam Francis et al. 2010
VN11-1554 MH137313 MH137379 MH137506 Cambodia Tu et al. 2018
VN11-1835 MH137314 MH137380 Vietnam Tu et al. 2018
ROM MAM 117982 HM540673 Laos Francis et al. 2010
ROM MAM 110602 HM540667 Laos Francis et al. 2010
ROM MAM 117971 HM540668 Laos Francis et al. 2010
ROM MAM 110585 HM540674 Laos Francis et al. 2010
CPV10-291 MH137310 MH137377 MH137507 Cambodia Tu et al. 2018
K. depressa CPV10-293 MH137311 Cambodia Tu et al. 2018
CPV10-409 MH137312 MH137378 MH137508 Cambodia Tu et al. 2018
Kerivoula kachinensis MAM 107718 HM540736 Viet Nam Francis et al. 2010
VN11-1831 MH137338 MH137394 Viet Nam Tu et al. 2018
VN11-0940 MH137337 MH137393 Viet Nam Tu et al. 2018
CPV10-416 MH137336 MH137392 MH137518 Cambodia Tu et al. 2018
ZMMU S-184667 GU684767 Viet Nam Tu et al. 2018
EDB 25747 HM540734 Laos Francis et al. 2010
Kerivoula furva 16481 MH137335 MH137391 MH137513 Nepal Tu et al. 2018
VN11-0050 MH137330 Viet Nam Tu et al. 2018
VN11-0004 MH137324 MH137387 MH137515 Viet Nam Tu et al. 2018
VN11-0045 MH137325 Viet Nam Tu et al. 2018
VN11-0046 MH137326 Viet Nam Tu et al. 2018
VN11-0047 MH137327 Viet Nam Tu et al. 2018
VN11-0048 MH137328 Viet Nam Tu et al. 2018
VN11-0049 MH137329 Viet Nam Tu et al. 2018
VN11-0943 MH137333 MH137389 MH137516 Viet Nam Tu et al. 2018
VN11-0937 MH137331 MH137388 Viet Nam Tu et al. 2018
VN11-0942 MH137332 Viet Nam Tu et al. 2018
23024 MH137322 Viet Nam Tu et al. 2018
23025 MH137323 MH137385 MH137514 Viet Nam Tu et al. 2018
VN11-1361 MH137334 MH137390 MH137517 Viet Nam Tu et al. 2018
2005-670 MH137386 Nepal Tu et al. 2018

Appendix 2

A key to the Kerivoula species occurring in China (both in English and Chinese)

1 Pelage color relatively bright. Fur orange. Wing membranes dark brown with reddish brown markings / 体色鲜艳,体毛橙黄色;翼膜深棕色,具红褐色斑块 Kerivoula picta / 彩蝠
Pelage color duller. Fur dark gray, brown, or blackish gray / 体色较暗淡,体毛暗灰色、棕色或黑灰色 2
2 Size larger, forearm length more than 40 mm. Greatest length of skull more than 16 mm, greatest breadth of braincase more than 8 mm / 体型较大,前臂长超过 40 mm; 颅全长大于 16 mm, 脑颅宽大于 8 mm Kerivoula kachinensis / 克钦彩蝠
Size smaller, forearm length less than 40 mm. Greatest length of skull less than 16 mm, greatest breadth of braincase less than 8 mm / 体型较小,前臂长不及40 mm;颅全长小于16 mm,脑颅宽小于8 mm 3
3 Tibia length usually more than 18.5 mm. Greatest length of skull 14.5–16.0 mm, braincase height usually more than 5.3 mm / 胫骨长常大于 18.5 mm; 颅全长 14.5–16 mm, 颅高常大于 5.3 mm Kerivoula titania / 泰坦尼亚彩蝠
Tibia length less than or equal to 18.5 mm. Greatest length of skull less than 14.5 mm, braincase height usually less than 5.3 mm / 胫骨长小于或等于18.5 mm; 颅全长小于14.5 mm, 颅高不及5.3 mm 4
4 Greatest width across the outer edges of the third upper molars more than 5.3 mm, greatest length of mandible more than 9.8 mm. Dorsal pelage dark brown to blackish gray, broadly uniform in colour from bases to tips / 第三上臼齿宽大于5.3 mm,下颌长大于9.8 mm;背毛深棕色到黑灰色,毛基到毛尖颜色 大致相同 Kerivoula furva / 暗褐彩蝠
Greatest width across the outer edges of the third upper molars less than 5.3 mm, greatest length of mandible less than 9.8 mm. Dorsal pelage buff brown to dark brown, its base and tip significantly different / 第三上臼齿宽小于5.3 mm,下颌长小于9.8 mm;背毛浅棕色到深棕色,毛基与毛尖颜色明显不同 5
5 Braincase slightly flattened, braincase height more than 4.7 mm, more than 1/3 of greatest length of skull. Dorsal pelage buff brown to dark brown, ventral pelage dark brown / 脑颅略为扁平,颅高大于4.7 mm,超过颅全长1/3;背毛浅棕色到深棕色,腹毛深棕色 Kerivoula depressa / 平颅彩蝠
Braincase flatter, braincase height usually less than 4.7 mm, less than 1/3 of greatest length of skull. Dorsal pelage dark brown to golden brown, ventral pelage golden brown / 脑颅更扁平,颅高多小于4.7 mm,不及颅全长1/3;背毛深棕色到金棕色,腹毛金棕色 Kerivoula dongduongana / 印支彩蝠
login to comment