Anagrus dmitrievi sp. n. (Hymenoptera, Mymaridae), an egg parasitoid of Zyginidia eremita (Hemiptera, Cicadellidae), a pest of maize in Xinjiang, China
expand article infoQin Li, Hongying Hu, Serguei V. Triapitsyn§, Long Yi, Jiaxiong Lu
‡ Xinjiang University, Urumqi, China
§ University of California, Riverside, United States of America
Open Access


A new Palaearctic species of Anagrus Haliday (Hymenoptera, Mymaridae), A. (Anagrus) dmitrievi Triapitsyn & Hu, sp. n., is described, diagnosed, and illustrated from Xinjiang Uyghur Autonomous Region of China. It was reared from parasitized eggs of the leafhopper Zyginidia (Zyginidia) eremita Zachvatkin (Hemiptera, Cicadellidae) on leaves of maize. A key to the 21 named species of Anagrus known from China is provided. Zyginidia eremita is an important economic pest in Xinjiang, occurring in approximately 90% of maize fields. The phenology and life cycle of Z. eremita is summarized. Parasitism of its eggs by A. dmitrievi in maize fields was 12–75 % (average about 38 %), thus making it a rather effective natural enemy.


China, corn three-spotted leafhopper, egg parasitoid, maize, Mymaridae, taxonomy


The Palaearctic leafhopper Zyginidia eremita Zachvatkin (Hemiptera, Cicadellidae, Typhlocybinae), sometimes commonly called the corn three-spotted leafhopper (Yu et al. 1995), is widely distributed in Xinjiang Uyghur Autonomous Region of China. It can cause significant damage to the cultivated crops such as corn, wheat, etc. (Poaceae). The species is also known from Serbia, Ukraine, the European part of Russia, Georgia, Azerbaijan, Uzbekistan, and Kazakhstan (Dmitriev 2017). In Xinjiang, this leafhopper is an important economic pest of maize (Yu et al. 2001; Zhang et al. 2013; Qu et al. 2016). It was previously reported there as Zygina salina Mitjaev (Yu et al. 1995; Qu et al. 2000; Yu et al. 2001; Yi et al. 2013; Zhang et al. 2013; Qu et al. 2016), a synonym of Z. eremita. Like some other leafhoppers, Z. eremita was reported to be able to transmit unidentified plant viruses that cause unnamed diseases which leave spots or scorches on the leaves. It can also cause maize plants to under-produce or even kill them (Yu et al. 2001).

An unidentified species of Anagrus Haliday (Hymenoptera, Mymaridae) was collected, with numerous individuals of Z. eremita, by sweeping in maize fields in Jimsar and Mulei counties of Xinjiang (Yi et al. 2013). However, even though Yi et al. (2013) reported a positive correlation between this species [as Anagrus sp(p). and A. breviphragma Soyka] and Z. eremita [as Zygina salina], a definite host-parasitoid association between them was not established until the fourth author first reared this Anagrus sp. (Fig. 4B, C) from parasitized eggs of Z. eremita on maize leaves in 2012. Specimens of the parasitoid were then sent to the third author, who determined it as belonging to an undescribed species. Here we describe and illustrate it. A scientific name for this egg parasitoid is needed for forthcoming publications on its biological traits as well as integrated control measures against it, which may include enhancement of natural control. The presented information may also be useful for integrated pest management research in other countries of Eurasia where Z. eremita occurs in the fields of economically important poaceous crops.

Materials and methods

Taxonomic study on the egg parasitoid

Selected specimens of both sexes of the egg parasitoid were dissected and slide-mounted in Canada balsam, examined under a Zeiss Axioskop 2 plus compound microscope, and photographed using the Auto-Montage system; the photographs were then retouched where necessary using Adobe Photoshop.

Terms used for morphological features are those of Gibson (1997). All measurements were taken from slide-mounted specimens, unless stated otherwise, and are given in micrometers (µm) as length or, for the wings, as length:width. Abbreviations used are:

F funicle segment of the female antenna or flagellomere of the male antenna;

mps multiporous plate sensillum or sensilla on the antennal flagellar segments (= longitudinal sensillum or sensilla or sensory ridge(s)).

The following collection acronyms are used:

CNC Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada;

ICXU Insect Collection of College of Life Science and Technology, Xinjiang University, Urumqi (Ürümqi), Xinjiang, China;

INHS Illinois Natural History Survey, Champaign, Illinois, USA;

UCRC Entomology Research Museum, University of California, Riverside, California, USA.

