Research Article |
Corresponding author: Francisco Hita Garcia ( fhitagarcia@gmail.com ) Academic editor: Brian Lee Fisher
© 2015 Francisco Hita Garcia, Eli M. Sarnat, Evan P. Economo.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Hita Garcia F, Sarnat EM, Economo EP (2015) Revision of the ant genus Proceratium Roger (Hymenoptera, Proceratiinae) in Fiji. ZooKeys 475: 97-112. https://doi.org/10.3897/zookeys.475.8761
|
The Fiji archipelago harbours a surprisingly diverse and endemic ant fauna, despite its isolated and remote location in the South Pacific. The ant genus Proceratium is present on Fiji with three endemic species, of which P. oceanicum De Andrade, 2003 and P. relictum Mann, 1921 were previously known. In this study we describe the third species: P. vinaka sp. n. All three species are members of the widespread and species-rich P. silaceum clade. In order to integrate the new species into the current taxonomic system, we present an illustrated identification key to the worker caste of the three Fijian species. In addition, we provide a detailed description of P. vinaka, as well as species accounts for the other two species, which include diagnoses, taxonomic discussions, specimen photographs, and a distribution map.
Endemic, identification key, Melanesia, Oceania, Proceratium silaceum clade, South Pacific, taxonomy
The ant genus Proceratium Roger, 1863 is distributed throughout all zoogeographical regions, and contains 81 extant and 5 fossil species (
The taxonomy of the genus is in a moderately good condition.
Here, we revise the genus Proceratium in Fiji and describe P. vinaka sp. n., which was presented as the morphospecies Proceratium sp. FJ01 in
The collection abbreviations mostly follow
MCZC Museum of Comparative Zoology, Harvard University, Cambridge, U.S.A.
USNM United States National Museum of Natural History, Washington D.C., U.S.A.
BPBM Bernice Pauahi Bishop Museum, Honolulu, U.S.A.
The measurements were taken with a Leica M165 C stereomicroscope equipped with an orthogonal pair of micrometres at a magnification of 100×. Measurements are presented in mm to two decimal places. The measurements and indices used in this study are based on
EL Eye length: maximum length of eye measured in oblique lateral view.
HL Head length: maximum measurable distance from the mid-point of the anterior clypeal margin to the mid-point of the posterior margin of head, measured in full-face view. Impressions on anterior clypeal margin and posterior head margin reduce head length.
HLM Head length with mandibles: maximum head length in full-face view including closed mandibles.
HW Head width: maximum head width directly behind the eyes, measured in full-face view.
HFeL Hind femur length: maximum length of hind femur measured along its external face.
HTiL Hind tibia length: maximum length of hind tibia measured on its external face.
HBaL Hind basitarsus length: maximum length of hind basitarsus measured along its external face.
LT3 Abdominal tergum III length: maximum length of abdominal tergum III (=length of segment III) in lateral view.
LS4 Abdominal sternum IV length: maximum length of abdominal sternum IV following
LT4 Abdominal tergum IV length: maximum length of abdominal tergum IV following
PeL Petiolar length: maximum length of the petiolar node in dorsal view. [Note: we have modified PeL compared to previous publications by measuring only the petiolar dorsum without the anterior prolongation of the petiole. Since the species treated here all possess a squamiform node, we are confident that measuring the dorsum of the node provides more comparative information than measuring the petiole as a whole.]
PeW Petiolar width: maximum width of petiole measured in dorsal view.
SL Scape length: maximum length of scape shaft excluding basal condyle.
TL Total body length: combined length of HLM + WL + PeL + LT3 + LT4.
WL Weber’s length: diagonal length of mesosoma in lateral view from the anterior-most point of pronotal slope (excluding neck) to posteroventral margin of propodeal lamella or lobe.
CI Cephalic index: HW / HL × 100
OI Ocular index: EL / HW × 100
SI Scape index: SL / HL × 100
DPeI Dorsal petiole index: PeW / PeL × 100
ASI Abdominal segment index: LT4 /LT3 × 100
IGR Gastral reflexion index: LS4 / LT4
The morphological terminology used in this study follows
This description of P. vinaka and its separation from P. oceanicum and P. relictum is based on the worker caste. However, the thorough ant inventory performed on the archipelago also yielded many male specimens (
Proceratium oceanicum De Andrade, 2003
Proceratium relictum Mann, 1921
Proceratium vinaka Hita Garcia, Sarnat & Economo, sp. n.
