Research Article |
Corresponding author: Caroline Chaboo ( insectrescons@gmail.com ) Academic editor: Alexander Konstantinov
© 2016 Caroline Chaboo, Megan Biesele, Robert K. Hitchcock, Andrea Weeks.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Chaboo CS, Biesele M, Hitchcock RK, Weeks A (2016) Beetle and plant arrow poisons of the Ju|’hoan and Hai||om San peoples of Namibia (Insecta, Coleoptera, Chrysomelidae; Plantae, Anacardiaceae, Apocynaceae, Burseraceae). ZooKeys 558: 9-54. https://doi.org/10.3897/zookeys.558.5957
|
The use of archery to hunt appears relatively late in human history. It is poorly understood but the application of poisons to arrows to increase lethality must have occurred shortly after developing bow hunting methods; these early multi-stage transitions represent cognitive shifts in human evolution. This paper is a synthesis of widely-scattered literature in anthropology, entomology, and chemistry, dealing with San (“Bushmen”) arrow poisons. The term San (or Khoisan) covers many indigenous groups using so-called ‘click languages’ in southern Africa. Beetles are used for arrow poison by at least eight San groups and one non-San group. Fieldwork and interviews with Ju|’hoan and Hai||om hunters in Namibia revealed major differences in the nature and preparation of arrow poisons, bow and arrow construction, and poison antidote. Ju|’hoan hunters use leaf-beetle larvae of Diamphidia Gerstaecker and Polyclada Chevrolat (Chrysomelidae: Galerucinae: Alticini) collected from soil around the host plants Commiphora africana (A. Rich.) Engl. and Commiphora angolensis Engl. (Burseracaeae). In the Nyae Nyae area of Namibia, Ju|’hoan hunters use larvae of Diamphidia nigroornata Ståhl. Larvae and adults live above-ground on the plants and eat leaves, but the San collect the underground cocoons to extract the mature larvae. Larval hemolymph is mixed with saliva and applied to arrows. Hai||om hunters boil the milky plant sap of Adenium bohemianum Schinz (Apocynaceae) to reduce it to a thick paste that is applied to their arrows. The socio-cultural, historical, and ecological contexts of the various San groups may determine differences in the sources and preparation of poisons, bow and arrow technology, hunting behaviors, poison potency, and perhaps antidotes.
Hunting, indigenous knowledge, ethno-entomology, Bushmen, arrows
Archery appears relatively late in human history and is thought to represent a cognitive shift in human behavior, social organization, and tool-making in the Middle and Late Stone Age (
This paper concerns the arrow poisons used by the Southern African San. The term San (also known as Khoisan, Basarwa, or “Bushmen”) covers many indigenous groups using so-called ‘click languages’ in southern Africa (
The most commonly used poisons across cultures are extracts from single plants or mixtures of plants (
Arrow-poison beetles of the San people and their host plants (photos: CS Chaboo, or indicated if otherwise). 2 Diamphidia nigroornata Ståhl (=D. simplex Péringuey, =D. locusta Fairmaire), Namibia (Chrysomelidae) 3 Polyclada sp. (Chrysomelidae) 4 Blepharida sp., Kenya (photo: C Smith, USNM) 5 Lebistina sp. (Carabidae) 6 Diamphidia femoralis (above) and its predator-parasitoid enemy, Lebistina (below), on Commiphora plant in South Africa (photo: K Ober) 7 Lebistina sanguinea (Boheman) adult beetle on a Commiphora plant in South Africa (photo: E. Grobbelaar, SANC, ARC-PPRI).
Summary of southern African San groups using poisons on hunting arrows and the source of the poison.
