Research Article |
|
Corresponding author: Ying-Yong Wang ( wangyy@mail.sysu.edu.cn ) Corresponding author: Yun-Ming Mo ( moyunming@163.com ) Academic editor: Minh Duc Le
© 2025 Zhong Huang, Hao-Tian Wang, Shuo Qi, Han-Ming Song, Yong Huang, Ying-Yong Wang, Yun-Ming Mo.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Huang Z, Wang H-T, Qi S, Song H-M, Huang Y, Wang Y-Y, Mo Y-M (2025) A new species of karst-adapted gecko (Squamata, Gekkonidae, Gekko) from Guangxi, southern China. ZooKeys 1245: 289-310. https://doi.org/10.3897/zookeys.1245.153769
|
A new species of the genus Gekko Laurenti, 1768, Gekko fengshanensis sp. nov., is described based on six specimens from Fengshan County, Hechi City, Guangxi Zhuang Autonomous Region, China. It is placed into the subgenus Japonigekko based on morphological and molecular phylogenetic analyses, and distinguished from consubgeners of Japonigekko by a combination of morphological characters in body size, cephalic proportions, and pholidosis features. Molecular phylogenetic analyses using mitochondrial 16S and ND2 sequences reveal that G. fengshanensis sp. nov. forms a sister relationship with G. kwangsiensis, collectively forming a clade with G. liboensis and G. paucituberculatus endemic to southern China’s karst ecosystems. This discovery increases the number of recognized Gekko species in the South China Karst to five, underscoring the role that fragmented karst landscapes play in driving speciation and maintaining high levels of biodiversity in this unique ecosystem.
Gekko fengshanensis sp. nov., G. liboensis, Guangxi, integrative taxonomy, Japonigekko, South China Karst
The genus Gekko Laurenti, 1768, currently containing 92 known species, is a widely distributed group of nocturnal gekkonid lizards, mainly distributing in throughout plains and plateaus across temperate and tropical Asia and the western islands of Pacific Ocean (
Guangxi’s karst topography, exemplified by iconic formations such as the Leye Giant Sinkhole Cluster and the Guilin Tower Karst, forms an integral component of the South China Karst, a UNESCO World Heritage Site. This lithological mosaic has facilitated the radiation of specialized herpetofauna, with recent decades witnessing the discovery of multiple karst-obligate species including the frog Odorrana lipuensis Mo, Chen, Wu, Zhang & Zhou, 2015, the geckos Gekko kwangsiensis Yang, 2015 and G. paucituberculatus Wang, Qi, Zhou & Wang, 2024, and other saxicolous taxa. In 2024, during two field surveys in the karst forests of northwest Guangxi, six Gekko individuals were collected. Morphologically, these specimens clearly belong to subgenus Japonigekko, characterized by relatively moderate size; nares in contact with rostral; the presence of dorsal tubercle rows and precloacal pores; and lacking tubercles on ventrolateral folds. Phylogenetic analysis places them in a distinct evolutionary lineage, separate from closely related congeners within the subgenus. This suggests they represent a previously undescribed species, distinguished by both molecular and morphological differences. In light of these findings, we provide a detailed description of the new species herein.
Six specimens of Gekko fengshanensis sp. nov. were collected from Fengshan County, Hechi City, Guangxi Zhuang Autonomous Region, China in 2024 (Fig.
Localities of Gekko fengshanensis sp. nov., G. kwangsiensis, G. liboensis, and G. paucituberculatus. 1 Fengcheng Town, Fengshan County, Hechi City, Guangxi; 2 Wuming District, Nanning City, Guangxi; 3 Maolan National Nature Reserve, Libo County, Guizhou Province; 4 Tianyang District, Baise City, Guangxi. “?” indicates the unconfirmed locality of G. fengshanensis sp. nov.
Measurements were taken with digital calipers (Deli DL91200 Digital Vernier Caliper) to the nearest 0.1 mm on the right side of the body, and scalation features were counted under a binocular scope (Leica EZ4 HD). Bilateral scale counts are given as left/right. External measurements, meristic traits and their abbreviations followed
Literature and authorities for species of Japonigekko morphological characters used in this study.
