Research Article
Print
Research Article
Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae)
expand article infoSayeh Serri, Johannes Frisch§, Thomas von Rintelen§
‡ Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Tehran,
§ Museum für Naturkunde, Berlin, Germany
Open Access

Abstract

In this study, the genetic diversity of Iranian populations of two widespread Stenus species representing two ecomorphological forms, the “open living species” S. erythrocnemus Eppelsheim, 1884 and the “stratobiont” S. callidus Baudi di Selve, 1848, is presented using data from a fragment of the mitochondrial COI gene. We evaluate the mitochondrial cytochrome oxidase I haplotypes and the intraspecific genetic distance of these two species. Our results reveal a very low diversity of COI sequences in S. erythrocnemus in contrast to S. callidus. Moreover, the COI based phylogeny of a selection of Iranian Stenus support the monophyly of some species groups of Stenus proposed by Puthz (2008) and contradicts the traditional infrageneric classification.

Keywords

Staphylinidae, Stenus, genetic variability, ecomorphological forms, infrageneric classification, Iran

Introduction

Fast mutation rate and lack of recombination as well as its easy amplification and sequencing make COI a useful marker for the study of phylogeny, geographic variation and population genetics as well as species identification (Hebert et al. 2003a, b; Qian et al. 2014: 11). Many studies have demonstrated that mtDNA-COI can be used for population genetics (e.g. Szalanski et al. 2010: 8). Hajibabaei et al. (2007: 171) point out that DNA barcoding offers significant implications for the understanding of the genetic diversity of species. Here, we apply this method in the rove beetle genus Stenus Latreille, 1797 to test the infraspecific genetic variation of representatives of two distinct ecomorphological forms and the validity of the traditional subgeneric concept of the genus.

Stenus is well-known for its unique prey-capture behavior (e.g. Betz 1996: 15–34). The eversible labium, an apomorphy, and the variability of the tarsal structures seem to be responsible for the enormous radiation in this genus (Betz 2002: 1097). The labial features are involved in catching prey in a sudden manner despite the limited reaction ability of the beetle (Betz 1999: 1708). The variable tarsal morphology among the members of this genus also has adaptive values which are in accord with their habitat preferences (Betz 2006: 413–414). With about 2674 species (Puthz, unpublished), Stenus is one of the species-richest genera of animals in the world (Puthz 2012: 286). The members of this rove beetle clade mostly dwell in humid places such as river banks, swamps, bogs and wet grasslands. The multifunctional secretion of the pygidial glands is species-specific and acts as a survival factor against predators. This character has been used in illuminating several evolutionary trends (Schierling et al. 2013: 48, 51) and presumably is a character adaptive to the habitat where the species live (Lang et al. 2015: 22).

In Stenus, two major ecomorphological forms can be distinguished, which Kastcheev and Puthz (2011: 454) termed “open-living species” with longer legs and on average bigger bodies (Figure 1), that live in habitats with less dense, often sparse vegetation such as sandy or clayey banks, and “stratobionts” with shorter legs and compact body (Figure 2), which inhabit dense vegetation structures and organic litter. Both forms are moreover distinguished by their dispersal ability, because - unlike the open-living species - there is the evolutionary tendency in stratobionts towards flightlessness. Similar morphological adaptations were already described for many rove-beetle clades such as the paederine subtribe Scopaeina Mulsant & Rey, 1878 (Frisch et al. 2002: 30). The addressed morphological characters determine the ability of the organism to colonize particular habitats and to use their resources (Betz 2006: 413). This relation between morphological features of species and ecological characteristics of habitats seems to be descriptive for niche selection. In Iran, 68 Stenus species were recorded (Serri and Frisch 2016: 18), among which S. erythrocnemus Eppelsheim, 1884 and S. callidus Baudi di Selve, 1848 are the most widespread across the country and were found in most provinces of Iran. According to Kastcheev and Puthz (2011: 454), S. erythrocnemus is an open-living species and S. callidus a stratobiont. Based on Iranian populations of these species, we tested the hypothesis that open-living species show a lower infraspecific genetic diversity than stratobionts owing to their higher dispersal ability.

Figures 1–4.

1 Stenus erythrocnemus Eppelsheim, 1884. 2 S. callidus Baudi di Selve, 1848. 3 Haplotype network for cytochrome c oxidase subunit I (COI) DNA sequences of S. erythrocnemus. The circle size shows the frequency of the haplotypes. Each dashed line represents a single mutation. 4 Haplotype network for cytochrome c oxidase subunit I (COI) DNA sequences of S. callidus. The circle size shows the frequency of the haplotypes. Each dashed line represents a single mutation. Scale bars: 1mm.