Indigenous group | Location | Poison (by genus) | Source/Researcher |
---|---|---|---|
Basarwa (Naro, G|ui, G||ana, !Ko, !Xóõ) | Bostwana: Ghanzi; Namibia | Beetle: D. nigroornata |
|
Botswana | Beetle: D. nigroornata |
|
|
Batwa | Central African Congo Basin | Plants: Eythrophylaeum guineense G.Don (Caesalpiniaceae), Palisota barteri Hook (Commelinaceae) Combretum sp. (Combretaceae) |
|
“Bushmen” | Karoo | Plant: “black wax” [description appears to match Adenium poison] |
|
Namibia: Grootfontein | Beetle: D. simplex (now D. nigroornata) | Händel and Gildemeister 1912 | |
Namibia | Beetle: Lebistina sp. |
|
|
G|ui (=Gcwi) |
Botswana: Central Kalahari Game Reserve |
Beetle: Diamphidia simplex (now D. nigroornata) |
|
Botswana: Central Kalahari Game Reserve | Beetle: Polyclada flexuosa |
|
|
G||ana | Botswana: Central Kalahari Game Reserve | Beetle: D. simplex (now D. nigroornata) |
|
G||olo | Bostwana: Central Kalahari Game Reserve |
Beetle: D. simplex (now D. nigroornata) |
|
Hai||om (=Heikum) | Namibia: Etosha Nat. Pk. | Plant: Adenium bohemianum (tuber) |
|
Hottentots | ? Kaukauveld | Beetle: Diamphidia spp. |
|
Ju|’hoansi (= !Kung) | Namibia: Otjozondjupa | Beetle: Diamphidia sp. |
|
Namibia: Nyae Nyae | Beetle: P. flexuosa |
|
|
Namibia: Nyae Nyae | Beetle: D. simplex (now D. nigroornata) |
|
|
Namibia: Nyae Nyae | Beetle: Blepharida evanida |
|
|
Namibia: Gobabis | Beetle: D. nigroornata, D. simplex |
|
|
Botswana | Beetle: Diamphidia sp. |
|
|
Botswana | Beetle: Diamphidia sp. |
|
|
Botswana: Tsodilo | Beetle: D. nigroornata, D. vittalipensis [sic] (=D. vittatipennis), D. formalis [sic] (=D. femoralis) | Robbins et al. 2011 | |
Kua | Bostwana | Beetle: D. nigroornata, Diamphidia spp. |
|
Beetle: Diamphidia spp. |
|
||
Beetle: Polyclada sp. |
|
||
Beetle: D. simplex (now D. nigroornata), D. nigroornata |
|
||
Naro (=Nharo, Naron) | Botswana, Namibia | Beetle: Diamphidia sp. |
|
Shua | Botswana, Zimbabwe | ? | This paper |
Tshwa | Botswana, Zimbabwe | ? | This paper |
Tsila | Botswana: Kweneng | Beetle: D. nigroornata | Vierich, pers. comm. |
Valley Bisa | Zambia | Plant: Acokanthera sp. |
|
ǂX’ao-ǁ’aen (=Makaukau, Auen) | Botswana, Namibia | Beetle: Diamphidia sp. |
|
Today, the San’s bow-and-arrow hunting and attendant tracking knowledge have a mythical status, but the facts of the poison sources and preparations are unclear. Several factors contribute misconceptions, outright errors, and ambiguous information about San arrow poisons. First, the use of the term “Bushmen” for diverse San tribes obscures apparent geographic variation in poison sources, recipes, and preparations. Second, insect taxonomists have rarely been involved in specimen identifications. Third, chemists analyzed specimens with presumed taxonomic identifications and left no specimen vouchers to confirm the species involved.
In this paper, we synthesize the anthropological, entomological, and chemical literature about San arrow poisons. Based on our fieldwork, we report arrow poison sources, their preparation and use, bow and arrow construction, and poison antidotes for the Ju|’hoan San in north east Namibia and the Hai||om San at Etosha National Park, Namibia. These two ethnic groups represent the largest San groupings in Namibia (
We synthesize literature from anthropology, botany, chemistry, and entomology to develop a better picture of the arrow poisons used by the San in southern Africa. We present novel data and images (Figs
8 Sclerocarya birrea (Anacardiaceae), South Africa (photos: CS Chaboo) 9 Commiphora africana (Burseraceae), South Africa, with Sanseviera (Dracaenaceae) at base (photo: E Grobbelaar) 10 Adenium bohemianum (Apocynaceae) used as arrow-poison by Hai||om around Etosha National Park, Namibia.
Arrow-poison beetles of the Ju|’hoansi, Tswumke Conservancy, Namibia (photos: CS Chaboo). 11 Typical collecting for beetle cocoons at base of a Commiphora shrub in the drip line 12 Ostrich egg-shell full of cocoons of Diamphidia nigroornata ab. locusta13 Parasitoid carabid larva (left) and Diamphidia larva (right) extracted from collected cocoons 14 Cleaned 4th instar Diamphidia larva extracted from cocoon 15 Adult Diamphidia beetle in cocoon 16 Squeezing the contents of leaf beetle larvae onto giraffe bone to prepare arrow poison 17 Typical hunting implements, quiver, bow, fire-sticks, and arrows.