| ID | Species | References |
|---|---|---|
| 1 | Gekko aaronbaueri Ngo, Thai, Phimvohan, David & Teynié, 2015 |
|
| 2 | G. adleri Nguyen, Wang, Yang, Lehmann, Le, Ziegler & Bonkowski, 2013 |
|
| 3 | G. alpinus Ma, Shi, Shen, Chang & Jiang, 2024 |
|
| 4 | G. auriverrucosus Zhou & Liu, 1982 |
|
| 5 | G. bonkowskii Luu, Calame, Nguyen, Le & Ziegler, 2015 |
|
| 6 | G. canhi Rösler, Nguyen, Van Doan, Ho, Nguyen & Ziegler, 2010 | Rösler et al. (2010) |
| 7 | G. chinensis (Gray, 1842) |
|
| 8 | G. cib Lyu, Lin, Ren, Jiang, Zhang, Qi & Wang, 2021 |
|
| 9 | G. guishanicus Lin & Yao, 2016 |
|
| 10 | G. hokouensis Pope, 1928 |
|
| 11 | G. ichangensis Cao, Sucharitakul, Tie, Suwannapoom, Yan & Chomdej, 2025 |
|
| 12 | G. japonicus (Schlegel, 1836) |
|
| 13 | G. jinjiangensis Hou, Shi, Wang, Shu, Zheng, Qi, Liu, Jiang & Xie, 2021 |
|
| 14 | G. kaiyai Zhang, Wu & Zhang, 2023 |
|
| 15 | G. khunkhamensis Sitthivong, Lo, Nguyen, Ngo, Khotpathoom, Le, Ziegler & Luu, 2021 |
|
| 16 | G. kwangsiensis Yang, 2015 |
|
| 17 | G. liboensis Zhou, Liu & Li, 1982 | This study |
| 18 | G. melli (Vogt, 1922) |
|
| 19 | G. nadenensis Luu, Nguyen, Le, Bonkowski & Ziegler, 2017 |
|
| 20 | G. palmatus Boulenger, 1907 |
|
| 21 | G. paucituberculatus Wang, Qi, Zhou & Wang, 2024 |
|
| 22 | G. scabridus Liu & Zhou, 1982 |
|
| 23 | G. scientiadventura Rösler, Ziegler, Vu, Herrmann & Böhme, 2004 | Rösler et al. (2004) |
| 24 | G. sengchanthavongi Luu, Calame, Nguyen, Le & Ziegler, 2015 |
|
| 25 | G. shibatai Toda, Sengoku, Hikida & Ota, 2008 |
|
| 26 | G. similignum Smith, 1923 |
|
| 27 | G. subpalmatus (Günther, 1864) |
|
| 28 | G. swinhonis Günther, 1864 |
|
| 29 | G. taibaiensis Song, 1985 |
|
| 30 | G. tawaensis Okada, 1956 |
|
| 31 | G. thakhekensis Luu, Calame, Nguyen, Le, Bonkowski & Ziegler, 2014 |
|
| 32 | G. truongi Phung & Ziegler, 2011 |
|
| 33 | G. vertebralis Toda, Sengoku, Hikida & Ota, 2008 |
|
| 34 | G. vietnamensis Sang, 2010 |
|
| 35 | G. wenxianensis Zhou & Wang, 2008 |
|
| 36 | G. yakuensis Matsui & Okada, 1968 |
|
The morphometric measurements were statistically analyzed using R v. 4.4.2 (R Core Team, 2024). For analyses, all measurements were ln-transformed to normalize and reduce the variance, and then scaled to remove allometric effects of body size using the following equation: Xa = Xln - β · (SVLln - SVLm), where Xa = adjusted value; Xln = ln-transformed measurements; β = unstandardized regression coefficient for each species; SVLln = ln-transformed SVL; and SVLm = overall average SVLln of each species. One-way analysis of variance (ANOVA) was conducted with statistically similar variances (p > 0.05 in the Levene’s test) and performed on a dataset coded for species to examine statistically significant mean differences (p < 0.05) among characters using the car R package. Character means showing significant differences were subjected to a Tukey HSD test to determine which pairs of species differed significantly for those specific characters. Principal component analysis (PCA) was performed to cluster the morphometrics except SVL related to each species using GroupStruct R package (
To evaluate morphological differences among species or populations, we performed a non-parametric permutation multivariate analysis of variance (PERMANOVA) from the vegan package in R (
Twelve new sequences and 51 sequences from GenBank were used for molecular analysis in this study. All newly collected tissue samples were obtained from euthanized specimens and then preserved in 95% ethanol and stored at -40 °C. Gekko gecko (Linnaeus, 1758) and G. reevesii (Gray, 1831) belonging to subgenus Japonigekko were used to root the tree based on
Localities, voucher information, and GenBank accession numbers for all samples used in this study.
| ID | Species | Locality | Voucher ID | 16S | ND2 | Reference |
|---|---|---|---|---|---|---|
| 1 | Gekko fengshanensis sp. nov. | China: Guangxi: Hechi: Fengshan |
|
PV652773 | PV657377 | This study |
| 2 | Gekko fengshanensis sp. nov. | China: Guangxi: Hechi: Fengshan |
|
PV652774 | PV657378 | This study |
| 3 | Gekko fengshanensis sp. nov. | China: Guangxi: Hechi: Fengshan |
|
PV652775 | PV657379 | This study |
| 4 | Gekko fengshanensis sp. nov. | China: Guangxi: Hechi: Fengshan |
|
PV652776 | PV657380 | This study |
| 5 | G. adleri | China: Guangxi: Jingxi |
|
MW451654 | OR902178 |
|