Collecting leafhoppers and their egg parasitoids

Leafhoppers had been initially collected by sweeping in the maize fields in Anningqu (Urumqi), Turpan, Ili, Jimsar, Qitai, and Mulei in Xinjiang from April to September each year during 2010–2012; all the specimens were taken to the laboratory for rearing and identification. Several maize fields that had abundant Z. eremita populations were then chosen for the further two-year survey, mainly in Anningqu (43.9507°N, 87.4713°E, 582 m), relatively close to Xinjiang University in Urumqi so convenient for collecting both the leafhopper host and its egg parasitoids. Additional rearing of the egg parasitoids and collections of the host leafhoppers were conducted by the fifth author during 2013 corn growing season.

Field samples were taken every 15 days mainly in maize fields and occasionally also in wheat fields. Occurrence, population density, oviposition, and overlaps among the generations of Z. eremita were recorded, and damage to the crops by this pest was assessed. From June to September 2012, field samples were collected by sweeping with a net (200 mesh size) every five days; each time we swept for 45 minutes. Adult leafhoppers were collected by aspirator into ventilated containers supplied with maize leaves. An experimental group comprised 12–16 adult leafhoppers of the same morphospecies per container; these were then transported to the laboratory. We also searched in the field for Z. eremita eggs imbedded in maize leaves, either by a naked eye or using a portable magnifying glass; once found, the entire maize leaves with the leafhopper eggs were cut and placed into mesh bags.

Both the adult leafhoppers and nymphs were counted for statistical analysis. Maize leaves containing leafhopper eggs were divided into groups, each counted and marked under a microscope, placed in glass Petri dishes (95 mm diameter) or in glass vials (200 mm length, 40 mm diameter). The containers were kept at a suitable humidity by putting a cotton ball dipped in with pure water, and sealed by gauze in order to provide air. Then the vials were placed in an incubator with constant temperatures of either 26 °C or 30 °C and relative humidity of 35 %.

Parasitoids emerging from the parasitized leafhopper eggs were preserved in 75 % ethanol and kept in a refrigerator at +4°C until used for identification. Voucher specimens from this study (both of leafhoppers and their egg parasitoids) are deposited mainly in ICXU, while some of them were also deposited in UCRC.


Anagrus (Anagrus) dmitrievi Triapitsyn & Hu, sp. n.

Figs 1, 2, 3, 4B, C

Anagrus sp(p).: Yi et al. 2013: 331 (correlation with the host leafhopper in Xinjiang).

Anagrus breviphragma Soyka: Yi et al. 2013: 332 (misidentification).

Type material

Holotype female on slide (Fig. 1A), deposited in ICXU, labeled: 1. “CHINA: Xinjiang, Urumqi, Anningqu,, J. Lu (Lu Jiaxiong), from leafhopper egg on corn leaf”; 2. “Dry length 0.495 mm”; 3. “Mounted by V. V. Berezovskiy 2014 in Canada balsam”; 4. [red] “Anagrus (Anagrus) dmitrievi Triapitsyn & Hu HOLOTYPE ♀”; 5. “Det. by S. V. Triapitsyn 2014”. Paratypes: 2 females and 2 males on points [UCRC], and 11 females and 8 males on slides [CNC (1 and 1), ICXU (6 and 4), UCRC (4 and 3), respectively], same data as the holotype (43.9507°N, 87.4713°E, 586 m) except for different body length measurements.

Figure 1. 

Anagrus dmitrievi (female, holotype): A slide B antennae (complete antenna without mps on F4; F4 of the incomplete antenna with 1 mps) C body D mesoscutum (arrows pointing to adnotaular setae on its midlobe).

Non-type material examined

Numerous specimens of both sexes in ethanol, deposited in ICXU, reared by L. Yi (Yi Long) from eggs of Z. eremita during 2012 (Yi et al. 2013).


Anagrus dmitrievi, sp. n. is characterized by the following unique combination of features: antenna (Fig. 1B) with F1 slightly more than half of pedicel length, F2 longest of funicular segments, F3–F6 subequal in length and slightly shorter than F2, F4 usually without mps but sometimes with one mps (occasionally only on one antenna), F5 with one or two mps, F6 with two mps, and clava with five mps; midlobe of mesoscutum with a pair of adnotaular setae (Fig. 1D); fore wing (Fig. 2B) 9.0–9.1 × as long as wide and its disc with several rows of setae leaving no distinct bare areas in its broadest part; ovipositor exserted beyond apex of gaster by 0.06–0.15 × total own length and 2.1–2.4 × length of protibia, each second valvifer with three distal setae (Fig. 2A).

