Review Article |
Corresponding author: Richard Mally ( richardmally@web.de ) Academic editor: Colin Plant
© 2015 Richard Mally, Anastasia Korycinska, David J. L. Agassiz, Jayne Hall, Jennifer Hodgetts, Matthias Nuss.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Mally R, Korycinska A, Agassiz DJL, Hall J, Hodgetts J, Nuss M (2015) Discovery of an unknown diversity of Leucinodes species damaging Solanaceae fruits in sub-Saharan Africa and moving in trade (Insecta, Lepidoptera, Pyraloidea). ZooKeys 472: 117-162. https://doi.org/10.3897/zookeys.472.8781
|
The larvae of the Old World genera Leucinodes Guenée, 1854 and Sceliodes Guenée, 1854 are internal feeders in the fruits of Solanaceae, causing economic damage to cultivated plants like Solanum melongena and S. aethiopicum. In sub-Saharan Africa five nominal species of Leucinodes and one of Sceliodes occur. One of these species, the eggplant fruit and shoot borer L. orbonalis Guenée, 1854, is regarded as regularly intercepted from Africa and Asia in Europe, North and South America and is therefore a quarantine pest on these continents. We investigate the taxonomy of African Leucinodes and Sceliodes based on morphological characters in wing pattern, genitalia and larvae, as well as mitochondrial DNA, providing these data for identification of all life stages. The results suggest that both genera are congeneric, with Sceliodes syn. n. established as junior subjective synonym of Leucinodes. L. orbonalis is described from Asia and none of the samples investigated from Africa belong to this species. Instead, sub-Saharan Africa harbours a complex of eight endemic Leucinodes species. Among the former nominal species of Leucinodes (and Sceliodes) from Africa, only L. laisalis (Walker, 1859), comb. n. (Sceliodes) is confirmed, with Leucinodes translucidalis Gaede, 1917, syn. n. as a junior subjective synonym. The other African Leucinodes species were unknown to science and are described as new: L. africensis sp. n., L. ethiopica sp. n., L. kenyensis sp. n., L. malawiensis sp. n., L. pseudorbonalis sp. n., L. rimavallis sp. n. and L. ugandensis sp. n. An identification key based on male genitalia is provided for the African Leucinodes species. Most imports of Leucinodes specimens from Africa into Europe refer to Leucinodes africensis, which has been frequently imported with fruits during the last 50 years. In contrast, L. laisalis has been much less frequently recorded, and L. pseudorbonalis as well as L. rimavallis only very recently in fruit imports from Uganda. Accordingly, interceptions of Leucinodes from Africa into other continents will need to be re-investigated for their species identity and will likely require, at least in parts, revisions of the quarantine regulations. The following African taxa are excluded from Leucinodes: Hyperanalyta Strand, 1918, syn. rev. as revised synonym of Analyta Lederer, 1863; Analyta apicalis (Hampson, 1896), comb. n. (Leucinodes); Lygropia aureomarginalis (Gaede, 1916), comb. n. (Leucinodes); Syllepte hemichionalis Mabille, 1900, comb. rev., S. hemichionalis idalis Viette, 1958, comb. rev. and S. vagans (Tutt, 1890), comb. n. (Aphytoceros). Deanolis iriocapna (Meyrick, 1938), comb. n. from Indonesia is originally described and misplaced in Sceliodes, and L. cordalis (Doubleday, 1843), comb. n. (Margaritia) from New Zealand, L. raondry (Viette, 1981), comb. n. (Daraba) from Madagascar as well as L. grisealis (Kenrick, 1912), comb. n. (Sceliodes) from New Guinea are transferred from Sceliodes to Leucinodes. While Leucinodes is now revised from Africa, it still needs further revision in Asia.
Leucinodes , Leucinodes orbonalis complex, Sceliodes , Solanaceae , eggplant, pest species, DNA Barcoding, revision, identification key, Africa
Leucinodes orbonalis Guenée, 1854, the eggplant fruit and shoot borer, is a species of moth that was first described from specimens from India and Java (
The larvae are commonly moved in international trade with plants and fruits, as their internal feeding and the resulting damage may not be visible during pre-export inspections. Thus, Leucinodes orbonalis is a quarantine pest of concern to a number of countries outside its native range. This includes the member countries of the European and Mediterranean Plant Protection Organisation (EPPO), where it was recommended as an addition to the alert list of pests in 2008 (
Due to the economic impact of Leucinodes orbonalis, the development of a genetically modified eggplant was initiated in 2005 in India by introducing a crystal protein gene (Cry1Ac) from the bacterium Bacillus thuringiensis Berliner, 1915 (Bt) into the plant (
Until recently, all pyraloid larvae damaging Solanaceae fruits in Asia and Africa and intercepted from imports to Europe have been regarded as two species, Leucinodes orbonalis and Sceliodes laisalis (Walker, 1859).
Here we taxonomically revise Leucinodes and Sceliodes and their species from continental sub-Saharan Africa, in order to delimit species and to allow their proper identification.
Specimens were examined from the following institutions: private collection David J. L. Agassiz, Weston-super-Mare, Great Britain (coll. DJLA), Natural History Museum, London, Great Britain (BMNH), Invertebrate Reference Collection, Food and Environment Research Agency, Sand Hutton, England (Fera), International Centre of Insect Physiology and Ecology, Nairobi, Kenya (ICIPE), private collection Timm Karisch, Dessau, Germany (coll. Karisch), University of Oslo, Natural History Museum, Norway (NHMO), National Museum of Kenya, Nairobi, Kenya (NMK), National Plant Protection Organization, Wageningen, the Netherlands (NPPO), Muséum national d’Histoire naturelle, Paris, France (MNHN), Musée royal de l’Afrique centrale, Tervuren, Belgium (RMCA), Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany (SDEI), Senckenberg Museum für Tierkunde, Dresden, Germany (SMTD), National Museum of Natural History, Washington, D.C., U.S.A. (USNM), Museum für Naturkunde, Berlin, Germany (ZMHB), University of Copenhagen, Museum of Zoology, Denmark (ZMUC).
Larvae were sourced through quarantine interceptions of eggplant fruit from Africa and Asia at several ports of entry in England. Most larvae were studied alive and subsequently reared to adults in order to confirm the species identity. In large containments a few larvae were preserved by boiling them in water for 30–90 seconds, then transferred to 70% ethanol. After 3–5 days, the ethanol was replaced to limit dilution from body contents. Reared adults were killed soon after emergence, with cyanide, ammonia or by freezing at -20 °C for a minimum of 2 hours. Field-collected adults were attracted by artificial light and killed with cyanide. All adult specimens were subsequently pinned. Genital dissections of thoroughly dried specimens were performed according to
DNA was extracted using either the NucleoSpin tissue kit (Macherey-Nagel) according to the manufacturer’s instructions or using the Chelex-100 resin based method (
PCR of the 5’ half of the cytochrome C oxidase subunit I (COI) gene, the so-called DNA Barcode (for Metazoa), was performed using primers HybLCO (
PCR products were visualised by separation in 1–1.5% agarose gels in 1 × TBE buffer (89 mM Tris-borate 2 mM EDTA) containing GelRed or ethidium bromide and visualised under UV light. PCR amplicons were cleaned up using ExoSAP-IT (Affymetrix) or QIAquick PCR purification kit (QIAGEN). Sequencing of both strands was performed by Eurofins MWG Operon (Germany) or in-house as follows. Sequencing PCRs were performed with BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems) using 5pm of the sequencing primer tails T7/T3 (
Obtained DNA sequences were proofread by eye and aligned using PhyDE 0.9971 (
We apply the morphospecies concept to our study. The DNA Barcode is used as additional source of information and as an identification tool for all developmental stages of African Leucinodes species. The Solanaceae species names mentioned in this study refer to their former context and do not necessarily correspond to the revised Solanum taxonomy by
Label data of studied specimens were compiled in order to generate a distribution map. Geographical coordinates, if not given on the label, were obtained via Google Earth, Version 5.2.1.1588 and subsequently plotted on a map using DIVA-GIS, Version 7.2.3 (
The data underpinning the analyses reported in this paper are deposited in the Dryad Data Repository at doi: 10.5061/dryad.kk0n9.
Leucinodes Guenée, 1854. Type species: Leucinodes orbonalis Guenée, 1854
= Sceliodes Guenée, 1854, syn. n. Type species: Sceliodes mucidalis Guenée, 1854
= Daraba Walker, 1859 (synonymised by
= Eretria Snellen, 1880 (synonymised by
= Leuctinodes South, 1897 (misspell.)
Leucinodes is characterized by a forewing pattern which includes a brown base, a white antemedian line which is distally brown edged; a median area that is ochreous or brown from the costa to the middle of wing, and red-brown from the middle of wing towards the dorsum; below the apex is a black-brown half moon-shaped patch (missing in L. malawiensis sp. n.), edged by a thin white postmedian line and a white line at the margin of wing. The hindwings are white with inconspicuous pattern elements. Leucinodes females with only one frenular bristle in the hindwing, female labial palps with elongated 3rd meron, male genitalia with identical location of the fibula-sacculus process-complex (process lacking in L. cordalis (Doubleday, 1843), L. laisalis and L. malawiensis), female genitalia with fine granular sclerotization of ductus bursae (in most species), antrum with thickened mesocuticula, presence of lateral antrum pockets. Larvae are internal feeders in Solanaceae.
Head. Frons conically bulged (Figs
Thorax. Dorsal side whitish to brown with whitish and dark brown scales mixed in; ventral side whitish; legs predominantly whitish, foreleg femur, tibia and epiphysis light to dark brown; tibial spurs 0, 2, 4 (fore-, mid-, hindleg) with outer spur 1/2 to 2/3 the length of inner spur.
