Research Article
Print
Research Article
Redescription of the giant Southeast Asian millipede Spirobolus macrurus Pocock, 1893 and its assignment to the new genus Macrurobolus gen. nov. (Diplopoda, Spirobolida, Pachybolidae)
expand article infoPiyatida Pimvichai, Henrik Enghoff§, Thierry Backeljau|
‡ Mahasarakham University, Mahasarakham, Thailand
§ University of Copenhagen, Copenhagen Ø, Denmark
| Royal Belgian Institute of Natural Sciences, Brussels, Belgium
¶ University of Antwerp, Antwerp, Belgium
Open Access

Abstract

A new genus of the millipede family Pachybolidae from Southeast Asia is described: Macrurobolus gen. nov., with Spirobolus macrurus Pocock, 1893 as type species. This latter species is DNA barcoded (COI) and redescribed based on male morphological characters, which hitherto were unknown. The new genus differs from other pachybolid genera by having (1) the preanal ring process long and protruding beyond the anal valves and (2) the anterior gonopod telopodite distally abruptly narrowed, forming an extremely long, slender, elevated process curved caudad. Given that Macrurobolus gen. nov. is a monotypic genus, it is aphyletic and thus requires further taxonomic revision.

Keywords

Aphyly, Myanmar, taxonomy, Thailand

Introduction

Spirobolus macrurus Pocock, 1893 is, with its length of up to 110 mm and diameter of up to 10 mm, the largest pachybolid millipede in SE Asia, but despite its large size, the species is still poorly known. Its original description was based on a single female specimen from Kawkareet, Tenasserim, Myanmar, and did not include the genital parts. Yet, Pocock (1893) separated S. macrurus from other Spirobolus species by its much longer and thinner preanal ring process. Much later, Hoffman (1962: 773) transferred the species to the genus Tonkinbolus Verhoeff, 1938 and remarked “said to be closely related to moulmeinensis, differing only in the longer and more slender epiproct”. However, based on gonopod characters and strongly supported by DNA sequence data, Pimvichai et al. (2018) assigned Tonkinbolus scaber Verhoeff, 1938 (type species of Tonkinbolus) to the genus Litostrophus Chamberlin, 1921. Thus, Tonkinbolus became a subjective junior synonym of Litostrophus. At the same time, Pimvichai et al. (2018) moved all other Tonkinbolus species, including T. macrurus, to the genus Atopochetus Attems, 1953 because they share the unique anterior gonopod telopodite of this genus. Yet, since T. macrurus was until then only characterised on the basis of a single female specimen, its transfer to Atopochetus was qualified as “incertae sedis” (Pimvichai et al. 2018).

In the present paper we redescribe and barcode Spirobolus macrurus based on an old male specimen discovered in the collections of the Natural History Museum of Denmark, Copenhagen, and new live material, including an adult male specimen, collected during recent fieldwork in Thailand. As a result we also create the new genus Macrurobolous gen. nov. to accommodate Spirobolus macrurus, so that this species will be referred to as Macrurobolus macrurus comb. nov.

Material and methods

Live specimens were hand collected and preserved in 70% ethanol for morphological study or placed in a freezer at –20 °C for DNA analysis. Specimens were also examined from the following collections:

CUMZ Museum of Zoology, Chulalongkorn University, Bangkok, Thailand;

NHMD Natural History Museum of Denmark, University of Copenhagen, Denmark.

This research was conducted under the approval of the Animal Care and Use regulations (numbers U1-07304-2560 and IACUC-MSU-037/2019) of the Thai government.

Morphology

Gonopods were photographed with a digital camera manipulated via the program Helicon Remote (v. 3.1.1.w). The Zerene Stacker Pro software was used for image-stacking. Drawings were made using a stereomicroscope. Samples for scanning electron microscopy (SEM) were air-dried directly from alcohol and sputter-coated for 250 s with gold. SEM micrographs were taken with an environmental scanning electron microscope (ESEM)-FEI Quanta 200. Voucher specimens were deposited in the collections of CUMZ and NHMD.

DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from legs of a male specimen of Macrurobolus macrurus, comb. nov. from Wat Tham Inthanin, Mae Sot District, Tak Province, Thailand (CUMZ-D00147) using the NucleoSpin Tissue kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions. PCR amplifications and sequencing of the standard mitochondrial COI DNA barcoding fragment (Hebert et al. 2003) were done as described by Pimvichai et al. (2020). The COI fragment was amplified with the primers LCO-1490 and HCO-2198 (Folmer et al. 1994). The new COI nucleotide sequence has been deposited in GenBank under accession number MZ905519. Sample data and voucher codes are provided in Table 1.

Table 1.

Specimens from which the COI gene fragment was sequenced. CUMZ, Museum of Zoology, Chulalongkorn University, Bangkok, Thailand; NHMD, Natural History Museum of Denmark; NHMW, Naturhistorisches Museum, Vienna, Austria; NHM, The Natural History Museum, London, United Kingdom. Names of countries are in capitals. Abbreviations after species names refer to the isolate of each sequence. GenBank accession numbers are indicated for each species.