Stenus was traditionally divided into subgenera according to morphological characters. Based on European species only, Rey (1884: 31) introduced the six subgenera Hemistenus, Hypostenus, Mesostenus, Nestus, Stenus, and Tesnus. Later, Heyden (1905: 262) replaced Mesostenus with Parastenus because of a homonymy with a genus in the Hymenoptera. Ádám (1987: 135), however, synonymized Parastenus with the older name Hemistenus Motschulsky, 1860, because the type species of both subgenera are considered as subjective synonyms. Therefore he introduced the new subgenus Metastenus for a distinct species group of Hemistenus (Herman 2001: 2041), but later he (Ádám 2001: 126) replaced this name with Metatesnus because of primary homonymy with Metastenus Walker, 1834 in the Hymenoptera. According to Puthz (2009: 47), the genus group name Adamostenus Özdikmen & Darılmaz, 2008, an unnecessary replacement name for Metatesnus, is a junior synonym of Metatesnus. Puthz (2001: 35) also synonymized Nestus with Stenus s. str. based on the assumption that the tarsal characters traditionally employed for these subgenera do not define distinct monophyletic groups. In the current edition of the Catalogue of Palaearctic Coleoptera, Schülke and Smetana (2015: 802–847) still divided this genus into five subgenera, which are Hemistenus Motschulsky, 1860, Hypostenus Rey, 1884, Stenus Latreille, 1797, Metatesnus Ádám, 2001 and Tesnus Rey, 1884. Puthz (2008: 139–148) conceived that the traditional subgeneric classification does not reflect the phylogenetic affinities within this genus and thus established 157 monophyletic species groups based on a wide range of presumed apomorphic morphological features of the species included. Ryvkin (2011: 59) argued, however, that it is better not to reject the traditional subgeneric concept prior to a comprehensive phylogenetic analysis of the subfamily. To date, there are only a few molecular studies that have investigated the phylogenetic relationships among Steninae species. The first was done recently by Koerner et al. (2013). Their results supported the monophyletic groups proposed by Puthz (2008: 139–148) and moreover revealed that some species groups of Dianous Leach, 1819, the second genus of the Steninae, actually constitute a monophyletic group within Stenus. The monophyly of some species groups proposed by Puthz (2008: 141–147) was also supported by Lang et al. (2015: 21). We performed a preliminary investigation on the intra- and interspecific genetic diversity of some Iranian Stenus to test the validity of the traditional classification of this genus by sequencing the “DNA Barcode” region of the mitochondrial COI gene of these species.

Material and methods

The Stenus specimens this study is based on were collected in the framework of the first author’s research project on the diversity and biogeography of this genus in Iran (Serri and Frisch 2016), which was a part of a joint project between the Museum für Naturkunde Berlin and the Iranian Research Institute of Plant Protection on biodiversity and biogeography of selected insect taxa in Iran.

The specimens were collected in humid habitats such as river banks or grassland by hand collecting or sifting of gravelly soil, leaf litter and other phytodebris. Most specimens were killed with ethyl acetate, but some were directly fixated in 96% ethanol.

For DNA extraction, the abdomen of the larger species and the whole body of the smaller species were used and the DNA was purified by the CTAB method (Winnepenninckx et al. 1993). The polymerase chain reaction (PCR) was used to amplify a 5’ end fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene using the primer pair LCO1490 5’-GGTCAACAAATCATAAAGATATTGG -3’ and HCO2198 5’-TAAACTTCAGGGTGACCAAAAAATCA -3’ (Folmer et al. 1994). PCR was performed in 25µl volumes including 2.5 µM PCR buffer, 1µM MgCl2, 0.5 µM dNTP, 1 µM of each forward and reverse primers, 1µM of Taq polymerase and ddH2O up to 25 µl total volumes. In the PCR thermocycles, there was an initial denaturation step at 94° for 1.5 min, followed by 6 cycles of 94° (for 30 s) denaturation, 45° (1.5 min) annealing and 72° (for 1 min) extension and subsequently 35 cycles of 94° (for 30 s) denaturation, 51° (1.5 min) annealing and 72° (for 1 min) extension. The PCR terminated at 72° (for 5 min) for final extension. The PCR products were purified on a silica membrane with Macherey and Nagel Nucleospin kits following the manufacturer’s protocol. The purified PC products were sequenced using an ABI 3130 DNA sequencer. All sequences were aligned manually and corrected for misreads using Bioedit version 7.0.5.3 (Hall 1999). Additional mitochondrial COI GenBank sequences of Euaesthetus ruficapillus (Lacordaire, 1835) and E. superlatus Peyerimhoff, 1937 were included in the dataset (GenBank accession numbers KM447120 and KM451370) as outgroup taxa. A Maximum Parsimony Analysis was conducted with PAUP*4.0 b10 (Swofford 2002). The dataset was also analyzed in MEGA 6 (Tamura et al. 2013) with maximum likelihood using the Tamura-Nei model with uniform rates among sites. The mean p-distance within each species of Stenus callidus and S. erythrocnemus were calculated separately using the Kimura2-parameter model (Kimura 1980) in MEGA 6. The haplotype data files of the populations of each species and the polymorphisms indices were obtained in DnaSP 5.10 (Librado and Rozas 2009) and the nexus files were transferred to PopART version 1.7 (Leigh and Bryant 2015) in order to construct a haplotype network based on the TCS algorithm (Clement et al. 2002).

Results

The PCR amplification using LCO1490/HCO2198 primers yielded a product with a maximum length of 658 bp (excluding primers) from 91 individuals of 23 species out of a total of 157 specimens of 37 species of Iranian Stenus. The alignment was blasted against GenBank sequences and found to match with existing records of Stenus. The base composition of about 29% A, 39% T, 16% C and 16% G exhibits the common AT bias of COI.