| 6 | G. alpinus | China: Xizang: Mangkang | CIB 121656 | PQ255976 | PQ303494 |
|
| 7 | G. auriverrucosus | China: Shanxi: Yuncheng | NNU Z 20050716.004 | — | JN019062 |
|
| 8 | G. bonkowskii | Laos: Khammouane | VFU R.2014.10 | — | KT266818 |
|
| 9 | G. chinensis | China: Hong Kong |
|
MW451644 | OR902183 |
|
| 10 | G. cib | China: Sichuan: Hejiang |
|
MW451655 | OR902165 |
|
| 11 | G. hokouensis | China: Jiangxi: Mt. Meiling |
|
MW451648 | OR902172 |
|
| 12 | G. hokouensis | China: Fujian: Mt. Wuyi |
|
MW451647 | OR902173 |
|
| 13 | G. japonicus | China: Fujian: Mt. Wuyi |
|
MW451628 | OR902176 |
|
| 14 | G. japonicus | China: Jiangxi: Lushan |
|
MW451649 | OR902177 |
|
| 15 | G. jinjiangensis | China: Yunnan: Deqin | CIB 5334220088 | — | MT449431 |
|
| 16 | G. kaiyai | China: Henan: Xinyang: Xinxian | AHUXXBH01 | OQ780318 | — |
|
| 17 | G. kaiyai | China: Henan: Xinyang: Xinxian | AHUXXBH02 | OQ780319 | — |
|
| 18 | G. khunkhamensis | Laos: Khammouane | VNUF R.2021.23 | — | OL416111 |
|
| 19 | G. kwangsiensis | China: Guangxi: Wuming |
|
MW451641 | OR902174 |
|
| 20 | G. kwangsiensis | China: Guangxi: Wuming |
|
MW451642 | OR902175 |
|
| 21 | G. liboensis | China: Guizhou: Libo: Maolan |
|
PV652777 | PV657381 | This study |
| 22 | G. liboensis | China: Guizhou: Libo: Maolan |
|
PV652778 | PV657382 | This study |
| 23 | G. melli | China: Guangdong: Dongyuan |
|
MW451661 | OR902169 |
|
| 24 | G. nadenensis | Laos: Khammouane | ZFMK 98741 | — | KY421618 |
|
| 25 | G. palmatus | China: Guangdong: Mt.Dinghu |
|
OR903156 | OR902179 |
|
| 26 | G. paucituberculatus | China: Guangxi: Baise: Tianyang |
|
OR903154 | OR902163 |
|
| 27 | G. paucituberculatus | China: Guangxi: Baise: Tianyang |
|
OR903155 | OR902164 |
|
| 28 | G. scabridus | China: Sichuan: Yanbian | CIB YN201909199 | PQ255992 | MT449429 |
|
| 29 | G. scientiadventura | Vietnam: Quang Binh | IEBR A.2014.7 | — | KP205392 |
|
| 30 | G. sengchanthavongi | Laos: Khammouane | VFU R2014.14 | — | KT266816 |
|
| 31 | G. similignum | China: Hainan: Mt. Wuzhi |
|
MW451658 | OR902185 |
|
| 32 | G. subpalmatus | China: Zhejiang: Fenghua |
|
MW451662 | OR902167 |
|
| 33 | G. swinhonis | China: Hebei: Zunhua |
|
MW451666 | OR902171 |
|
| 34 | G. thakhekensis | Laos: Khammouane: Thakhek | IEBR A.2014.6 | — | KP205396 |
|
| 35 | G. truongi | Vietnam: Khanh Hoa | IEBR A.2011.1 | — | KP205398 |
|
| 36 | G. gecko | China: Guangxi: Nanning | N/A | AY282753 | AY282753 | Zhou et al. (2006) |
| 37 | G. reevesii | China: Guangdong: Mt. Yinping |
|
MW451630 | OR902187 |
|
Genomic DNA was extracted from liver tissue using a DNA extraction kit (Tiangen Biotech Co., Ltd, Beijing). Two fragments of the mitochondrial genes that encode partial 16S ribosomal RNA gene (16S) and partial NADH dehydrogenase subunit 2 gene (ND2) were amplified. Primers used for two genes are obtained from
DNA sequences were aligned by the MUSCLE algorithm with default parameters (
The results of one-way ANOVA of morphometrics (Table
Morphometric comparisons based on the morphometric measurements of Gekko fengshanensis sp. nov. (n = 6) and G. kwangsiensis (n = 6). * p-values < 0.05, ** p-values < 0.01, *** p-values < 0.001.
| G. fengshanensis sp. nov. | G. kwangsiensis | F values | p-values | |
|---|---|---|---|---|
| SVL | 54.1–79.9 | 53.8–69.7 | 0.66876 | 0.432537 |
| 65.95 ± 9.45 | 61.92 ± 6.49 | |||
| AG | 24.7–34.2 | 23.4–32.6 | 0.366798 | 0.558249 |
| 29.78 ± 3.86 | 27.62 ± 3.28 | |||
| HL | 14.1–20.3 | 14.2–19.1 | 18.57999 | 0.001536** |
| 16.90 ± 2.37 | 16.77 ± 1.79 | |||
| HW | 11.6–16.0 | 11.2–14.4 | 1.963985 | 0.191352 |
| 14.00 ± 1.77 | 12.90 ± 1.28 | |||
| HH | 5.5–9.1 | 6.0–7.7 | 2.043348 | 0.183361 |
| 7.12 ± 1.35 | 7.03 ± 0.81 | |||
| ED | 3.8–5.7 | 3.5–4.7 | 11.42863 | 0.006995** |
| 4.73 ± 0.65 | 4.22 ± 0.49 | |||
| SNT | 6.0–8.8 | 6.3–8.4 | 8.377919 | 0.015984* |
| 7.55 ± 1.06 | 7.47 ± 0.85 | |||
| RW | 2.5–3.2 | 2.3–3.0 | 3.082883 | 0.109644 |
| 2.73 ± 0.27 | 2.76 ± 0.30 | |||
| RH | 1.1–1.6 | 1.1–1.6 | 2.014796 | 0.186184 |
| 1.37 ± 0.18 | 1.35 ± 0.16 | |||
| MW | 1.6–2.3 | 1.9–2.4 | 8.324792 | 0.016238* |
| 2.02 ± 0.29 | 2.20 ± 0.20 | |||
| ML | 1.0–1.4 | 1.3–1.7 | 27.29398 | 0.000387*** |
| 1.15 ± 0.14 | 1.43 ± 0.18 |
PERMANOVA summary statistics for the centroid placement between all species pairs from the PCA and MFA analyses. Bold fonts denote insignificant adjusted p-values.