Voucher code Locality COI
Genus Apeuthes
A. maculatus Amc NHMW-Inv. No.2395 South Annam, Vietnam MF187404
A. maculatus Am26 NHMD-621697 Nha Trang, Bao Dai Villas Hotel, in garden, Vietnam MZ567159
A. fimbriatus BMP CUMZ-D00144 Bach Ma Peak, Da Nang, Vietnam MZ567160
A. longeligulatus TPP CUMZ-D00140 Tham Phet Po Thong, Klong Hard, Sa Kaeo, Thailand MZ567161
A. pollex SMR CUMZ-D00141 Sra Morakot, Klongthom, Krabi, Thailand MZ567162
A. pollex SML CUMZ-D00142 Koh 8, Similan islands, Phang-Nga, Thailand MZ567163
A. pollex WTS CUMZ-D00143 Tham Sue Temple, Muang, Krabi, Thailand MZ567164
?A. spininavis ABB CUMZ-D00145 Air Banun, Perak, Malaysia MZ567165
Genus Atopochetus
A. anaticeps SVL CUMZ-D00091 Srivilai temple, Chalermprakiet, Saraburi, Thailand MF187405
A. dollfusii DOL NHM Cochinchina, Vietnam MF187412
A. helix SPT CUMZ-D00094 Suan Pa Thong Pha Phum, Kanchanaburi, Thailand MF187416
A. moulmeinensis TAK CUMZ-D00095 km 87, Tha Song Yang, Tak, Thailand MF187417
A. setiferus HPT CUMZ-D00097 Hub Pa Tard, Lan-Sak, Uthaithani, Thailand MF187419
A. spinimargo Ton27 NHMD-00047013 Koh Yo, Songkhla, Thailand MF187423
A. truncatus SML CUMZ-D00101 Koh 8, Similan islands, Phang-Nga, Thailand MF187424
A. uncinatus KMR CUMZ-D00102 Khao Mar Rong, Bangsapan, Prachuapkhirikhan, Thailand MF187425
A. weseneri Tos29 NHMD-00047003 Supar Royal Beach Hotel, Khanom, Nakhonsrithammarat, Thailand MF187431
Genus Aulacobolus
A. uncopygus Auc NHMW-Inv. No.2375 Nilgiris, South India, India MF187433
Genus Benoitolus
B. birgitae BBG NHMD 621687 Chiang Dao, Chiang-Mai, Thailand MT328992
Genus Coxobolellus
C. albiceps Stpw CUMZ-D00121 Tham Pha Tub, Muang District, Nan Province, Thailand (green individual) MT328994
C. compactogonus SKR CUMZ-D00134 Sakaerat Environmental Research Station, Wang Nam Khiao District, Nakhon Ratchasima Province, Thailand MT328998
C. fuscus HKK CUMZ-D00133 Kroeng Krawia waterfall, Sangkhla Buri District, Kanchanaburi Province, Thailand MT328999
C. nodosus SPW CUMZ-D00126 Chao Por Phawo Shrine, Mae Sot District, Tak Province, Thailand MT329000
C. serratus KKL CUMZ-D00132 Khao Kalok, Pran Buri District, Prachuap Khiri Khan Province, Thailand MT329001
C. simplex TNP CUMZ-D00136 Tham Pha Pha Ngam, Mae Prik District, Lampang Province, Thailand MT329002
C. tenebris TPL CUMZ-D00120 Wat Tham Phrom Lok Khao Yai, Sai Yok District, Kanchanaburi Province, Thailand MT329004
C. tigris TYE CUMZ-D00131 Tham Yai I, Pathio District, Chumphon Province, Thailand MT329006
C. transversalis Stpg CUMZ-D00125 Tham Pha Tub, Muang District, Nan Province, Thailand MT329007
C. valvatus BRC CUMZ-D00128 Tham Borichinda, Chom Thong District, Chiang-Mai Province, Thailand MT329008
Genus Leptogoniulus
L. sorornus BTN CUMZ-D00109 Botanical Garden, Penang, Malaysia MF187434
Genus Litostrophus
L. chamaeleon PPT CUMZ-D00111 Phu Pha terb, Mukdahan, Thailand MF187436
L. saraburensis PKS CUMZ-D00113 Phukhae Botanical Garden, Saraburi, Thailand MF187438
L. segregatus Ls19 NHMD 621686 Koh Kut, Trad, Thailand MF187440
Genus Macrurobolus gen. nov.
M. macrurus comb. nov. CUMZ- D00147 Wat Tham Inthanin, Mae Sot District, Tak Province, Thailand MZ905519
Genus Madabolus
M. maximus Mm4 NHMD-00047007 de Toliara Province, Parc National de Bermaraha, South Bank of Manambolo River, Near Tombeau Vazimba, Madagascar MF187441
Genus Narceus
N. annularis NC_003343.1
Genus Parabolus
P. dimorphus Pd34 NHMD-00047004 Dar es Salaam, Tanzania MF187442
Genus Paraspirobolus
P. lucifugus AB608779.1
Genus Pelmatojulus
P. tigrinus Pt2 NHMD-00047008 Southern part of the Comoé N.P., 30 km north of Kakpin, Côte d’Ivoire MF187443
P. togoensis Pto6 NHMD-00047006 Biakpa, Ghana MF187444
Genus Pseudospirobolellus
P. avernus GPG CUMZ-D00117 Gua Pulai, Gua Musang, Kelantan, Malaysia MT329011
Pseudospirobolellus sp. KCS CUMZ-D00118 Koh Chuang, Sattahip, Chonburi, Thailand MT329012
Genus Rhinocricus
R. parcus Rp49 NHMD-00047009 Puerto Rico, Usa MF187449
Genus Trachelomegalus
Trachelomgalus sp. Tr54 NHMD-00047012 Borneo Sabah, Malaysia MF187445
Genus Trigoniulus
T. corallinus Tco15 NHMD-00047010 Vientiane, Laos MF187446
Outgroup
Genus Anurostreptus
A. barthelemyae Tlb CUMZ-D00003 Thale-Ban N.P., Khuan-Don, Satun, Thailand KC519469
Genus Chonecambala
C. crassicauda Ttp CUMZ-D00001 Ton-Tong waterfall, Pua, Nan, Thailand KC519467
Genus Thyropygus
T. allevatus Bb CUMZ-D00013 BangBan, Ayutthaya, Thailand KC519479

Alignment and phylogenetic analysis

The COI data included 48 specimens, representing 17 genera and 40 nominal species of ingroup taxa (Table 1). Three species of the order Spirostreptida, viz. Anurostreptus barthelemyae Demange, 1961 (Harpagophoridae), Chonecambala crassicauda Mauriès & Enghoff, 1990 (Pericambalidae), and Thyropygus allevatus (Karsch, 1881) (Harpagophoridae) were used as outgroup.

CodonCode Aligner (v. 4.0.4, CodonCode Corporation) was used to assemble the forward and reverse sequences and to check for errors and ambiguities. Sequences were checked with the Basic Local Alignment Search Tool (BLAST) provided by NCBI and compared with reference sequences in GenBank. Next, sequences were aligned using MUSCLE (v. 3.6, see http://www.drive5.com/muscle; Edgar 2004). The COI alignments consisted of 660 bp. The sequences were checked for ambiguous nucleotide sites, saturation and phylogenetic signal using DAMBE (v. 5.2.65. see http://www.dambe.bio.uottawa.ca/DAMBE/dambe.aspx; Xia 2018). MEGA (v. X, see http://www.megasoftware.net; Kumar et al. 2018) was used to (1) check for stop codons, (2) translate COI protein-coding sequences into amino acids, and (3) calculate uncorrected pairwise p-distances among sequences.

