Research Article |
Corresponding author: John LaPolla ( jlapolla@towson.edu ) Academic editor: Marek Borowiec
© 2016 Steven Messer, Stefan Cover, John LaPolla.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Messer SJ, Cover SP, LaPolla JS (2016) Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). ZooKeys 552: 49-65. https://doi.org/10.3897/zookeys.552.6475
|
Obligately socially parasitic ants are social parasites that typically lack the sterile worker caste, and depend on the host species for survival and brood care. The genus Nylanderia has over 130 described species and subspecies, none of which, until this study, were known social parasites. Here we describe the first social parasite known in the genus, Nylanderia deceptrix. Aspects of the biology of the host species, Nylanderia parvula (
Ants, Formicinae , Nearctic, New Species, Social Parasitism
Social parasitism consists of an array of fascinating life history strategies that are expressed in several different ways among the ants (
The Nearctic Nylanderia currently consists of 14 native and 5 introduced species ranging from southern Canada to central Mexico (
Until recently Nylanderia species were all thought to display the “typical” colony life history discussed above, and social parasites were unknown. This changed, however, when one of us (SPC) discovered an unusual (only known from winged queens and wingless males), new Nylanderia species in Myles Standish State Forest in Massachusetts (USA) seemingly living in the colonies of Nylanderia parvula (
Field Site, sampling and rearing conditions: The field site for this study was Myles Standish State Forest in southeastern Massachusetts, the only known location of N. deceptrix (Fig.
Within Myles Standish State Forest collections were along Southeast Line Road (41°49.12'N, 70°39.75'W, elev. 31 m) a sandy horse trail, in June, July and September of 2013 and May, June, July and September of 2014. During these trips, colonies were excavated, and then collected and/or observed for data collection purposes described below.
Land conservation map of Massachusetts (orange and green represent protected areas), with the location of Myles Standish State Forest indicated. Modified from http://files.usmre.com/175/MA%20Map%202009.
Whole colonies were collected in order to determine the general population size and temporal changes within colonies of N. parvula. Entire colonies were excavated using a shovel and trowel, digging in the area around active nest entrances and following active chambers until observed activity ended and no part of the colony remained. Each excavated colony was examined for the presence of obligate social parasites. A minimum of eight colonies were collected and preserved for each month (May n=12, June n=10, July n=13, and September n=19 between June 2013-September 2014) for population census analysis, and the GPS coordinates of each colony was recorded. Sampled colonies were stored in large Ziploc bags, preserved in 95% ethanol and stored in a -23°C freezer until sorting. Individual ants were separated from the soil samples manually by hand and stored in vials containing 95% ethanol in a -23°C freezer. The pupal brood from each colony was determined to species (either N. parvula or N. deceptrix) by measuring queen pupae (N. deceptrix 2.73-3.20 mm, n=31 and N. parvula 3.31-3.89 mm, n=84) and wing buds on male pupae (N. parvula is fully winged and N. deceptrix has highly reduced wing buds). Eleven colonies sampled from September 2013 were removed from analysis due to lack of whole colony collection.
Colonies taken for laboratory observation had as many individuals collected as possible via aspiration and housed temporarily in a plaster bottom nest box. In the lab live colonies were transferred to larger nest boxes composed of a nesting area and a foraging area where their food was located. The nesting area had a plaster bottom that was used to maintain moisture levels within the nest to prevent desiccation of the ants within. The colonies were fed a mixture of agar, water, egg, honey and a crushed vitamin mineral capsule. This mixture was placed inside a small cap in the foraging area and was monitored to ensure mold did not form in the food and if mold was found the food was replaced. Colonies were given 5 ml of water every 2–3 days to avoid desiccation. All gaps between tubes and the nest boxes were sealed with a silicone sealant to prevent any individuals from escaping the nest box.
Reproductive cycle: For each colony of N. parvula collected (completed as explained above for a total of n= 43) the number of individuals in each caste and developmental stage was determined: alate queens, dealate queens, males, workers, larvae (1st–4th instars) and pupae. Population census data was also compared across seasons to elucidate any temporal changes within colonies. These seasonal difference analyses included: average number of alates and average brood count.
Taxonomic description of Nylanderia deceptrix: All material examined was gathered from field sampling at Myles Standish State Forest (locality as specified above). Specimens of N. deceptrix were collected between 6 June 2013 and 16 September 2014, and preserved in 95% ethanol, and then mounted for morphological study.
Measurements were undertaken using a Leica MZ16 dissecting microscope and an ocular micrometer. Measurement terminology, abbreviations and definitions follow
EL (Eye Length): maximum length of compound eye in full-face view.
