Editorial |
Corresponding author: Michael Sharkey ( msharkey@uky.edu ) Academic editor: Lyubomir Penev
© 2021 Michael Sharkey, Brian Brown, Austin Baker, Marko Mutanen.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Sharkey M, Brown B, Baker A, Mutanen M (2021) Response to Zamani et al. (2020): The omission of critical data in the pursuit of “revolutionary” methods to accelerate the description of species. ZooKeys 1033: 191-201. https://doi.org/10.3897/zookeys.1033.66186
|
Here we respond to the criticisms leveled against a proposal that suggested an efficient solution to the taxonomic impediment. We clarify some of our objectives and demonstrate that many of the criticisms apply more to traditional approaches to taxonomy rather than to our minimalist approach.
Much of what Zamani et al. demanded as required taxonomic procedure is opinion. Taxonomy can proceed in different ways, with different phases of completeness. Detailed treatment of all life stages of an insect, for instance, frequently postdates the description of that species, which is often based on a single sex. Aspects of variation, distribution, life history, etc. are often included later, long after the species is described.
The first and perhaps most emphasized criticism of their article was that the, “authors failed to diagnose their 15 new Zelomorpha Ashmead, 1900 species from 51 out of 52 previously known species”. An important note is that the molecular diagnoses employed are recognized as valid diagnoses according to the code of zoological nomenclature. In Meierotto et al. it was emphasized that the second author had seen all of the types and that none but Z. arizonensis were, in his opinion, conspecific with described species; however, let’s imagine that this was not true and that Meierotto et al. ignored most of the previously described species; i.e., those lacking COI barcode sequences, essentially all but one. The COI barcode is very effective in diagnosing species of Zelomorpha and if a previously described species of Zelomorpha was barcoded and found to be very (very) similar or identical to one that Meierotto et al. described, their new species hypotheses would be falsified (or reasonably so). That is an effective diagnostic. The type specimens need not be barcoded. Just as in the case of Zelomorpha arizonensis, a specimen fitting the description and locality of the type could be barcoded as a proxy. In many groups of organisms in which the majority of the species are described this would not be a viable alternative, however in hyper-diverse groups with only a small percentage of the fauna described the problems created are few and they are far outweighed by the advantages.
Here are the reasons for temporarily ignoring the previously described species and producing barcode-only diagnoses. 1. It allows for the efficient and quick diagnosis of species. 2. No one uses morphological keys and diagnoses to these hyper-diverse taxa, because they do not work. 3. The only way to even suspect that a newly discovered specimen belongs to a morphologically described species is to borrow all related types and visit museums, mostly scattered across Europe and North America. 4. There are so many species in these groups that a morphological key to the small percentage of described forms has little value.
The first reason is explained elsewhere in this article and in
The revision of Alabagrus included 104 species treated with morphology only. It contained a key as well as diagnoses and descriptions of each species and was heavily critiqued by
There are about four citations for the Alabagrus revision in which the publication was used to identify a specimen, but in only one of these was the identification verified by anyone other than Sharkey. In this sole citation, a parasitoid of a new Nearctic species of Crambidae, Diatraea mitteri, was identified by as Alabagrus imitatus (
It took Sharkey over seven years and a prolonged trip to Europe to view types to produce the revision and it is worse than useless, because it is full of misleading information on species limits and species distributions. Some might argue for an integrative approach, such as the revision of Costa Rican Alabagrus by
The third reason, to temporarily ignore old type specimens until they, or proxies, are barcoded, is the expense and difficulty of viewing them. The only way to even suspect that a newly discovered specimen belongs to a described species is to borrow all relevant types and probably visit museums mostly scattered across Europe and North America. The first problem that a reviser would come across for a revision of Zelomorpha would be to find the types of the 52 species of Zelomorpha that had been described. Since Sharkey has already done this we can report that it is not possible to find these in the literature. Species of Zelomorpha have been described under at least 13 different generic names, i.e., Agathis, Biroia, Bracon, Chromomicrodus, Coccygidium, Crassomicrodus, Cremnops, Dichelosus, Disophrys, Ichneumon, Microdus, Spilomicrodus, and