The alignment (total of 658 bp) contained 294 variable characters, of which 246 were parsimony informative and contributed to the Maximum Parsimony (MP) Analysis. The MP Analyses produced two equally parsimonious trees with a tree length of 1197 steps, CI of 0.3768, RI of 0.8564 and RC of 0.3227 (Figure 7). Node support was estimated by bootstrap using 1000 pseudoreplicates and 100 replicates. The major clades are generally well supported (see below). All obtained sequences were submitted to GenBank (accession numbers in Table 1). The maximum likelihood tree was constructed by the heuristic search with the Nearest-Neighbor-Interchange (NNI) method, gaps treatment using all sites, the neighbor-joining (NJ) tree as the initial tree and bootstrapped with 1000 replications (Figure 8). The topology obtained from ML analyses does not deviate significantly from the MP tree. Both methods reveal a high degree of genetic homogeny among different populations of Stenus erythrocnemus and more pronounced heterogeny in S. callidus. The selected populations of S. callidus cluster in seven groups, but these groupings do not correspond well to the geographic distribution of the examined populations and some are not well supported in the bootstrap analysis. There are, however, some populations that form separate geographical clusters such as the populations from Kerman (specimen no. 034) with those of the Ghohrud Mountains (specimen no. 094) and the populations from Tehran Province (specimens no. 105, 107). These apparent geographical clusters are, however, not significant, because they are made up of only two populations from the same region (Figure 9). Surprisingly, the populations of S. callidus from Kordestan Province show a low similarity of the COI gene and appear in different clades of the cladogram (Figures 7, 8).

The specimens used in this study with their location data and the GenBank association number of submitted sequences of COI. The specimen number codes the geographical origin of the specimens in the phylogenetic tree (Figures 7, 8).