GL (Gaster Length): the length of the gaster in lateral view from the anteriormost point of the first gastral segment (third abdominal segment) to the posteriormost point (in males this included through the posterior end of parameres).
HL (Head Length): the length of the head proper, excluding the mandibles; measured in full-face view from the midpoint of the anterior clypeal margin to a line drawn across the posterior margin from its highest points (to accommodate species where the posterior margin is concave).
HW (Head Width): the maximum width of the head in full-face view (in males, portion of the eyes that extends past the lateral margins of the head is included).
MMC (Mesonotal Macrosetae Count): the number of erect macrosetae on mesonotum to one side of sagittal plane.
MtMC (Metanotal Macrosetae Count): the number of erect macrosetae on metanotum to one side of sagittal plane.
MW (Mesonotal Width): the maximum width of the mesonotum in dorsal view.
PW (Pronotal Width): the maximum width of the pronotum in dorsal view.
PDH (Propodeum Height): height of the propodeum as measured in lateral view from the base of the metapleuron to the maximum height of the propodeum.
PFL (Profemur Length): the length of the profemur from its margin with the coxa to its margin with the tibia.
PFW (Profemur Width): the maximum width of the profemur.
PL (Paramere Length): the maximum length of the paramere.
PMC (Pronotal Macrosetal Count): the number of erect macrosetae on pronotum to one side of sagittal plane.
SL (Scape Length): the maximum length of the antennal scape excluding the condylar bulb.
SMC (Scape Macrosetal Count): the number of erect macrosetae on the scape visible in full frontal view.
TL (Total Length): HL+WL+GL
WL (Weber’s Length): in lateral view, the distance from the posteriormost border of the metapleural lobe to the anteriormost border of the pronotum, excluding the neck.
CI (Cephalic Index): (HW/HL) × 100
FI (Profemur Index): (FW/FL) × 100
REL (Relative Eye Index): (EL/HL) × 100
SI (Scape Index): (SL/HW) × 100
Each measurement was recorded to the nearest 0.001 mm and rounded to the nearest 0.01 mm. A total of 10 queens from six different colonies and five males from a single nest were used for the body measurement data. Color images were taken using a JVC KY-F75 digital camera and Syncroscopy Auto-Montage (v 5.0) software.
The male’s 9th gastral sternite and penis valve were dissected under a Leica MZ16 dissecting microscope. The male’s gaster was placed in a potassium hydroxide (KOH) solution to dissolve/weaken any connective tissues and then the sternite and penis valve were separated from the gaster. The sternite and penis valves were dyed with double stain, slide mounted in glycerin and drawn using an ocular grid with a Leica DM2500 light microscope.
Prevalence of host species and parasitism rate: Nest entrance density for N. parvula was determined by counting the number of nest entrances found within four 50 m × 0.5 m transects and dividing the number found by the area (
The parasitism rate of N. deceptrix was determined by excavating 356 N. parvula colonies over the course of two collecting seasons (as stated above). In excavating to determine if N. deceptrix was present, a colony was excavated using a shovel and the sand containing the colony was visually inspected for N. deceptrix. The number of host colonies containing N. deceptrix (n=9) was then divided by the total number of N. parvula nests excavated (n=356) to calculate the parasitism rate.
Flight and dispersal: Morphological calculations for forewing length and Weber’s length were made and compared against each other. The forewing length (FWL) (maximum length of the forewing from mesosomal attachment to wingtip) and Weber’s length (WL) were measured for N. deceptrix (n=22) and the following other Nearctic Nylanderia species that are known to fly: Nylanderia arenivaga (
To determine whether or not N. deceptrix queens could fly (males are wingless), individual queens were tested by allowing them to walk to the tip of a pencil to see if they would fly off (
Aggression behavior: Pairings for aggression tests consisted of the following combinations (all workers are of N. parvula; parasitized refers to coming from a colony that had N. deceptrix queens within it): not parasitized colony worker-foreign not parasitized colony worker (control) (n=6), parasitized colony worker-not parasitized colony worker (n=5), N. deceptrix queen-not parasitized colony worker (n=2), N. deceptrix queen-not parasitized colony N. parvula queen (n=16), parasitized colony worker-parasitized colony worker (n=3), and N. deceptrix queen-foreign parasitized colony worker (n=2). Assessment of the aggression level followed a slightly modified scale used by
Introduction tests were also conducted to observe behaviors at the colony level in response to foreign individuals being introduced. Introduced individuals were placed into the foraging area of colonies (see Fig.