Zelomorpha. Most of these are species described by taxonomists in the late 19th and early 20th centuries, therefore the descriptions are brief and all but useless. A reviser would have to visit 12 different museums in 10 different countries [Poland, Hungary, France, Germany, USA (Washington D.C.), USA (Philadelphia), USA (New York), England, Sweden, Costa Rica, Denmark, and Italy] and look at all of their agathidines to “rediscover” the 52 species. After looking at these species there would be many that certainly are not among the species being revised and these could be maintained. The problem occurs when a museum specimen is a close match with a specimen in hand. If not identical and from the same locality as the holotype, morphological similarity is not enough to indicate conspecificity. The article by
Morphological diagnoses necessitate the viewing of holotypes and as such they act as an enormous impediment to the taxonomy of hyper-diverse taxa. There are also social and environmental issues to consider. The cost of travelling to the museums to view types is expensive, all but precluding the participation of taxonomists from developing countries. There is a cost to the environment in the air travel involved, and finally in the case of pandemics, such as the one currently being experienced (Covid-19), virtually no one can visit museums. Consider the alternative when the barcode serves as a proxy to the holotype; a simple search on BOLD (Barcode of Life Datasystem) will indicate with a great degree of certainty whether a specimen belongs to a described species.
The final argument, for postponing the inclusion of non-barcoded species in our species-rich genera, is the low probability that newly discovered specimens have been described. We estimate that there are approximately 500 species of Zelomorpha. With only 52 described there is only a 10% chance that a newly described species will be a synonym. Compare this to the current 33% synonymy rate for species of Ichneumonoidea as documented by
Zamani et al.’s statements that more than one photograph should be required and that text elucidating important diagnostic characters should be included are irrelevant because we don’t expect anyone to identify these species using morphology. For some groups of insects (we are not saying for all groups), the idea that people, even experts, can accurately identify species using morphology is wrong, as documented separately (
Users of biodiversity information need to be able to recognize species. This will never occur using morphology alone in most species-rich groups of insects with cryptic morphologies. Such organisms require huge amounts of time to diagnose, with required dissections, drawings, and incorporation into ever-longer keys with more and more complicated exceptions. Additionally, such morphological keys need to be generated for all life stages separately, seriously compromising a system based solely on morphology. DNA barcodes have a huge benefit of permitting species delimitation and specimen identification regardless of life history stage, and usually also sample condition.
To us, one of the least-appealing aspects of the realization that barcoding is necessary is the loss of the fantasy that we can sit down with a specimen at a microscope and definitively arrive at a species name for it. This type of immediate identification in some highly diverse groups of insects is a taxonomic fiction. Until we have individual-sized barcoders, which are not far off (
One oft-repeated criticism of this approach (in both Zamani et al., and in a barrage of social media posts) is that it discriminates against entomologists in developing countries, where funding for this type of work might not exist. This argument is beside the point for groups like ours that have so many species that morphology simply does not work. It is not DNA taxonomy that is the problem for scientists in developing countries; it is the large groups that cannot be treated in the traditional way. If critics want to argue that it is better to leave these groups “undone” than to treat them in a way that some cannot afford to replicate, we have to respectfully disagree.
Zamani et al.’s comments invite contemplation about the target audience for longer descriptions. Applied users of biodiversity information (conservation biologists, ecologists) don’t need to know how many notopleural setae a fly has; however, they need to identify specimens, know which species are present in a given area, and where else a given species might occur. The exhaustive descriptions of most taxonomists of hyper-diverse groups only serve themselves and a few other taxonomists; in fact, we venture a bet that few have used the species-level keys in major taxonomic revisions of hyper-diverse genera of Ichneumonoidea, Phoridae and many others. Despite the fact that there are tens of thousands of species in these groups, there are very few major revisions.