Phylogenetic trees were constructed using maximum likelihood (ML), Bayesian inference (BI), and neighbor-joining (NJ). The shape parameter of the gamma distribution, based on 16 rate categories, was estimated using maximum-likelihood analysis. ML trees were inferred with RAxML (v. 8.2.12, see http://www.phylo.org/index.php/tools/raxmlhpc2_tgb.html; Stamatakis 2014) through the CIPRES Science Gateway (Miller et al. 2010) using a GTR+G substitution model and 1000 bootstrap replicates to assess branch support. BI trees were constructed with MrBayes (v. 3.2.7a, see http://www.phylo.org/index.php/tools/mrbayes_xsede.html; Huelsenbeck and Ronquist 2001). Substitution models were inferred using PartitionFinder 2 on XSEDE (v. 2.1.1, see http://www.phylo.org//index.php/tools/partitionfinder2_xsede.html; Lanfear et al. 2017) through the CIPRES Science Gateway (Miller et al. 2010). BI trees were run for 2 million generations (heating parameter was 0.05), sampling every 1000 generations. Convergences were confirmed by verifying that the standard deviations of split frequencies were below 0.01. Then the first 1000 trees were discarded as burn-in, so that the final consensus tree was built from the last 3002 trees. Support for nodes was assessed by posterior probabilities. NJ trees were constructed with MEGA v. X using the Kimura 2-parameter model and 1000 bootstrap replicates.

For ML and NJ trees we consider branches with bootstrap values (BV) of ≥ 70% to be well supported (Hillis and Bull 1993) and < 70% as poorly supported. For BI trees, we consider branches with posterior probabilities (PP) of ≥ 0.95 to be well supported (San Mauro and Agorreta 2010) and below as poorly supported.

Results

The uncorrected p-distance between the sequences ranged from 0.03 to 0.25 (Tables 2, 3). The mean interspecific sequence divergence within Atopochetus was 0.13 (range: 0.08–0.16). The mean sequence divergence between Atopochetus and M. macrurus comb. nov. was 0.15 (range: 0.14–0.17). The mean interspecific sequence divergence within Litostrophus was 0.10 (range: 0.09–0.11). The mean sequence divergence between Litostrophus and M. macrurus comb. nov. was 0.13 (range: 0.11–0.14).

Table 2.

Estimates of COI sequence divergences (uncorrected p-distances) within and among Pachybolidae species and related taxa (rounded to two decimals).