Wings. Forewing white translucent, light brown or orange- to grey-brown, basal area light to dark brown, delimited by white and dark brown double line or in species with brown forewing ground colour by dark brown antemedian line; median area with pale to dark brown, sometimes very faint proximal discoidal stigma (absent in L. malawiensis); distal discoidal stigma pale to dark brown, reaching from costa to forewing centre; central dorsum with prominent orange to dark brown, broadly L-shaped or triangular spot connected or disconnected with distal discoidal stigma; postmedian line sinuate, faint and grey to grey-brown, white edged, with prominent subcostal bulge; apex brown to grey-brown coloured (absent in L. malawiensis), with slim strip of white at outer margin; margin dotted at veins, with large dots at apex and M3; fringe white to pale brown with dark interruption at apex and at M3 (absent in L. malawiensis). Hindwing in both sexes with one frenular bristle, ground colour whitish, middle of wing with one or two spots, often faint; postmedian line inconspicuous, bent towards spot at middle of wing; area below apex suffused by pale brown to grey; margin dotted at end of veins, with large dot at end of M3.
Abdomen. First segment whitish, remainder light-, orange- or dark brown to grey.
Male genitalia. Uncus neck constricted, head circular, with dorsal agglomeration of thick setae; narrow transtilla arms with central notch, in L. ethiopica with dorsad spike on each arm; vinculum saccus round to V-shaped, short to more or less elongated, with or without keeled tip; juxta oval, subulate, short rhombical or tongue-shaped, with semicircular base; valvae elongate triangular, tapering posteriorly, costa and posterioventral margin loosely covered with long setae; fibula (fi in Fig.
Female genitalia. Corpus bursae ovoid, membranous, without signa; ductus bursae membranous with delicate granulation, partly reaching into posterior corpus bursae; antrum short to long, slim to broader than ductus bursae, anterior part sometimes coiled, mesocuticula thickened (strongly stained with Chlorazol Black) and exocuticula (inner layer) partly sclerotized; ostium bursae with lateral membranous pockets, with or without oval sclerites; both apophyses pairs simple, apophyses anteriores normally stronger developed than posterior apophyses, with or without broadened central portion.
Larva. Last instar larvae with pink dorsal integument, intersegmental areas cream or light pink, the ventral integument cream; strength of the colouration very variable, pink colour on majority of abdominal segments often interrupted laterally by a transverse cream line; head, prothoracic and anal shields mid brown with variable black markings; early instar larvae white or cream with brown pinacula and black head, prothoracic and anal shields. In older larvae the dorsal integument turns beige, then increasingly deeper pink as the moults progress, head and prothoracic shield brown; pinacula pale brown and prominent against the integument in all instars. The chaetotaxy of the thorax and first nine abdominal segments of the last instar is illustrated in Fig.
Pupa. (Figs
Sceliodes and Leucinodes have traditionally been distinguished by their forewing ground colour, which is predominantly orange-brown to greyish-brown in Sceliodes and white translucent in Leucinodes. The newly discovered Leucinodes ethiopica sp. n. is intermediate in this character whereas all other wing pattern elements are homologous among Leucinodes and Sceliodes species. Study of the genitalia showed that cornuti are present in Sceliodes species, but are absent in Leucinodes, including L. ethiopica. The female genitalia contain oval to semicircular sclerites in the lateral antrum pockets of L. ethiopica, African Sceliodes and S. cordalis, the type-species of Sceliodes, which is distributed in Australia and New Zealand. Thus, there is a continuous variation between Leucinodes and Sceliodes and we here synonymise Sceliodes syn. n. with Leucinodes. As Leucinodes and Sceliodes have been published on the same date and in the same work, we here give precedence to Leucinodes as it is the better known of the two names, acting as first reviser according to ICZN 24.2.2.
Leucinodes orbonalis
Bangladesh, Sylhet (male syntype); Java (female syntype).
Type-specimens. Syntype ♂ [rectangular whitish label with red border, red letters] “Typicum | Specimen”, [rectangular whitish label with black border] “Ex. Musaeo | Ach.Guénée”, [rectangular beige label] “Paravicini Coll. | B.M. 1937-383.”, [rectangular brownish label] “Orbonalis | Gn. Silhet”, [rectangular pale yellow label] “Leucinodes Gn. | orbonalis Gn. | Type ♂ 756.3.”, [square white label in red letters, slide number and gender in black] “Pyralidae | Brit.Mus. | Slide No. | 4496♂” (BMNH); syntype ♀ [rectangular whitish label with red border, red letters] “Typicum | Specimen”, [rectangular whitish label with black border] “Ex. Musaeo | Ach.Guénée”, [rectangular white label] “Paravicini Coll. | B.M. 1937-383.”, [rectangular pale yellow label] “Leucinodes Gn. | orbonalis Gn. | Type ♀ 756.3.”, transparent capsule with abdomen and left hindwing (BMNH). – Additional material. VIETNAM. 1♂ Lao Cai Province, surrounding of Mt. Fan Si Pan, Nui Se, 1927m, 22°21.168'N 103°46.477'E, 20./21.x.2001, leg. S. Löffler, prep. RM503, DNA Barcode BC MTD 01185 (SMTD); SINGAPORE. 1♂ 1♀ leg. H.N. Ridley, BMNH Pyralidae slides No. 23092 & No. 23100 (BMNH); THE NETHERLANDS (IMPORT). 1♂ Amsterdam (Schiphol), import Thailand, 22.xi.2006, ex larva 26.xi.2006, ex pupa 6.xii.2006, leg. S. Roes, det. M v. d. Straten, prep. RM641; 1♀ Amsterdam (Schiphol), import Thailand, 8.ii.2005, ex larva, leg. R. Hulzinga, det. M v. d. Straten, prep. RM642 (NPPO); GREAT BRITAIN (IMPORT). see Suppl. material
Wing pattern indistinguishable from those of L. africensis sp. n., L. rimavallis sp. n., L. pseudorbonalis sp. n., L. kenyensis sp. n. and “Leucinodes spp.”, but distinguished from L. malawiensis by the absence of the forewing basal transversal streak and the presence of the apical half moon-shaped patch, and from L. laisalis, L. ethiopica and L. ugandensis sp. n. by the predominantly white forewing ground colour. Frons usually more strongly bulged than in other Leucinodes species, but L. pseudorbonalis can be very similar in this feature. In male genitalia distinguishable by: dorsal margin of valval sacculus concave; apical sclerotized sacculus process elongated cone-shaped and crossing with the similar-sized fibula (as in L. pseudorbonalis); juxta slender, tapering (similar in L. africensis and L. rimavallis); saccus of vinculum short, less prominent. Female genitalia: antrum only slightly bulged, exocuticula without sclerotized strip.
Head. As for the genus, with frons strongly bulged (Figs
Adult specimens of Leucinodes. 1 Leucinodes orbonalis, syntype ♂ (Bangladesh) 2 L. africensis ♀ (Angola) 3 L. rimavallis ♀ (DR Congo: Kivu) 4 L. pseudorbonalis ♂ (Uganda) 5 L. kenyensis, holotype ♂ (Kenya) 6 L. malawiensis, holotype ♂ (Malawi) 7 L. laisalis ♀, greyish form (Tanzania) 8 L. laisalis ♀, brownish form (Tanzania) 9 L. ethiopica, holotype ♂ (Ethiopia) 10 L. ugandensis, holotype ♂ (Uganda). Scale bar represents 5 mm.
Thorax. As for the genus, with dorsal side brown.
Wings. Forewing length ♂ 8.5–10.5 m, ♀ 9.5–12.0 m; forewing ground colour white, basal area light- to dark brown, delimited by dark brown to grey antemedial line; median area with pale brown, faint proximal discoidal stigma; distal discoidal stigma pale brown, reaching from costa to forewing centre; central dorsum with prominent orange to dark brown L-shaped or triangular spot leading to forewing centre and often meeting with distal discoidal stigma; antemedial line sinuate, more or less distinct, but with prominent subcostal bulge; subapical half of termen with half moon-shaped brown to grey-grown spot; marginal line dotted; fringe and marginal line darkened at the tips of the half moon-shaped spot; hindwing ground colour white, internal area white, with discoidal spot, basicostally often with auxiliary spot; medial line sinuate, distal half approaching the discoidal spot, then turning towards dorsum; external area pale brown to gray; marginal line dotted.
Abdomen. First segment whitish, remainder brownish.
Male genitalia. As for the genus, apart from: juxta subulate, with short, broadly convex base, at 2/3 length slightly broadened; valvae broad, relatively short, nearly triangular; costa simple, slightly convex, subapically with a short concave portion; fibula hooked, its widened base emerging ventrad of costa base; sacculus ventrally convex, dorsally concave, at distal end with spike-shaped, strongly sclerotized process, oriented dorsad and crossing with fibula; distal ventral valva margin granulated (ga in Fig.
Male genitalia. 13 Leucinodes orbonalis, Vietnam (prep. RM503) 14 L. africensis, two-branched sacculus process, Côte d’Ivoire (prep. RM330, phallus omitted) 15 L. africensis, single-branched sacculus process, Ghana (import) (prep. RM501) 16 L. rimavallis, Kenya (prep. RM667) 17 L. pseudorbonalis, Uganda (prep. RM705) 18 L. kenyensis, Zimbabwe (prep. RM694) 19 L. malawiensis, Malawi (prep. RM683) 20 L. laisalis, South Africa (prep. RM504) 21 L. ethiopica, Ethiopia (BMNH Pyralidae slide 23138) 22 L. ugandensis, Somalia (BMNH Pyralidae slide 23140); phallus mirrored. Abbreviations: fi fibula, ga granulated area, sa sacculus, sb side branch of sacculus process, sp sacculus process. Scale bar represents 500 µm.
