Research Article
Print
Research Article
A new four-pored Amphisbaena Linnaeus, 1758 (Amphisbaenia, Amphisbaenidae) from the north of Espinhaço Mountain Range, Brazil
expand article infoSíria Ribeiro, Alfredo P. Santos Jr, Isabelly G. Martins, Elaine C. S. Oliveira§, Roberta Graboski|, Thiago Barbosa Da Silveira, Matheus H. M. Benício#, Wilian Vaz-Silva¤
‡ Universidade Federal do Oeste do Pará, Santarém, Brazil
§ Instituto Chico Mendes de Conservação da Biodiversidade, Coordenação Regional Oeste do Pará, Santarém, Brazil
| Tel-Aviv University, Tel-Aviv, Israel
¶ Tecsan – Tecnologia e Saneamento Ltda – Rua Dr. José Peroba, Bahia, Brazil
# Projeto Pedra de Ferro, Caetité, Brazil
¤ Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
Open Access

Abstract

A new species of Amphisbaena is described from the north of Espinhaço Mountain Range, municipality of Caetité, state of Bahia, Brazil. Amphisbaena amethysta sp. nov. can be distinguished from its congeners by the following combination of characters: (1) snout convex in profile, slightly compressed not keeled; (2) pectoral scales arranged in regular annuli; (3) four precloacal pores; (4) distinct cephalic shields; (5) 185–199 dorsal half-annuli; (6) 13–16 caudal annuli; (7) conspicuous autotomic site between 4th–6th caudal annuli; (8) 16–21 dorsal and ventral segments at midbody; (9) 3/3 supralabials; (10) 3/3 infralabials; and (11) smooth and rounded tail tip. The new species is the 71st species of genus with four precloacal pores, and the 22nd species from the Caatinga morphoclimatic domain. The identification of Amphisbaena amethysta sp. nov. indicates that the reptile fossorial fauna in the Espinhaço Mountain Range region is far from being completely known and that it may harbour a much greater diversity of endemic taxa.

Key words

Morphology, new species, phylogeny, taxonomy

Introduction

In the Caatinga 21 species of Amphisbaena have been recorded to date, with most being fully restricted to this morphoclimatic domain (Ribeiro and Eleutério 2023). Of these, four have wide distributions in Caatinga: A. alba Linnaeus, 1758, A. lumbricalis Vanzolini, 1996, A. pretrei Duméril & Bibron, 1839, and A. vermicularis Wagler, 1824, while nine have been found in a small number of localities: A. anomala (Barbour, 1914), A. arenaria Vanzolini, 1991, A. bahiana Vanzolini, 1964, A. carvalhoi Gans, 1965, A. frontalis Vanzolini, 1991, A. fuliginosa Linnaeus, 1758, A. hastata Vanzolini, 1991, A. heathi Schmidt, 1936, and A. ignatiana Vanzolini, 1991. In addition, five species are known only from the type locality: A. arda Rodrigues, 2003, A. caetitensis Almeida, Freitas, Silva, Valverde, Rodrigues, Pires & Mott, 2018, A. longinqua Teixeira Junior, Dal Vechio, Recoder, Cassimiro, Sena & Rodrigues, 2019, A. mongoyo Teixeira Junior, Dal Vechio, Recoder, Cassimiro, Sena & Rodrigues, 2019, and A. uroxena Mott, Rodrigues, Freitas & Silva, 2008 (Vanzolini 1992; Teixeira Jr et al. 2014; Costa et al. 2015; Almeida et al. 2018; Ribeiro and Eleutério 2023).

In the last two decades, six species of Amphisbaena have been identified in the high-altitude areas of the Espinhaço Mountain Range in Bahia and Minas Gerais: A. bahiana, A. longinqua, A. metallurga Costa, Resende, Teixeira Jr, Dal Vechio & Clemente, 2015, A. mongoyo, A. uroxena, and A. caetitensis (Costa et al. 2015; Almeida et al. 2018; Teixeira Junior et al. 2019). Four of which are known to be closely related phylogenetically (Teixeira Junior et al. 2019), while the position of the A. metallurga awaits analysis; and that of A. caetitensis awaits resolution of the phylogenetic relationship (Almeida et al. 2018). Such clustering points to a probable centre of endemism for this type of geological formation.