Symbols in San languages. The San languages reported on here are characterized by sounds that are called clicks. This article is concerned primarily with the Ju|’hoansi and the Hai||om (see
/ (|) Dental click as in G|ui
ǂ (‡) Alveolar click as in Nǂa Jaqna
! Alveopalatal click (as in !Kung)
// (||) Lateral click (as in G||ana).
San words for aspects of the poisons and their preparation are available in linguistic dictionaries (see
Data collection. In addition to the Ju|’hoansi, our literature survey revealed beetle poison use by seven other San groups—G|ui, G||ana, G||olo, Kua, Naro, Tsila, and ǂX’ao-||’aen. We summarize these data below. Insect inventories were conducted by CSC in expeditions to Botswana, Namibia, and South Africa (2005–2007), including a field study for three weeks with Hai||om and Ju|’hoan communities in Namibia in October 2007. Hitchcock worked among the Ju|’hoansi in 1987–2015 and Hai||om in 2011–2012. Biesele has extensive experience among the Ju|’hoansi from 1970 to the present.
The landscape of our study. Throughout this manuscript, we refer to the Kalahari. The Kalahari Desert is a basin-shaped plateau extending over northern South Africa, from eastern Namibia, across most of Botswana to southwest Zambia, and southern Angola (
The environmental settings of Nyae Nyae (Namibia) and Tsodilo-Dobe-/Xai/Xai (Botswana) is Kalahari sandveld and consists of tree-bush savanna and pans where water collects in the rainy season (
Interviews with Hai||om, Namibia. Since 1954 the Hai||om have not been permitted to hunt in Etosha National Park, their original designated homeland. Subsequent displacement, settlement and shifting away from traditional ways have the consequence that hunters are rare and difficult to locate. Seven senior former hunters were interviewed within Etosha National Park, or on private farms south of Etosha, between 18–22 October 2007: Jan Tsumeb, Daniel Apia, Katison Khomob, Willem Dauxab, Fritz Khamuάb, Abram Geesep, and Jakes Kamaxάb. Interviews lasted several hours and involved a seated conversation and walks to collect specimens. Hunting nowadays is illegal; most informants said they were unaware of any active traditional hunters, but recalled their own hunting days or that of their fathers and uncles. Three elderly male Hai||om informants discussed their own hunting in their younger days, and pointed out traditional plants within the park. No poisons or arrows were prepared during the Hai||om interviews (this would have been illegal).
Interviews with Ju|’hoansi, Namibia. The Ju|’hoan communities together form a politically self-regulated body in the Nyae Nyae Conservancy. The region is part of the savanna biome, and is ecologically arid with brush or grass, almost no trees, and ranges from flat to gently hilly (
The three-person field team, led by CSC, traveled to Tsumkwe (19°35’34.99 S, 20°30’07.99 E) in 2007, and then spent two weeks travelling to 10 villages scattered in the Nyae Nyae Conservancy. In each village, current and former hunters were interviewed, with questions presented by CSC in English and translated by team members (in German, Afrikaans, and Oshiwambo) or by native San speakers (three cases). Hunters are traditionally male; we did not encounter or hear of female hunters. Within 30 minutes of our arrival, most community members had surrounded our group, inserting comments from time to time, the senior women in particular correcting or debating details.
Twelve hunters were interviewed in Nyae Nyae Conservancy: Leon ‡oma Tsamkao, Tsumkwe Lodge; Trechie (‡Nlundi Village, Aha hills, 9–10 Oct 2007); Andreas (N|ama Village, 11 Oct 2007); Xushe Sao (N|ama Village, 11 Oct 2007); David Sao Iui (N|ama Village, 11 Oct 2007); /aice N!aucu (Xamsa Village, 11 Oct 2007); |aice ‡oma (Tambuti Village, 11.Oct.2007); G|aq’o ‡oma (Tambuti Village, 11.Oct.2007); N!aici Kaqece (Makuri Village, 12.Oct.2007); Kaqece Ikaece (Makuri Village, 12.Oct.2007); Il’ao N‡ao (Tsumkwe Lodge, 14.Oct.2007); and N!aici ‡oma (Tsumkwe Lodge, 14.Oct.2007). Interviews were conducted over one or two days. Each involved an initial interview, followed by a walk in the desert with the informants to look for the host plants and beetles; digging up beetle larvae (Fig.