| Species pairs | F. Model | R2 | p-value | adjusted p-value |
|---|---|---|---|---|
| PCA statistics | ||||
| G. fengshanensis sp. nov. vs kwangsiensis | 1.9464875 | 0.162933875 | 0.133037339 | 0.798224036 |
| G. fengshanensis sp. nov. vs liboensis | 0.191965061 | 0.031002284 | 0.892857143 | 1 |
| G. fengshanensis sp. nov. vs paucituberculatus | 10.68575178 | 0.640411767 | 0.035714286 | 0.214285714 |
| G. kwangsiensis vs liboensis | 1.418195136 | 0.191177923 | 0.392857143 | 1 |
| G. kwangsiensis vs paucituberculatus | 17.91796582 | 0.749142546 | 0.035714286 | 0.214285714 |
| G. liboensis vs paucituberculatus | 3.879400985 | 0.659829291 | 0.333333333 | 1 |
| MFA statistics | ||||
| G. fengshanensis sp. nov. vs kwangsiensis | 5.722068474 | 0.363951377 | 0.001939961 | 0.011639767 |
| G. fengshanensis sp. nov. vs liboensis | 14.22442629 | 0.703329038 | 0.035714286 | 0.214285714 |
| G. fengshanensis sp. nov. vs paucituberculatus | 9.340062225 | 0.608867297 | 0.035714286 | 0.214285714 |
| G. kwangsiensis vs paucituberculatus | 8.838729531 | 0.595652715 | 0.035714286 | 0.214285714 |
| G. kwangsiensis vs liboensis | 13.81080264 | 0.697134936 | 0.035714286 | 0.214285714 |
| G. liboensis vs paucituberculatus | 17.9312 | 0.899655 | 0.333333 | 1 |
The aligned dataset contained a total of 1578 nucleotide base pairs (bp), with 559 bp for 16S and 1015 bp for ND2. The BI and ML analyses resulted in essentially identical topologies (BI topology with ML bootstrap values in Fig.
Uncorrected p distances (%) of the 16S gene amongst species of Japonigekko used in this study.
| Species | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | G. fengshanensis sp. nov. | 0.00 | |||||||||||||||
| 2 | G. adleri | 15.08 | — | ||||||||||||||
| 3 | G. alpinus | 12.96 | 14.29 | — | |||||||||||||
| 4 | G. chinensis | 15.08 | 3.70 | 12.43 | — | ||||||||||||
| 5 | G. cib | 12.70 | 14.81 | 9.52 | 12.96 | — | |||||||||||
| 6 | G. hokouensis | 13.10 | 15.21 | 13.10 | 13.62 | 12.57 | 0.26 | ||||||||||
| 7 | G. japonicus | 13.49 | 15.08 | 10.85 | 14.02 | 12.70 | 12.83 | 0.00 | |||||||||
| 8 | G. kaiyai | 12.96 | 14.02 | 13.76 | 12.70 | 11.90 | 6.75 | 13.23 | 0.00 | ||||||||
| 9 | G. kwangsiensis | 8.73 | 14.81 | 12.83 | 13.36 | 12.57 | 12.17 | 13.89 | 11.38 | 0.53 | |||||||
| 10 | G. liboensis | 8.20 | 13.76 | 11.64 | 12.43 | 11.64 | 12.83 | 11.90 | 11.90 | 9.52 | 0.00 | ||||||
| 11 | G. melli | 12.17 | 12.96 | 9.26 | 12.17 | 5.29 | 12.30 | 12.70 | 11.64 | 12.83 | 10.85 | — | |||||
| 12 | G. palmatus | 16.14 | 2.65 | 13.23 | 3.44 | 14.02 | 14.15 | 14.81 | 13.23 | 14.02 | 13.76 | 12.70 | — | ||||
| 13 | G. paucituberculatus | 10.32 | 15.34 | 11.11 | 13.76 | 12.17 | 11.77 | 14.55 | 12.17 | 10.32 | 7.41 | 12.96 | 14.29 | 0.00 | |||
| 14 | G. scabridus | 12.17 | 13.49 | 5.56 | 12.70 | 10.05 | 10.98 | 10.85 | 11.90 | 13.36 | 11.64 | 10.85 | 12.70 | 10.32 | — | ||
| 15 | G. similignum | 16.40 | 3.97 | 13.23 | 1.32 | 14.29 | 13.89 | 13.76 | 12.96 | 14.68 | 12.96 | 12.96 | 3.70 | 15.08 | 12.96 | — | |
| 16 | G. subpalmatus | 14.55 | 15.08 | 10.32 | 14.02 | 6.61 | 14.15 | 14.02 | 12.43 | 12.83 | 13.76 | 6.08 | 14.29 | 15.34 | 12.43 | 14.81 | — |
| 17 | G. swinhonis | 15.61 | 16.67 | 14.02 | 15.61 | 11.64 | 14.15 | 14.29 | 13.76 | 15.74 | 13.49 | 12.17 | 16.14 | 15.34 | 14.55 | 15.87 | 13.23 |
Uncorrected p distances (%) of the ND2 gene amongst species of Japonigekko used in this study.0
| Species | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | G. fengshanensis sp. nov. | 0.00 | |||||||||||||||||||||||
| 2 | G. adleri | 21.27 | — | ||||||||||||||||||||||