Female genitalia. As for the genus, apart from: anterior antrum with spoon-shaped posteriad indentation, flanked on either side by a sclerotized portion (as in Fig.
Female genitalia. 23 L. orbonalis, Thailand (import) (prep. RM642), ventral view 24 L. africensis, Ghana (prep. RM640), ventral view 25 L. rimavallis, Kenya (prep. RM666, SMTD Lep1592), lateral view 26 L. pseudorbonalis, Uganda (prep. RM706), lateral view 27 L. kenyensis, Kenya (prep. MN1134), lateral view. Scale bar represents 500 µm.
Female genitalia. 28 L. laisalis, Kenya (prep. RM308), lateral view 29 L. ethiopica, Ethiopia (BMNH Pyralidae slide 23139), ventral view 30 L. ugandensis, Somalia (BMNH Pyralidae slide No. 23137), lateral view 31 L. orbonalis, Thailand (import) (prep. RM642), ventral close-up of antrum region 32 L. africensis, Côte d’Ivoire (prep. RM743), dorsolateral close-up of antrum region (phase contrast filter) 33 L. pseudorbonalis, Uganda (prep. RM706), lateral close-up of antrum region 34 L. kenyensis, Kenya (prep. MN1134), lateral close-up of antrum region. Abbreviations: as antrum sclerotizations; Scale bar in 28–30 represents 500 µm and in 31–34 represents 200 µm.
Larva. MSD1 and MSD2 of meso- and metathorax usually on a shared pinaculum, earlier instars frequently have the MSD setae on separate pinacula on one or both segments; dorsal abdominal pinacula show apparent differentiation between West- and East-Asian populations: in live western specimens (e.g., from Pakistan), the abdominal D1 pinacula usually have an unpigmented cream coloured area near to their anteriomedian margin. This unpigmented area may be contiguous with the unmelanized cuticle surrounding the pinaculum or be surrounded by the melanized cuticle of the pinaculum (illustrated on A3–6 in Fig.
India, Indonesia: Java (
Solanaceae: Solanum melongena L., S. aculeatissimum Jacq., S. aethiopicum L., S. erianthum D. Don., S. anguivi Lam. (as S. indicum L.), S. integrifolium Poir., S. lycopersicum L., S. macrocarpon L., S. mammosum L., S. nigrum L., S. torvum Sw., S. tuberosum L., S. viarum Dunal, S. xanthocarpum Schrad., Physalis minima L., P. peruviana L., Capsicum annuum L. (
Leucinodes orbonalis has previously been reported in Europe from the Netherlands (
West Africa, 11 June 1848, H. S. Le Marquand leg.
Type-specimen. Holotype ♂ [red-circled label] “Holo- | type”, “WEST AFRICA: | H.S. Le Marquand. | 11. xi. 48”, BM Pyralidae slide 23118 (BMNH). – Additional material.GHANA. 1♀ Kumasi, leg. J. D. G. Sanders, BMNH Pyralidae slide No. 23130 (BMNH); LIBERIA. 1♂ Kpaine, 7°10'N 9°07'W, 12.viii.1953, leg. Dr W. Peters, BMNH Pyralidae slide No. 23148 (BMNH); CÔTE D’IVOIRE. 1♂ Abidjan, 19.xi.1952, leg. L. Sheljuzhko, prep. RM330 (ZSM); 1♂ Bouaké, Inepa, 14.–15.vi.1983, col. Stam, prep. RM693 (RMCA); 1♀ Bingerville, 11.vi.1961, leg. J. Decelle, prep. RM704 (RMCA]; 1♀ Mont Nimba, Xealé, 6.ii.1959, leg. M. Condamin & R. Roy, prep. RM743 (MNHN); NIGERIA. 1♀ Lagos, 31.viii.1987, leg. Boorman, BMNH Pyralidae slide No. 23127 (BMNH); 1 ex. Oyo, Ibadan, International Institute of Tropical Agriculture, 7.501N 3.906E, 240m, 15.iii.2006, leg. S.E. Miller & T.M. Kuklenski, DNA Barcode USNM ENT 196725 (USNM); GABON. 1♂ Ntoum, xii.1986, leg. A. Pauly, prep. RM685 (RMCA); DR CONGO. 1♂ Sankuru, Dimbelenge, i.–ii. 1957, leg. M. Fontaine, prep. RM697 (RMCA); 1♀ Elisabethville, 20.ii.1934, leg. Ch. Seydel, prep. RM696 (RMCA); ANGOLA. 1♂ 3♀ prov. Uíge, Negage, market, 7°45'39.4"S 15°16'00.6"E, 1213 m, 21.iii.2013, fruits of Solanum aethiopicum, e.l. 19., 20., 21.iv.2013, leg. M. Nuss, 1♂ prep. RM643, DNA vouchers SMTD Lep1562 & Lep1563 (SMTD); 2♀ same data, but 30.i.2014, fruits of Solanum aethiopicum, e.l. 16.ii.2014, leg. M. Nuss (SMTD); WEST AFRICA. 1♂ ii.–xi.43, leg. H. S. Le Marquand, BMNH Pyralidae slide No. 23118 (phallus lost) (BMNH); TANZANIA. 2♀ Oldeani, 22.x.1961 & 9.xii.1961, leg. J. Killand, preps RM334 & RM634 (ZSM); THE NETHERLANDS (IMPORT). 1♂ Schiphol (Amsterdam), import Ghana, 18.ix.2009, ex larva 22.ix.2009, ex pupa 1.x.2009, leg. P. Dekker, det. M v. d. Straten, prep. RM501, DNA voucher SMTD Lep946, DNA Barcode BC MTD 01816 (NPPO); 1♀ Schiphol (Amsterdam), import Ghana, 18.ix.2009, ex larva 23.ix.2009, ex pupa 1.x.2009, leg. P. Dekker, det. M. v. d. Straten, prep. RM640 (NPPO); GREAT BRITAIN (IMPORT). 1 ♂ London Airport, import Zimbabwe (Rhodesia), 1965; 1♂ 1♀ import Nigeria, ex tomatoes, London Airport xi.1965 (FERA); for additional FERA material see Suppl. material
The frons is less strongly bulged than in L. orbonalis. In wing pattern this species is indistinguishable from those of L. orbonalis, L. rimavallis, L. pseudorbonalis, L. kenyensis and “Leucinodes spp.”, but distinguished from L. malawiensis by the absence of the forewing basal transversal streak and the presence of the apical half moon-shaped patch, and from L. laisalis, L. ethiopica and L. ugandensis by the predominantly white forewing ground colour. In male genitalia it is distinguished by: the long ventrad fibula (as in L. rimavallis, short and triangular in L. malawiensis, broad and stout in L. laisalis); the elongate, straight or hook-shaped, sometimes branching distal sacculus process projecting towards the valva apex (similar in L. rimavallis); the apically thin, subulate juxta (similar in L. rimavallis); the prominent oval saw blade-shaped sclerotization of the posterior phallus apodeme (as in L. rimavallis); it is distinguished from L. rimavallis by the longer, more curved fibula with a slender base, the elongate distal sacculus process, which spans more than half the distance fibula base–valva apex, is straight or hook-shaped and sometimes exhibits a side branch, and the pointed valva apex (rounded in L. rimavallis). Female genitalia resemble those of L. pseudorbonalis in having a swollen antrum, but they lack the posterior constriction of the ostium bursae.
Head. As for the genus, with frons moderately bulged, base of each meron of labial palps with white scales.
Thorax. As for the genus, with dorsal side brown.
Wings. Forewing length ♂ 7.5–10.5 m, ♀ 7.0–11.5 m; wing pattern as in L. orbonalis.
Abdomen. First segment whitish, remainder brown to grey.
Male genitalia. As for the genus, apart from: juxta base broad, semicircular, apical 2/3 of juxta thin, subulate; valvae broad, forming an oblong triangle; sacculus process porrect towards valva apex or apically bent, apex acanthaceous, sometimes with a similarly acanthaceous subapical side branch (sb in Fig.
Female genitalia. As for the genus, apart from: colliculum-antrum complex in sagittal plane of sigmoid shape; dorsal surface of antrum exocuticle with longitudinal sclerotized strip running from sternite 8, bearing transverse ridges (Fig.
Larva. Final-instar larvae of L. africensis and L. orbonalis cannot be definitively separated. In final instars of live specimens of L. africensis, the majority of the abdominal D1 pinacula have a dark pigmented spot on the anteriomedian margin (illustrated on A2 in Fig.
Pupae of Leucinodes. 42–43 L. africensis 42 dorsal view 43 close-up of cremaster 44–46 L. laisalis 44 dorsal view 45 lateral view 46 close-up of cremaster. Abbreviations: hs hood-like structures dorsal to spiracles on abdominal segments 2 and 3. Scale bar refers to 42, 44 and 45 and represents 5 mm.
Latinized africensis, derived from the continent of Africa from where the type material originates and referring to the widespread distribution of this species on the African continent.
Known from West Africa (Côte d’Ivoire, Ghana, Liberia, Nigeria), Angola, DR Congo, Gabon, and Tanzania; intercepted with plant imports from Ghana and Zimbabwe to Great Britain and the Netherlands. At least in the southern DR Congo (Lubumbashi) L. rimavallis occurs sympatrically with L. africensis.
Solanaceae: Solanum aethiopicum L. (Angola, leg. Nuss 2013), S. lycopersicon L., S. melongena L.
This species is very similar to L. rimavallis, but both COI Barcoding data and constant morphological differences in genitalia separate the two species.