Figure 2. 

Anagrus dmitrievi (female, holotype): A ovipositor (arrows pointing to distal setae on one of its external plates, or second valvifers) B fore and hind wings.


Female (holotype and paratypes). Body length of dry-mounted, critical point-dried paratypes 400–627 µm (495 µm of the holotype; measurements taken prior to slide-mounting). Head light brown to brown except eyes and ocelli reddish; body mostly yellowish or light brown except anterior half or so of mesoscutum brown, frenum of scutellum white, and propodeum lemon yellow; scape, pedicel and F1 yellow, rest of flagellum brown; legs yellowish, wings hyaline. Antenna (Fig. 1B) with scape 3.5–3.6 × as long as wide, with cross-ridges, 1.7–1.8 × length of pedicel; F1 cylindrical, slightly more than half of pedicel length; F2 longest of funicular segments; F3–F6 subequal in length and slightly shorter than F2; mps on F4 (usually none but sometimes one, occasionally only on one antenna as in the holotype, Fig. 1B); F5 (one or two), and F6 (two); clava with five mps, 3.0–3.3 × as long as wide, about as long as combined length of two preceding segments. Mesosoma shorter than metasoma (Fig. 1C). Midlobe of mesoscutum with a pair of adnotaular setae (Fig. 1D). Fore wing (Fig. 2B) 9.0–9.1 × as long as wide, longest marginal seta 2.8–3.0 × maximum wing width; distal macrochaeta 2.0–2.7 × length of proximal macrochaeta; disc with several rows of setae (two such rows just beyond apex of venation, the row of setae along posterior margin originating behind apex of venation), leaving no distinct bare areas in its broadest part. Hind wing (Fig. 2B) 24–27 × as long as wide, longest marginal seta 6.0–6.5 × maximum wing width; disc mostly bare except for admarginal rows of setae. Ovipositor anteriorly not extending to mesophragma in slide-mounted specimens and posteriorly exserted beyond apex of gaster by 0.06–0.15 × total ovipositor length. Second valvifers (= external plates of ovipositor of authors) (Chiappini 1989; Chiappini et al. 1996; etc.) each with three distal setae (Fig. 2A). Ovipositor 2.1–2.4 × length of protibia (2.3 × in the holotype).

Measurements (µm) of the holotype. Body 627; head 123; mesosoma 209; gaster 307; ovipositor 277. Antenna: scape 73; pedicel 42; F1 24; F2 49; F3 45; F4 45 (48 of the other on which an mps is present); F5 45; F6 48; clava 103. Fore wing 547:61; longest marginal seta 172. Hind wing 517:21; longest marginal seta 136.

Male (paratypes). Body length of the dry-mounted, critical point-dried paratypes (including prior to slide-mounting) 462–594 µm. Similar to female except for the normal sexually dimorphic features such as antenna (Fig. 3A) and genitalia (Fig. 3C), and the following. Body somewhat darker than in female, particularly gaster light brown to brown; fore wing (Fig. 3B) 7.3–8.2 × as long as wide.

Figure 3. 

Anagrus dmitrievi (male, paratypes): A antenna B fore wing C genitalia.


The new species belongs to the incarnatus species group of the nominate subgenus of Anagrus, as defined by Chiappini et al. (1996), in whose key it runs to A. flaveolus Waterhouse (see below). In Chiappini and Lin (1998), A. dmitrievi keys in the same couplet together with A. striatus Chiappini & Lin, a completely different species whose female has one mps on F3 and a bare area on the broadest part of the fore wing disc. In Triapitsyn and Berezovskiy (2004), A. dmitrievi keys to A. nigriceps (Smits van Burgst) in which an mps is present on F3 of the female antenna (Chiappini et al. 1996) whereas it is always absent on that segment in A. dmitrievi.