| 3 | G. alpinus | 19.43 | 21.27 | — | |||||||||||||||||||||
| 4 | G. auriverrucosus | 20.04 | 24.13 | 20.86 | — | ||||||||||||||||||||
| 5 | G. bonkowskii | 19.63 | 24.54 | 19.22 | 21.88 | — | |||||||||||||||||||
| 6 | G. chinensis | 22.09 | 14.52 | 21.47 | 25.15 | 20.86 | — | ||||||||||||||||||
| 7 | G. cib | 20.86 | 23.72 | 22.29 | 19.22 | 19.22 | 23.31 | — | |||||||||||||||||
| 8 | G. hokouensis | 19.73 | 21.88 | 18.51 | 20.14 | 19.63 | 22.09 | 22.09 | 1.84 | ||||||||||||||||
| 9 | G. japonicus | 21.06 | 23.52 | 19.22 | 19.02 | 20.45 | 22.29 | 23.11 | 21.06 | 0.00 | |||||||||||||||
| 10 | G. jinjiangensis | 18.40 | 21.27 | 8.38 | 21.06 | 19.22 | 22.09 | 21.27 | 20.35 | 18.40 | — | ||||||||||||||
| 11 | G. khunkhamensis | 22.29 | 25.97 | 21.47 | 24.34 | 15.34 | 24.34 | 21.06 | 24.13 | 22.70 | 21.27 | — | |||||||||||||
| 12 | G. kwangsiensis | 16.36 | 21.06 | 21.37 | 21.68 | 21.37 | 21.47 | 18.61 | 20.86 | 22.29 | 19.33 | 21.57 | 0.41 | ||||||||||||
| 13 | G. liboensis | 15.44 | 21.98 | 20.45 | 20.35 | 19.12 | 22.80 | 20.76 | 16.97 | 21.57 | 19.84 | 21.57 | 17.28 | 0.20 | |||||||||||
| 14 | G. melli | 23.11 | 20.86 | 20.86 | 22.29 | 22.09 | 22.29 | 17.59 | 21.27 | 21.68 | 20.86 | 23.52 | 21.68 | 21.17 | — | ||||||||||
| 15 | G. nadenensis | 20.65 | 23.52 | 19.22 | 21.06 | 6.95 | 21.27 | 20.86 | 22.29 | 21.27 | 18.61 | 13.91 | 20.55 | 18.51 | 21.47 | — | |||||||||
| 16 | G. palmatus | 22.29 | 6.54 | 22.09 | 23.93 | 23.31 | 15.54 | 24.34 | 21.47 | 22.90 | 21.27 | 26.18 | 21.27 | 21.78 | 23.72 | 23.31 | — | ||||||||
| 17 | G. paucituberculatus | 14.11 | 22.09 | 17.59 | 18.61 | 18.81 | 22.70 | 19.02 | 18.92 | 19.84 | 18.20 | 21.68 | 15.54 | 15.85 | 21.27 | 18.61 | 21.27 | 0.00 | |||||||
| 18 | G. scabridus | 16.16 | 18.61 | 11.86 | 19.43 | 19.84 | 20.45 | 21.27 | 17.28 | 17.79 | 10.84 | 21.88 | 19.84 | 17.48 | 20.45 | 19.43 | 19.63 | 18.00 | — | ||||||
| 19 | G. scientiadventura | 19.63 | 24.34 | 18.81 | 21.06 | 13.70 | 22.70 | 21.47 | 21.68 | 22.09 | 18.61 | 14.72 | 20.86 | 20.14 | 22.09 | 13.91 | 23.52 | 19.02 | 17.79 | — | |||||
| 20 | G. sengchanthavongi | 20.04 | 23.93 | 20.45 | 20.65 | 13.91 | 21.68 | 21.68 | 22.90 | 21.68 | 19.84 | 15.75 | 20.86 | 19.73 | 22.49 | 12.07 | 23.72 | 19.22 | 18.81 | 10.43 | — | ||||
| 21 | G. similignum | 22.49 | 14.72 | 22.49 | 26.58 | 22.49 | 4.09 | 24.74 | 22.70 | 22.90 | 22.09 | 24.74 | 21.68 | 22.80 | 23.11 | 22.49 | 15.34 | 22.49 | 20.45 | 22.90 | 22.70 | — | |||
| 22 | G. subpalmatus | 22.49 | 23.72 | 21.27 | 20.04 | 20.86 | 22.90 | 17.38 | 20.76 | 21.68 | 21.27 | 22.70 | 22.09 | 19.73 | 15.13 | 19.43 | 25.15 | 20.45 | 20.45 | 21.68 | 21.27 | 23.93 | — | ||
| 23 | G. swinhonis | 20.86 | 22.70 | 21.47 | 18.81 | 21.68 | 22.90 | 21.27 | 19.94 | 20.86 | 21.06 | 23.52 | 19.84 | 20.14 | 20.65 | 21.68 | 22.90 | 21.47 | 20.04 | 23.11 | 21.88 | 22.29 | 20.25 | — | |
| 24 | G. thakhekensis | 19.63 | 21.68 | 19.43 | 21.06 | 7.16 | 19.63 | 20.45 | 20.96 | 20.04 | 19.63 | 15.95 | 20.35 | 18.51 | 21.06 | 6.95 | 22.70 | 17.79 | 19.02 | 13.09 | 12.88 | 20.45 | 20.45 | 23.72 | — |
| 25 | G. truongi | 23.31 | 19.84 | 20.86 | 24.54 | 22.09 | 19.84 | 21.68 | 21.98 | 22.29 | 21.06 | 22.29 | 22.19 | 21.37 | 20.86 | 22.29 | 21.47 | 20.86 | 17.79 | 22.09 | 21.88 | 20.45 | 21.47 | 23.72 | 20.45 |
In summary, when integrated with the morphological data, the phylogenetic results provide compelling evidence that the observed genetic differences of the new population represent a separate evolutionary lineage. Consequently, the data robustly support the recognition of this taxon as a new species of the subgenus Japonigekko.