Kenya, Mt Elgon, 01°07'06"N, 34°41'30"E, February 1952, T. H. E. Jackson leg.
Type-specimen. Holotype ♂ [red-circled label] “Holo- | type”, “Mt Elgon | Kenya | Feb. 1952 | T.H.E. Jackson”, “Pres. by | Coryndon Mus. | B.M. 1961-696.”, B.M. Pyralidae Genitalia slide No. 23119 (BMNH). – Additional material.RWANDA. 1♂ Gisenyi (Kisenyi), 30.iv.1957, leg. M. Fontaine, prep. RM698 (RMCA); BURUNDI. 2♂ Kitega, 30.iv.1968 & 31.v.1969, leg. M. Fontaine, preps RM702 & RM703 (RMCA); KENYA. 1♂ Central Province, Castle Forest Lodge (S slope of Mt Kenya), 2050m, 0°21'15"S 35°18'12"E, 20.xi.2009, prep. DJLA1337 (coll. DJLA); 1♂ Central Province, Gatamayu Forest, 0°58.45'S 36°41.83'E, 21.vii.2001, leg. R.S. Copeland, DNA voucher SMTD Lep1593, prep. RM667 (RMCA); 1♂ Central Province, Gatamayu Forest, 0°58.45'S 36°41.83'E, 2284m, 17.viii.2002, leg. R. Copeland, prep. RM684 (RMCA); 1♀ Coast Province, Buda Forest, 4°27.79'S 39°24.20'E, 25.iv.2002, ex fruits Withania somnifera, leg. R.S. Copeland, DNA voucher MTD Lep1592, prep. RM666 (RMCA); 1♀ Fort-Hall [Murang’a], 1330 m, i.1912, leg. Alluaud & Jeannel, prep. RM742 (MNHN); 1♀ Taveta, 750 m, iii.1912, leg. Alluaud & Jeannel, prep. RM744 (MNHN); 1♀ Rurunga, 1550 m, i.1912, leg. Alluaud & Jeannel, prep. RM745 (MNHN); 1♂ Western Province, Kericho, 2050m, 0°21'15"S 35°18'12"E, 31.viii.1999, prep. DJLA1317 (coll. DJLA); 1♂ Mt. Elgon, ii.1952, leg. T.H.E. Jackson, BMNH Pyralidae slide No. 23119 (BMNH); 1♀ Mt. Elgon, i.1959, leg. T.H.E. Jackson, BMNH Pyralidae slide No. 23129 (BMNH); DR CONGO. 1♂ Ituri, Nioka, 5.ix.1953, leg. J. Hecq, prep. RM692 (RMCA); 1♂ Lubumbashi (Elisabethville), 13.x.1938, leg. Ch. Seydel, prep. RM695 (RMCA); 1♂ N. Kivu Lake, Rwankwi, iv.1948, leg. J. V. Leroy, prep. RM700 (RMCA); SOUTH AFRICA. 1♀ Natal, prep. RM735 (MNHN); THE NETHERLANDS (IMPORT). 1♂ Barendrecht, import Uganda, 26.ii.2014, leg. Sluijs, on Solanum melongena, prep. RM756 (NPPO); 1♂ Rijnsburg, import Uganda, 12.ii.2014, leg. J. de Zeeuw, on S. melongena, prep. RM757 (NPPO).
Frons is moderately bulged; in wing pattern this species is indistinguishable from L. orbonalis, L. africensis, L. pseudorbonalis, L. kenyensis and “Leucinodes spp.”, but distinguished from L. malawiensis by the absence of the forewing basal transversal streak and the presence of the apical half moon-shaped patch, and from L. laisalis, L. ethiopica and L. ugandensis by the predominantly white forewing ground colour. In male genitalia it is distinguished by: the long ventrad fibula (as in L. africensis, short and triangular in L. malawiensis, broad and stout in L. laisalis); the granulate, hook-shaped distal sacculus process (similar in L. africensis, process smooth in L. kenyensis); the apically thin, subulate juxta (as in L. africensis, broad subulate in L. orbonalis); the prominent oval saw blade-shaped sclerotization of the posterior phallus apodeme (as in L. africensis); distinguished from L. africensis by the shorter, straight to slightly curved fibula with a broader base, the shorter, always hook-shaped distal sacculus process, and the rounded valva apex (pointed in L. africensis). Female genitalia have slender apophyses anteriores (as in L. orbonalis), the central antrum tube with a short, strongly sclerotized section (long strip in L. africensis and L. pseudorbonalis), and the anteriolateral edges of sternite 8 with triangular processes extending into the lateral antrum pockets (as in L. kenyensis).
Head. As for the genus, with frons moderately bulged.
Thorax. As for the genus, with dorsal side brown, tegula scales whitish-brown.
Wings. Forewing length ♂ 8.5–12.0 mm, ♀ 7.0–14.0 mm; wing pattern as in L. orbonalis.
Abdomen. First segment whitish, remainder light to dark brown.
Male genitalia. As in L. africensis, but with the fibula short, more triangular and robust, straight or slightly curved; distal sacculus process short and always bent apically; valva apex rounded or stout.
Female genitalia. As for the genus, apart from: anterior antrum with short sclerotized section, central posterior antrum with diffuse weak sclerotization; sternite 8 on each side with anteriad triangular process extending into the lateral antrum pockets.
From latin rima for ‘rift’ and vallis for ‘valley’, referring to the African Rift Valley, the main distributional area of this species (as far as known).
Burundi, Eastern and Southern Democratic Republic of the Congo, Kenya, Rwanda, South Africa, Uganda (import).
Solanaceae: Solanum melongena L., Withania somnifera (L.) Dunal.
Angola, Huambo Province, Luimbale, Mt Moco, 1800-1900 m, 12°28'S, 15°10'S, 18 March 1934, K. Jordan leg.
Type-specimen. Holotype ♂ [red-circled label] “Holo- | type”, “Mt. Moco, | Luimbale, | 1800 - 1900m., | 18 March 1934.”, “Angola | (Dr K. Jordan)”, “Rothschild | Bequest | 1939-1.”, BM Pyralidae slide 23135 (BMNH). – Additional material.SENEGAL. 1♂ Dakar, 01.viii.1952, leg. A. Villiers (BMNH); UGANDA. 1♂ Masindi, 29.xii.1897, leg. Ansorge, BMNH Pyralidae slide No. 23125 (BMNH); 1♂ Labonga, Unyoro, 13.xii.1897, leg. Ansorge, BMBH Pyralidae slide No. 23126 (BMNH); 1♂ Nabagulo Forest, 15 m from Kampala, 25.x.–06.xi.1921, leg. W. Feather, BMNH Pyralidae slide No. 23145 (BMNH); 1♂, Ruwenzori Range, Ibanda, 4,700ft, 4.–12.ix.1952, leg. D.S. Fletcher, BMNH Pyralidae slide No. 23146 (BMNH); 1♂ Masindi, 30.x.1897, leg. Ansorge, prep. RM707 (BMNH); 2♂ Kampala, 1897, leg. Dr. Ansorge, BMNH Pyralidae slide No. 23149, prep. RM705 (BMNH); 1♀ same data, prep. RM706 (BMNH); THE NETHERLANDS (IMPORT): 1♀ Barendrecht, import Uganda, 26.ii.2014, leg. Sluijs, on Solanum melongena, prep. RM758 (NPPO); GREAT BRITAIN (IMPORT). see Suppl. material
Frons is moderately to strongly bulged; Wing pattern indistinguishable from those of L. orbonalis, L. africensis, L. rimavallis, L. kenyensis and “Leucinodes spp.”, but distinguished from L. malawiensis by the absence of the forewing basal transversal streak and the presence of the apical half moon-shaped patch, and from L. laisalis, L. ethiopica and L. ugandensis by the predominantly white forewing ground colour. In male genitalia the prominent dorsad fibula and the fibula-like sacculus process are roughly of same size and run parallel or cross each other (as in L. orbonalis, fibula and fibula-like sacculus process very small in L. ugandensis). Very similar to male genitalia of L. orbonalis, but valva tips slimmer and more acute, juxta with larger hemicircular base, elongated saccus tip and more prominent oval sclerite at posterior phallus apodeme. In female genitalia discriminated by the globular, posteriorly somewhat constricted antrum with a longitudinal, sclerotized exocuticular strip bearing transversal ridges (as in L. africensis).
Head. As for the genus, with frons moderately to strongly bulged.
Thorax. As for the genus, with dorsal side whitish.
Wings. Forewing length ♂ 7.0–8.5 mm, ♀9.0–11.0 mm; wing pattern as in L. orbonalis.
Abdomen. First segment whitish, remainder orange-brown.
Male genitalia. As for the genus, apart from: juxta oval to rectangular; valvae roughly rhombic; sacculus process claw-shaped, extending dorsad, parallel to or crossing with fibula; fibula slightly curved, spine-like, extending dorsad; posteriodorsal phallus apodeme with a small oval or semicircular sclerite, posterioventral apodeme with simple rodlike process.
Female genitalia. As for the genus, apart from: anterior antrum shortly coiled in coronal plane, with the exoculticle exhibiting a longitudinal sclerotized strip bearing transverse ridges (Fig.
Larva. Only one specimen available, examined live. Black spots present on dorsal pinacula; in the final instar, MSD1 and MSD2 on a shared pinaculum on both meso- and metathorax; crochets mesally triordinal.
Composition of greek pseud(o) ‘false’ and orbonalis, meaning ‘false orbonalis’, referring to the similarities in external and male genital characters with L. orbonalis.
Angola, Senegal, Uganda.
Solanaceae: Solanum aethiopicum L., S. melongena L.