1 Macrurobolus macrurus comb. nov. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
2 Apeuthes longeligulatus TPP 0.18
3 ?Apeuthes spininavis ABB 0.18 0.14
4 Apeuthes fimbriatus BMP1 0.21 0.15 0.16
5 Apeuthes pollex SML 0.18 0.14 0.15 0.15
6 Apeuthes pollex SMR 0.18 0.14 0.14 0.15 0.06
7 Apeuthes pollex WTS 0.18 0.15 0.15 0.15 0.04 0.07
8 Apeuthes maculatus Amc 0.17 0.11 0.12 0.14 0.11 0.11 0.11
9 Apeuthes maculatus Am26 0.18 0.13 0.14 0.15 0.13 0.13 0.13 0.03
10 Atopochetus anaticeps SVL 0.16 0.20 0.19 0.23 0.18 0.18 0.19 0.19 0.20
11 Atopochetus dollfusii DOL 0.14 0.19 0.20 0.22 0.19 0.19 0.20 0.20 0.21 0.11
12 Atopochetus helix SPT 0.15 0.23 0.19 0.22 0.20 0.21 0.20 0.21 0.22 0.14 0.13
13 Atopochetus moulmeinensis TAK 0.17 0.22 0.22 0.23 0.22 0.23 0.23 0.22 0.23 0.14 0.12 0.15
14 Atopochetus setiferus HPT 0.14 0.20 0.20 0.22 0.18 0.18 0.19 0.19 0.20 0.08 0.09 0.14 0.13
15 Atopochetus spinimargo Ton27 0.17 0.22 0.22 0.22 0.21 0.20 0.20 0.22 0.22 0.15 0.14 0.14 0.16 0.14
16 Atopochetus truncatus SML 0.15 0.20 0.20 0.22 0.20 0.19 0.21 0.19 0.21 0.13 0.10 0.12 0.14 0.12 0.14
17 Atopochetus uncinatus KMR 0.16 0.21 0.20 0.21 0.19 0.20 0.20 0.20 0.22 0.13 0.14 0.14 0.15 0.13 0.15 0.13
18 Atopochetus weseneri Tos29 0.16 0.21 0.20 0.21 0.21 0.20 0.22 0.20 0.21 0.14 0.12 0.14 0.13 0.12 0.16 0.10 0.13
19 Aulacobolus uncopygus Auc 0.17 0.17 0.18 0.20 0.16 0.17 0.17 0.17 0.18 0.18 0.18 0.20 0.21 0.19 0.22 0.19 0.20 0.22
20 Coxobolellus albiceps Stpw 0.21 0.18 0.21 0.20 0.18 0.17 0.18 0.18 0.19 0.20 0.22 0.22 0.24 0.22 0.23 0.21 0.21 0.22 0.18
21 Coxobolellus compactogonus SKR 0.23 0.18 0.19 0.21 0.19 0.18 0.19 0.19 0.21 0.21 0.21 0.22 0.24 0.21 0.23 0.21 0.21 0.22 0.19 0.14
22 Coxobolellus fuscus HKK 0.22 0.19 0.20 0.20 0.17 0.18 0.18 0.20 0.21 0.20 0.22 0.22 0.24 0.20 0.23 0.23 0.20 0.23 0.19 0.12 0.13
23 Coxobolellus nodosus SPW 0.21 0.18 0.20 0.22 0.18 0.19 0.19 0.20 0.20 0.21 0.20 0.21 0.24 0.21 0.23 0.22 0.22 0.23 0.18 0.11 0.13 0.11
24 Coxobolellus serratus KKL 0.21 0.18 0.20 0.20 0.18 0.18 0.18 0.18 0.20 0.20 0.21 0.22 0.23 0.20 0.23 0.21 0.22 0.22 0.19 0.13 0.14 0.12 0.13
25 Coxobolellus simplex TNP 0.20 0.18 0.18 0.20 0.18 0.18 0.18 0.19 0.20 0.21 0.22 0.21 0.23 0.22 0.23 0.23 0.23 0.22 0.20 0.13 0.12 0.12 0.12 0.11
26 Coxobolellus tenebris TPL 0.22 0.19 0.18 0.21 0.18 0.18 0.18 0.18 0.20 0.21 0.22 0.23 0.25 0.22 0.24 0.23 0.23 0.23 0.19 0.13 0.10 0.12 0.12 0.14 0.11
27 Coxobolellus tigris TYE 0.23 0.19 0.21 0.22 0.20 0.20 0.20 0.20 0.20 0.19 0.22 0.22 0.25 0.21 0.24 0.22 0.22 0.22 0.21 0.13 0.14 0.12 0.13 0.12 0.13 0.15
28 Coxobolellus transversalis Stpg 0.21 0.18 0.20 0.21 0.18 0.18 0.19 0.18 0.19 0.20 0.20 0.20 0.23 0.21 0.21 0.20 0.22 0.22 0.18 0.08 0.15 0.12 0.11 0.12 0.12 0.14 0.13
29 Coxobolellus valvatus BRC 0.21 0.17 0.19 0.20 0.16 0.16 0.17 0.17 0.18 0.20 0.21 0.20 0.24 0.20 0.23 0.22 0.22 0.22 0.17 0.10 0.13 0.11 0.07 0.13 0.12 0.12 0.13
30 Paraspirobolus lucifugus 0.25 0.25 0.22 0.23 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.23 0.23 0.24 0.25 0.25 0.24 0.24
31 Leptogoniulus sorornus BTN 0.18 0.16 0.14 0.16 0.14 0.14 0.15 0.13 0.14 0.18 0.18 0.19 0.21 0.19 0.20 0.19 0.22 0.22 0.17 0.21 0.20 0.20 0.19 0.19 0.18 0.20 0.20
32 Litostrophus chamaeleon PPT 0.14 0.20 0.19 0.20 0.18 0.18 0.20 0.18 0.19 0.17 0.16 0.15 0.18 0.16 0.18 0.15 0.17 0.17 0.19 0.20 0.21 0.20 0.20 0.20 0.21 0.21 0.20
33 Litostrophus saraburensis PKS 0.11 0.18 0.18 0.20 0.18 0.17 0.18 0.16 0.17 0.16 0.15 0.15 0.17 0.15 0.16 0.14 0.16 0.18 0.18 0.18 0.20 0.19 0.19 0.20 0.20 0.20 0.20
34 Litostrophus segregatus Ls19 0.13 0.19 0.19 0.20 0.18 0.18 0.19 0.18 0.20 0.13 0.13 0.15 0.16 0.13 0.15 0.14 0.14 0.17 0.18 0.21 0.21 0.21 0.21 0.20 0.22 0.21 0.21
35 Madabolus maximus Mm4 0.19 0.20 0.18 0.20 0.19 0.19 0.20 0.20 0.21 0.21 0.20 0.19 0.22 0.22 0.21 0.20 0.20 0.22 0.18 0.20 0.23 0.22 0.21 0.22 0.22 0.24 0.22
36 Narceus annularis 0.20 0.21 0.20 0.20 0.21 0.21 0.21 0.21 0.22 0.23 0.20 0.21 0.22 0.21 0.20 0.20 0.21 0.21 0.20 0.22 0.23 0.21 0.23 0.22 0.22 0.23 0.22
37 Parabolus dimorphus Pd34 0.20 0.21 0.21 0.22 0.19 0.19 0.19 0.20 0.21 0.18 0.20 0.19 0.22 0.18 0.20 0.21 0.19 0.21 0.19 0.18 0.22 0.19 0.18 0.20 0.20 0.20 0.17
38 Pelmatojulus tigrinus Pt2 0.18 0.18 0.18 0.19 0.18 0.17 0.19 0.17 0.18 0.22 0.22 0.20 0.23 0.22 0.23 0.22 0.22 0.22 0.16 0.20 0.20 0.20 0.21 0.22 0.22 0.22 0.20
39 Pelmatojulus togoensis Pto6 0.21 0.19 0.20 0.18 0.18 0.17 0.17 0.18 0.20 0.21 0.22 0.22 0.22 0.20 0.20 0.21 0.20 0.21 0.17 0.19 0.20 0.20 0.19 0.19 0.21 0.20 0.20
40 Pseudospirobolellus avernus GPG 0.21 0.21 0.19 0.23 0.19 0.20 0.20 0.20 0.22 0.21 0.22 0.22 0.23 0.21 0.23 0.22 0.23 0.23 0.20 0.20 0.21 0.20 0.21 0.20 0.21 0.21 0.20
41 Pseudospirobolellus sp. KCS 0.23 0.22 0.22 0.22 0.22 0.22 0.21 0.23 0.23 0.23 0.23 0.21 0.23 0.23 0.22 0.22 0.23 0.23 0.22 0.22 0.22 0.21 0.21 0.22 0.22 0.23 0.22
42 Rhinocricus parcus Rp49 0.24 0.24 0.23 0.23 0.23 0.23 0.22 0.23 0.24 0.24 0.21 0.22 0.22 0.24 0.21 0.23 0.22 0.23 0.22 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24
43 Trachelomegalus sp. Tr54 0.19 0.20 0.19 0.20 0.19 0.19 0.20 0.20 0.22 0.19 0.18 0.17 0.20 0.19 0.18 0.18 0.18 0.18 0.20 0.21 0.22 0.24 0.23 0.22 0.22 0.23 0.24
44 Trigoniulus corallinus Tco15 0.18 0.15 0.14 0.13 0.13 0.13 0.14 0.12 0.12 0.18 0.19 0.20 0.23 0.19 0.20 0.20 0.21 0.21 0.17 0.18 0.18 0.17 0.18 0.19 0.17 0.18 0.17
45 Anurostreptus barthelemyae Tlb 0.23 0.21 0.21 0.22 0.20 0.20 0.19 0.21 0.22 0.22 0.22 0.23 0.24 0.23 0.22 0.24 0.23 0.24 0.20 0.19 0.21 0.19 0.19 0.20 0.19 0.20 0.19
46 Chonecambala crassicauda 0.24 0.23 0.22 0.21 0.22 0.22 0.21 0.21 0.23 0.24 0.24 0.24 0.23 0.24 0.23 0.24 0.22 0.24 0.22 0.23 0.23 0.22 0.23 0.22 0.22 0.23 0.22
47 Thyropygus allevatus Bb 0.21 0.21 0.21 0.21 0.20 0.21 0.20 0.21 0.22 0.21 0.21 0.22 0.23 0.23 0.23 0.22 0.21 0.24 0.20 0.20 0.19 0.20 0.20 0.19 0.19 0.20 0.19
Table 2.