Author MB has worked among the Ju|’hoansi since 1970, and served as director of the Nyae Nyae Development Foundation of Namibia from 1988–1992. She and RKH collected data about hunting and the use of poison from 46 people in 1987, 1992, 1995, 2001, and 2011–2014.
Interviews with Ju|’hoansi, Bostwana.RKH collected data from 56 interviews in Dobe, /Xai/Xai, Tsodilo in the years 1976, 1978–1982, 1985, 1988, 1992, 1995, 1997, 1999–2000, 2005, and 2011–2013. Hunters’ names are omitted here to protect their identities.
Interviews with G|ui, G||ana, Kua, and Tsila, Bostwana. RKH has conducted >140 interviews in about 15 visits (1976–2013) with these communities from the central and eastern Kalahari, many specifically on hunting. These data were collected in the Central Kalahari Game Reserve or in the resettlement sites outside the Reserve.
Taxonomic identifications. Due to the diversity of scientific names for plants and beetles used herein, our generic names are abbreviated to avoid confusion (Aca. =
Hai||om poison plant. Many former hunters indicated the poison plant on multiple separate occasions as Adenium bohemianum Schinz (Apocynaceae) (Fig.
Beetle identifications and vouchers.CSC obtained beetle specimens in several ways: receiving gifts of cocoons from informants from their stored supplies, collecting them with informants on bush walks, and purchasing containers from hunters’ stored supplies (e.g., Fig.
Beetle species were identified by examination of types and as part of a taxonomic review of specimens from museum collections in France, Germany, South Africa, and the USA. The chrysomelid beetle species in the Namibian Ju|’hoan arrow-poison case is Diamphidia nigro-ornata Ståhl (Figs
Dissected cocoons revealed mostly larvae, some pupae, and some adults of leaf beetles. About 5% of the coccoons held only mature parasitoid carabid larvae (Carabidae: Lebiini; Fig.
Beetle vouchers are deposited in the collections of the National Museum of Namibia (NMWN, Windhoek), the American Museum of Natural History (AMNH, NYC), Agricultural Research Council, Plant Protection Research Institute, South African National Collection of Insects(ARC-PPRI, SANC, South Africa), and the University of Kansas Entomology collection (SEMC, KS, USA). John Irish, National Botanical Research Institute, Namibia, confirmed the identity of the plants.
Our cross-disciplinary synthesis of historial literature, reports of anthropologists, and our own collective fieldwork in southern Africa indicates that beetle arrow poison is used by seven San groups—the G|ui, G||ana, G||olo, Naro, Kua, and Tsila in Botswana, and the Hai||om in Namibia. Two San groups, the Shua and Tshwa from the north-eastern Kalahari of Botswana and Zimbabwe, do not use arrow poisons. One San group, the Hai||om, uses a plant poison. The Valley Bisa in Zambia is a non-San group that uses beetle arrow poison. Our research focused primarily on two large San groups, Hai||om and Ju|’hoansi, in Namibia but we assemble data for other smaller communities.
The G|ui and G||ana, Botswana (Fig.
Thomas (1959: 94–97) described the arrow poison preparation of people she terms the Gwikwe (=G|ui). The poison was derived from grubs, extracted from underground cocoons; she drew attention to the similarity of the life cycle with that of D. simplex (= D. nigroornata), as used by the Ju|’hoansi. She described two different colored pupae in these cocoons, which the Gwikwe regarded as male (a small, yellow, black-headed pupa with poison only in the legs) and female (a larger orange pupa with poison throughout the body). She may have been observing different stages of maturity of the 4th instar larva of the chrysomelid and the Lebistina parasitoid. This poison was applied directly to the arrow shaft.
In the Central Kalahari, according to our G|ui and G||ana informants, the beetle that is used for arrow poison is Polyclada flexuosa (Baly). The larvae and adults feed on the leaves of marula trees (S. birrea) (Jumanda Gakelebone, Roy Sesana, pers. comms. 2011–2013); pupation is likely to be in the soil around the host as in other species we have studied.
The Kua, Botswana (Fig.
In the east-central Kalahari, arrow poisons were used until the late 20th century. James Chapman, who visited Nkawane in this area in 1852, notes that the Bushmen there used bows, arrows and spears (
The Naro (Nharo, Naron), Botswana and Namibia (Fig.
The Tsila, Botswana. The Tsila (~500 people) are found in the Central Kalahari Game Reserve, in the Northern Kweneng District and the eastern Central District. Vierich (pers. comm. 2014) observed their use of arrow poison derived from D. nigroornata and an unidentified plant.