We found this species among material from Senegal, Uganda and Angola, leaving a considerable distribution gap in Central Africa.
Recently, several interceptions of larvae in solanaceous fruits imported from Uganda have been recorded in England (own observation) and the Netherlands (Marja van der Straten, pers. comm.). L. pseudorbonalis is one of the three African Leucinodes species intercepted at European ports of entry.
Kenya, Eastern Province, Marsabit District, Marsabit National Park Forest, 1158 m, 2°13.996'N, 37°55.676'E, 29 December 2003, R. S. Copeland leg.
Type-specimens. Holotype 1♂ “Kenya: Marsabit National | Park Forest. 1158 m. | 2°13.996'N 37°55.676'E. | 29 Dec 2003, A&M Coll. #2636 | R.S. Copeland; ICIPE/USDA”, “Reared from fruit: | Withania somnifera”, DNA Barcode “USNM ENT 007/19337”, “1133 | Nuss prep. no.”, coll. NMK. Paratypes 1♂, 1♀, same data, DNA Barcodes USNM ENT 719338, 719339, Nuss prep. no. 1135 (1♀ NMK, 1♂ SMTD); 1♀ Kenya, Laikipia Plateau, Mpala Research Centre, 0.293°N 36.899°E, 1650 m, 21.–24.vi.2005, leg. S.E. Miller, DNA Barcode USNM ENT 719976, Nuss prep. no. 1134 (USNM). – Additional material. ZIMBABWE. 1♂ Mashonaland, leg. H. B. Dobbie, prep. RM694 (BMNH).
Frons less strongly bulged than in L. orbonalis. Wing pattern indistinguishable from those of L. orbonalis, L. africensis, L. rimavallis, L. pseudorbonalis and Leucinodes spp., but distinguished from L. malawiensis by the absence of the forewing basal transversal streak and the presence of the apical half moon-shaped patch, and from L. laisalis, L. ethiopica and L. ugandensis by the predominantly white forewing ground colour. Distinguished in male genitalia from all other Leucinodes species except “Leucinodes spp.” (see below) by the prominent distal sacculus process arching anteriodorsally above the shorter, conical fibula. Distinguished from Leucinodes spp. by the more or less bulged subapical portion of costa (straight in Leucinodes spp.) and the weakly sclerotized basal section of the sacculus process (between sacculus and distal hook-shaped process) which is as wide as base of hook-shaped process (strongly sclerotized and narrower than base of hook-shaped process in Leucinodes spp.). Female genitalia resemble those of L. rimavallis in having an anteriad triangular process on each side of sternite 8 extending into the lateral antrum pockets, but the exocuticle of the anterior antrum forms a sclerotized tube (short sclerotized section in L. rimavallis).
Head. As for the genus, with frons slightly bulged.
Thorax. As for the genus, with dorsal side brown.
Wings. Forewing length ♂ 9.0 mm, ♀ 9.0 mm; wing pattern as in L. orbonalis.
Abdomen. First segment whitish, remainder light to dark brown.
Male genitalia. As for the genus, apart from: saccus bent posteriodorsad (not an artifact of embedding); juxta oval to rectangular; valvae roughly triangular; costa subapically more or less bulged; ventral valva apex flipped over, covered with small tubercles; ventral valva edge smoothly rounded at sacculus; base of sacculus process broad, weakly sclerotized, leading over to a large, strongly sclerotized hook which encompasses the fibula dorsally; fibula conical, slightly curved, its base somewhat constricted, projecting dorsad; phallus similar to L. orbonalis, posteriodorsal apodeme with short dentate sclerite (sometimes indistinct), vesica with area of minute teeth.
Female genitalia. As for the genus, apart from: anterior antrum with tubular sclerotized exocuticle; sclerotized wall at antero-ventral edge of the ostium bursae which at rest closes the ostium bursae against abdominal segment 8. This wall is not melanized and can be stained with chlorazol black. It is delimited dorso-laterally by sclerotized and melanized lobes arising from the anterior edge of segment 8 just ventral of the apophyses anteriores. Anterior to the sclerotized wall there is a small, melanized colliculum.
The species is named after Kenya, the only country from where it is confidently recorded so far.
So far only known from Kenya. The record from Zimbabwe needs confirmation by investigation of female specimens and molecular analysis.
Solanaceae: Withania somnifera (L.) Dunal.
There are further male specimens with indistinctive wing pattern and very similar genitalia, but DNA Barcode data suggest that among them are at least two further species. For more information, see under Leucinodes spp.
Malawi, Central Region, Lilongwe District, Ntchisi Forest Reserve, 1560 m, 13°18.99972'S, 34°02.99934'E, 18 February 2004, L. Aarvik leg.
Type-specimen. Holotype ♂ “MALAWI Central | Region, Lilongwe District: | Ntchisi Forest Reserve | 1560 m 18. ii. 2004 | leg. L. Aarvik”, DNA voucher SMTD Lep1617, prep. RM683 (NHMO).
Distinguished from the other Leucinodes species by the dark, straight-framed forewing base and the absence of the subapical mark of the forewing termen. The male genitalia are similar to those of Leucinodes ethiopica and L. ugandensis, but are distinct in the long spinoid process of the posterior phallus apodeme.
Head. As for the genus, with frons flat.
Thorax. As for the genus, with dorsal side brown.
Wings. Forewing length ♂ 8.5 mm; forewing base dark brown, its outer margin a straight diagonal line from the costa to the maculation of the central hind margin, a triangular patch leading lateroposteriad from the costa with the costal half reddish-brown and the central tip white; outer median area with a faint brownish transverse streak; subterminal line indistinct except subapical thickening; apex white; hindwing antemedial line indistinct; dark discal spot; postmedial line clear at costal margin, fading out posteriad; anterior distal area with a faint brownish transverse streak; terminal wing veins dark-spotted.
Abdomen. Pale ochreous, first abdominal segment white, terminal segments brown.
Male genitalia. As for the genus, apart from: saccus elongated, U-shaped; juxta short, oval, twice as broad as long; valvae slender, tapering towards the dorsad bent apex; fibula small, triangular, oriented ventrad; sacculus process absent; phallus with a spinoid posteriad sclerotization emerging from the ventroposterior apodeme.
Female genitalia. Unknown.
Latinized malawiensis from the country Malawi where the holotype originates.
Malawi.
Unknown.
Leucinodes malawiensis resembles species of the Neotropical genus Neoleucinodes Capps, 1948: It shares the prominent diagonal line in the forewing base with Neoleucinodes dissolvens (Dyar, 1914), but lacks the long, sabre-like cornutus in the phallus. The absence of the half moon-shaped pattern at the anterior half of the forewing’s outer margin is also found in Proleucinodes Capps, 1948. In the COI Barcode Neighbor Joining tree L. malawiensis clusters with Neoleucinodes, but is weakly supported with 50% Bootstrap support.
Megaphysa laisalis
= Daraba idmonealis
= Hyamia subterminalis
= Daraba plenisignata
= Leucinodes translucidalis
South Africa, Cape of Good Hope
Type-specimen. Holotype, sex unknown, [round white label with green border] “Type”; [round pale white label] [front] “C. G. | Hope”, [back] “44 | 6”; [rectangular blue label] “Megaphysa | laisalis Wlk | Type” (BMNH). – Additional material.MOROCCO. 1♂ Oued Cherrat, 17.ix.1952, leg. Ch. Rungs, prep. RM 734 (MNHN); SENEGAL. 1♂ Dakar, viii.1952, leg. A. Villiers, prep. RM736 (MNHN); CÔTE D’IVOIRE. 1♂ Bouaké, Inepa, 29.–30.xii.1983, leg. Stam, prep. RM688 (RMCA); NIGERIA. 1 ex. Oyo, Ibadan, International Institute of Tropical Agriculture, 7.501N 3.906E, 240m, 19.vi.2006, leg. G.M. Miller & T.M. Kuklenski, DNA Barcode USNM ENT 676643 (USNM); KENYA. 1♂ Nairobi, Kiambu (Kyambu), 6000 ft, x.1916, leg. H. L. Andrewes, BMNH Pyralidae slide No. 23136 (BMNH); 1♂ 1♀ Kitui (Katoteni), 30.viii.2005, ex larva on Solanum incanum, adult 30.ix.2005, leg. Muli & Okuku, preps RM301 & RM308 (SMTD); 10ex. Laikipia County, Laikipia Plateau, Mpala Research Centre, 0.293N 36.899E, 1650m, 13.ii.1999 (1ex.), 20.iv.1999 (4ex.), 17.vii.1999 (3ex.), 23.xii.1999 (1ex.), 06.xii.2002 (1ex.), leg. S.E. Miller & T.M. Kuklenski (5ex.), S.E. Miller & R. O’Meara (4ex.), S.E. Miller (1ex.), DNA Barcodes USNM ENT 196697–196706 (USNM); 1ex. Matthews Range, 1.24N 37.29E, 1506m, 17.i.2004, leg. R.S. Copeland, DNA Barcode USNM ENT 719748 (USNM); TANZANIA. 1♀ Morogoro, Sokoine University Garden, 06°50'S 037°38'E, 05.vii.2009, leg. J. & W. De Prins, prep. RM668 (RMCA); 1♂ Morogoro Distr. & Town, 550–600 m, 14.xi.1992, leg. L. Aarvik, prep. RM686 (coll. Aarvik); SOUTH AFRICA. 1♂ Mpumalanga, Barberton, northern edge of town, suburban garden- and bushland, 610 m, 15./16.i.2007, leg. T. Karisch, DNA Barcode BC MTD 01819, prep. RM504 (coll. Karisch); SPAIN. 1♂ Cadiz, 3 km NW Tarifa, 5 m, 25.ix.1987, leg. P. Skou, prep. RM380 (ZMUC); GREAT BRITAIN (IMPORT). see Suppl. material
Distinguished from most other members of Leucinodes by the orange-brown to greyish forewing colour. Distinguished from L. ethiopica by the generally darker forewing colour with less amount of white. Differs from both L. ethiopica and L. ugandensis in: male genitalia with large, oval sacculus; broad, strongly sclerotized ventrad fibula; saccus well elongated; phallus coecum keeled, posteriodorsal apodeme with slim, fingerlike, well sclerotized process; female genitalia with antrum broad, its anterior end coiled, with exocuticle diffusely sclerotized.