1 | Significantly smaller species (HW 0.52; WL 0.66); lateral expansions of frontal carinae conspicuously triangular and acute (Fig. |
P. vinaka |
– | Significantly larger species (HW 0.76–1.03; WL 0.99–1.38); lateral expansions of frontal carinae weakly triangular and moderately rounded (Fig. |
2 |
2 | Smaller species (HW < 0.80; WL < 1.10); in full-face view head thinner (CI 93); in profile propodeum rounded from dorsum to declivity (Fig. |
P. oceanicum |
– | Larger species (HW > 1.00; WL > 1.30); in full-face view approximately as long as wide (CI 101); in profile propodeum with weak angles from dorsum to declivity (Fig. |
P. relictum |
In this study we describe a new species collected during a recent survey of the ant fauna of Fiji (
The Fiji archipelago harbours an interesting assemblage of endemic Proceratium species. Proceratium oceanicum and P. relictum are certainly the most unusual members of the P. silaceum clade, as already pointed out by
Proceratium oceanicum De Andrade, 2003: 310. [see also:
Holotype, pinned worker, FIJI, Viti Levu, Nadarivatu, -17.5667°, 177.967°, rainforest, on soil, under grass, 16.II.1962, (R.W. Taylor) (ANIC: ANIC32-017668) [not examined].
FIJI: Taveuni, Mt. Devo, 3.9 km SE Tavuki Village, -16.83278°, -179.97343°, 775 m, ex soil, leaf litter, decaying wood, 16.VI.2005 (E.M. Sarnat); Viti Levu, Koroyanitu Eco Park 5.0 km NE Abaca Village, -17.66667°, 177.5525°, 700 m, disturbed forest, sifted litter, 19.IV.–14.V.2003 (M. Tokotaa); Viti Levu, Naqaranibuluti Nature Reserve, near summit, 0.75 km SE Nadarivatu, -17.57278°, 177.9725°, 1000 m, primary rainforest, 26.VIII.2006 (E.M. Sarnat); Viti Levu, Nausori Highlands, 12.I.1972 (W.L. Brown).
The following character combination distinguishes P. oceanicum from the remainder of the P. silaceum clade: relatively larger species (HW 0.76–0.78; WL 0.99–1.00); in full-face view head weakly longer than wide (CI 93); lateral expansions of frontal carinae weakly triangular and moderately rounded; petiolar node extremely squamiform (DPeI 680–693) and strongly narrowing from base to apex; subpetiolar process thinly dentiform.
(N=2). TL 3.38–3.41; EL 0.03; SL 0.55–0.58; HL 0.81–0.83; HLM 1.00–1.02; HW 0.76–0.78; WL 0.99–1.00; HFeL 0.63; HTiL 0.48–0.50; HBaL 0.38–0.40; PeL 0.63; PeW 0.43; DPeI 680–693; LT3 0.54–0.56; LS4 0.35–0.40; LT4 0.71–0.78; OI 4; CI 93; SI 68–70; IGR 0.49–0.52; ASI 133–139.
Workers of P. oceanicum, even though rarely encountered, were sampled from Viti Levu and Taveuni, but tentatively associated males also suggest its presence on Vanua Levu. All collections are from primary or disturbed rainforest. Unfortunately, there is no available data on the biology of P. oceanicum.
As already outlined above, P. oceanicum and P. relictum are highly distinctive species that can be easily distinguished from all other congeners by the extremely squamiform petiolar node. This character, among others, also separates both clearly from the new species P. vinaka. Despite its sympatric occurrence, P. oceanicum and P. relictum are not likely to be confused. The latter is significantly larger in size (HW > 1.00; WL > 1.30), has a noticeably broader head (CI 101), and the subpetiolar process is thickly spiniform, whereas P. oceanicum is conspicuously smaller (HW < 0.80; WL < 1.10), possesses a narrower head (CI 93), and its subpetiolar process thinly dentiform. Additionally, in profile the propodeum of P. oceanicum is rounded while it is weakly, but clearly marginate in P. relictum.
Proceratium relictum Mann, 1921: 413. [see also:
Syntypes, pinned workers and queen, FIJI, Taveuni, Somosomo (W.M. Mann) (MCZC, USNM) [examined].
FIJI: Taveuni, Mt. Devo, 3.6 km SE Tavuki Village, -16.83056°, -179.97433°, 734 m, garden/forest edge, on ground, foraging, hand collection, 22.III.2005 (E.M. Sarnat); Vanua Levu, Mt. Delaikoro, Delaikoro Rd., 3.6 km SE Dogoru Village, -16.57525°, 179.31638°, 699 m, primary rainforest, 31.VIII.2006 (M. Tokotaa); Vanua Levu, 1.5 km N Yasawa Village, -16.46806°, 179.64362°, 300 m, disturbed forest, 1.IX.2003 (A. Rakabula).