During a faunal rescue in the south of state of Bahia, Brazil, conducted as part of environmental activities carried by BAMIN (Bahia Mineração mining company), specimens of a species of Amphisbaena with four precloacal pores were collected, which could not be identified as belonging to any known amphisbaenid species. Accordingly, it was concluded that they represented a new taxon, which is described below.

Materials and methods

We analysed 48 specimens of non-identified Amphisbaena from the municipality of Caetité, state of Bahia, Brazil. The type series was deposited in the herpetological collection from Pontifícia Universidade Católica de Goiás (CEPB), municipality of Goiânia, state of Goiás, Brazil. For morphological comparisons we used data from 370 analysed specimens of Amphisbaena (see list SI1). Additional morphological data was taken from the literature. The taxonomy follows the nomenclature of Guedes et al. (2023) for species (but not including subspecies). Nomenclature for the cephalic scales and for meristic data follow Gans and Alexander (1962). Morphometric data follow the methodology of Perez et al. (2012). Head scale morphometric data were taken with digital callipers (precision 0.01 mm) on the right side of specimens. Head length was measured from the tip of the rostral shield to the anterior margin of the first dorsal half-annulus; and ventral length of head was measured from tip of rostral shield to the anterior margin of first body annulus. Snout-vent length was measured with the aid of a nylon line and subsequently measured with a millimetre rule. Counts for dorsal and ventral half-annuli were made on the right side of each specimen. Incomplete half-annuli were not included in the total count. Observations on specimen and annuli counts were made with the aid of a stereomicroscope. Infralabials, supralabials, and parietal shields variations are treated as “right/left”.

Our molecular data matrix comprises 81 terminals for six genes: three mitochondrial genes (16S– 16S Large Subunit Ribosomal RNA gene; 12S – Small Subunit Ribosomal RNA gene; and nd2 – NADH Dehydrogenase 2 gene) and three nuclear genes (c-mos – Oocyte maturation factor Mos; bdnf – Brain-derived neurotrophic factor; and rag1 – Recombinant activating gene 1). We sequenced four new DNA fragments (two for 12S and two for 16S) for two specimens of Amphisbaena amethysta sp. nov. (see Suppl. material 1: table S1). We also included sequences available in GenBank (https://www.ncbi.nlm.nih.gov) for 79 species of Amphisbaenia. We rooted our phylogenetic tree using Lacertidae (Lacerta media Lantz & Cyrén, 1920).

DNA was extracted from liver tissue using the PureLink extraction kit (Invitrogen, Massachusetts, USA), following the manufacturer’s protocol. Sequences were amplified by Polymerase Chain Reaction (PCR) using the primers 12S and 16S as described by Graboski et al. (2023) following the amplification protocols described in Kearney and Stuart (2004) and Mott and Vieites (2009). Amplified fragments were purified with shrimp alkaline phosphatase and exonuclease I (GE Healthcare, Piscataway, NJ, USA). Both strands were sequenced on an Applied Biosystems 3500 Series Genetic Analyzer (Thermo Fisher Scientific, USA) at Laboratório de Genética e Biodiversidade da Universidade Federal de Goiás, Brazil. Both strands were quality-checked and, when necessary, edited manually. Consensus for both strands was generated using Geneious Prime 2022.1.1 (https://www.geneious.com).

Sequences were aligned using MAFFT 1.3.6 (Katoh and Standley 2013) through a plugin implemented in Geneious Prime. The 16S and 12S sequences were aligned under the E-INS-I algorithm, while nd2 and nuclear genes were aligned under the G-INS-i algorithm. We used default parameters for gap opening and extension. The protein-coding gene alignments were visually checked using Geneious Prime to verify that all sequences follow the correct reading frame. All genes were concatenated using Geneious Prime.

We used PartitionFinder 2 (Lanfear et al. 2016) to identify the combined best-fitting of partitioning schemes and models of molecular evolution. Our input matrix was divided in 14 partitions (coding genes were partitioned by codon positions and each rRNA was analysed as a separate partition) and was analysed using the greedy option. We performed a run allowing the program to select (using the Akaike Information Criterion with correction: AIC) for molecular evolution models implemented on RAxML (models GTR and GTR+G). We performed a maximum likelihood (ML) analysis using RAxML 8.2.3 (Stamatakis 2014). The ML tree was estimated using the RAxML algorithm that conducts a rapid bootstrap analysis and searches for best scoring ML tree in the same run (option -f a). We ran 1000 bootstrap replicates, and the best scoring ML tree was estimated 200 times using as a starting tree each fifth bootstrap tree. We also calculate uncorrected genetic distance (p-distance) using PAUP 4.0 (Swofford 2003). We considered only bootstrap values above 70% as a strong support.