Meanwhile, as we generate time-consuming morphological treatments of a very small percentage of our faunas, global warming is on the rise, wildfires are burning at record rates, the loss of natural habitats is accelerating, and thousands of species are going extinct. It is important to note that the small fraction of all species so far described largely represent the less diverse groups with large body size, and that this work has mostly been done in the least biodiverse areas such as Europe. It is, therefore, foreseeable that taxonomic work, if continuing to rely largely on morphology, will progress even more slowly and become increasingly complex than during the past ~260 years. We do not have time to wait but must find novel and better solutions for the taxonomic crisis.
Stating that our form of description, as a first-pass step for taxonomy, is unacceptable, sloppy, or lazy is untrue; it is simply efficient towards a different goal. A DNA-based taxonomy will quickly make species known in large numbers that otherwise would remain in obscurity. The critics’ concern about description quality seems to be conflating comprehensiveness of descriptions (how many characters are mentioned or illustrated) with accuracy of the descriptions. We are concerned with accurately and concisely describing new species. Therefore, possible objections to DNA-based species are that they aren’t real species and that the species we describe cannot be recognized later by other researchers.
The reality of species could be argued ad nauseam depending on one’s preferred species concept. As speciation is a process rather than an event, delimitation of species is also inherently subjective, for example with allopatric populations slowly diverging apart (
Another criticism is the poor quality of images. We agree with this concern, which was a mechanical problem in the processing of the article, which has now been resolved for both the Meierotto et al. and
We share the same ideals as Zamani et al. concerning taxonomic treatments, i.e., employing multiple genes to elucidate species boundaries and place species in a phylogenetic context, multiple images of each holotype and other specimens to show variation, an illustrated morphological key, and a concise morphological diagnosis, e.g.,
A point made by Zamani et al. is that mitochondrial diagnoses are flawed because “Wolbachia may be altering mtDNA introgression” and “mitochondrial trees often disagree with nuclear species trees.” This has been shown to be true in some cases (
Zamani et al. opined that DNA-based descriptions will make the identification of millions of historical specimens impossible. This is only a short-term problem, however, as technology is rapidly improving the sequence capture rate of historical specimens. Once this technological hurdle is passed, collections will be gold mines of information on the historical distributions of species (many of which will presumably be extinct). “Museomics” is indeed a rapidly developing area of taxonomy, including DNA barcoding (
Zamani et al. were inaccurate in their statement, “Simply assigning all BINs taxonomic names as
Zamani et al. suggest that, “a true paradigm shift in taxonomy will come only when there is a revolution in the level of financial investment in taxonomy”. We have heard this for decades as resources for alpha taxonomy steadily decline. This cry for help is ignored by the general public and by scientists in other disciplines. Many taxonomists fail to realize that 99.99 percent of the public have no idea what we do and could not care less about the description of a new species of Zelomorpha or any other insect. Greatly increased funding for alpha taxonomy will never happen unless we taxonomists can demonstrate to funding agencies that we can overcome the taxonomic impediment in a reasonable timeframe with a reasonable budget. This could be done if those of us working on understudied, hyper-diverse taxa employed an approach similar to the one outlined by
It is interesting to contemplate the degree of damage that could be done to the taxonomy of a group if the worst nightmares of Zamani et al. were realized and a DNA-based description paradigm was widely adopted. Many species would be described quickly, some incorrectly. Perhaps 1% of descriptions (based on Sharkey’s observations in Braconidae; perhaps more in some other groups) would be wrong or need further fine-tuning. Compare this to the 33% synonymy rate for ichneumonoids that can be extrapolated from Taxapad (
For those readers that see the rationale in the above arguments, the question becomes how to effect this change. To implement a survey of megadiverse taxa, it is financially, and in many other respects, impractical to attempt to survey the entire world now. However, all long journeys begin with a few tentative steps, and adoption of DNA-based methods for sorting large collections of specimens is a positive development that will move us closer to this goal.
The authors declare no conflicts of interest.
The data that support the findings of this study are available from the corresponding author upon reasonable request.