When, as usually, F4 of the female antenna of A. dmitrievi lacks an mps, it is most similar to the Nearctic species A. sophiae S. Trjapitzin, which, however, has a relatively much longer ovipositor (2.7–3.8 × length of protibia) (Trjapitzin and Strong 1995). When F4 of the female antenna bears an mps (at least on one antenna), it is most similar to the New World species A. flaveolus, from which it differs in F5 being about as long as F4 and F6 and also in having the row of setae along the posterior margin and originating behind the apex of venation of the fore wing (whereas in A. flaveolus, F5 is always shorter than F4 and F6, even when an mps is present, and the row of setae along the posterior margin of the fore wing does not extend to apex of venation). Those females of A. dmitrievi that bear an mps on F4 on both antennae are also somewhat similar to females of the Palaearctic species A. brocheri Schulz, whose general body color is much darker (dark brown).

In the world key to the species of Anagrus by Triapitsyn (2015), females of A. dmitrievi key either to A. sophiae (when an mps is present on F4) or A. flaveolus (when an mps is absent on F4).

The updated key to the Chinese species of Anagrus (below) was modified from Triapitsyn (2015). The previous key (Chiappini & Lin 1998) is missing the five species, besides A. dmitrievi, described or recorded since then (A. (Anagrus) fragranticus Triapitsyn, A. (Anagrus) incarnatus Haliday [as A. (Anagrus) breviphragma Soyka], A. (Anagrus) kvas Triapitsyn & Berezovskiy, A. (Anagrus) nigriceps (Smits van Burgst), and A. (Anagrus) turpanicus Triapitsyn & Hu) (Triapitsyn 2003, 2015; Triapitsyn and Berezovskiy 2004; Hu and Triapitsyn 2016). Thus, 21 named species of Anagrus are now known from China.


The species is named after Dmitry A. Dmitriev (INHS) who kindly identified the leafhopper host of this parasitoid.


The parasitoids of the type series were definitely reared from eggs of Zyginidia eremita because we also reared this leafhopper from its unparasitized eggs during the same collecting event; these leafhoppers were later compared with the positively identified specimens.

Biology and parasitism

Leafhopper’s eggs parasitized by A. dmitrievi turn dark reddish (Fig. 4A). The optimal constant incubation temperature under laboratory conditions for immature A. dmitrievi was 25 °C, at which about 38 % of the eggs hatched. Estimated field parasitism rate of Z. eremita eggs by A. dmitrievi in Xinjiang was 12–75 % (average about 38 %), thus making it a rather effective natural enemy.

Figure 4. 

A parasitized eggs of Zyginidia eremita by Anagrus dmitrievi in a maize leaf B an adult female of A. dmitrievi right after emergence C an adult male of A. dmitrievi.