The Tshwa and Shua, Botswana and Zimbabwe. Ethno-historic evidence suggests that poisoning of arrows is uncommon among these San groups, living in the northeastern Kalahari. Hodson (1912: 227) made the following observation “The Bushmen in this district are called Mashuakue, their headman being Kotama . . . They do not use the bow and poison arrow so common with Bushmen in the far Kalahari, but carry long assegaais [light spear], with which they stalk game. Some have rifles and are good shots at a close distance.” Detailed fieldwork with Tshwa and Shua (about 4,000 people), beginning in 1975, revealed that spears were the most common weapon used, along with clubs and guns of various kinds (
The Valley Bisa, Zambia. Marks reported on his 1973 observations of Valley Bisa hunts in Zambia (1977, pers. comm.). Hunters stalked up to large game before letting an arrow fly, a distance that was further than that for shotguns and even rifles. Their tactic was to stay slightly beyond the species ‘flight distance’ (distance before the prey flees), force the herd into a smaller space, and then arc the arrow to fall within the anticipated space. They did aim to get closer to some individual mammals (e.g., warthog). The arrows only had to lance the animal to get poison into the blood stream, but the wounded prey normally did not move very far away. Marks found that hunters used two different types of arrows for mammals and for birds, both poisoned with an extract made of pods and roots from an Acokanthera sp. (Apocynaceae; identified by biologists at University of Zambia;
The ǂX’ao-ǁ’aen (=Makaukau, Auen), Botswana and Namibia. The ǂX’ao-ǁ’aen San (~7,000 people) are sometimes called Makaukau or Auen (
The Hai||om (=ǂAkhoe) in Namibia. The Hai||om (11,000–15,000 people) is the largest and most widely distributed San population in Namibia (
The Ju|’hoansi in Namibia. The Ju|’hoansi represent one of the earliest-diverging lineages of modern humans (
San hunting. Bushmen tracking culture is well documented (
Hunts can last several days depending on the animal’s size and the slow paralysis by the poison. The tracks and spoor of the fleeing animal helps the hunter decide to immediately start stalking or return to the community to gather materials (e.g., water, food) and other men to help with the hunt. Animal tracks and dung inform the hunter about the size (size of footprint), species (nature of print), age (depth of foot print), wound (one side of foot prints heavier than other size), and travelling direction of the prey (
Beetles from the following genera appear in the literature as the source of a “Bushmen” arrow poison (Table
Chrysomelidae (leaf beetles): Galerucinae: Alticini (flea beetles): Blepharida-group:
Diamphidia Gerstaecker (17 described species in genus;
Polyclada Chevrolat (16 described species in genus;
Blepharida Chevrolat (only from the subgenus Blepharidina Bechyné) (73 described species in genus; example Fig.
Carabidae (ground beetles): Lebiini:
Lebistina Motschulsky (12 described species in genus; examples Figs
Arrow poison of the Ju|’hoansi, Nyae Nyae, Namibia. Locating host plants. Informants indicated that they learnt about the locations of Commiphora host plants from older hunters. Once the low-branching Commiphora shrubs are located, the hunter initiates a new hole at the leaf-drop (=drip line) margin of the shrub; in some cases, ditches of previous digs (past years) were still apparent and our informant jumped into the 1m deep ditch and extended the ditch to encircle the plant. We observed some ditches forming a complete moat around plants. Ju|’hoan traditionally use a wooden digging stick (e.g., of the widespread Kalahari Christmas tree, Dichrostachys cinerea (L.) Wight & Arn. (Fabaceae) (
Beetle poison preparation. What follows is our typical observation compiled after 12 interviews with hunters who each made their poison with our observation. First, he arranges his tools, stabilizing an old giraffe or kudu knuckle bone with the concave surface facing upwards in the sand in front of him and placing the beetle cocoons nearby. A small fire is lit; traditionally a fire stick was used, usually made of Commiphora pyracanthoides Engl. (Burseraceae) (
CSC observed that the ‘beetle paste’ of D. nigroornata larva is applied with a twig to the dried sinew that fastens the arrowhead to the wooden shaft; the hunter never touches the poison mixture. The arrows are then propped up against a log or hung up to air dry, and stored in a quiver made of the bark of the root of Acacia luedertizii Engl., False umbrella thorn (Fabaceae) (
Literature sources reported that saliva made by chewing the bark of Dicerocaryum eriocarpum (Decne.) Abels (devil’s thorn) (Pedaliaceae) or the leaf of Sansevieria aethiopica Thunb. (Asparagaceae), are used to moisten the poison if it dries out (
Ju|’hoan bow and arrows. Arrows are constructed of grass reed (shaft), metal (arrowhead, blade), sinew for tying (from kudu), and glue (resin of Aca. mellifera obtained by damaging the bark) or beeswax (/aice ‡oma, pers. comm., Tambuti Village, 12 Oct. 2007). Bows are made from the wood of Grewia flava DC (Malvaceae).