Results

Amphisbaena amethysta sp. nov.

Figs 1, 2, 3, 4

Type material

Holotype : • male; CEPB 2311; municipality of Caetité, state of Bahia, Brazil; [14°21'31"S, 42°32'19"W; 1012 m above sea level (a.s.l.)]; collected on 1 November 2022 by Faunal Rescue Team Tecsam (F. Santos, P. Belufi, and G. Nascimento). Paratypes: • All from Caetité, Bahia, Brazil; collected by Faunal Rescue Team Tecsam (R. Assunção, A. Hirota, T. Silveira, F. Santos, P. Belufi, and G. Nascimento) • Female; CEPB 2301; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 8 June 2022 • Male; CEPB 2302; (14°01'16"S, 42°31'06"W; 1082 m a.s.l.); 13 October 2021 • Female; CEPB 2303; (14°21'50"S, 42°32'20"W; 1013 m a.s.l.); 26 May 2022 • Female; CEPB 2308; (14°19'49"S, 42°32'44"W; 1011 m a.s.l.); 8 September 2022 • Female; CEPB 2327; (14°19'52"S, 42°32'42"W; 1011 m a.s.l.); 1 October 2022 • Female; CEPB 2331; (14°19'45"S, 42°32'45"W; 1011 m a.s.l.); 30 August 2022 • Male; CEPB 2346; (14°22'08"S, 42°32'17"W; 923 m a.s.l.); 6 October 2022 • Male; CEPB 2379; (14°21'27"S, 42°32'20"W; 1033 m a.s.l.); 26 January 2023 • Female; CEPB 2381; (14°21'27"S, 42°32'20"W; 1033 m a.s.l.); 26 January 2023.

Referred specimens

All from Caetité, Bahia, Brazil; collected by Faunal Rescue Team Tecsam (R. Assunção, A. Hirota, T. Silveira, F. Santos, P. Belufi, and G. Nascimento) • Female; CEPB 2298; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 8 June 2022 • Female; CEPB 2299; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 8 June 2022 • Male; CEPB 2300; (14°21'51"S, 42°32'21"W; 1011 m a.s.l.); 25 May 2022 • Female; CEPB 2304; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 8 June 2022 • Female; CEPB 2305; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 8 June 2022 • Female; CEPB 2306; (14°21'53"S, 42°32'20"W; 1013 m a.s.l.); 13 August 2022 • Male; CEPB 2307; (14°21'23"S, 43°32'07"W; 972 m a.s.l.); 23 November 2022 • Undetermined sex; CEPB 2309; (14 °19'46"S, 42°43'20"W; 1011 m a.s.l.); 1 September 2022 • Female; CEPB 2310; (14°19'55"S, 42°32'44"W; 1011 m a.s.l.); 8 October 2022 • Male; CEPB 2312; (14°19'56"S, 42°32'43"W; 1011 m a.s.l.); 12 October 2022 • Female; CEPB 2313; (14°22'08"S, 42°32'17"W; 9215 m a.s.l.); 6 October 2022 • Female; CEPB 2314; (14°22'08"S, 42°32'17"W; 925 m a.s.l.); 6 October 2022 • Female; CEPB 2315; (14°22'08"S, 42°32'17"W; 925 m a.s.l.); 6 October 2022 • Female; CEPB 2316; (14°19'47"S, 42°32'43"W; 1011 m a.s.l.); 1 September 2022 • Female; CEPB 2317; (14°19'55"S, 43°32'44"W; 1011 m a.s.l.); 1 October 2022 • Female; CEPB 2318; (14°19'46"S, 42°32'43"W; 1011 m a.s.l.); 1 September 2022 • Female; CEPB 2319; (14°20'37"S, 42°32'13"W; 1076 m a.s.l.); 3 August 2022 • Female; CEPB 2320; (14°20'38"S, 42°32'12"W; 1013 m a.s.l.); 2 June 2022 • Female; CEPB 2321; (14°19'53"S, 42°32'43"W; 1011 m a.s.l.); 29 September 2022 • Female; CEPB 2322; (14°14'28"S, 42°32'47"W; 842 m a.s.l.); 17 September 2022 • Female; CEPB 2323; (14°19'49"S, 42°32'17"W; 1062 m a.s.l.); 13 August 2022 • Male; CEPB 2324; (14°19'48"S, 42°32'43"W; 1011 m a.s.l.); 6 September 2022 • Female; CEPB 2325; (14°19'55"S, 42°32'44"W; 1011 m a.s.l.); 1 October 2022 • Male; CEPB 2326; (14°20'52"S, 43°32'16"W; 1053 m a.s.l.); 13 August 2022 • Female; CEPB 2328; (14°21'53"S, 42°32'22"W; 1011 m a.s.l.); 28 September 2022 • Male; CEPB 2329; (14°19'47"S, 42°32'43"W; 1011 m a.s.l.); 1 September 2022 • Male; CEPB 2330; (14°19'55"S, 43°32'44"W; 1011 m a.s.l.); 1 October 2022 • Male; CEPB 2332; (14°20'50"S, 42°32'16"W; 1057 m a.s.l.); 13 August 2022 • Female; CEPB 2333; (14°14'28"S, 42°32'47"W; 842 m a.s.l.); 17 September 2022 • Female; CEPB 2334; (14°19'46"S, 42°32'43"W; 1011 m a.s.l.); 1 September 2022 • Female; CEPB 2336; (14°15'11"S, 45°32'16"W; 987 m a.s.l.); 3 August 2022 • Female; CEPB 2337; (14°20'38"S, 45°32'12"W; 1076 m a.s.l.); 3 August 2022 • Female; CEPB 2338; (14°21'31"S, 45°32'16"W; 1010 m a.s.l.); 13 August 2022 • Female; CEPB 2339; (14°14'28"S, 42°32'47"W; 842 m a.s.l.); 17 September 2022 • Male; CEPB 2356; (14°21'27"S, 42°32'21"W; 1033 m a.s.l.); 1 November 2022 • Male; CEPB 2379; (14°21'27"S, 42°32'20"W; 1033 m a.s.l.); 26 January 2023 • Female; CEPB 2380; (14°21'27"S, 42°32'20"W; 1033 m a.s.l.); 26 January 2023 • Female; CEPB 2381; (14°21'27"S, 42°32'20"W; 1033 m a.s.l.); 26 January 2023.