Holotype. •
Gekko fengshanensis sp. nov. is assigned to the subgenus Japonigekko and distinguished from congeners by the following combination of characters: (1) moderate body size, SVL 60.0–79.9 mm in the adult male and SVL 62.2 in the adult female; (2) nares in contact with rostral, internasal absent; (3) enlarged postmentals two; (4) tubercles flattened, present from the region behind the eyes along the neck to the tail base, 8–11 rows at midbody ; (5) ventral scales between mental and cloacal slit 193–213; (6) midbody scale rows 149–161; (7) ventral scale rows 40–49; (8) subdigital lamellae on first fingers 11–13, on fourth fingers 12–16, on first toes 12–14, on fourth toes 13–15,and fingers and toes webbing weakly developed; (9) continuous precloacal pores 9–12 in males, absent in the female; (10) a single postcloacal tubercle on each side.
Adult male, moderate size, SVL 73.8 mm; head depressed (HH/HL 0.47), length longer than width (HL/HW 1.20), distinct from neck; snout rounded anteriorly, elongate (SNT/HL 0.42), larger than eye (SNT/ED 1.65); rostral regular rectangular, nearly twice as wide as high (RW/RH 1.93), and wider than the width mental (RW/MW 1.32); nares oval, bordered by rostral, first supralabial, supranasal, and two enlarged nasals posteriorly; internasals absent; preorbitals 18/19, preorbital region deeply concave; eye large (ED/HL 0.27), vertical pupil with crenulated margins; interorbital scales between anterior margins of eyes 27; ear opening elliptical, obliquely oriented, moderate in size (EOD/ED 0.33); mental pentagonal, wider than long (MW/ML 1.83); postmentals two, hexagonal and enlarged, twice as long as wide, touching mental and first infralabial on both sides and five gular scales posteriorly; supralabials 11/12; infralabials 11/10; tubercles present on the region behind the eyes, granular scales on anterodorsal region of head larger than those on posterior region.
Body slender, elongate (AG/SVL 0.46); dorsals smooth, round to oval, granular and juxtaposed; tubercles flattened, from postorbital region along the neck to tail base, nine rows at midbody, surrounded by 10 dorsal scales; ventrolateral fold present, without tubercles; ventrals distinctly larger than dorsals, smooth, imbricate, and largest in middle of belly; ventral scale rows at midbody 43; scale rows around midbody 149; ventral scales in a row between mental and cloacal slit 206; precloacal scales enlarged, but no enlarged scales on thighs; precloacal pores 12, in a continuous row across midline; postcloacal tubercle 1/1, large.
Fore- and hindlimbs well-developed; tubercles absent on dorsal surface of limbs; digits moderately dilated; II–IV fingers and toes clawed; claws depressed laterally, extending beyond terminal lamellae; webbing on fingers and toes weakly developed; subdigital lamellae undivided, manus for 12-11-13-15-12 (left) and 10-11-12-12-12 (right), pes for 13-11-14-13-11 (left) and 13-13-13-14-11 (right); relative length fingers and toes I < II < V < III < IV.
Original tail longer than body (TaL 87.3 mm, TaL/SVL 1.18); distinctly swollen at base; dorsal scales small, flat, smooth; caudal whorls distinct, 10 dorsal scale rows in the middle of the third one; subcaudals transversely enlarged.
In life, the dorsal regions of the head and body are light reddish-brown, with scattered white spots on the snout and posterior orbit. The iris is yellow-green with vermiform markings, and the pupil is dark brownish black. Seven irregularly shaped light patches are arranged along the ridge between the nape and the sacrum, with one or two rows of smaller spots parallelly arranged on each side. An intermittent light-colored vertebral line with black edges extends from the nape to the base of the tail. The anterior part of the tail exhibits a sharp contrast in color, which gradually fades and blends towards the posterior end. The ventral surface is lightly flesh-colored. In preservative, the dorsal ground color of the head, body, and limbs turns greyish black, while the ventral surface fades to greyish-white.