Continued.

1 Macrurobolus macrurus comb. nov. 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
2 Apeuthes longeligulatus TPP
3 ?Apeuthes spininavis ABB
4 Apeuthes fimbriatus BMP1
5 Apeuthes pollex SML
6 Apeuthes pollex SMR
7 Apeuthes pollex WTS
8 Apeuthes maculatus Amc
9 Apeuthes maculatus Am26
10 Atopochetus anaticeps SVL
11 Atopochetus dollfusii DOL
12 Atopochetus helix SPT
13 Atopochetus moulmeinensis TAK
14 Atopochetus setiferus HPT
15 Atopochetus spinimargo Ton27
16 Atopochetus truncatus SML
17 Atopochetus uncinatus KMR
18 Atopochetus weseneri Tos29
19 Aulacobolus uncopygus Auc
20 Coxobolellus albiceps Stpw
21 Coxobolellus compactogonus SKR
22 Coxobolellus fuscus HKK
23 Coxobolellus nodosus SPW
24 Coxobolellus serratus KKL
25 Coxobolellus simplex TNP
26 Coxobolellus tenebris TPL
27 Coxobolellus tigris TYE
28 Coxobolellus transversalis Stpg
29 Coxobolellus valvatus BRC 0.11
30 Paraspirobolus lucifugus 0.24 0.23
31 Leptogoniulus sorornus BTN 0.19 0.19 0.24
32 Litostrophus chamaeleon PPT 0.21 0.20 0.24 0.18
33 Litostrophus saraburensis PKS 0.18 0.19 0.24 0.18 0.11
34 Litostrophus segregatus Ls19 0.20 0.20 0.25 0.18 0.11 0.09
35 Madabolus maximus Mm4 0.21 0.20 0.24 0.20 0.19 0.18 0.20
36 Narceus annularis 0.22 0.22 0.21 0.21 0.20 0.20 0.21 0.20
37 Parabolus dimorphus Pd34 0.19 0.18 0.25 0.21 0.19 0.18 0.20 0.17 0.20
38 Pelmatojulus tigrinus Pt2 0.21 0.19 0.24 0.19 0.20 0.20 0.20 0.18 0.19 0.19
39 Pelmatojulus togoensis Pto6 0.20 0.18 0.25 0.18 0.18 0.18 0.19 0.19 0.20 0.18 0.17
40 Pseudospirobolellus avernus GPG 0.20 0.21 0.22 0.19 0.23 0.21 0.21 0.21 0.22 0.23 0.20 0.21
41 Pseudospirobolellus sp. KCS 0.22 0.22 0.22 0.21 0.23 0.22 0.22 0.24 0.22 0.21 0.22 0.22 0.14
42 Rhinocricus parcus Rp49 0.25 0.24 0.22 0.22 0.22 0.23 0.23 0.22 0.20 0.23 0.21 0.22 0.22 0.21
43 Trachelomegalus sp. Tr54 0.22 0.23 0.24 0.21 0.18 0.17 0.15 0.21 0.21 0.21 0.19 0.21 0.22 0.20 0.22
44 Trigoniulus corallinus Tco15 0.17 0.16 0.23 0.14 0.18 0.16 0.17 0.18 0.20 0.19 0.18 0.17 0.23 0.22 0.23 0.20
45 Anurostreptus barthelemyae Tlb 0.19 0.18 0.23 0.22 0.21 0.20 0.22 0.22 0.21 0.21 0.21 0.20 0.22 0.21 0.23 0.23 0.19
46 Chonecambala crassicauda 0.22 0.21 0.23 0.21 0.23 0.22 0.24 0.24 0.23 0.21 0.22 0.24 0.23 0.23 0.23 0.22 0.22 0.19
47 Thyropygus allevatus Bb 0.20 0.19 0.22 0.20 0.21 0.20 0.22 0.21 0.20 0.21 0.23 0.21 0.22 0.22 0.21 0.24 0.20 0.15 0.20

PartitionFinder indicated that the best substitution model for BI analysis was GTR+ G. The ML, BI, and NJ trees were congruent with respect to some of the well-supported branches (by visual inspection of the branching pattern). Yet, in several instances BI provided good support for branches that were not well-supported by both ML and NJ (e.g., the Litostrophus + Benoitolus clade or the Coxobolellus + Pseudospirobolellus clade).

In the phylogenetic trees (Fig. 1) the clade of Pachybolidae + Benoitolus is poorly supported by ML (BV = 63) and NJ (BV = 27), but well supported by BI (PP = 0.97), while Trigoniulinae is well supported by the three methods (BV = 96 and 92; PP = 1.00). Although the monophyly of Pachybolidae is clearly challenged by the inclusion of Benoitolus, which involves a long branch, removing Benoitolus from the analysis yields a Pachybolidae clade with the same pattern of support as the Pachybolidae + Benoitolus clade (Suppl. material 1).

Figure 1. 

Phylogenetic relationships of pachybolid and several other spirobolidan millipede species based on maximum likelihood analysis (ML) of a 660 bp COI gene fragment. Numbers at nodes indicate branch support based on bootstrapping (ML) / posterior probabilities (BI) / bootstrapping (NJ). Scale bar: 0.3 substitutions/site. # indicates branches with < 50% ML and NJ bootstrap support or < 0.95 posterior probability, - indicates non-supported branches. The coloured areas mark the Pseudospirobolellidae (minus Benoitolus) (purple), Trigoniulinae (red), and non-trigoniuline Pachybolidae (plus Benoitolus) (yellow).