Diagnosis and comparisons with other south American amphisbaenians

Amphisbaena amethysta sp. nov. is a medium-sized amphisbaenid (258 mm maximum snout-vent length), and can be distinguished from its congeners by the following combination of characters (see details in Table 1): (1) snout convex in profile view, slightly compressed not keeled; (2) pectoral scales arranged in regular annuli; (3) four precloacal pores; (4) distinct cephalic shields; (5) 185–199 dorsal half-annuli; (6) 13–16 caudal annuli; (7) conspicuous autotomic site between 4th–6th caudal annuli; (8) 16–21 dorsal and ventral segments at midbody; (9) 3/3 supralabials; (10) 3/3 infralabials; and (11) smooth and rounded tail tip.

Amphisbaena amethysta sp. nov. differs from Amphisbaena acrobeles (Ribeiro, Castro-Mello & Nogueira, 2009), A. bilabialata (Stimson, 1972), A. kingi (Bell, 1833), A. anomala, Mesobaena huebneri Mertens, 1925; M. rhachicephala Hoogmoed, Pinto, Rocha & Pereira, 2009; and all Leposternon species, mainly in having the snout convex in profile view, slightly compressed not keeled (vs snout hardly compressed forming a sharp and prominent keel or snout depressed shovel-like). Differs still from A. anomala and all Leposternon species by having pectoral scales arranged in regular annuli (vs pectoral scales with an irregular form, and dermal annuli not regularly arranged).