Measurements and scale counts of six individuals are shown in Table
Measurements (in mm), body proportions, and scalation features of the type series of Gekko fengshanensis sp. nov. See Materials and Methods section for abbreviations. “*” regenerated tail; “—” unavailable data. Bilateral scale counts are given as left/right.
| Holotype | Paratypes | |||||
|---|---|---|---|---|---|---|
| Voucher Number |
|
|
|
|
|
|
| Sex | Male | Male | Male | Male | Female | Subadult male |
| SVL | 73.8 | 60.0 | 65.7 | 79.9 | 62.2 | 54.1 |
| TaL | 87.3 | 67.1 | — | 74.3* | 75.7 | — |
| AG | 34.1 | 26.9 | 30.4 | 34.2 | 28.4 | 24.7 |
| HL | 19.2 | 15.7 | 16.5 | 20.3 | 15.6 | 14.1 |
| HW | 16.0 | 12.9 | 14.3 | 16 | 13.2 | 11.6 |
| HH | 9.1 | 6.5 | 6.6 | 8.4 | 6.6 | 5.5 |
| SNT | 8.6 | 7.1 | 7.8 | 8.8 | 7.0 | 6.0 |
| ED | 5.2 | 4.5 | 4.6 | 5.7 | 4.6 | 3.8 |
| EOD | 1.7 | 1.3 | 1.6 | 1.9 | 1.7 | 1.2 |
| RH | 1.5 | 1.3 | 1.4 | 1.6 | 1.3 | 1.1 |
| RW | 2.9 | 2.7 | 2.6 | 3.2 | 2.5 | 2.5 |
| MW | 2.2 | 2.2 | 2.1 | 2.3 | 1.7 | 1.6 |
| ML | 1.2 | 1.1 | 1.1 | 1.4 | 1.1 | 1.0 |
| TaL/SVL | 1.18 | 1.12 | — | 0.93 | 1.22 | — |
| AG/SVL | 0.46 | 0.45 | 0.46 | 0.43 | 0.46 | 0.46 |
| HL/SVL | 0.26 | 0.26 | 0.25 | 0.25 | 0.25 | 0.26 |
| HL/HW | 1.20 | 1.22 | 1.15 | 1.27 | 1.18 | 1.22 |
| HH/HL | 0.47 | 0.41 | 0.40 | 0.41 | 0.42 | 0.39 |
| SNT/HL | 0.45 | 0.45 | 0.47 | 0.43 | 0.45 | 0.43 |
| SNT/ED | 1.65 | 1.58 | 1.70 | 1.54 | 1.52 | 1.58 |
| ED/HL | 0.27 | 0.29 | 0.28 | 0.28 | 0.29 | 0.27 |
| EOD/ED | 0.33 | 0.29 | 0.35 | 0.33 | 0.37 | 0.32 |
| RW/RH | 1.93 | 2.08 | 1.86 | 2.00 | 1.92 | 2.27 |
| RW/MW | 1.32 | 1.23 | 1.24 | 1.39 | 1.47 | 1.56 |
| MW/ML | 1.83 | 2.00 | 1.91 | 1.64 | 1.55 | 1.60 |
| N | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 |
| I | 0 | 0 | 0 | 0 | 0 | 0 |
| SPL | 11/12 | 12/12 | 13/12 | 9/11 | 11/11 | 11/11 |
| IFL | 11/10 | 11/10 | 11/11 | 10/10 | 11/10 | 13/11 |
| IO | 27 | 26 | 24 | 22 | 25 | 25 |
| PO | 18/19 | 17/17 | 15/16 | 16/16 | 15/16 | 18/18 |
| PM | 2 | 2 | 2 | 2 | 2 | 2 |
| GP | 5 | 3 | 6 | 6 | 4 | 5 |
| DTR | 9 | 8 | 11 | 8 | 11 | 10 |
| GSDT | 10 | 9 | 9 | 9 | 9 | 9 |
| SMC | 206 | 197 | 205 | 213 | 198 | 193 |
| SR | 149 | 158 | 153 | 157 | 161 | 156 |
| V | 43 | 49 | 40 | 44 | 44 | 48 |
| LF1 | 12/10 | 12/12 | 13/12 | 12/13 | 12/12 | 11/11 |
| LF4 | 12/12 | 12/12 | 14/15 | 13/12 | 15/14 | 16/16 |
| LT1 | 13/13 | 12/12 | 12/13 | 14/12 | 14/14 | 13/14 |
| LT4 | 14/13 | 13/13 | 13/13 | 14/14 | 14/15 | 13/13 |
| PP | 12 | 11 | 11 | 9 | — | 12 |
| PAT | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
| S3W | 10 | 9 | 9 | 11 | 10 | 10 |
Scalation features comparisons among Gekko fengshanensis sp. nov., G. kwangsiensis, G. liboensis and G. paucituberculatus; differences are marked in bold.