Irrespective of the in- or exclusion of Benoitolus, Macrurobolus macrurus comb. nov. is nested within a clade comprising Litostrophus and Atopochetus. Yet, this clade is poorly supported by ML, well supported (but just so) by NJ, and convincingly well supported by BI. The position of M. macrurus comb. nov. within this clade, however, is poorly supported by the three methods.

Taxonomy

Class DIPLOPODA de Blainville in Gervais, 1844

Order SPIROBOLIDA Bollman, 1893

Suborder TRIGONIULIDEA Attems, 1909

Family PACHYBOLIDAE Cook, 1897

Macrurobolus gen. nov.

Figures 1, 2, 3, 4, 5

Diagnosis

A genus of Pachybolidae characterised by the following combination of characters: preanal ring with long process protruding beyond anal valves; the anterior gonopod telopodite distally abruptly narrowed, forming an extremely long, slender, elevated process curved caudad.

Etymology

The generic name is a combination of the name of the type species and “-bolus”, the ending of many pachybolid genus names.

Type species

Macrurobolus macrurus (Pocock, 1893) comb. nov.

Spirobolus macrurus Pocock 1893: 396.

Tonkinbolus macrurus: Hoffman 1962: 773.

Atopochetus macrurus: Pimvichai et al. 2018: 174.

Macrurobolus macrurus

(Pocock, 1893), comb. nov

The original description was based exclusively on a female from “Kawkareet” (Tenasserim), Myanmar (see Distribution section for information on this locality). Pocock (1893) described the female external morphology and mentioned that this species differed from Spirobolus caudulanus [= Atopochetus caudulanus (Karsch, 1881)] and Spirobolus moulmeinensis [= Atopochetus moulmeinensis (Pocock, 1893)] by having a “much longer and thinner tail”.

Material studied

Thailand, 1 ♂, 3 ♀♀; Tak Province, Mae Sot District, Wat Tham Inthanin; 16°45'59"N, 98°40'21"E; 660 m a.s.l.; 27 July 2016; P. Pimvichai, T. Backeljau and P. Prasankok leg. (CUMZ). • Myanmar, 1 ♂; Meetan; Fea; “ex typ.”; NHMD 621698.

Description of Thai specimens

Adult male with 51 podous rings, no apodous rings. Length ca 11 cm, diameter ca 9.0 mm. Adult females with 48–51 podous rings, no apodous rings. Length ca 10–11 cm, diameter ca 10.0–10.4 mm.

Head capsule smooth, area below antennal sockets with wrinkles (Fig. 2A). Occipital furrow extending down between, but not beyond eyes; clypeal furrow reaching level of antennal sockets. Area below antennal sockets and eyes impressed, forming part of antennal furrow. Incisura lateralis open. 2+2 labral teeth, a row of labral setae, 1+1 supralabral setae (mentioned as “the labral region furnished with 4 punctures” by Pocock 1893: 401). Diameter of eyes ca half of interocular space; 9 vertical rows of ommatidia, 8 horizontal rows, 53–55 ommatidia per eye. Antennae short, not reaching beyond collum when stretched back, accommodated in a shallow furrow composed of a horizontal segment in the head capsule and a vertical segment in the mandibular cardo and stipes. Antennomere lengths 2 > 3 = 5 > 4 > 6 > 1 > 7; antennomere 1 glabrous, 2 and 3 with some ventral setae, 4, 5 and 6 densely setose; 4 apical sensilla. Mandibles: stipes (Mst) broad at base, apically gradually narrowed. Gnathochilarium (Fig. 2B): each stipes (Gst) with 3 apical setae; each lamella lingualis with 2 setae, one behind the other. Basal part of mentum (Me) transversely wrinkled; basal part of stipites longitudinally wrinkled.

Figure 2. 

External morphology of a male Macrurobolus macrurus comb. nov. from Wat Tham Inthanin, Thailand, CUMZ-D00147-1 A head, frontal view B gnathochilarium, ventral view C posterior end, lateral view D posterior end, latero-ventral view E midbody leg, latero-ventral view. Av = anal valves; Gst = gnathochilarial stipes; Me = mentum; Mst = mandibular stipes; Sub = subanal scale.

Collum smooth, with a marginal furrow along lateral part of anterior margin; lateral lobes narrowly rounded, extending as far ventrad as the ventral margin of body ring 2.

Body rings 2–5 ventrally concave, hence with distinct ventrolateral “corners”. Body rings very smooth, parallel-sided in dorsal view. Prozona smooth. ‘Tergo-pleural’ suture visible on pro- and mesozona; mesozona ventrally with fine oblique striae, dorsally punctate; metazona ventrally with fine longitudinal striae, otherwise smooth. “Pleural” parts of rings with fine oblique striae. Sterna transversely striate. Ozopores from ring 6, situated in mesozona, ca 1/2 pore diameter in front of metazona (mentioned as “the repugnatorial pores situated in front of the transverse sulcus” by Pocock 1893: 401).

Telson smooth; preanal ring with slightly concave dorsal profile, with thick and long process protruding beyond anal valves (Fig. 2C). Anal valves (Av) impressed submarginally (Fig. 2D); margins hence distinctly protruding, liplike. Subanal scale (Sub) broadly triangular.

Legs (Fig. 2E): length of midbody legs 72–77% of body diameter in males, 54–56% of body diameter in females. Prefemur basally constricted, tarsus longer than other podomeres. First and second legs with 2 or 3 prefemoral, 2 or 3 femoral, 2 or 3 postfemoral, and 2–4 tibial setae, and 4 or 5 ventral and 1 dorsal apical setae on tarsi, numbers of setae reaching constancy from pair 3: each leg podomere from coxa to tibia with 1 seta; tarsi with 2 ventral apical and 1 dorsal apical seta, the apical ventral seta larger than the more basal one. Claw very slender, more than half as long as tarsus.

Colour. Living animal reddish brown except for grey pro- and mesozona (Fig. 4).