Head. Frons slightly bulged; labial palps upturned, greyish to brown, first meron on ventral side with forward-directed tuft, third meron in males half as long as second meron, considerably longer in females; maxillary palps minute; haustellum well developed; eyes large, hemispherical; ocelli present; antennae ciliate, cilia considerably longer in males; vertex with creamy white scales; chaetosemata absent.
Thorax. Dorsal side brown with greyish and dark brown scales mixed in; ventral side grey to whitish; legs predominantly whitish or grey, epiphysis present; tibial spurs 0, 2, 4 with outer spur 2/3 the length of inner spur.
Wings. Forewing length 7.0–11.5 mm, the females being somewhat larger; both sexes with one frenular bristle; forewing ground colour orange- to grey-brown, with the general Sceliodes wing pattern.
Abdomen. First segment whitish, remainder light-brown; older specimens often with darkened abdomen due to degeneration of abdominal fat body.
Male genitalia. As for the genus, apart from: vinculum saccus conspicuously elongated anteriad; juxta usually with small notch at median base; valvae emerging in narrow angle from vinculum; phallus with keeled coecum, posteriodorsal apodeme with slim, fingerlike, slightly curved and well sclerotized process, vesica with a short line of tiny cornuti.
Female genitalia. As for the genus, apart from: antrum long, tubular, anterior end coiled; apophysis pairs straight, apophyses anteriores with somewhat broader muscle attachment area at posterior quarter.
In Africa known from Côte d’Ivoire, Ghana, Kenya, Morocco, Nigeria, Senegal, South Africa, Tanzania (own observations). Externally, L. laisalis is similar to L. ugandensis (see below), therefore literature records from other African countries than those listed here need verification. In Europe recorded from Spain, Portugal (
Solanaceae: Solanum incanum L. (Kenya, leg. Muli & Okuku 2005), S. anguivi Lam. (“S. sodomaeum L.,”), S. macrocarpon L., S. melongena L., S. linnaeanum Hepper & P.-M. Jaeger, S. lycopersicon L. and Capsicum annuum L. (
Larva. Generally very similar to L. orbonalis and L. africensis. On the metathorax the MSD setae are usually on separate pinacula, while the mesothoracic MSD setae are usually on the same pinaculum. The abdominal D1 pinacula are often smaller than those of L. orbonalis and L. africensis, and lack dark spots or unpigmented areas (see
We found a significant DNA Barcode difference of 2.4–2.8% uncorrected-p distance between the single South African specimen and the Kenyan and Ghanan/Nigerian Barcode clusters (Fig.
The record of L. laisalis from Belgium by
Despite repeated search in the collection of the ZMHB, original material of Leucinodes translucidalis Gaede, 1917 from Tanzania, Tendaguru, could not be traced. According to the original description, this taxon can be regarded as conspecific with L. laisalis due to all details given in the original description. Especially the white triangle at the anterior line, another white triangle, though often somewhat inconspicuous, at the middle of costa, and the dark brown area below apex support the conspecifity with L. laisalis.
Ethiopia, Dire Dawa Region, Dire Dawa District, Dire Dawa, December 1934, H. Ulenhuth leg.
Type-specimens. Holotype ♂ [red-circled label] “Holo- | type”, “Dire Daoua, | Abyssinia, | December 1934. | (H. Uhlenhuth).”; 19 paratypes: 11♂ 8♀ same data as holotype, including one with BM Pyralidae | slide 23138♂ (BMNH). – Additional material.ERITREA. Asmara, 20.x.1905. leg. N. Beccari (without abdomen), 1♀ same data except 28.i.1905 (BMNH); ETHIOPIA. 34 ex. same data as holotype except ii.1935, 4 ex. ditto except iv.1935, 7 ex. ditto except v.1935 including BM Pyralidae| slide 23139♀, 1 ditto except ix.1935, 2 ex. labelled Durleti [= Daleti] (BMNH); SAUDI ARABIA. 2♀ Taif (BMNH).
This species’ forewing colour has more ochreous than the whitish species of Leucinodes but less orange-brown to greyish than in L. laisalis and L. ugandensis. From L. ugandensis and L. laisalis it can be distinguished by the genitalia: in the male genitalia the transtilla arms each bear a dorsad spine; in the female genitalia the ductus bursae lacks the fine granular sclerotization, the antrum is strongly sclerotized, tubular and widest at its anterior end, and the oval ostial sclerites in the lateral antrum pockets are larger.
Head. Head and appendages pale ochreous.
Thorax. Pale ochreous.
Wings. Forewing length 6.0–8.0 mm. Forewing mixed ochreous and white, an oblique dark ochreous fascia from above dorsum reaching halfway across wing, a blackish crescent before ochreous subterminal line, black dots along termen. Hindwing white, a small black discal spot, a faint irregular dark subterminal line, ochreous suffusion in outer part of wing in middle and towards apex.
Abdomen. Pale ochreous, first abdominal segment white.
Male genitalia. As for the genus, apart from: transtilla with short central notch, each transtilla arm with a dorsad spine; vinculum saccus with rounded tip; juxta oval to rectangular, apex with a short central notch; apex of valvae dorsally curved; small, spine-like dorsad fibula emerging from the central inner side of valva; sacculus with a fibula-like spiny dorsad process emerging ventrodistally of the fibula; posteriodorsal phallus apodeme with semicircular dentate sclerite.
Female genitalia. As for the genus, apart from: ductus bursae with fine longitudinal ripples; antrum tubular, with broader anterior end; apophyses anteriores at posterior half laterally broadened for muscle attachment.
Latinized ethiopica from the country Ethiopia where the holotype originates.
Eritrea, Ethiopia, Saudi Arabia.
Unknown.
No COI Barcode sequences were obtained for this species.
Uganda, Eastern Uganda Region, Serere District, Okulongo, 8 December 1958, W. R. Ingram leg.
Type-specimens. Holotype ♂ [red-circled label] “Holo- | type”, “[transversally written] 1608 | “SERERE | Okulongo | 8 Dec. 1958 | W.R.Ingram | ex Solanum sp.”, “Pres. by | Com Inst Ent | BM1959 – 499”, “C.I.E. No. 16499”, with cocoon under specimen. 2 paratypes: 1♂ same data as holotype and “Pyralidae | Brit Mus | Slide No. | 14696”. 1♀ same data as holotype except 9 Dec. 1958 (BMNH). – Additional material.ETHIOPIA. 2♂ Diredaua, n.w. of Harar, 1914, leg. G. Kristensen, 1♀ Dire Dawa, Abyssinia, i.1935, leg. H. Uhlenkuth (BMNH); SOUTH SUDAN. 1♀ Tambura, Southern Bahr-al-Ghasal (BMNH); SOMALIA. 4♂ 1♀ Mogadishu, 17.–26.xi.1985, 7.vii.1986, 19–20.viii.1986 and 23.vii.1986, leg. A.G. Parker, BMNH Pyralidae slides No. 23140 & 23137 (BMNH); 1♂ Hargeison, 4300ft, v.1939, leg. M. Portal Hyatt (BMNH); KENYA. 1♀ Somaliland, Mandera, 47km SW of Hubera, 3000ft, 13.xi.1908, leg. W. Feather (BMNH).
Distinguished from the whitish species of Leucinodes and L. ethiopica by the predominantly brown forewing ground colour with minor white patches. Distinguished from L. laisalis in the male genitalia: less strongly sclerotized, valvae triangular, fibula small, tooth-like, a similarly shaped distal sacculus process present, saccus process shorter, phallus much shorter, dorsoposterior apodeme without slim, finger-like process.
Head. Head and appendages pale fuscous, labial palpus short, erect.
Thorax. Pale fuscous, metathorax blackish fuscous.
Wings. Forewing length 6.5–11.5 mm. Forewing pale fuscous, an oblique brown partial fascia at halfway with white markings on either side, an orange triangle on dorsum beyond halfway, apex deep brown, separated by a whitish line. Hindwing whitish, fuscous suffused near margin in middle and towards apex, a faint subterminal line in costal part of wing.
Abdomen. Abdomen first segment whitish, remainder orange-brown.
Male genitalia. As for the genus, apart from: small, hooked dorsad fibula emerging from the ventrocentral inner side of valva; distal sacculus with dorsad ridge forming a bulge, followed by a spiny, curved terminal process overlapping with the fibula; phallus vesica with several small spiny cornuti.
Female genitalia. As for the genus, apart from: diffusely sclerotized exocuticula reaching into posterior ductus bursae; lateral antrum pockets rather small.
Latinized ugandensis from the country Uganda where the type specimens originate.
Ethiopia, Kenya, Somalia, South Sudan, Uganda.
Solanaceae: Solanum sp.
No COI Barcode sequences were obtained for this species.
The following material contains male specimens from southern Africa with indistinctive wing pattern and very similar male genitalia to Leucinodes kenyensis. According to morphology, we could not separate these specimens from L. kenyensis. In contrast to the morphological data, two of these specimens, the single records from Namibia and Swaziland, have distinctive DNA Barcodes from L. kenyensis as well as from each other (Fig.