Species Specimen number Collection site GeneBank association number
Stenus alienigenus 147 Kordestan: 11 km E Sanandaj (35°20'11"N 47°09'07"E), 2100 m, 5.9.2008, leg. Serri and Frisch KU754268
S. araxis 118 Ardabil: N Mt Sabalan, Gheynarjeh (38°17'18"N 47°41'22"E), 2100 m, 24.6.2008, leg. Serri KU754251
S. araxis 121, 122 Esfahan: Kashan, NW Niasar, after Aznaveh (34°06'28.8"N 50°59'45.9"E), 2195 m, 19.5.2009, leg. Serri and Nasserzadeh KU754253
KU754254
S. araxis 117 Hamedan: W Kabudarahang, 5 km E Goltappeh (35°12'06"N 48°14'04"E), 2210 m, 21.7.2008, leg. Serri and Nasserzadeh KU754250
S. araxis 114 Kordestan: Saghez - Baneh, 27 km SW Saghez (36°08'12"N 46°02'42"E), 1600 m, 3.9.2008, leg. Serri and Frisch KU754247
S. araxis 111 West Azarbaijan: W Salmas, 19 km W Kuzerash (38°11'40"N 44°33'04"E), 1960 m, 31.8.2008, leg. Serri and Frisch KU754246
S. araxis 110 West Azarbaijan: Orumieh, S Silvaneh, 14 km S Ziveh (37°09'06"N 44°52'55"E), 2320 m, 1.9.2008, leg. Serri and Frisch KU754245
S. cf. araxis 120 Esfahan: Natanz, S Karkas Mts, Taragh (33°24'39"N 51°46'14"E), 2580 m, 20.5.2009, leg. Serri KU754252
S. cf. araxis 125 Esfahan: S Abyaneh, Bidhand (33°29'44"N 51°45'39"E), 2350 m, 18.5.2009, leg. Serri KU754256
S. cf. araxis, S. araxis 115, 116 Tehran: Firouzkuh, Badroud (35°48'15"N 52°39'21"E), 2060 m, 5.8.2009, leg. Serri and Nasserzadeh KU754248
KU754249
S. ater 136 Semnan: NE Chashm, Hikuh, Sheil, Parvar Protected Region (36°0'54"N 53°23'07"E), 1900 m, 7.8.2009, leg. Serri and Nasserzadeh KU754264
S. brunnipes 151 Mazandaran: Sari, N Mohammadabad (36°10'09"N 53°14'08"E), 820 m, 30.5.2008, leg. Serri, Nasserzadeh and Pütz KU754270
S. callidus 089 Chaharmahal & Bakhtiari: Ardel, Ghahrou, Tang-e Zeverdegan (31°59'10"N 50°51'23"E), 2350 m, 23.6.2009, leg. Serri KU754233
S. callidus 090 Esfahan: Chadegan, W Zayandehrud Dam (32°43'08"N 50°44'20"E), 2070 m, 20.6.2009, leg. Serri KU754234
S. callidus 094 Esfahan: Kashan, S Ghamsar, Ghazaan (33°42'20"N 51°23'48"E), 2220 m, 17.5.2009, leg. Serri KU754236
S. callidus 045, 046 Ghazvin: 5 km E Abgarm (35°47'53"N 49°22'43"E), 1510 m, 21.6.2004, leg. Serri and Frisch KU754199
KU754200
S. callidus 092 Hamedan: Eberou road, S Emamzadeh Abdollah (34°39'20"N 48°32'19"E), 2510 m, 22.7.2008, leg. Serri and Nasserzadeh KU754235
S. callidus 103 Hamedan: Shahrestaneh (34°42'56"N 48°22'21"E), 2220 m, 23.7.2008, leg. Serri and Nasserzadeh KU754240
S. callidus 031, 033 Hormozgan: Siahu, Talgerdo road, Bangolan (27°50'03"N 56°28'27"E), 890 m, 19.4.2006, leg. Serri and Frisch KU754193
KU754194
S. callidus 034 Kerman: Baft, 6 km N Rabor (29°20'28"N 56°50'47"E), 2640 m, 4.5.2007, leg. Serri and Frisch KU754195
S. callidus 084 Khuzestan: Baghmalek, Chamkureh (31°31'42"N 49°51'55"E), 670 m, 27-28.4.2009, leg Serri KU754231
S. callidus 079–082, 085, 086 Kordestan:11 km E Sanandaj (35°20'11"N 47°09'07"E), 2100 m, 5.9.2008, leg. Serri and Frisch KU754224
KU754225
KU754226
KU754227
KU754230
KU754231
S. callidus 087 Kordestan: 7 km S Ghorveh, Veihaj (35°06'34"N 47°45'54"E), 2060 m, 5.9.2008, leg. Serri and Frisch KU754232
S. callidus 098, 099 Kordestan: Saghez - Baneh, 27 km SW Saghez (36°08'12"N 46°02'42"E), 1600 m, 3.9.2008, leg. Serri and Frisch KU754237
KU754238
S. callidus 035, 036 Tehran: Firouzkuh road, Delichai (35°40'58"N 52°28'26"E), 2000 m, 21.5.2006, leg. Serri and Frisch KU754196
KU754197
S. callidus 105–108 Tehran: Firouzkuh, Badroud (35°48'15"N 52°39'21"E), 2060 m, 5.8.2009, leg. Serri and Nasserzadeh KU754241
KU754242
KU754243
KU754244
S. callidus 100 West Azarbaijan: 11 km E Takht-e Soleiman (36°36'43"N 47°18'48"E), 2280 m, 7.-8.9.2008, leg. Serri and Frisch KU754239
S. callidus 083 West Azarbaijan: 2 km E Takht-e Soleiman N (36°38'05"N 47°14'07"E), 2270 m, 7.-8.9.2008, leg. Serri and Frisch KU754228
S. callidus 037 Zanjan: Abbar - Gilvan (36°52'50"N 48°58'32"E), 430 m, 12.7.2006, leg. Serri KU754198
S. cautus 146 Esfahan: S Abyaneh, Bidhand (33°29'44"N 51°45'39"E), 2350 m, 18.5.2009, leg. Serri KU754267
S. erythrocnemus 059, 060, 062 Ardabil: N Mt Sabalan, Gheynarjeh (38°17'18"N 47°41'22"E), 2100 m, 24.6.2008, leg. Serri KU754213
KU754214
KU754215
S. erythrocnemus 024 East Azarbaijan: Zijenab (Mt Sahand) (37°52'08"N 46°18'46"E), 2150 m, 8.8.2005, leg. Serri and Frisch KU754192
S. erythrocnemus 134 Esfahan: Natanz, Taragh, Keshe, S Mt. Karkas (33°24'39.3"N 51°46'13.9"E), 2580 m, 17.5.2009, leg. Serri KU754262
S. erythrocnemus 070 Gilan: E Masuleh (37°09'48"N 49°00'19"E), 820 m, 8.6.2008, leg. Serri, Nasserzadeh and Pütz KU754219
S. erythrocnemus 009 Kerman: Mahan road, 3 km S pass (30°11'29"N 57°25'42"E), 2430 m, 30.4.2007, leg. Serri and Frisch KU754189
S. erythrocnemus 051–054 Tehran: Dizin (36°01'53"N 51°28'52"E), 2810 m, 10.6.2008, leg. Serri, Nasserzadeh and Pütz KU754205
KU754206
KU754207
KU754208
S. erythrocnemus 047–050 West Azarbaijan: SE Makou, Gharakelisa (39°05'32"N 44°32'40"E), 1860 m, 28.8.2008, leg. Serri and Frisch KU754201
KU754202
KU754203
KU754204
S. erythrocnemus 055–058 West Azarbaijan: Orumieh, S Silvaneh, 14 km S Ziveh (37°09'06"N 44°52'55"E), 2320 m, 1.9.2008, leg. Serri and Frisch KU754209
KU754210
KU754211
KU754212
S. erythrocnemus 064 West Azarbaijan: 18 km W Khoy, Ghotour road (38°28'45"N 44°47'08"E), 1320 m, 29.8.2008, leg. Serri and Frisch KU754216
S. erythrocnemus 068, 069 West Azarbaijan: Siahcheshmeh - Khoy, Kordkandy (N 38°55'02" E44°27'40’’), 1870 m, 28.8.2008, leg. Serri and Frisch KU754217
KU754218
S. erythrocnemus 071–074 West Azarbaijan: Siahcheshmeh - Khoy, W Zarabad (N 38°44'16" E44°28'10’’), 2400 m, 30.8.2008, leg. Serri and Frisch KU754220
KU754221
KU754222
KU754223
S. erythrocnemus 011, 012 Yazd: Taft, Dehbala (31°35'37"N 54°07'20"E), 2550 m, 15.5.2007, leg. Serri and Frisch KU754190
KU754191
S. fuscicornis 156 Mazandaran: Ramsar, Javaherdeh road, Eshkatechal (36°50'32"N 50°34'39"E), 1450 m, 6.6.2008, leg. Serri, Nasserzadeh and Pütz KU754272
S. ganglbaueri 153 Mazandaran: Baladeh, Nesen, E pass (36°14'37"N 51°27'17"E), 2960 m, 1.6.2008, leg. Serri, Nasserzadeh and Pütz KU754271
S. hypoproditor 137 Kordestan: N Divandarreh, SW Zarrineh, 5 km NW Ebrahimabad (35°59'10"N 46°52'11"E), 1960 m, 4.9.2008, leg. Serri and Frisch KU754265
S. intricatus zoufali 135 East Azarbaijan: Tabriz - Marand, 9 km N Amand (38°17'18"N 46°08'46"E), 1520 m, 26.8.2008, leg. Serri and Frisch KU754263
S. maculiger 133 West Azarbaijan: W Salmas, 10 km W Kuzerash (38°11'40"N 44°33'04"E), 1960 m, 31.8.2008, leg. Serri and Frisch KU754261
S. martensi 166 Mazandaran: Kelardasht- Marzanabad road, (36°35'39"N 51°08'37"E), 1000 m, 3.6.2008, leg. Serri, Nasserzadeh and Pütz KU754279
S. medus 161 Mazandaran: Rineh, S Mt Damavand (35°53'56"N 52°06'29"E), 2960 m, 3.8.2009, leg Serri and Nasserzadeh KU754276
S. mongolicus 138 Semnan: Shahroud, NE Mojem, Tash (36°31’N 54°42’E), 10.8.2009, leg. Serri and Nasserzadeh KU754266
S. ochropus 159 Fars: SE Sepidan, Dalkhon (30°14'40"N 52°06'09"E), 2090 m, 9.5.2007, leg. Serri and Frisch KU754275
S. persicus 163 Kordestan: Saghez - Baneh, 27 km SW Saghez (36°08'12"N 46°02'42"E), 1600 m, 3.9.2008, leg. Serri and Frisch KU754277
S. pieperi 157 Mazandaran: S Salmanshahr (36°38'49"N 51°10'27"E), 280 m, 4.6.2008, leg. Serri, Nasserzadeh and Pütz KU754273
S. ressli 158 Mazandaran: Tonekabon, Sehezar Forest (36°32'36"N 50°49'53"E), 1090 m, 5.6.2008, leg. Serri, Nasserzadeh and Pütz KU754274
S. schah 164 Kohgiluye & Boyerahmad: N Yasuj, Sepidar, Dilgan River (30°45'03"N 51°08'07"E), 2270 m, 18.6.2009, leg. Serri KU754278
S. turk 124 Esfahan: S Abyaneh, Bidhand (33°29'44"N 51°45'39"E), 2350 m, 18.5.2009, leg. Serri KU754255
S. turk 126–129 Golestan: NE Kalaleh, Zav, Totlitamak village (37°29'36"N 55°46'25"E), 1240 m, , 16.10.2009, leg. Serri KU754257
KU754258
KU754259
KU754260
S. viti 148 Mazandaran: Kelardasht - Marzanabad (36°35'40"N 51°08'37"E), 1000 m, 3.6.2008, leg. Serri, Nasserzadeh and Pütz KU754269