| Species | G. fengshanensis sp. nov. | G. kwangsiensis | G. liboensis | G. paucituberculatus |
|---|---|---|---|---|
| n = 6 | n = 6 | n = 2 | n = 2 | |
| Max SVL (mm) | 79.9 | 69.7 | 79.7 | 85.9 |
| N | 3 | 3 | 3 | 3 |
| I | 0 | 0 or 1 | 0 | 0 |
| SPL | 9–13 | 10–13 | 11 | 11 |
| IFL | 10–13 | 11–13 | 9–11 | 9–10 |
| IO | 22–27 | 29–31 | 32–35 | 37 |
| PO | 15–19 | 18–20 | 17–18 | 14–18 |
| PM | 2 | 2 | 2 | 2 |
| GP | 3–6 | 4–6 | 4–6 | 4–6 |
| DTR | 9–11 | 9–11 | 9–10 | 4 |
| GSDT | 9–10 | 8–10 | 9–10 | 8 |
| SMC | 197–213 | 185–208 | 183–195 | 189–192 |
| SR | 149–161 | 143–156 | 131–140 | 136–142 |
| V | 40–49 | 41–45 | 38–41 | 42–44 |
| LF1 | 11–13 | 10–13 | 12–13 | 10–11 |
| LF4 | 12–16 | 12–14 | 14–17 | 12–13 |
| LT1 | 12–14 | 11–13 | 12–13 | 11 |
| LT4 | 13–15 | 14–18 | 14–15 | 11–13 |
| PP | 9–12 | 9–10 | 9 | 12 |
| PAT | 1 | 1 | 1 | 1 |
The specific epithet fengshanensis refers to Fengshan County, the type locality in Guangxi Zhuang Autonomous Region, China. The common name “Fengshan gecko” (English) and formal Chinese name “凤山壁虎” (fèng shān bì hǔ) are proposed.
The molecular analyses indicated that Gekko fengshanensis sp. nov. is sister to G. kwangsiensis, and together they form a clade with G. liboensis and G. paucituberculatus, to which it is also morphologically similar. Morphological comparisons and analyses revealed their differences (Tables
For the remaining congeners, the new species differs from the following 13 congeners by the presence of tubercles on dorsolateral trunk: the absence of tubercles in Gekko aaronbaueri, G. bonkowskii, G. cib, G. guishanicus, G. khunkhamensis, G. melli, G. nadenensis, G. scientiadventura, G. sengchanthavongi, G. subpalmatus, G. tawaensis, G. thakhekensis, and G. truongi; differs from the following 13 congeners by having 9–12 precloacal pores in males: Gekko adleri (17–21), G. alpinus (4–7), G. canhi (5), G. chinensis (17–27), G. jinjiangensis (4–5), G. palmatus (23–30), G. shibatai (0), G. similignum (17), G. taibaiensis (4–6), G. vertebralis (0), G. vietnamensis (0), G. wenxianensis (6–8) and G. yakuensis (6–8); differs from G. kaiyai by the absence of tubercles on limbs (vs present); differs from G. hokouensis by having more scale rows at midbody (149–161 vs 119–130); differs from G. auriverrucosus and G. scabridus by having fewer dorsal tubercle rows (8–11 vs 16–20 and 17–21, respectively); differs from G. ichangensis, G. japonicus and G. swinhonis by having a single postcloacal tubercles (vs 3, 2–4 and 2 or 3, respectively).
Currently, Gekko fengshanensis sp. nov. is known only from Fengshan County, Hechi City, Guangxi Zhuang Autonomous Region, China. All six individuals were discovered at night on the walls of artificial buildings located near the karst forests (Fig.
At the type locality, one milky-white, elliptical egg measuring ~1.5 cm in diameter was found in a crevice of a house (Fig.
Gekko liboensis (n = 2):
Gekko paucituberculatus (n = 2):
The GenBank accession numbers for the four specimens listed above can be found in Table
The discovery of Gekko fengshanensis sp. nov. represents a significant addition to the biodiversity of the South China Karst, bringing the total number of recognized Gekko species inhabiting this unique karst ecosystem to five. Molecular phylogenetic analyses revealed that these species (Gekko fengshanensis sp. nov., G. kwangsiensis, G. liboensis, and G. paucituberculatus), excluding G. adleri, form a monophyletic lineage, indicating their shared evolutionary origin within karst habitats. This finding strongly supports the hypothesis that the fragmented nature of karst landscapes (e.g., isolated peak clusters, depressions, and canyons) has limited or only historical gene flow among populations, driving allopatric speciation (
Gekko liboensis was originally described by
We are very grateful to Xiao-Wen Liao and Ben-Ze Huang for their help to fieldwork. We would like to express our sincere gratitude to Dr. Larry L. Grismer for conducting additional analyses on our dataset and kindly granting us permission to incorporate these results into our manuscript. Their valuable contribution has significantly enhanced the rigor and quality of this study. We also thank the editor Dr. Minh Duc Le and another reviewer Dr. Vinh Quang Luu for their insightful comments and suggestions, which greatly improved the manuscript.
The authors have declared that no competing interests exist.
No ethical statement was reported.
No use of AI was reported.
This work was supported by Wildlife Theme 2-Amphibian Reptiles of the Southwest Karst National Park (Guangxi) Comprehensive Scientific Investigation Project (LKWT-2023-095), Science and Technology Planning Projects of Guangdong Province (2021B1212110002) and Guangxi Natural Science Foundation (Grant No. 2023GXNSFDA026065).
All authors have contributed equally.
Zhong Huang https://orcid.org/0009-0001-7825-4778
Hao-Tian Wang https://orcid.org/0000-0002-2415-3234
Shuo Qi https://orcid.org/0000-0002-2924-6093
Han-Ming Song https://orcid.org/0009-0005-8244-1567
All of the data that support the findings of this study are available in the main text or Supplementary Information.
Raw morphological data used in PCA and MFA analyses
Data type: xlsx