Nylanderia deceptrix (queen USNMENT00755074; male 4, 5USNMENT00755083; male 6–11USNMENT00755073): 2 queen in lateral view 3 queen head in full-frontal view 4 male in lateral view 5 male head in full-frontal view 6–9 male genitalia in dorsal, lateral, and ventral view, and ventral view close-up of digitus and cuspis 10 male 9th sternite 11 penis valve (ectal view).
queen, USA. Massachusetts: Plymouth County: Myles Standish State Forest; Southeast Line Road; 41°49.12'N, 70°39.75'W; elev. 31 m; in N. parvula nest; 06 June 2013 (S. Messer) (MCZC); 10 paratype queens and 7 paratype males same locality information as holotype except different collection dates (MCZC and
Queen: smallest of Nearctic Nylanderia (TL less than 3.5 mm); mesosoma color mottled with areas of lighter and darker brown to yellowish-brown; Male: very small, nonfunctional wings present.
QUEEN. Measurements (n=10): TL: 2.91–3.40; HW: 0.55–0.63; HL: 0.58–0.69; EL: 0.22–0.24; SL: 0.73–0.78; MW: 0.52–0.57; PW: 0.55–0.67; WL: 0.99–1.07; GL: 1.24–1.69; PDH: 0.35–0.42; PFL: 0.67–0.72; PFW: 0.15–0.17; SMC: 0–3; PMC: 4–5; MMC: 21–27; MtMC: 3–4.
Indices: CI: 92–97; REL: 33–37; SI: 121–130; FI: 21–24.
Overall brown to yellowish-brown; head and gaster darker brown with generally lighter mesosoma; mesosoma color mottled with areas of lighter and darker brown to yellowish-brown; antennae, mandibles and legs yellow; body covered with dense pubescence; macrosetae dark brown but usually with lighter yellowish-brown tips. Eyes bulge slightly beyond head outline in full-frontal view; three prominent ocelli present. Scapes long; yellow; exceed posterior margin of the head by the length of first 3 funicular segments; scapes with dense pubescence and sometimes with up to three short standing macrosetae, but often with none. Head with abundant macrosetae and layer of pubescence; slightly longer than broad; becoming slightly wider at posterior of head. Mesosoma covered with erect macrosetae and pubescence; most macrosetae on mesonotum and metanotum show strong curvature. Gaster covered in pubescence and a large cluster of macrosetae on first gastral tergite.
MALE. Measurements (n=5): TL: 1.91–2.05; HW: 0.45–0.46; HL: 0.48–0.53; EL: 0.17–0.18; SL:0.57–0.59; MW: 0.28–0.32; PW: 0.37–0.39; WL: 0.66–0.69; GL: 0.74–0.88; PDH: 0.24–0.26; PFL: 0.52–0.54; PFW: 0.11–0.13; PL: 0.20–0.24; SMC: 0; PMC: 0; MMC: 7–12; MtMC: 1–2.
Indices: CI: 88–97; REL: 34–36; SI: 125–127; FI: 22–25.
Overall color brown to brownish-yellow; head and gaster darker brown with generally lighter mesosoma; antennae, mandibles, legs, and parameres yellow; body covered with dense pubescence; macrosetae dark brown but usually with lighter yellowish-brown tips; cuticular surface dull, covered in a dense layer of appressed setae. Head longer than broad; eyes large and bulging beyond head outline in full-frontal view; three prominent ocelli present; scapes long, exceeding posterior margin of the head by length of first 3 funicular segments; scapes absent of macrosetae and with a dense layer of pubescence; clypeus roughly rectangular, with anterior margin emarginated; mandible broad, with 4 teeth; all but apical tooth are weakly developed; apical tooth distinct, curves in toward body midline. Mesosoma relatively small; very small nonfunctional wings present; mesosoma covered in pubescence, with erect setae of varying lengths dorsally and on legs. Pronotum collar-like; mesonotum offset from pronotum at sulcus; mesonotum rises sharply above height of pronotum; mesonotum flat dorsally with many erect setae of varying lengths; marcosetae on mesonotum and metanotum show strong curvature of about 90°; propodeum indistinct from remainder of mesosoma, but with steep declivity; petiole short, triangular, upright, with posterior face only slightly longer than anterior face. Gaster with a dense layer of pubescence and erect setae; parameres especially setose; parameres roughly triangular, turning slightly mesad posteriorly; long setae extend off of parameres; cuspi small and tubular, reaching digiti dorsally; digiti weakly anvil-shaped, with poorly developed point directed ventrally; volsellar lobes flat, slightly indented relative to digital margin.