Preparation for the hunt.CSC did not interview hunters about personal preparations before a hunt or special charms to accompany them. It is known that some rituals are performed to protect the hunter, improve his focus, and increase the hunt’s success.
Anti-venoms for beetle poison. The following are considered as anti-venoms: a melon (informant Xushe Sao, 11 October 2008); liquid from Sans. aethiopica (Asparagaceae) (
Beetle poison chemistry and effect. After the earliest report by
The next century saw different chemists examining residues on arrows or extracts of specimens sent to them and testing for hemolytic and toxic activity on various cells, tissues and live animals—fishes, frogs, birds (pigeons, sparrows), mice, cats, dogs, goats, rabbits, guinea pigs, and sheep (
As chemists explored the nature of the poison, the taxonomy for the poison also evolved.
The beetle poison has been identified as a protein and referred to as a toxalbumin (
Is the Lebistina parasitoid a source of arrow poison? This African carabid genus comprises 12 described species (Anichtchnko 2007–2014). Carabidae are commonly called ground beetles because they are generally ground-dwellers; however, Lebistina belongs to the tribe Lebiini, an evolutionary branch that has evolved a free-living first instar larva (technically called a triungulin). The lebiine first instar larva searches for host prey, attaches to it for feeding and in so doing becomes an ectoparasitoid which eventually kills its host (see
Our finding of Ade. bohemianum as the source of Hai||om arrow poison confirms three previous reports (
Given the findings of poison on hunting implements at Sibudu Cave, an intriguing data point comes from Stanford (1909) which may be the only account of poison prepration of the San living the Drakensberg Mountains, South Africa. The San chief prepared poison by boiling the root of a shrub with the bark of a tree in a clay pot for several days. The Drakensberg area has over 35,000 cave paintings (
Plant poison preparation. Among the seven hunters interviewed, only one eventually admitted to hunting illegally and showed us his hunting gear—including poisoned arrows. According to our seven informants, tubers of Ade. bohemianum are dug out, cut into pieces, and the inner plant tissue is scraped into a cup using an animal bone. This is then boiled for “a long time” until it becomes a thick black glue that is applied to the arrows. In addition to our observations, other methods of poison preparation and application appear in the literature. Grubs are dried, ground and mixed with saliva or plant sap (
Our discussion is organized around three topics below: bow and arrow technology, Ju|’hoan beetle poison (source and pharmacology), and Hai||om plant poison (source and pharmacology).
Comparison of Namibian San bows and arrows. It is beyond the primary focus of this paper to discuss San arrow technology in detail, however it is important to pay attention to subtle aspects of design that might inform which poison source was adopted by the community. The use of poisons to increase the lethality of arrows and increase the success of a hunt must surely have impacted the design of bows and arrows, and therefore has implications for human cultural evolution.
We observed some modern impacts on Ju|’hoan bows and arrows (Fig.
In their illustrated description of Hai||om arrows,
Source of beetle poison. The life stages used by the San to obtain their poison have been reported as the larva and pupa, but all the past chemists who worked with material did not collect the specimens themselves and could not distinguish larva from pupa (e.g.,
Based on our specimen collections of larval, pupal and adult stages (we did not collect egg stages) with the Ju’hoansi San at Nyae Nyae, we determine those beetles as Diamphidia nigroornata.
Morphology-based revisions of these genera are now underway to test species concepts. Molecular methods are required to link different life stages with adults, to identify the larvae being used as poison. Linking the life stages and the host plants is crucial to clarifying which beetle is being used by which local San community.