Male sexual characters. Tarsus from third to before the last 4 body rings with large ventral soft pad occupying entire ventral surface. Body ring 7 entirely fused ventrally, no trace of a suture. Tip of anterior gonopods visible when the animal is stretched out (not when it is rolled up).

Anterior gonopods (Fig. 3A, B, D, E) with triangular mesal sternal process, not reaching so far as the tip of coxae, apical margin bilobed, with basal longitudinal triangular ridge in posterior view. Coxa oval, apically gradually narrowed, rounded, projecting slightly beyond sternal process. Telopodite apically far overreaching coxa, distally abruptly narrowed, forming an extremely long, slender, elevated process curved caudad.

Figure 3. 

Male (A–F, H–L) and female (G) genital parts of Macrurobolus macrurus comb. nov. (specimens from Wat Tham Inthanin, Thailand, CUMZ-D00147-1) A anterior gonopod, anterior view B anterior gonopod, posterior view C right posterior gonopod, posterior-mesal view D anterior gonopod, anterior view E anterior gonopod, posterior view F right posterior gonopod, posterior-mesal view G left female vulva, posterior mesal view H–L SEM H left posterior gonopod, posterior-mesal view I tip of posterior gonopod, mesal view J apical part of posterior gonopod, mesal view K spiny lamellae near tip of posterior gonopod, mesal view L meso-distad process of posterior gonopod, posterior-mesal view. at = anterior gonopod telopodite; av = anterior valve; cx = coxa; pt = posterior gonopod telopodite; pv = posterior valve; st = sternum.

Posterior gonopods (Fig. 3C, F, H–I) strongly curved mesad, laterally with a massive ridge; with efferent canal (Enghoff 2011) running along mesal margin terminating in slender, pointed meso-distad process, covered with fine hairlike spinules (Fig. 3L); tip of posterior gonopod concave, apically ending in a rounded lobe (Fig. 3I, showed serrated margin, dorsally covered with short spines); with spiny lamellae mesally near tip.

Figure 4. 

Live female Macrurobolus macrurus comb. nov. from Wat Tham Inthanin, Thailand (CUMZ-D00147-3).

Female vulvae (Fig. 3G). Valves prominent, of equal size; basally with open space between free margins.

DNA barcode

The GenBank accession number of the COI barcode of the Thai specimen is MZ905519 (voucher code CUMZ-D00147).

Ecology

. Found under leaf litter.

Notes on the male from Meetan, Myanmar

This specimen is labelled as “ex typ” in the NHMD collection and was, like the female type specimen, collected by Fea. It agrees with the Thai male in all characters, including all details of gonopod shape, with the following exceptions: Colour after > 100 years in alcohol is faded, but there is still a clear contrast between greyish pro- and mesozone and reddish-brown metazona. Size: length ca 8 cm, diameter 6.7 mm, 50 podous rings, no apodous rings in front of telson. Head capsule smooth. 11 vertical rows of ommatidia, of which 3 are very incomplete, 7 horizontal rows, 47 ommatidia per eye. Antennomeres 2–4 with some ventral setae, 5 and 6 densely setose. Gnathochilarium not dissected.

Distribution

Tak Province, Thailand; Kawkareet (Tenasserim) and Meetan, Myanmar (Fig. 5). The names Kawkareet and Meetan do not appear on maps available to us. However, Brandis (2002: 1312) mentioned “Meetan (= Mitan Chaung (= river) 15°59'00"N 98°24'00"E at the south-west slope of the Dawna mountain”, whereas Randall and Page (2012: 344) located Meetan at “16.555556°N, 98.24°E (coordinates estimated)”. Annandale (1911: 118) stated that Kawkareet refers to Kawkareik and remarked in a footnote that “This locality [i.e. Kawkareik] is often referred to in zoological literature as Kawkareet or Kawkarit, or even Kokarit”. Finally, Likhitrakarn et al. (2017) located Kawkareet (= Kawkareik) at 16°33'20"N, 98°14'24"E and Meetan (= Mi Tan) at 16°00'12"N, 98°23'25"E.

Figure 5. 

Distribution of Macrurobolus macrurus comb. nov.

Discussion

The male specimen of Spirobolus macrurus from Meetan in NHMD, although labelled “ex typ.”, should not a priori be regarded as a type (ICZN Art. 72.4.7.) because Pocock (1893: 396) explicitly mentioned that the species description was based on “A single ♀ from Kawkareet (Tenasserim)”. However, its non-sexual characters agree with Pocock’s (1893) description. Hence, we do not hesitate to refer it to Macrurobolus macrurus comb. nov.

The new male specimen from Thailand and the old specimen from Myanmar share the long preanal ring process with the female type specimen, which is a remarkable character for a pachybolid, since most pachybolid genera (except Aulacobolus Pocock, 1903 and Trachelomegalus Silvestri, 1896) have a short preanal ring process. So, in this respect, Macrurobolus gen. nov. is clearly differentiated from most other pachybolid genera, including Atopochetus and Litostrophus, the two genera with which Macrurobolus gen. nov. appears the be most closely related in our phylogenetic tree (Fig. 1). Similarly, the anterior gonopod telopodites of Macrurobolus (telopodite distally abruptly narrowed, forming an extremely long, slender, elevated process curved caudad) clearly differ from those of Litostrophus (telopodite simple, without process, narrowly rounded) or Atopochetus (telopodite with a triangular process directed laterad originating on posterior surface at ~1/2 or 2/3–4/5 of its height). Hence, given that Macrurobolus shares neither the defining morphological synapomorphies of Atopochetus, nor those of Litostrophus, we think that the creation as a separate monotypic genus is warranted.

The interpretation of Macrurobolus as a separate genus is somehow in line with the COI tree (Fig. 1), which places the new genus in a clade comprising Atopochetus and Litostrophus, but which supports neither joining M. macrurus comb. nov. with Atopochetus (which itself forms a consistently well-supported clade), nor joining it with Litostrophus (which itself forms also a well-supported clade) (Fig. 1). Moreover, the mean interspecific COI sequence divergence between M. macrurus and other pachybolid and pseudospirobolellid species is 18% (range: 11–23%) (Tables 2, 3), a value that rather points to an intergeneric divergence (Table 3).

Table 3.

Estimates of COI mean sequence divergences within (on diagonal) and among (below diagonal) pachybolid and pseudospirobolellid genera (range in parentheses) (data based on Pimvichai et al. 2018, 2020, 2022).