Key to females of the Chinese species of Anagrus

1 Ocelli on a stemmaticum 2
Ocelli not on a stemmaticum (subgenus A. (Anagrella) Bakkendorf) 4
2 Mesoscutum without notauli Anagrus dalhousieanus Mani & Saraswat
Mesoscutum with notauli 3
3 Frenum of scutellum with triangular paramedial plates widely separated from each other; metafemur short, less than 2 × trochanter length, trochantellus incision almost half way between coxa-trochanter and femur-tibia articulations (subgenus A. (Paranagrus) Perkins) 7
Frenum of scutellum with triangular paramedial plates very close to each other; metafemur long, more than 2 × trochanter length, trochantellus incision about one third way between coxa-trochanter and femur-tibia articulations (subgenus A. (Anagrus Haliday) [sensu sricto]) 8
4 F2 approximately 1.5 × F1 length Anagrus (Anagrella) brevis Chiappini & Lin
F2 at least 2.0 × F1 length 5
5 Fore wing disc without setae Anagrus (Anagrella) albiclava Chiappini & Lin
Fore wing disc with setae 6
6 F5 without mps; F3, F4 and F5 together at most as long as clava Anagrus (Anagrella) hirashimai Sahad
F5 with 1 mps; F3, F4 and F5 together longer than clava Anagrus (Anagrella) semiglabrus Chiappini & Lin
7 Ovipositor projecting beyond apex of gaster by approx. 1/3 of its total length; ovipositor: protibia ratio at least 3.5 Anagrus (Paranagrus) perforator (Perkins)
Ovipositor not projecting or at most slightly projecting beyond apex of gaster; ovipositor: protibia ratio at most 2.5 Anagrus (Paranagrus) optabilis (Perkins)
8 Clava with 3 mps (atomus species group) 9
Clava with 5 mps (incarnatus species group) 14
9 F3 with 1 mps 10
F3 without mps 12
10 Fore wing disc without a hairless area in the broadest part Anagrus (Anagrus) setosus Chiappini & Lin
Fore wing disc with a distinct hairless area in the broadest part 11
11 F4 with 2 mps Anagrus (Anagrus) flaviapex Chiappini & Lin
F4 with 1 mps Anagrus (Anagrus) frequens Perkins (part)
12 Fore wing disc without a hairless area in the broadest part Anagrus (Anagrus) kvas Triapitsyn & Berezovskiy
Fore wing disc with a distinct hairless area in the broadest part 13
13 Fore wing disc with hairless area occupying its whole posterior half; fore wing length: width ratio more than 10.5 Anagrus (Anagrus) frequens Perkins (part)
Fore wing disc with hairless area only in the broadest part; fore wing length: width ratio at most 10.0 Anagrus (Anagrus) atomus (Linnaeus)
14 F1 about as long as pedicel or at most slightly shorter (by less than 0.2 × pedicel length); ovipositor exserted beyond apex of gaster by about 1/3 of its total length Anagrus (Anagrus) paranagrosimilis Chiappini & Lin
F1 shorter than pedicel by more than 0.25 × pedicel length; ovipositor exserted beyond apex of gaster by less than 1/3 of its total length or not exserted 15
15 Clava about as long as combined length of three preceding funicular segments Anagrus (Anagrus) minutus Chiappini & Lin
Clava notably shorter than combined length of three preceding funicular segments 16
16 Fore wing at most 6.0 × as long as wide Anagrus (Anagrus) fragranticus Triapitsyn
Fore wing at least 7.0 × as long as wide 17
17 Fore wing disc with a more or less distinct hairless area in the broadest part 18
Fore wing disc without a hairless area in the broadest part 20
18 Mesoscutum with adnotaular setae Anagrus (Anagrus) striatus Chiappini & Lin
Mesoscutum without adnotaular setae 19
19 F2 the longest funicular segment; ovipositor at least 2.7 × length of protibia Anagrus (Anagrus) incarnatus Haliday
F2 shorter than F4, F5, or F6; ovipositor at most 2.4 × length of protibia Anagrus (Anagrus) turpanicus Triapitsyn & Hu
20 Mesoscutum without adnotaular setae Anagrus (Anagrus) nilaparvatae Pang & Wang
Mesoscutum with adnotaular setae 21
21 F3 without mps Anagrus (Anagrus) dmitrievi Triapitsyn & Hu, sp. n.
F3 with at least 1 mps Anagrus (Anagrus) nigriceps (Smits van Burgst)

Notes on the leafhopper host of Anagrus dmitrievi

Identification of the host leafhopper

The corn three-spotted leafhopper, collected on 7.viii.2012 by J. Lu (Lu Jiaxiong) and L. Yi (Yi Long) on maize plants at the same locality as the type series of A. dmitrievi, were identified by Dmitry A. Dmitriev as Zyginidia (Zyginidia) eremita (voucher specimens in INHS and additional 2 females in UCRC). This was the most abundant leafhopper species feeding on maize plants in Anningqu. Another rather common leafhopper on maize in Xinjiang was Cicadella viridis (Linnaeus) (Yi et al. 2013).

Adult Z. eremita (Fig. 5H–J) have a characteristic grayish white color; light brown markings decorate the costal margin of vertex. The pronotum is transparent, and three equal-sized oval black spots are present on the adults’ mesoscutum. The fore and hind wings are crystal white, and the abdomen has black, transverse, dorsal bands. The average length of adult Z. eremita is 2.6–2.8 mm.

Figure 5. 

Life cycle of Zyginidia eremita: A, B, egg C–G nymphs H–J adults.

Records, phenology, and life cycle of Z. eremita

Zyginidia eremita has quite frequent records in Xinjiang (Fig. 6). It occurred in almost every maize field sampled. Only 5–10 % of the maize fields had a relatively sparse population of Z. eremita. The highest population densities observed were in Jimsar, Qitai, Mulei, Changji, and Urumqi.

Figure 6. 

Records of Zyginidia eremita in Xinjiang. The large star denotes the type locality of Anagrus dmitrievi.