Effect and pharmacology of beetle poison. The corpus of chemical studies of the last 200 years point to a highly toxic basic peptide, called a toxalbumin (
Comparison of diamphotoxin and leptinotoxin. The speed, impact, and lethal nature of diamphotoxin recalls another toxic leaf beetle molecule, leptinotoxin, isolated from adults of Leptinotarsa haldemani Rogers in North America (Chrysomelidae: Chrysomelinae) (
Beetles are known for other potent chemistry. For example, cantharidin or “Spanish fly”, extracted from meloid beetles, Lytta vesicatoria (L.) (Meloidae) (inaccurately referred to as Cantharis vesicatoria (Cantharidae) in some publications), was known to the ancient Chinese and Greeks as an aphrodisiac (
San ethno-entomology. In addition to the beetle poison, the San collect and eat other insects, but reports are scattered. We did not conduct a complete ethno-entomological inventory of the Hai||om and Ju|’hoan as we believe that the degree of settlement and diversion from their traditional nomadic lifestyle would probably distort such data. However, we summarize here what other insects are used by the San. These are collected and eaten, dependent on seasonal outbreaks and swarming: certain caterpillars (e.g., Mopane worms (Saturniidae: Gonimbrasia belina Westwood = now Imbrasia belina) (
Source of Hai||om plant poison. The angiosperm genus Adenium Roem. and Schult. (Apocynaceae) comprises five species: A. bohemianum Schinz, A. multiflorum Klotzsch, A. obesum (Forssk.) Roem. and Schult., A. oleifolium Stapf, and A. swazicum Stapf. All species are limited to sub-Saharan Africa with the exception of A. obesum whose range extends into the Arabian Peninsula and Socotra. Four Adenium species, as currently circumscribed by
At least 29 different glycosylated cardenolides (“glycosides”) have been isolated from Adenium species (
The angiosperm genus Acokanthera G. Don (Apocynaceae) comprises five species: Aco. schimperi (DC.) Schweinf., Aco. oppositifolia (Lam.) Codd, Aco. laevigata Kupicha, Aco. rotundata (Codd) Kupicha, and Aco. oblongifolia (Hochst.) Codd. All species are limited to East Africa, with the exception of Aco. schimperi, which ranges from tropical East Africa into the Arabian Peninsula. Acokanthera oppositifolia ranges from tropical East Africa to the south-eastern coast of South Africa. The remaining three species have narrower ranges that overlap with that of Aco. oppositifolia. The nomenclatural history of these taxa is too lengthy to be summarized here, although two illegitimate names bear explication. The name Aco. ouabaio (alternatively spelled Aco. wabajo) is a synonym of A. schimperi; its epithet is both a European adaptation of the Somali word for this taxon (
The angiosperm genera Sclerocarya (Spondoideae; Anacardiaceae) and Commiphora (Bursereae; Burseraceae) derive from closely-related families of resinous, woody trees and shrubs that produce a range of toxic phenolic compounds and terpenoids respectively. These compound mediate plant-herbivore interactions. One compound, alkylcatechol (e.g., urushiol) may cause severe allergenic responses in vertebrates, especially humans, but acute toxicity of these compounds appears to be limited to invertebrates. Sclerocarya birrea is commonly cultivated for its edible fruit and bark whose decoction is used for medicinal purposes. As a member of the Spondoideae, it lacks the toxic phenolic compounds (e.g., biflavonoids, alkylcatechols and alkylresorcinols) (
What is ouabain? Different authors have used ‘ouabain’ to describe the toxic latex from plant sources—Acokanthera, Haemanthus, Buphane, and Euphorbia (Arnott 1853;
Potential pharmacology of San arrow poisons. It is fair to ask if highly toxic compounds like diamphotoxin, Adenium extracts, and other indigenous poisons have pharmaceutical potential. The San have experience with pharmaceutical bio-prospecting. They are known to chew pieces of the Hoodia “cactus” plant (Apocynaceae: Hoodia gordonii (Masson) Sweet ex Decne., 1844) to suppress hunger and thirst for long treks. In 1997, the South African Council for Scientific and Industrial Research (CSIR) licensed the UK-based company, Phytopharm, to develop a natural drug. Phytopharm then worked with Pfizer to commercialize and market a drug with the active ingredient, P57. The international outcry led the South African San Council to a court battle with these companies, and eventually to a landmark agreement to share profits with the San Hoodia Benefit Trust (