The species epithet deceptrix (Latin = deceiver) is attributed to the parasitic lifestyle, deceiving the host to allow cohabitation.
Nylanderia deceptrix can be identified from other Nearctic species because it has the smallest queens of all Nearctic Nylanderia, ranging between 2.91–3.40 mm (
Across the seven transects, the average N. parvula nest entrance density was 2.35 nest entrances/m2 (SD=0.15), ranging from 1.64–2.64 nest entrances/m2 for the individual transects. Transect 1 was excluded from all calculations because of inexperience in locating nest entrances and insufficient surveying effort resulting in a density 81.3% less than the average across all other transects.
In total, 356 N. parvula colonies were excavated and checked for the presence of N. deceptrix. Of those 356 colonies, nine had N. deceptrix present, resulting in a parasitism rate of 2.53%. The number of N. deceptrix queens found in a single colony ranged from 1–8 per colony. Nylanderia deceptrix males were only found in one of the nine parasitized colonies, and contained a total of nine males. Nylanderia deceptrix brood were found in two of the nine parasitized colonies. One colony contained only a single N. deceptrix queen pupa. The range for N. parvula pupal length was 3.31–3.89 mm (n=84) and the range for N. deceptrix pupal length was 2.73–3.20 mm (n=30). On the other end of the spectrum one colony contained 74 N. deceptrix queen pupae and 4 N. deceptrix male pupae (male N. deceptrix pupae could be determined by highly reduced wing buds and the presence of genitalia).
All colonies that were found to have dealate queens (n=17) only possessed one queen and we are taking this as evidence of monogyny in N. parvula. A total of 43 colonies were excavated and used for population census data collection. Among the 43 colonies, the average number of adult N. parvula reproductives (alate queens and males) found in colonies was: 15.4 (±23.3) for May, 0 for June, 6.1 (±4.1) for July, and 20.4 (±11.77) for September (Fig.
Forewing length (FWL) measurements were used along with Weber’s Length to determine a ratio of forewing to Weber’s length to examine if the wings of N. deceptrix were smaller in proportion to N. parvula. The FWL:WL for N. parvula ranged from 2.27–2.59, with an average of 2.47 (±0.018), and for N. deceptrix the ration ranged from 2.07–2.31, averaging 2.18 (±0.014). Comparing the averages using a Student’s t-test, the difference between the two was significant (P<0.00001, t=12.59 for a two-tailed test), meaning the wings of N. deceptrix were smaller in proportion to Weber’s length compared to N. parvula. When examining the scatter plot of Weber’s length to forewing length of all the Nylanderia species used (see material and methods for list), N. deceptrix falls well below the trendline created from the data of the other species (Fig.
Scatter plot displaying mesosoma length (=Weber’s length) to forewing length and trendline fitting non-parasitic Nearctic Nylanderia: N. arenivaga, N. austroccidua, N. concinna, N. faisonensis, N. parvula, N. phantasma, N. querna, N. terricola, N. vividula, and N. wojciki (diamonds) with added N. deceptrix data (squares, not part of trendline data).
Both N. deceptrix and N. parvula queens were allowed to climb to the top of a pencil to see if they would use it as a location to take off and fly from. Five N. parvula queens were tested and each of them flew off of the pencil tip within two trials, however, none of the five N. deceptrix flew off of the pencil tip after five trials for each individual. In the lab, attempts at dropping two N. deceptrix queens over a white surface to provoke flight while freefalling were conducted, but neither of them flew. As N. deceptrix individuals were hard to collect and maintain in a laboratory setting; only two drop trials were done per individual to avoid harming or losing individuals.