The haplotype networks for COI of S. callidus and S. erythrocnemus (Figures 3, 4) comprise fourteen and four haplotypes, respectively. Haplotype diversity (h) was estimated at 0.911±0.034 for S. callidus and 0.267±0.107 for S. erythrocnemus. The nucleotide diversity (π i) of each species was calculated as 0.01348±0.00074 for S. callidus and 0.00045±0.00019 for S. erythrocnemus (Table 4). In S. callidus, no haplotype has an outstandingly high frequency, while S. erythrocnemus has a dominant haplotype (Hap_1) found in populations of the Elburz and Zagros Mountains and the central mountain ranges.

The maximum genetic distance among populations does not exceed 0.003% in S. erythrocnemus and is much higher in S. callidus with 0.028% (Tables 2, 3). The highest genetic distance as well as the highest haplotype diversity in the populations of S. callidus was observed in the central zone of the Zagros Mountains. In S. erythrocnemus, the highest genetic distance is among the populations of northwestern Iran.

Regarding the subgeneric concept of Stenus, our results (Figures 7, 8) do not support the traditional grouping except for Hemistenus, the selected species of which appear in the same clade. Our results rather support the monophyly of those species groups of Puthz (2008: 139–148), which we tested with at least two representatives. These species groups and the included species are: S. guttula group with S. erythrocnemus and S. maculiger, S. cordatus group with S. araxis and S. turk, S. glacialis group with S. medus, S. persicus and S. schah, S. ochropus-ludyi-coarcticollis group with S. martensi, S. ochropus, S. pieperi and S. ressli, S. ater group with S. ater, S. hypoproditor and S. intricatus zoufali.

Kimura two-parameter pairwise genetic distances between populations of Stenus callidus.