In Xinjiang (eastern Xinjiang: Jimsar, Qitai, Mulei, Balikun, and Hami; north-central Xinjiang: Ili, Turpan, Korla, and Urumqi (Anningqu)), Z. eremita has three generations per year and these overlap during the warm months. According to Yu et al. (1995), adult leafhoppers of this species overwinter in winter wheat or in poaceous weeds. But according to Yu et al. (2001), adults also overwinter in surrounding trees, although no details exactly where they hide were provided by these authors.

Adult leafhoppers start to emerge from their overwintering shelters in late April; in about mid-May, at least some of them apparently move to winter and spring wheat (Yu et al. 1995). The first generation of nymphs appears on wheat plants in late May. In early June, the first generation of adult leafhoppers migrates to maize fields and feeds on the seedlings. Their peak oviposition period occurs in late June.

The leafhopper species collected by J. Lu on in the wheat field in Anningqu was, however, not Z. eremita but Macrosteles (Macrosteles) alpinus (Zetterstedt) [2 females and 2 males in UCRC, determined by D. A. Dmitriev].

Females of Z. eremita prefer relatively mature leaves of maize plants for oviposition. Most eggs are laid in the leaves near the ground, very rarely in the upper leaves on a plant. Transparent oval eggs of the corn three-spotted leafhopper are usually laid into the leaf tissue near the bottom of a leaf close to the middle vein.

In early July, the second generation of nymphs hatches, and within about ten days their population density becomes very high. The second generation of adults oviposits in maize leaves in late July and early August. Peak abundance of the third generation nymphs is in mid to late August. Adult leafhoppers of the third generation gradually move in the fall to winter wheat (Yu et al. 1995) or grass (Yu et al. 2001).

Life history and phenology of Z. eremita are summarized in Table 1, and its life cycle is shown in Fig. 5.

Life history of Zyginidia eremita in Anningqu, Urumqi, Xinjiang. ●Egg ▲ Nymph ★ Adult.

Month April May June July August September October November to March
Period Early Mid Late Early Mid Late Early Mid Late Early Mid Late Early Mid Late Early Mid Late Early Mid Late Early Mid Late
1st genera-tion ★ ● ● ● ● ●
▲ ▲ ▲ ▲
★ ★ ★
2nd genera-tion ● ● ● ● ●
▲ ▲ ▲ ▲ ▲
★ ★ ★
3rd genera-tion ● ● ● ● ●
▲ ▲ ▲ ▲ ▲
★ ★ ★ ★ ★ ★ ★ ★ ★


The only other available records of egg parasitoids of Zyginidia spp. are those of Anagrus atomus (Linnaeus) from Z. (Zyginidia) pullula (Boheman) on maize in Italy (Vidano and Arzone 1988), from Z. (Zyginidia) scutellaris (Herrich-Schäffer) on maize in France (della Giustina and Caruhel 1989), and from Z. sohrab Zachvatkin on maize in Turkey (Mutlu and Sertkaya 2015), as well as of Lymaenon litoralis (Haliday) (Mymaridae) from Z. sohrab on wheat in Iran (Fallahzadeh and Huber 2011). Baquero and Jordana (1999) reported that large numbers of A. atomus, an egg parasitoid of Z. scutellaris, were captured in Navarre, Spain, where it is the most abundant leafhopper in maize fields.

The following specimens of Anagrus atomus were identified by the third author: Turkey, Diyarbakir Province, Bismil-Diyarbakir, 10.viii.2009, Ç. Mutlu, from eggs of Zyginidia sp. on maize, Zea mays [4 females and 5 males, UCRC].


We thank Dmitry A. Dmitriev (INHS) for his kind help with the leafhopper identifications and Vladimir V. Berezovskiy (UCRC) for mounting specimens. Chao Wang, Xiuli Tang and Zhulidezi Alishan (ICXU) helped in collecting and sorting efforts; Chao Wang also kindly prepared Fig. 6. This work was supported in part by the National Natural Science Foundation of China (Project numbers 31360523, 30860040) and the Natural Science Foundation of Xinjiang (2011211A004).