KENYA. 1♂ Rift Valley, Naivasha, 1900m, 0°46'56"S 36°25'23"E, 5.xii.2011, leg. D.J.L. Agassiz, prep. DJLA 1318 (coll. DJLA); ZAMBIA.1♂ Chiwefwe, ii.1950, leg. N. Mitton, BMNH Pyralidae slide No. 23133 (BMNH); NAMIBIA. 1♂ Namibia, Waterberg, 20°30'S 17°14'E, 13.iii.2010, leg. F. Koch, DNA voucher MTD Lep1872, prep. RM708 (ZMHB); SOUTH AFRICA. 1♂ Cape Province, Knysna, Wilderness, iv.1950, leg. H.B.D. Kettlewell, BM Pyralidae slide 23128 (BMNH); 1♂ Johannesburg, 21.iv.1906, leg. A.T. Cooke, BMNH Pyralidae slide No. 23144 (BMNH); 1♂ E. Cape Prov., Katberg, 4,000ft, 1.–15.i.1933, BMNH Pyralidae slide No. 23150 (BMNH); 1♂ KwaZulu-Natal, Estcourt, leg. J.M. Hutchinson, prep. RM779 (BMNH); 1♂ Eastern Cape [Pondoland], Port St. John, ix.1923, leg. R.E. Turner, prep. RM780 (BMNH); SWAZILAND. 1♂ Lebombo-Mountains, Ndzevane Area near Nsoko, Acacia-rich bushland at the foot of the Lebombo Mountains, 23.–24.i.2007, leg. T. Karisch, DNA Barcode BC MTD 01818, prep. RM502 (coll. MTD).
Leucinodes cordalis (Doubleday, 1843). Type locality: New Zealand.
= Daraba extensalis Walker, 1866 (synonymised by
= Eretria obsistalis Snellen, 1880 (synonymised by
= Sceliodes mucidalis Guenée, 1854 (synonymised by
Syntype cordalis ♂ [circular white label with light blue border] “SYN- | TYPE”, [circular white label] [front] “New | Zealand”, [back] “42 | 55”, [rectangular white label] “Margarita [sic!] | cordalis Doubld. | SYNTYPE | det. D.J. Carter, 1966”, transparent capsule containing the head (BMNH).
L. cordalis is known to occur in New Zealand, Australia, and Indonesia: Sulawesi (
Madagascar, Sambirano, Tsaratanana, Haut Sambirano, Besanetrikely Valley.
This species was described in Daraba Walker, 1859, a genus that has previously been synonymised with Sceliodes Guenée, 1854 by
Indonesia, Dutch New Guinea [West Papua], Arfak Mountains, 4000 ft
Holotype ♂ [circular label with red border] “Type”, [rectangular whitish label, handwritten, first two words underlined] “Sceliodes | grisealis | Kenrick. | TYPE.”, [rectangular white label, handwritten] “SCELIODES | grisealis”, [rectangular greyish label] “Arfak Mountains, | North New Guinea. | 4,000ft. Feb.-Mar., 1909. | C.B.Pratt.”, [rectangular white label] “Kenrick Coll. | Brit.Mus. | 1928–34.” (BMNH). Female unknown.
Due to the synonymisation of Sceliodes, this species is provisionally transferred to Leucinodes, as no proper generic placement has been found. Compared to Leucinodes, several differences can be found in wing pattern of grisealis Kenrick, 1912: In the fore wing, the postmedian line is originating in the apex, and its median protrusion is closely approaching the termen; the half moon-shaped patch below apex is protruding beyond M3; in the hind wing, the postmedian line is originating closer to the apex and is running closer to the termen.
Analyta Lederer, 1863. Type species: Analyta albicillalis Lederer, 1863.
= Hyperanalyta Strand, 1918, syn. rev. Type species: Analyta pseudoapicalis Strand, 1918.
Analyta apicalis (Hampson, 1896), comb. n. (Leucinodes). Type locality: India, Dharamsala. Sri Lanka.
= Analyta (Hyperanalyta) pseudoapicalis Strand, 1918 (synonymised by
Types: Holotype albicillalis [circular white label with red border] “Type”, [beige label with brown border and triangular edges] “Amboina | Doll.”, [rectangular white label] “Felder | Collection.”, [rectangular white label] “Rothschild | Bequest | B.M.1939-1.”, [rectangular beige handwritten label] “Amboina | Dol.”, [rectangular beige handwritten label] “Analyta | albicillalis m”, [rectangular brown label with central white area, roundly bordered by dark brown and yellow] “albicillalis Led.” (BMNH); Holotype apicalis ♂ [circular label with red border] “Type”, [rectangular white label] “4-94”, [rectangular white label] “Ceylon | 95-119”, [rectangular white handwritten label] “Leucinodes | apicalis | type ♂ Hmpsn.”, transparent capsule with abdomen (BMNH); Holotype pseudoapicalis ♂ [red rectangular label] “Holotypus”, [white rectangular label] “Anping | Formosa | H. Sauter VI.1911.”, [rectangular white label] “Analyta | pseudoapi | calis m.| Strand det. ♂” (SDEI).
Hyperanalyta Strand, 1918, with type species Analyta pseudoapicalis Strand, 1918 was established as a subgenus of Analyta Lederer, 1863. Later, Analyta pseudoapicalis was synonymised with Leucinodes apicalis Hampson, 1896 by
Type species: Asopia unicoloralis Guenée, 1854.
Cameroon, Buea.
Holotype ♂ [small blue label] “Gr. Kamerunberg | Buea 1.–10. XI. 10 | 1000–1200 m | E. Hintz S. G.”, [large blue handwritten label with black border] “Leucinodes | aureomarginalis | 83:8a Type Gaede” (ZMHB).
Lygropia is a polyphyletic genus containing 62 species (
Syllepte Hübner, 1823. Type species: Syllepte incomptalis Hübner, 1823.
Syllepte hemichionalis (Mabille, 1900), comb. rev. (Sylepta [sic]). Type locality: Madagascar, baie d’Antongil
= Syllepte hemichionalis idalis Viette, 1958, comb. rev. (Syllepta [sic]). Type locality: Comoros, Mohéli.
Syllepte vagans (Tutt, 1890), comb. n. (Aphytoceros). Type locality: Great Britain, Chepstow.
= Aphytoceros longipalpis Warren, 1892 (synonymised by
Types: Holotype hemichionalis ♂ [red label] “TYPE”, [pale green label] “MUSEUM PARIS | MADAGASCAR | BAIE D’ANTONGIL | A. MOCQUERYS 1898”, [whitish handwritten label] “Sylepta | hemichionalis Mab. | Ann.Soc.Ent.Fr. | 1899 p. 745.”, [whitish handwritten label] “Sylepta | hemichionalis | Mab.” (MNHN); Holotype subsp. idalis ♂ [red label] “TYPE”, [white label] “COMORES | MOHÉLI XI–1955 | A. ROBINSON”, [white handwritten label] “[underlined] Sylepta ♂ | [underlined] hemichionalis | [underlined] idalis n. subsp. | Holotype [underlined] P.Viette” (MNHN); Holotype syn. longipalpis ♀ [circular label with red border] “Type”, [white label] “Transvaal | 91–21” (BMNH). The whereabouts of the type specimen of vagans Tutt, 1890 are not known.
Syllepte hemichionalis and S. vagans are similar to each other in wing pattern elements, the presence of two frenular bristles in the female hindwings and features of male genitalia (see Suppl. material
Type species: Deanolis sublimbalis Snellen, 1899
Indonesia, Yogyakarta
Holotype ♂ [circular label with red circle] “Holo- | type”, [white label] “südl. M.-Java | Djokjakarta | H.Overbeck”, [white label] “M600”, [white label] “Sceliodes | iriocapna Meyr. | det. E. Meyrick.”, [white label] “Sceliodes | iriocapna | 1/1 | Meyrick | E.Meyrick det. | in Meyrick Coll.”, [white label] “Meyrick Coll. | B.M. 1938-290.” (BMNH).
The wing pattern of iriocapna Meyrick, 1938 exhibits none of the features found in Leucinodes. Instead, the fore wings are pale yellow, with a yellowish costa, a dark spot in both outer edges of the cell, and a reddish undulating margin along the termen. The hind wings are of the same pale yellow ground colour, and the anterior half of the termen exhibits a similar margin as found in the fore wings. This wing pattern is common to the genus Deanolis Snellen, 1899, where this species is correctly placed (pers. comm. James E. Hayden).