The following combination of characters separates P. relictum from the remainder of the P. silaceum clade: comparatively large species (HW 1.03; WL 1.38); in full-face view head approximately as long as wide (CI 101); lateral expansions of frontal carinae weakly triangular and moderately rounded; petiolar node extremely squamiform (DPeI 620) and strongly narrowing from base to apex; subpetiolar process thickly spiniform.
(N=1). TL 4.45; EL 0.04; SL 0.78; HL 1.01; HLM 1.28; HW 1.03; WL 1.38; HFeL 0.98; HTiL 0.71; HBaL 0.67; PeL 0.83; PeW 0.52; DPeI 620; LT3 0.69; LS4 0.42; LT4 1.02; OI 4; CI 101; SI 77; IGR 0.41; ASI 148.
Proceratium relictum seems to be restricted in its distribution to the two northern islands Taveuni and Vanua Levu. Tentatively associated males collected from malaise traps support this restricted distribution and absence of the species from Viti Levu. The species appears to be tolerant of at least moderate levels of disturbance as it was collected from rainforest, disturbed forest, and forest edge garden. Collections of workers are rare and there is no available information about its natural history.
Proceratium relictum and P. oceanicum form a very close species pair easily distinguishable from the new species P. vinaka and all other Proceratium species by the extremely modified petiolar node. Detailed information on how to separate P. relictum from P. oceanicum is presented in the species account of the latter and the identification key.
Holotype, pinned worker, FIJI, Viti Levu, Savatu Dist., Mt. Tomanivi 2.4 km E Navai Vlg., -17.61806°, 178.0055°, 950 m, mid-elevation rainforest, soil, leaf litter, decaying wood, collection code EMS#2153-4, 25.VI.2005 (E.M. Sarnat) (BPBM: CASENT0187587).
Proceratium vinaka differs from the other members of the P. silaceum clade by the following combination of characters: relatively smaller species (HW 0.52; WL 0.66); in full-face view head weakly longer than wide (CI 93); lateral expansions of frontal carinae conspicuously triangular and acute; petiolar node moderately squamiform (DPeI 263) and only weakly narrowing from base to apex; subpetiolar process rounded, not dentiform nor spiniform.
(N=1). TL 2.41; EL 0.03; SL 0.37; HL 0.56; HLM 0.79; HW 0.52; WL 0.66; HFeL 0.38; HTiL 0.29; HBaL 0.24; PeL 0.10; PeW 0.25; DPeI 263; LT3 0.37; LS4 0.27; LT4 0.51; OI 6; CI 93; SI 66; IGR 0.54; ASI 138.
In full-face view head longer than broad (CI 93), sides weakly convex, gently broadening posteriorly, vertex shallowly concave. Clypeus conspicuously reduced, relatively narrow, and anteriorly truncate. Frontal carinae relatively short, moderately separated, and not covering antennal insertions, approximately parallel on anterior third and strongly diverging posteriorly, lateral expansions of frontal carinae very broad, raised, and conspicuously triangular and acute; frontal area weakly concave; cephalic dorsum medially with weak carina. Eyes reduced, very small (OI 6), consisting of single ommatidium and located on midline of head. Antennae 12-segmented, scapes short (SI 66), not reaching posterior head margin and noticeably thickening apically. Mandibles elongate-triangular; masticatory margin of mandibles with eight teeth/denticles in total, apical tooth long and acute, second tooth from apex smaller and less acute, remaining six denticles significantly smaller and blunt. Mesosoma in profile moderately convex and clearly shorter than maximum head length including mandibles. Lower mesopleurae with well demarcated sutures, no other sutures developed on lateral or dorsal mesosoma; mesopleurae not inflated posteriorly; propodeum in profile unarmed and rounded, propodeal lobes weakly developed, lamellate and blunt; declivitous face of propodeum gently sloping posteriorly; in posterodorsal view sides of propodeum separated from declivitous face by weak margins; in profile propodeal spiracle rounded and above mid height. Legs moderately long; all tibiae with pectinate spur; calcar of strigil without basal spine; pretarsal claws simple; arolia absent. Petiolar node in profile moderately squamiform, high, and subrectangular, anterior face of petiole relatively straight, node weakly narrowing from base to apex, dorsum of node weakly convex; petiole in dorsal view much broader than long and transverse, around 2.6 times broader than long (DPeI 263); ventral process of petiole relatively reduced, inconspicuous, convex, and without any rectangular, dentiform, or spiniform projections. In dorsal view abdominal segment III anteriorly much broader than petiole; its sides diverging posteriorly; abdominal sternite III anteromedially with a marked subtriangular projection appearing convex in profile. Constriction between abdominal segment III and IV conspicuously impressed. Abdominal segment IV moderately recurved (IGR 0.54), conspicuously rounded on its curvature, especially posteriorly; abdominal tergum IV around 1.4 times longer than abdominal segment III (ASI 138); remaining abdominal tergites and sternites relatively inconspicuous and curved ventrally. All dorsal surfaces of body (including antennal scapes and legs) covered with dense mat of relatively short, decumbent to erect hairs combined with fewer, but significantly longer, erect hairs.