031 033 034 035 036 037 045 046 079 080 081 082 083 084 085 086 087 089 090 092 094 098 099 100 103 105 106 107 108
031
033 0.000
034 0.006 0.006
035 0.022 0.022 0.022
036 0.022 0.022 0.022 0.000
037 0.000 0.000 0.006 0.022 0.022
045 0.002 0.002 0.008 0.023 0.023 0.002
046 0.002 0.002 0.008 0.023 0.023 0.002 0.000
079 0.012 0.012 0.011 0.028 0.028 0.012 0.014 0.014
080 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026
081 0.006 0.006 0.000 0.022 0.022 0.006 0.008 0.008 0.011 0.020
082 0.012 0.012 0.011 0.028 0.028 0.012 0.014 0.014 0.000 0.026 0.011
083 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026
084 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026 0.000
085 0.000 0.000 0.006 0.022 0.022 0.000 0.002 0.002 0.012 0.020 0.006 0.012 0.020 0.020
086 0.000 0.000 0.006 0.022 0.022 0.000 0.002 0.002 0.012 0.020 0.006 0.012 0.020 0.020 0.000
087 0.003 0.003 0.009 0.022 0.022 0.003 0.005 0.005 0.015 0.020 0.009 0.015 0.020 0.020 0.003 0.003
089 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026 0.000 0.000 0.020 0.020 0.020
090 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026 0.000 0.000 0.020 0.020 0.020 0.000
092 0.023 0.023 0.023 0.005 0.005 0.023 0.025 0.025 0.030 0.003 0.023 0.030 0.003 0.003 0.023 0.023 0.023 0.003 0.003
094 0.008 0.008 0.002 0.023 0.023 0.008 0.009 0.009 0.012 0.022 0.002 0.012 0.022 0.022 0.008 0.008 0.011 0.022 0.022 0.022
098 0.011 0.011 0.008 0.020 0.020 0.011 0.012 0.012 0.014 0.019 0.008 0.014 0.019 0.019 0.011 0.011 0.014 0.019 0.019 0.022 0.009
099 0.003 0.003 0.009 0.022 0.022 0.003 0.002 0.002 0.015 0.020 0.009 0.015 0.020 0.020 0.003 0.003 0.003 0.020 0.020 0.023 0.011 0.014
100 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026 0.000 0.000 0.020 0.020 0.020 0.000 0.000 0.003 0.022 0.019 0.020
103 0.020 0.020 0.020 0.002 0.002 0.020 0.022 0.022 0.026 0.000 0.020 0.026 0.000 0.000 0.020 0.020 0.020 0.000 0.000 0.003 0.022 0.019 0.020 0.000
105 0.014 0.014 0.011 0.020 0.020 0.014 0.015 0.015 0.017 0.019 0.011 0.017 0.019 0.019 0.014 0.014 0.014 0.019 0.019 0.022 0.012 0.012 0.014 0.019 0.019
106 0.011 0.011 0.008 0.020 0.020 0.011 0.012 0.012 0.014 0.019 0.008 0.014 0.019 0.019 0.011 0.011 0.014 0.019 0.019 0.022 0.009 0.000 0.014 0.019 0.019 0.012
107 0.011 0.011 0.008 0.017 0.017 0.011 0.012 0.012 0.014 0.015 0.008 0.014 0.015 0.015 0.011 0.011 0.011 0.015 0.015 0.019 0.009 0.009 0.011 0.015 0.015 0.003 0.009
108 0.012 0.012 0.009 0.022 0.022 0.012 0.014 0.014 0.015 0.020 0.009 0.015 0.020 0.020 0.012 0.012 0.015 0.020 0.020 0.023 0.011 0.002 0.015 0.020 0.020 0.014 0.002 0.011

Kimura two-parameter pairwise genetic distances between populations of Stenus erythrocnemus.

009 011 012 024 047 048 049 050 051 052 053 054 055 056 057 058 059 060 062 064 068 069 070 071 072 073 074 134
009
011 0.000
012 0.000 0.000
024 0.002 0.002 0.002
047 0.000 0.000 0.000 0.002
048 0.000 0.000 0.000 0.002 0.000
049 0.002 0.002 0.002 0.003 0.002 0.002
050 0.000 0.000 0.000 0.002 0.000 0.000 0.002
051 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000
052 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000
053 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000
054 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000
055 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
056 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000
057 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
058 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
059 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
060 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
062 0.002 0.002 0.002 0.003 0.002 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003
064 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002
068 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000
069 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000
070 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000
071 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000
072 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000
073 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000
074 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
134 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Summary of genetic diversity indices in the mitochondrial COI gene segment of Stenus callidus and S. erythrocnemus.

Species N L k H h
(±standard deviation)
π
(±standard deviation)
Haplotype no.: sequence(s) no.
Stenus callidus 29 658 30 14 0.911±0.034 0.01348±0.00074 Hap_1: 031, 033, 037, 085, 086
Hap_2: 034, 081
Hap_3: 035, 036
Hap_4: 045, 046
Hap_5: 079, 082
Hap_6: 080, 083, 084, 089, 090,100, 103
Hap_7: 087
Hap_8: 092
Hap_9: 094
Hap_10: 098,106
Hap_11: 099
Hap_12: 105
Hap_13: 107
Hap_14: 108
S. erythrocnemus 28 658 3 4 0.267±0.107 0.00045±0.00019 Hap_1: 009, 011, 012, 047, 048, 050, 051, 052, 053, 054, 055, 056, 057, 058, 059, 064, 068, 069, 070, 071, 072, 073, 074, 134
Hap_2: 024
Hap_3: 049, 062
Hap_4: 060

Discussion

With the example of Iranian populations of the open-living Stenus erythrocnemus and the stratobiont S. callidus, we demonstrate that different ecomorphological forms of congeneric species with differing dispersal ability and degree of geneflow can show a different degree of infraspecific genetic variability.

The open-living S. erythrocnemus is the most widespread Stenus in Iran. It was found in most of the country in high abundance at elevations between 250 m and 2800 m a.s. l. (Figure 5, after Serri and Frisch 2016: 27). As an example of the open-living ecomorphological form described by Kastcheev and Puthz (2011: 454), this mobile species does not show geographically structured populations. The low level of haplotype diversity as well as the low intraspecific distance of this species indicate a high level of gene flow between the populations of this species, which are connected to each other even across zoogeographic barriers due to the species’ dispersal ability. This gene flow within the Iranian meta-population of S. erythrocnemus is probably supported by the wide ecological adaptability, which prevents geographic isolation. Unlike the remainder of Iranian Stenus, we repeatedly collected S. erythrocnemus not only in natural habitats, but also in polluted sites and anthropogenic places such as watering channels of farms far from natural, permanent watercourses.

Figure 5.

Distribution of Stenus erythrocnemus in Iran (after Serri and Frisch 2016: 28).