  • Baquero E, Jordana R (1999) Species of Anagrus Haliday, 1833 (Hymenoptera, Chalcidoidea, Mymaridae) in Navarra (Spain). Miscellània Zoològica 22(2): 39–50.
  • Chiappini E (1989) Review of the European species of the genus Anagrus Haliday (Hymenoptera Chalcidoidea). Bollettino di Zoologia agraria e di Bachicoltura Serie II 21: 85–119.
  • Chiappini E, Lin N-q (1998) Anagrus (Hymenoptera: Mymaridae) of China, with descriptions of nine new species. Annals of the Entomological Society of America 91(5): 549–571.
  • Chiappini E, Triapitsyn SV, Donev A (1996) Key to the Holarctic species of Anagrus Haliday (Hymenoptera: Mymaridae) with a review of the Nearctic and Palaearctic (other than European) species and descriptions of new taxa. Journal of Natural History 30(4): 551–595.
  • della Giustina W, Caruhel P (1989) La cicadelle du maïs dans le basin parisien. Phytoma 410: 21–26.
  • Fallahzadeh M, Huber JT (2011) The occurrence of Gonatocerus litoralis (Haliday, 1833) (Chalcidoidea: Mymaridae) in Iran, with a new host record. Munis Entomology & Zoology 6(1): 297–300.
  • Gibson GAP (1997) Chapter 2. Morphology and terminology. In: Gibson GAP, Huber JT, Woolley JB (Eds) Annotated keys to the genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Ontario, 16–44.
  • Hu H-y, Triapitsyn SV (2016) Anagrus turpanicus sp. n. (Hymenoptera: Mymaridae) from China, an egg parasitoid of Arboridia kakogowana (Hemiptera: Cicadellidae). Zootaxa 4161(4): 573–578.
  • Mutlu Ç, Sertkaya E (2015) Yumurta parazitoiti Anagrus atomus (Hymenoptera: Mymaridae)’un mısırda zararlı önemli yaprakpiresi türlerini parazitleme oranları. The parasitization rates on some harmful leafhoppers on maize of the egg parasitoid, Anagrus atomus (Hymenoptera: Mymaridae). Türkiye Biyolojik Mücadele Dergisi [Turkish Journal of Biologial Control] 6(1): 25–39. [In Turkish]
  • Qu H, Du J, Lei Y, Zhao B, Zhang J, Li Y, Wang S (2016) The spatial distribution of Zygina salina Mit in corn field. Plant Protection 42(6): 149–153. [In Chinese]
  • Qu L, Zhao Z, Ma Y, Wang S, Yu J, Ma D (2000) Investigation on the occurrence factors of Zygina salina Mit. Xinjiang Agricultural Sciences (Xinjiang Nongye Kexue), Supplement 1: 22. [In Chinese]
  • Triapitsyn SV (2003) Description of a new species of Anagrus from China related to A. takeyanus (Hymenoptera Mymaridae). Belgian Journal of Entomology 5(1/2): 117–124.
  • Triapitsyn SV (2015) Taxonomy of the genus Anagrus Haliday (Hymenoptera: Mymaridae) of the world: an annotated key to the described species, discussion of the remaining problems, and a checklist. Acta Zoológica Lilloana 59(1/2): 3–50.
  • Triapitsyn SV, Berezovskiy VV (2004) Review of the genus Anagrus Haliday, 1833 (Hymenoptera: Mymaridae) in Russia, with notes on some extralimital species. Far Eastern Entomologist 139: 1–36.
  • Trjapitzin SV, Strong DR (1995) A new Anagrus (Hymenoptera: Mymaridae), an egg parasitoid of Prokelisia spp. (Homoptera: Delphacidae). Pan-Pacific Entomologist 71(4): 199–203.
  • Vidano C, Arzone A (1988) Natural enemies of Zyginidia pullula (Rhynchota Auchenorrhyncha). In: Vidano C, Arzone A (Eds) Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, September 7–11, 1987, 581–590.
  • Yi L, Aishan Z, Li Q, Wang C, Hu H-y (2013) Resource investigation of leafhoppers and their egg parasitoids in maize field in eastern Xinjiang. Xinjiang Agricultural Sciences (Xinjiang Nongye Kexue) 50(2): 325–333. [In Chinese]
  • Yu J, Chen Y, Qu L, Chai Y, Ren L (1995) Study on the occurrence and control of corn three-spotted leafhopper. Journal of August 1st Agricultural College 18(1): 48–51. [In Chinese]
  • Yu J, Li G, Ma D, Qu L, Zhao Z (2001) The law of growth and decrease as well as prevention measures of Zygina salina Mit. Journal of Maize Sciences 9(3): 79–81. [In Chinese]
  • Zhang J, Liu X, Peng X, Cai L (2013) Research of evolution of the main diseases and insect pests in Bozhou corn and their prevention and control measures. China Plant Protection 33(8): 30–32. [In Chinese]