The aggression tests between workers, the pairing of both N. parvula workers from not parasitized colonies had an average score of 2.5 (n=6, range 1–3), from one parasitized and one not parasitized colony averaged 4.4 (n=5, range 3–5), and from both parasitized colonies averaged 2.67 (n=3, range 1–4) (here colony is always referring to N. parvula colonies). Pairings with an N. deceptrix queen and a N. parvula worker from a not parasitized colony had an average of 5 (n=2), and with a N. parvula worker from a parasitized colony averaged 1 (n=2). Also, the average aggression between a N. deceptrix queen and a N. parvula queen was 1.88 (n=16, range 1–3). Introduction tests placing a N. parvula worker from a parasitized colony into another parasitized colony had an average score of 3.33 (n=3, range 2–5), and introducing a N. deceptrix queen to an already parasitized colony averaged 2.33 (n=3, range 1–5). Two of the three N. deceptrix introductions into an already parasitized colony resulted in acceptance of the queen into the new colony (score=1), while the third was attacked and rejected (score=5). When taking N. deceptrix queens or parasitized colony workers and introducing them to not parasitized colonies, the average score was 5 for each case (n=4 and 5, respectively). Similarly, workers from not parasitized colonies introduced to a parasitized colony resulted in an average score of 4.75 (n=4). The final set of introductions involved taking a N. parvula worker from a not parasitized colony and introducing her to another not parasitized colony. The resulting average score for that case was 4.8 (n=5, range 4–5). See Table
Average Aggression scores (see text for details) for aggression and introduction tests (n=sample size). W/W-Colony =
W/W-Colony (N) | Dec/W-Colony (N) | Dec/Queen (N) | |
---|---|---|---|
Parasitized to Parasitized | |||
Solo Aggression | 2.67 (3) | 1 (2) | --- |
Introduction Test | 3.33 (3) | 2.33 (3) | --- |
Parasitized to Not Parasitized | |||
Solo Aggression | 4.4 (5) | 5 (2) | 1.88 (16) |
Introduction Test | 5 (5) | 5 (4) | --- |
Not Parasitized to Not Parasitized | |||
Solo Aggression | 2.5 (6) | --- | --- |
Introduction Test | 4.8 (5) | --- | --- |
Not Parasitized to Parasitized | |||
Introduction Test | 4.75 (4) | --- | --- |
The data collected about the biology and natural history of N. deceptrix indicates it is an obligate social parasite of N. parvula. Nylanderia deceptrix has not been observed to produce a worker caste (we observed no features among the thousands of N. parvula workers examined that would indicate N. deceptrix workers were present; i.e. all conformed to the expected worker morphology of N. parvula), it is functionally polygynous, host-queen tolerant, and has only been found within colonies of N. parvula. The intermediate size of N. deceptrix queens between that of N. parvula workers and queens is a morphological indication of its obligate social parasite status, as obligately socially parasitic ants are smaller than their host queens (
Nylanderia deceptrix seems to have a much more restricted range than its host and resides in an area with a high density of host colonies, traits that appear to be common among obligately socially parasitic species (
Once at a host colony, the data presented here suggest it is difficult for N. deceptrix to become established in a N. parvula colony if that colony does not already possess N. deceptrix queens. Our aggression data shows that N. parvula workers act very aggressively towards any individual (N. parvula worker or N. deceptrix queens) from a colony already parasitized with N. deceptrix. Comparatively, N. parvula displays lower aggression towards N. parvula workers from colonies not parasitized with N. deceptrix. Our data suggest that N. parvula can detect some kind of cue that indicates whether a N. parvula worker has had contact with N. deceptrix, resulting in the observed higher level of aggression. The reason for this high aggression towards individuals from parasitized colonies is still unknown, but it could be the result of N. deceptrix actually having a significant fitness cost to the N. parvula colonies. However, our data was not able to identify any significant fitness cost to N. parvula colonies.
Conversely, when an individual from a colony containing N. deceptrix encounters an individual from a different colony that also contains N. deceptrix, the aggression that results is noticeably lower. This suggests that N. deceptrix is influencing the amount of aggressive behavior displayed by N. parvula. This decrease in aggression could also be responsible for acceptance of N. deceptrix queens from one colony into another foreign colony already containing N. deceptrix. Although the mechanism and cause of acceptance for foreign N. deceptrix queens has not been determined, it seems likely that a contributing cause is a general decrease in aggression, a disruption in recognizing foreign individuals, or N. deceptrix having the ability to somehow not be recognized as a foreign individual. Overall the parasitism rate of N. deceptrix within N. parvula colonies was seemingly low at 2.5%, but it is comparable to that of several other obligate social parasites. Examples include: Acromyrmex charruanus at 2% (
Our field and lab observations confirm that Nylanderia deceptrix is an obligate social parasite, the first known within the genus. An important next step will be to examine the phylogenetic position of N. deceptrix among the Nearctic Nylanderia, especially to see how closely related or not it is to N. parvula and to test whether or not a strict or loose sense Emery’s Rule applies in this example of obligate social parasitism.
We would like to thank Ken Gooch (Mass. DCR) for the initial permission to collect and work in Myles Standish State Forest. We also extend thanks to the staff of Myles Standish State Forest for their help during our study. Christian Rabeling and James Trager both provided excellent suggestions and comments that greatly improved the manuscript. This study was supported in part by the National Science Foundation under grant DEB-0743542 awarded to JSL and awards from the Towson University Graduate Student Association to SJM.