The stratobiont S. callidus, the second widespread Stenus in Iran, was collected in high abundance in most of the collecting sites all over the country (Figure 6, after Serri and Frisch 2016: 27). Our cladogram shows the separation of the tested S. callidus populations into six genetic units, which can be explained by the limited dispersal ability of the mostly micropterous individuals of S. callidus. The genetic variability of S. callidus, as shown by the higher genetic distance among populations and more diverse haplotypes, might moreover be increased by discontinuity of suitable habitats caused by man-made destruction, because – in contrast to S. erythrocnemus – the species usually avoids strongly disturbed sites.

Figure 6.

Distribution of Stenus callidus in Iran (after Serri and Frisch 2016: 28).

Figure 7.

Strict consensus of most-parsimonious trees. Values above the branches indicate clade bootstrap support (>50) using 1000 replicates. The geographical origin of the specimens is coded by numbers behind the species name which correspond to the geographical information in Table 1.

Figure 8.

Maximum likelihood phylogram. Numbers on branches are bootstrap values (>50). The specimen codes correspond to the geographical information in Table 1. Scale shows number of substitutions per site.

Figure 9.

Distribution map of sequenced specimens of Stenus callidus (●) and S. erythrocnemus (○). Numbers are haplotype numbers (see Table 4). Sites with more than one haplotype number indicate several geographically close localities.

Though our COI examination of a limited number of West Palaearctic species of Stenus is not extensive when it comes to understanding the supraspecific phylogeny of the entire clade, it clearly shows the monophyly of the included Hemistenus species and the polyphyletic relationship among the investigated members of subgenus Stenus. The relationships of Tesnus and Metatesnus with other species were not resolved, because we were able to extract DNA from only one species of each of these subgenera. The monophyly of the selected Hemistenus species is, however, consistent with the result of the analysis performed by Koerner et al. (2013: 340).

Our results, which agree with those of Koerner et al. (2013: 345) and Lang et al. (2015: 20–21), further support the monophyly of the tested infrageneric species groups proposed by Puthz (2008: 139–148). On one hand, this result is not very significant, as only few species of some of these groupings were included in this study. On the other hand, our results clearly contradict the traditional subgeneric concept, which is followed until today, and proves the morphological characters this erroneous concept is based on to be phylogenetically uninformative convergencies. The included members of one of these traditional subgenera, Hemistenus, constitute, however, one well supported clade (bootstrap value >90) comprising the S. cordatus group, the S. glacialis group and the S. ochropus-ludyi-coarcticollis group. Particularly the first two species groups are closely related sister groups (bootstrap value 100). Further investigations are necessary to show whether Hemistenus – unlike the other traditional subgenera - actually represents a monophyletic group or not.

Our results support the supraspecific phylogenetic concept of Puthz (2008: 139–148) and at the same time largely contradict the traditional subgenera. Therefore, these subgenera should not be used anymore in favour of the informal species groups, though the monophyly of some of them still has to be proved.

Among the collected specimens of S. araxis, there are specimens which show differences in the structure of the median lobe of the aedeagus and in the spermatheca. The cladogram shows that these specimens form a separate clade although they have no geographic separation. Both morphological and genetic examination of a broader basis of specimens is necessary to clarify whether this form should be considered as a distinct species.

Since we did not succeed in extracting DNA from a large number of the recently collected species or from the Iranian material in Scheerpeltz solution collected by Senglet, it was not possible to include all Iranian species into the analysis. Moreover, the paucity of fresh specimens of many rare species did not allow us to use genetic data of these species in our phylogenetic analysis. Nevertheless, this preliminary study provides benchmark data for future phylogenetic investigations that include a higher number of taxa at a wider geographic scale and additional genes. Our current analysis based on a COI fragment suggests that the ‘barcoding fragment’ studied here can also be used for testing the phylogenetic validity of supraspecific groups.

Acknowledgements

We thank Matthias Glaubrecht, Hamburg (formerly Museum für Naturkunde Berlin), for giving the first author the opportunity to work in the lab of the museum. Björn Stelbrink, Gießen (formerly Museum für Naturkunde Berlin), kindly supervised her in the lab and introduced her to the techniques for mitochondrial DNA analysis. We are grateful to Volker Puthz, Schlitz, who introduced the first author to Stenus taxonomy and never hesitated to support her over the years. The first author is thankful to Hiva Nasserzadeh, Hayk Mirzayans Insect Museum, Tehran, for her company during collecting trips. Last but not least, we thank Lee Herman, American Museum of Natural History, New York, for proof-reading the manuscript and helpful comments. Part of field work in Iran and the whole work at the laboratory of the Museum für Naturkunde Berlin were supported by the German Research Foundation (DFG) from 2004–2011 (GZ: 446 IRN-18/1/04, 446 IRN-18/2/04, FR 2453/1-1, FR 2453/3-1).