Mandibles conspicuously striate at the base and mostly smooth and shining towards apex; sides of head and anterior cephalic dorsum irregularly foveolate and/or punctate and irregularly rugulose, sculpture on posterior of cephalic dorsum very weak and shining; sculpture on mesosoma, petiole, abdominal tergites III and IV weakly to moderately irregularly foveolate and/or punctate, generally appearing quite smooth and shiny, abdominal sternites III and IV irregularly foveolate and/or punctate and irregularly rugulose, rough in appearance. Body colour uniformly yellowish to light orange brown.
The name of new species is Fijian and means ‘thank you’ or ‘hello’. With this we want to dedicate the new species to the people of Fiji for their hospitality and kindness shown to EMS and EPE during their years of fieldwork on the archipelago. The species epithet is a nominative noun in apposition, and thus invariant.
The single known worker of P. vinaka was collected at Mt. Tomanivi on Viti Levu. The type locality is a relatively pristine mid-elevation rainforest. Nevertheless, several tentatively associated males from malaise traps suggest that P. vinaka has a much broader distribution and is also found on Taveuni and Vanua Levu. As in the cases of P. oceanicum and P. relictum, there is no information on the biology of the new species.
Despite the morphological similarity of most species of the P. silaceum clade, P. vinaka possesses an interesting character combination that renders it easily identifiable within the Proceratium fauna of Oceania. It cannot be confused with the other two Proceratium species found on Fiji. Both, P. oceanicum and P. relictum, have extremely squamiform petiolar nodes that strongly narrow from base to apex, whereas P. vinaka has a moderately squamiform node that narrows only very weakly from base to apex. This node shape is characteristic for the P. silaceum clade and found in all species except P. oceanicum and P. relictum. In addition, the latter two species have either a dentiform or spiniform ventral petiolar process, which contrasts with the very much reduced and convex process of P. vinaka. Interestingly, this highly reduced ventral process seen in P. vinaka is quite unique and not found in any other member of the P. silaceum clade in Oceania. All other species have either a well-developed lamelliform and approximately rectangular process, or the process is dentiform or spiniform. Another character that distinguishes P. vinaka from P. oceanicum and P. relictum is the development of the lateral expansions of the frontal carinae, which are weakly triangular and moderately rounded in the latter two species, whereas they are conspicuously triangular and acute in P. vinaka. This also separates it from other morphologically similar species found in Oceania, such as P. caledonicum, P. papuanum, or P. politum since they all have rounded or subtriangular extensions that are never as acute as in P. vinaka.
Proceratium vinaka was treated as Proceratium sp. FJ01 in
Anterior part of cephalic dorsum in full-face view showing clypeus and frontal carinae (within white ellipse) and petiolar node in profile (white arrows indicate subpetiolar process). A, D P. vinaka (CASENT0171053) B, E P. oceanicum (CASENT0171053) C, F P. relictum (CASENT0194740).
Mesosoma in profile showing posterodorsal propodeum (within white ellipse). A P. oceanicum (CASENT0171053) B P. relictum (CASENT0194740).
Proceratium oceanicum (CASENT0171053). A Body in profile B Body in dorsal view C head in full-face view.
Proceratium relictum (CASENT0194740). A Body in profile B Body in dorsal view C head in full-face view.
Proceratium vinaka (CASENT0187587). A Body in profile B Body in dorsal view C Head in full-face view.
Vinaka vakalevu to the Fiji government and landowners and kind peoples of Fiji for allowing specimen collection and exportation. Neal Evenhuis, Dan Bickel, Evert Schlinger, Leah Brorstrom and Hilda Waqa provided specimens from the Fiji Terrestrial Arthropod Survey. David Olson, Linda Farley, Akanisi Caginitoba, Moala Tokota’a, Seta and Adi, and the Wildlife Conservation Society staff provided logistical support and field collections. We are also thankful to Michele Esposito from the California Academy of Sciences for imaging the holotype of P. vinaka. We thank Brian L. Fisher and two anonymous reviewers for editing and reviewing the manuscript. Specimen collection was supported by the National Science Foundation (DEB-0425970 ‘Fiji Terrestrial Arthropod Survey’). The authors were supported by NSF graduate research fellowships, an NSF grant to EPE (NSF DEB-1145989), and OIST.