1 | Transtilla arms each with a dorsad spine | Leucinodes ethiopica sp. n. |
1* | Genitalia without these structures | 2 |
2 | Sacculus without distal process; posterior phallus apodeme with finger-like process | 3 |
2* | Distal process of sacculus present; posterior phallus apodeme without finger-like process | 4 |
3 | Fibula broad, strongly sclerotized, emerging just ventral of costa; sacculus more than half the length of valva; saccus very elongated, tip pointed; dorsal posterior phallus apodeme with slim, finger-like, well sclerotized process | L. laisalis (Walker, 1859), comb. n. |
3* | Fibula small, strongly sclerotized, emerging near ventral valva edge; sacculus less than half the length of valva; saccus elongated, tip not pointed; ventral posterior phallus apodeme with slim, posterioventrally protruding, well sclerotized process | L. malawiensis sp. n. |
4 | Distal sacculus process projecting towards valva apex, straight or apically hooked, sometimes branching, apex dentate; juxta subulate; posterior phallus apodeme with oval saw blade-shaped sclerotization | 5 |
4* | Distal sacculus process tooth- or hook-like; juxta much broader; posterior phallus apodeme without oval saw blade-shaped sclerotization | 6 |
5 | Valva apex rounded; ventrad fibula stout, with broad base, straight or slightly curved; distal sacculus process hook-shaped, not branching, spanning ≤ half the distance fibula base–valva apex | L. rimavallis sp. n. |
5* | Valva apex pointed; ventrad fibula slender, with narrower base, curved; distal sacculus process straight or hook-shaped, sometimes branching, spanning > half the distance fibula base–valva apex | L. africensis sp. n. |
6 | Dorsad fibula conical and smaller than distal sacculus process, which is large, hook-like and arching above fibula | L. kenyensis sp. n. |
6* | Dorsad fibula and fibula-like sacculus process being roughly of same shape and size and running parallel or crossing each other | 7 |
7 | Fibula and fibula-like sacculus process large, spanning almost the entire valva transversally; ventral valva edge not straight but with arch dorsal of fibula and fibula-like process; posterior phallus apodeme ventrally with oval sclerite | L. pseudorbonalis sp. n. |
7* | Fibula and fibula-like sacculus process small, barely reaching the valva centre; ventral valva edge more or less straight; posterior phallus apodeme without oval sclerite | L. ugandensis sp. n. |
The Neighbor Joining (NJ) analysis based on uncorrected p-distances (Fig.
Leucinodes laisalis clusters in two Barcode groups: One group containing all specimens imported with fruits from Kenya, Ghana and Nigeria, and a second group comprising a single South African specimen. This single specimen shows high uncorr-p distances of 2.4–2.8% to the other L. laisalis specimens.
L. orbonalis clusters in two groups, separated by 1.1–1.8% uncorr-p distance. Within-subcluster distances are 0–0.5% for the smaller and 0–0.9% for the larger of the two subclusters.
A polytomous cluster comprising L. rimavallis, L. kenyensis and two undescribed ‘Barcode species’ (Leucinodes spp.) are sister to (L. africensis + L. pseudorbonalis).
Barcode sharing among different Leucinodes morphospecies is not observed.
The investigation of the Leucinodes species from sub-Saharan Africa reveals a new picture on the taxonomy of the Solanaceae fruit feeders. Instead of one widely distributed species in Asia and Africa, there is an endemic species complex in Africa and L. orbonalis is restricted to Asia, corroborating the statement by
Food plant data are only available for L. africensis, L. laisalis, L. pseudorbonalis, L. rimavallis and L. kenyensis (Table
Uncorrected p-distances for the DNA-barcoded species of Leucinodes. Values in bold denote intraspecific distances, plain values represent interspecific distances.
orbonalis | africensis | rimavallis | pseudorbonalis | kenyensis | malawiensis | laisalis | |
---|---|---|---|---|---|---|---|
orbonalis (n=31) | 0–1.8% | ||||||
africensis (n=29) | 5.5–7.2% | 0–1.5% | |||||
rimavallis (n=2) | 4.2–5.7% | 3.8–5.7% | 0.4% | ||||
pseudorbonalis (n=1) | 6.4–7.0% | 5.4–6.2% | 3.3–5.2% | n.a. | |||
kenyensis (n=4) | 5.3–6.0% | 5.4–6.2% | 2.2–2.4% | 5.2% | 0% | ||
malawiensis (n=1) | 9.6–10.7% | 11.4–12.1% | 10.0–10.8% | 11.7% | 11.2% | n.a. | |
laisalis (n=22) | 7.3–8.7% | 9.4–10.8% | 7.8–8.9% | 9.9–10.4% | 9.4–9.8% | 9.3–9.9% | 0–2.8% |
Food plant records of African Leucinodes species. Cultivated plants are given in bold.
L. africensis | L. kenyensis | L. laisalis | L. pseudorbonalis | L. rimavallis | |
---|---|---|---|---|---|
Capsicum annuum | x | ||||
Solanum anguivi | x | ||||
Solanum aethiopicum | x | x | |||
Solanum incanum | x | ||||
Solanum linnaeanum | x | ||||
Solanum lycopersicon | x | x | |||
Solanum macrocarpon | x | ||||
Solanum melongena | x | x | x | x | |
Withania somnifera | x | x |
After movement of larvae with fruits in African trade, they may be more frequently intercepted by trade with those fruits into other continents. Most imports of Leucinodes specimens from Africa into Europe refer to Leucinodes africensis, which has been frequently imported with fruits during the last 50 years. In contrast, L. laisalis has been much less frequently recorded, and L. pseudorbonalis as well as L. rimavallis only very recently in fruit imports from Uganda. Since our investigations show that L. orbonalis does not occur in Africa, interceptions of Leucinodes from Africa into other continents will need to be re-investigated for their species identity and will likely require, at least in parts, revisions of the quarantine regulations. Furthermore, if Leucinodes species are transported in trade, it has to be considered that species of Leucinodes and related South American genera, e.g. Euleucinodes Capps, 1948, Neoleucinodes and Proleucinodes, might also become introduced from one to another of the southern continents.
Analysis of the COI gene of the Leucinodes species demonstrated that interspecific differences allow the use of the marker as a DNA barcode for species identification. However, for L. kenyensis and “Leucinodes spp.”, we found little morphological differences but two distinct barcode species within Leucinodes spp. Moreover, we observed high intraspecific divergence in Leucinodes laisalis with one specimen from South Africa exhibiting a COI distance of 2.8%.
Outside Africa, the taxonomy and phylogeny of Leucinodes requires further research. The characteristic forewing pattern elements of the Old World Leucinodes is also found in the New World genera Euleucinodes, Neoleucinodes and Proleucinodes, all described by
For Austral-Asia, there remain twelve nominal Leucinodes species (
Our work contributes to the identification of African Leucinodes species, based on adult characters and on DNA Barcodes, by which also the immature stages can be efficiently distinguished. This may help to systematically survey the continent for distribution of species, in order to discover their wild host plants and their movements in trade. At this stage of knowledge it wouldn’t be a surprise to discover additional, still unknown species. The results of our completely revised taxonomy of African Leucinodes suggests that a revision of the EPPO A1 List of pests recommended for regulation as quarantine pests (
A careful revision of Leucinodes in sub-Saharan Africa resulted in the new synonymy of the genus Sceliodes syn. n., the revised synonymy of Hyperanalyta with Analyta, the transfer of four species to Leucinodes, the description of seven new Leucinodes species, the new synonymy of one species, the omission of the type species L. orbonalis from the African list and the generic transfer of five species found to be misplaced in Leucinodes. Of the eight species recognized from Africa now, at least four are frequently intercepted among imports of solanaceous fruits at European ports of entry. We provide the DNA Barcode for these four and two additional African Leucinodes species, allowing the identification of all life stages of these species.
Our work shows that typological concepts of taxonomy based on superficial similarity were still the state of the art in the genus Leucinodes. The discovery of a complex of highly similar species demonstrates that traditional morphological methods and DNA Barcoding are helpful tools to detect species diversity and to improve their classification based on sound arguments.
Similar revisionary work remains to be done for Austral-Asian Leucinodes. A phylogenetic study including Leucinodes and the New World Euleucinodes, Neoleucinodes and Proleucinodes is needed in order to test the monophyly of these genera (Hayden and Mally, in prep.).
For the loan of material and communication to the material deposited at their institutions or private collections, we thank Leif Aarvik (NHMO Oslo, Norway), Robert Copeland (ICIPE Nairobi, Kenya), Jurate De Prins (formerly at RMCA Tervuren, Belgium), James Hogan and Molly Carter (Oxford Museum, Great Britain), Timm Karisch (Dessau, Germany), Christian Kutzscher (SDEI Müncheberg, Germany), Scott Miller (USNM Washington, D.C., USA), Joël Minet, Patrice Leraut and Jerome Barbut (MNHN Paris, France), Wolfram Mey and Konrad Ebert (ZMHB Berlin, Germany), Marja van der Straten (NPPO Wageningen, the Netherlands) as well as Kevin Tuck, Thomas Simonsen and the NHM staff (BMNH London, Great Britain). We thank Martin Corley (Faringdon, Great Britain), Christopher Grinter (Denver Museum of Natural History, Denver, USA), Ole Karsholt (ZMUC Copenhagen, Denmark) for their support with literature. James E. Hayden (Florida State Collection of Arthropods, Gainesville, USA) informed us on the correct generic placement of iriocapna Meyrick, 1938. Manuela Bartel (SMTD Dresden, Germany) accomplished a part of the molecular work in the DNA lab of the SMTD. Francesca Vegliante (SMTD Dresden, Germany) gave manuscript advice on the immature stages. Heiko Stuckas gave advice on the molecular analysis of Barcode data.
Field work in Kenya by MN was greatly supported by Fritz Schulthess, Benjamin Muli and Gerphas Okuku (ICIPE Nairobi, Kenya). Research by MN in Angola was made possible by a collaboration with Christoph Neinhuis and Thea Lautenschläger (Technische Universität Dresden, Germany) as well as by the Universidade Kimpa Vita, Uíge, Angola, supported by a Grant of the German Academic Exchange Service (DAAD).
Thea Lautenschläger (Technische Universität Dresden, Germany) and Gerard van der Weerden (Radboud University Nijmegen, the Netherlands) identified the Angolan host plants of L. africensis.
This study was supported by a SYNTHESYS grant for the visit of RM at the BMNH London. Fera acknowledges the support of Defra Plant Health Policy. Material reared at Fera was under the authority of Plant Health Licence number 33173/220099-2 and its predecessors.
Overview of specimens intercepted in Great Britain by the Food and Environment Research Agency (Fera).
Data type: sample list.
Overview of barcoded specimens.
Data type: sample list.