1 2 3 4 5
1. Apeuthes 14 (11–16)
2. Atopochetus 21 (18–23) 13 (8–16)
3. Coxobolellus 19 (16–22) 22 (19–25) 12 (7–15)
4. Litostrophus 19 (16–20) 16 (13–18) 20 (18–22) 11 (9–11)
5. Pseudospirobolellus 21 (19–23) 22 (21–23) 21 (20–23) 22 (21–23) 14
6. Macrurobolus macrurus comb. nov. 18 (18–21) 15 (14–17) 21 (20–23) 13 (11–14) 22 (21–23)

In conclusion, this study suggests that Pimvichai et al. (2018) appropriately labelled the transfer of Tonkinbolus macrurus to the genus Atopochetus as “incertae sedis”. Indeed, the species can be accommodated in neither Atopochetus nor Litostrophus, i.e., the two genera with which it appears to be most closely associated. Hence, it would be ill-advised to maintain Macrurobolus macrurus comb. nov. in the genus Atopochetus, for this would undermine both the definition and the support of the monophyly of this taxon. Therefore, the creation of the monotypic genus Macrurobolus gen. nov. seems the best solution to provide a generic name for Spirobolus macrurus Pocock, 1893. Still, the monotypy of Macrurobolus gen. nov. renders it aphyletic sensu Ebach and Williams (2010), and hence in need of further study (Williams and Ebach 2020: 134).

Acknowledgements

This research was funded by the Thailand Science Research and Innovation (TSRI) together with Mahasarakham University as a TRF Research Career Development Grant (2019–2022; RSA6280051) (to P. Pimvichai). Additional funding came from the Royal Belgian Institute of Natural Sciences (RBINS). We thank, Pongpun Prasankok for assistance in collecting material. We are indebted to Julien Cillis (RBINS) for help with SEM photographs, to Yves Barette (RBINS) for help with gonopod photographs and to Thita Krutchuen for the excellent drawings. Last but not least, we thank Thomas Wesener (Bonn) and Sergei Golovatch (Moscow) for their helpful reviews of this paper.

References

  • Annandale N (1911) The Fauna of Britih India, including Ceylon and Burma. Freshwater Sponges, Hydroids & Polyzoa. Taylor and Francis, London.
  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society London Series B 270: 313–321. https://doi.org/10.1098/rspb.2002.2218
  • Hillis D, Bull J (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182
  • Hoffman RL (1962) Studies on spiroboloid millipeds IV. Systematic and nomenclatorial notes on the family Pachybolidae. Revue Suisse de Zoologie 69: 759–783. https://doi.org/10.5962/bhl.part.75592
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. https://doi.org/10.1093/molbev/msw260
  • Likhitrakarn N, Jirapatrasilp P, Golovatch S, Panha S (2017) A checklist of the millipedes (Diplopoda) of Myanmar, with an updated list of Leonardo Fea’s collecting localities. Zootaxa 4350: 001–0046. https://doi.org/10.11646/zootaxa.4350.1.1
  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: IEEE ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number: 11705685, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  • Pimvichai P, Enghoff H, Panha S, Backeljau T (2018) Morphological and mitochondrial DNA data reshuffle the taxonomy of the genera Atopochetus Attems, Litostrophus Chamberlin and Tonkinbolus Verhoeff (Diplopoda: Spirobolida: Pachybolidae), with descriptions of nine new species. Invertebrate Systematics 32: 159–195. https://doi.org/10.1071/IS17052
  • Pimvichai P, Enghoff H, Panha S, Backeljau T (2020) Integrative taxonomy of the new millipede genus Coxobolellus, gen. nov. (Diplopoda: Spirobolida: Pseudospirobolellidae), with descriptions of ten new species. Invertebrate Systematics 34(6): 591–617. https://doi.org/10.1071/IS20031
  • Pimvichai P, Panha S, Backeljau T (2022) Combining mitochondrial DNA and morphological data to delineate four new millipede species and provisional assignment to the genus Apeuthes Hoffman & Keeton (Diplopoda: Spirobolida: Pachybolidae: Trigoniulinae). Invertebrate Systematics 36(2): 91–112. https://doi.org/10.1071/IS21038
  • Pocock RI (1893) Viaggio di Leonardo Fea in Birmania e regioni vicine LV. On the Myriopoda of Burma. Pt 3. Report upon the Julidae, Chordeumidae and Polyzonidae collected by Sig. L. Fea and Mr. E.W. Oates. Annali del Museo civico di Storia naturale di Genova 33: 386–406.
  • Randall ZS, Page LM (2012) Resurrection of the genus Homalopteroides (Teleostei: Balitoridae) with a redescription of H. modestus (Vinciguerra 1890). Zootaxa 3586: 329–346. https://doi.org/10.11646/zootaxa.3586.1.31
  • San Mauro D, Agorreta A (2010) Molecular systematics: a synthesis of the common methods and the state of knowledge. Cellular & Molecular Biology Letters 15: 311–341. https://doi.org/10.2478/s11658-010-0010-8
  • Williams DM, Ebach MC (2020) Cladistics – a Guide to Biological Classification (3rd edn.). Systematics Association Special Volume 88, Cambridge University Press, UK.
  • Xia X (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution 35: 1550–1552. https://doi.org/10.1093/molbev/msy073

Supplementary materials

Supplementary material 1 

Redescription of the giant SE Asian millipede Spirobolus macrurus Pocock, 1893 and its assignment to the new genus Macrurobolus gen. nov. (Diplopoda, Spirobolida, Pachybolidae)

Piyatida Pimvichai, Henrik Enghoff, Thierry Backeljau

Data type: Jpg file.

Explanation note: Phylogenetic relationships of pachybolid and several other spirobolidan millipede species (excluding Benoitolus birgitae) based on maximum likelihood analysis (ML) of a 660 bp COI gene fragment.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (350.76 kb)
Supplementary material 2 

Table S2

Piyatida Pimvichai, Henrik Enghoff, Thierry Backeljau

Data type: Xlsx file.

Explanation note: Estimates of COI sequence divergences (uncorrected p-distances) within and among Pachybolidae species and related taxa.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (21.45 kb)
login to comment