References

  • Ádám L (1987) Staphylinidae of the Kiskunság National Park (Coleoptera: Staphylinidae). Natural History of the National Parks of Hungary 5: 126–168.
  • Ádám L (2001) In: Ádám L, Gabor H: Adatok a Zempléni-hegység, a Hernád-völgy, a Bodrogköz, a Rétköz és a Taktaköz holyvafaunájához (Coleoptera). Sátoraljaújhely, 129 pp.
  • Baudi di Selve F (1848) Alcune specie nuove di stafilini. Studi Entomologici 1(2): 113–148.
  • Betz O (1996) Function and evolution of the adhesion-capture apparatus of Stenus species (Coleoptera, Staphylinidae). Zoomorphology 116: 15–34. doi: 10.1007/BF02526926
  • Betz O (1999) A behavioral inventory of adult Stenus species (Coleoptera: Staphylinidae). Journal of Natural History 33: 1691–1712. doi: 10.1080/002229399299806
  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). The Journal of Experimental Biology 205: 1097–1113.
  • Betz O (2006) Ecomorphology: Integration of form, function, and ecology in the analysis of morphological structures. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 15: 409–416.
  • Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2: 184. doi: 10.1109/ipdps.2002.1016585
  • Eppelsheim E (1884) Diagnosen neue Coleopteren aus Lenkoran. Verhandlungen des naturforschenden Vereines in Brünn 22 [1883]: 11–16.
  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
  • Frisch J, Burckhardt D, Wolters V (2002) Rove beetles of the subtribe Scopaeina Coiffait (Coleoptera: Staphylinidae) in the West Palaearctic: Phylogeny, biogeography and species catalogue. Organisms, Diversity and Evolution 2(1): 27–53. doi: 10.1078/1439-6092-00032
  • Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23(4): 167–172. doi: 10.1016/j.tig.2007.02.001
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Biological Sciences 270: 313–321. doi: 10.1098/rspb.2002.2218
  • Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Biological Sciences (270) (Suppl.): 96–99.
  • Herman LH (2001) Catalog of the Staphylinidae (Insecta: Coleoptera) 1758 to the end of the second millennium. IV. Staphylinine group (Part l) Euaesthetinae, Leptotyphlinae, Megalopsidiinae, Oxyporinae, Pseudopsinae, Solieriinae, Steninae. Bulletin of the American Museum of Natural History 265: 1807–2440.
  • Heyden L von (1905) Notiz. Wiener Entomologische Zeitung 24: 262.
  • Kastcheev VA, Puthz V (2011) Contribution to the knowledge of the fauna of Steninae (Coleoptera, Staphylinidae) of the Kazakhstan. 319th Contribution to the Knowledge of Steninae. Entomofauna 32: 437–460.
  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. doi: 10.1007/BF01731581
  • Koerner L, Laumann M, Betz O, Heethoff M (2013) Loss of the sticky harpoon—COI sequences indicate paraphyly of Stenus with respect to Dianous (Staphylinidae, Steninae). Zoologischer Anzeiger 252: 337–347. doi: 10.1016/j.jcz.2012.09.002
  • Lang C, Koerner L, Betz O, Puthz V, Dettner K (2015) Phylogenetic relationships and chemical evolution of the genera Stenus and Dianous (Coleoptera: Staphylinidae). Chemoecology 25: 11–24. doi: 10.1007/s00049-014-0171-4
  • Leigh J, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–6. doi: 10.1111/2041-210X.12410
  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
  • Puthz V (2001) Beiträge zur Kenntnis der Steninen CCLXIX. Zur Ordnung in der Gattung Stenus Latreille, 1796 (Staphylinidae, Coleoptera). Phillippia 10: 33–42.
  • Puthz V (2008) Stenus Latreille und die segenreiche Himmelstochter (Coleoptera, Staphylinidae). Linzer biologische Beiträge 40(1): 137–230.
  • Puthz V (2009) Neue und alte paläarktische Stenus-Arten (Col., Staphylinidae). 305. Beiträge zur Kenntnis der Steninen. Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 61: 29–50.
  • Puthz V (2012) Steninae. In: Freude H, Harde KW, Lohse A (Eds) Die Käfer Mitteleuropas. Band 4. Zweite Auflage, 286–317.
  • Qian L, An Y, Song J, Xu M, Ye J, Wu C, Li B, Hao D (2014) COI gene geographic variation of Gypsy moth (Lepidoptera: Lymantriidae) and a TaqMan PCR diagnostic assay. DNA Barcodes 2: 10–16. doi: 10.2478/dna-2014-0002
  • Rey C (1884) Tribu des brévipennes. Deuxième groupe: Micropéplides. Troisième groupe: Sténides. Annales de la Société Linnéenne de Lyon 30(2): 153–415.
  • Ryvkin AB (2011) Contributions to the knowledge of Stenus (Nestus) species of the crassus group (Insecta: Coleoptera: Staphylinidae: Steninae). 1. Four new species from the Russian Far East with taxonomic notes. Baltic Journal of Coleopterology 11(1): 57–72.
  • Schierling A, Seifert K, Sinterhauf SR, Rieß JB, Rupprecht JC, Dettner K (2013) The multifunctional pygidial gland secretion of the steninae (Coleoptera: Staphylinidae): ecological significance and evolution. Chemoecology 23: 45–57. doi: 10.1007/s00049-012-0118-6
  • Schülke M, Smetana A (2015) Staphylinidae [Omaliinae - Scydmaeninae]. In: Löbl I, Löbl D (Eds) Catalogue of Palaearctic Coleoptera Vol. 2/1. Brill, Leiden, Boston, 304–900.
  • Serri S, Frisch J (2016) Species diversity and biogeography of the Steninae MacLeay, 1825 of Iran, with comparative notes on Scopaeus Erichson, 1839 (Coleoptera: Staphylinidae). Deutsche Entomologische Zeitschrift 63(1): 17–44. doi: 10.3897/dez.63.5885
  • Swofford DL (2002) PAUP. Phylogenetic Analysis Using Parsimony,Version 4. 10. Sinauer Associates, Sunderland, MA.
  • Szalanski AL, McKern JA, Solorzano C, Austin JW (2010) Genetic Diversity of Ants (Hymenoptera: Formicidae) from the Ozark-St. Francis National Forest, Arkansas, USA. Sociobiology 56(3): 1–10.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6. Molecular Biology and Evolution 30: 2725–2729. doi: 10.1093/molbev/mst197
  • Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9: 407. doi: 10.1016/0168-9525(93)90102-N