Under a harsh and drying climate across southern Africa, the San emerged and diversified into numerous distinct communities. Their survival has depended on a profoundly intimate knowledge of their environment—the distribution of all resources (water, tubers, animals) and the availability of the few material resources they keep (e.g., plants for temporary huts, digging sticks, bows and arrows; ostrich eggs for water and pupae; sources of poisons). Under specific local conditions, isolated communities appear to have developed their own specialized poison use and preparation. We have confirmed the species and life stages used as arrow poisons for two San groups, Hai||om and Ju|’hoan, and documented their poison preparation methods. Ethnological data collection such as ours, including the collection of terms in the local vernacular, can open new avenues of research about variations in ecology, fauna and flora. Differences in material culture, due to individual/group style and/or area-specific patterns, sensu
The hunter-gatherer phase of human evolution originated about seven million years ago, and today persists in a few cultures that are fast disappearing under the wheels of modern life. Bow and arrow hunting, a hallmark of hunter-gatherer living, is considered obsolete by some and has become illegal, neglected, or abandoned. Today hunting with traditional weapons is legally permitted only in the Nyae Nyae Conservancy, Namibia. The loss of San cultural knowledge is a proxy for multiple losses—of the environmental context of certain practices (e.g., which plants are nutritious, deadly, or medicinal), of languages, and in transformation of technology (e.g., from blow-darts to guns). Active Hai||om hunters are rare, reflecting their historical eviction from their Etosha homeland in 1954 (
While the term “San” describes many indigenous groups that share tongue-clicking languages, it is important to keep in mind that there are many sub-cultural differences among these communities. Such subtle differences exhibit the richness of indigenous human societies, provide insight into key innovations in early human behavior, and reflect the ecological context that drives the origins and diversification of traditions and practices. Confusing nomenclature of San communities, their plants and plant compounds, and the beetles and beetle compounds has led to errors in identifications and communication among scientists within and across disciplines. Although these San communities live short distances apart, their arrow poisons are diverse, pointing to an incredibly intimate knowledge of their environment. The discovery of arrow poisons was a significant evolutionary step for humankind, yet we may be facing the last opportunity to document arrow-poison use in southern African hunter-gatherer societies.
We thank the people and governments of Namibia and Botswana for permissions to conduct research. CSC is indebted to David Grimaldi and Robert Goelet (American Museum of Natural History) for supporting the Namibia expedition and to the KU Department of Ecology and Evolutionary Biology General Research Fund grant for supporting manuscript preparation. CSC also thanks colleagues from the National Museum of Namibia—Tharina Bird for logistical arrangements, Holger Vollbrecht and Michael Kazondunge for field assistance, and Eugene Marais for pointing out relevant literature—and John Irish (National Botanical Research Institute, Namibia) for plant identification. We thank Elizabeth Grobbelaar (South African Collection of Insects, ARC-PPRI), for translating Afrikaans text, collaborative fieldwork in South Africa, and photographs. We also thank Fernando Merino for field assistance in Namibia, and Aagje Ashe, Laura Breitkreuz, and Rudolf Jander (University of Kansas) for translating German text. Megan Biesele and Robert K. Hitchcock thank the late Kxao Moses ≠Oma, Tsamkxao ≠Oma, Leon Tsamkxao, |’Angn!ao |Un (Kiewit), |Kunta, N!ae, Dries Alberts, Stacey Main Alberts, Wayne Babchuk, Ben Begbie-Clench, Alison Brooks, Marieka Brouwer Burg, Mary Brown, Alec Campbell, Roger Collinson, Aron Crowell, Ute Dieckmann, Lara Diez, Jim Ebert, Jumanda Gakelebone, John Hardbattle, Stasja Koot, Kadison Khomob, Melinda Kelly, Steve Lawry, Richard Lee, Willemien LeRoux, Judith Miller, Michael Murphy, Ashton Murwira, Alan Osborn, Michael Painter, Larry Robbins, Beatrice Sandelowsky, Maria Sapignoli, Roy Sesana, George Silberbauer, Axel Thoma, Helga Vierich, Diana Vinding, Nick Walker, Thomas Widlok, Polly Wiessner, the U.S.National Science Foundation, the Ministry of Environment and Tourism (Namibia), Millennium Challenge Corporation, the U.S. Agency for International Development, the Department of Wildlife and National Parks (Botswana), the Nyae Nyae Conservancy, the Nyae Nyae Development Foundation of Namibia, and the Cgae Cgae Tlhabololo Development Trust (Botswana). We thank David Furth, Alexander Konstantinov, and Claire Smith (USNM) for supplying photos of Blepharida and Linda Trueb, Leonard Krishtalka, Matthias Schöller for commenting on an earlier draft of this manuscript. Finally we thank reviewers Elizabeth Grobbelaar, Bill Shepard, Clarke Scholtz, and Alexander Konstantinov and anonymous reviewers for suggestions that improved the final manuscript.