Amphisbaena amethysta sp. nov. presents four precloacal pores, differing from all Amphisbaena species except A. acangaoba Ribeiro, Gomides & Costa, 2020, A. alba, A. albocingulata Boettger, 1885, A. angustifrons Cope, 1861, A. arda, A. arenaria, A. arenicola Perez & Borges-Martins, 2019, A. bahiana, A. bakeri Stejneger, 1904, A. barbouri Gans & Alexander, 1962, A. bedai (Vanzolini, 1991), A. bolivica Mertens, 1929, A. borellii Peracca, 1897, A. brasiliana (Gray, 1865), A. caeca Cuvier, 1829, A. camura Cope, 1862, A. carlgansi Thomas & Hedges, 1998, A. carioca Rocha, Barros-Filho & Sluys, 2023, A. carvalhoi, A. caudalis Cochron, 1928, A. cayemite Thomas & Hedges, 2006, A. cegei Montero, Sáfadez, Álvarez, 1997, A. cubana Gundlach & Peters, 1879, A. cuiabana (Strüssmann & Carvalho, 2001), A. cunhai Hoogmoed & Ávila-Pires, 1991, A. darwini, A. elbakyanae Torres-Ramírez, Angarita-Sierra & Vargas-Ramírez, 2021, A. fenestrata (Cope, 1861), A. frontalis, A. gonavensis Gans & Alexander, 1962, A. gracilis Strauch, 1881, A. hastata, A. heathi, A. hogei Vanzolini, 1950, A. hoogmoedi Oliveira, Vaz-Silva, Santos-Jr, Graboski, Teixeira Jr, Dal Vechio & Ribeiro, 2018, A. hyporissor Thomas, 1965, A. innocens Weinland, 1862, A. kingi, A. kraoh (Vanzolini, 1971), A. leali Thomas & Hedges, 2006, A. lumbricalis, A. manni Barbour, 1914, A. medemi Gans & Mathers, 1977, A. metallurga, A. mongoyo, A. munoai Klappenbach, 1960, A. myersi Hoogmoed, 1989, A. nana Perez & Borges-Martins, 2019, A. nigricauda Gans, 1966, A. occidentalis Cope, 1875, A. pericensis Noble, 1921, A. plumbea Gray, 1872, A. polygrammica Werner, 1901, A. prunicolor (Cope, 1885), A. ridleyi Boulenger, 1890, A. rozei Lancini, 1963, A. sanctaeritae Vanzolini, 1994, A. saxosa (Castro-Mello, 2003), A. schmidti Gans, 1964, A. slateri Boulenger, 1907, A. slevini Schmidt, 1936, A. spurrelli Boulenger, 1915, A. steindachneri Strauch, 1881, A. supernumeraria Mott, Rodrigues & Dos Santos, 2009, A. talisiae Vanzolini, 1995, A. tyaraju, Perez & Borges-Martins, 2019, A. townsendi Stejneger, 1911, A. tragorrhectes Vanzolini, 1971, A. uroxena, A. vanzolinii Gans, 1963, A. vermicularis, and A. xera Thomas, 1966.

Amphisbaena amethysta sp. nov. differs from Amphisbaena species with four precloacal pores mainly by following combination of meristic characters (Table 1): cephalic shield distinct (vs frontals and parietals shields not distinct in A. supernumeraria, ocular and second supralabial not distinct in A. cubana); snout slightly compressed (vs hard compressed in A. kingi and rounded in all other species, except A. kraoh, A. brasiliana, A. bahiana, A. bedai, and A. saxosa); 185–199 dorsal half-annuli (vs < 170 annuli in A. cayemite and > 200 annuli in A. acangaoba, A. arda, A. arenaria, A. bahiana, A. bakeri, A. barbouri, A. bedai, A. borellii, A. brasiliana, A. caeca, A. carlgansi, A. carvalhoi, A. cayemite, A. cuiabana, A. cunhai, A. elbakyanae, A. fenestrata, A. frontalis, A. gonavensis, A. gracilis, A. hastata, A. hoogmoedi, A. kingi, A. kraoh, A. lumbricalis, A. manni, A. medemi, A. mongoyo, A. munoai, A. myersi, A. nigricauda, A. occidentalis, A. plumbea, A. polygrammica, A. rozei, A. sanctaeritae, A. saxosa, A. slevini, A. spurrelli, A. steindachneri, A. supernumeraria, A. talisiae, A. tyaraju, A. townsendi, A. uroxena, A. vanzolinii, A. vermicularis, and A. xera); 13–16 caudal annuli (vs > 16 annuli in A. albocingulata, A. arda, A. arenaria, A. arenicola, A. bedai, A. bolivica, A. borellii, A. carvalhoi, A. caudalis, A. cegei, A. cuiabana, A. cunhai, A. darwini, A. elbakyanae, A. frontalis, A. gracilis, A. hastata, A. hoogmoedi, A. leali, A. lumbricalis, A. manni, A. medemi, A. metallurga, A. mongoyo, A. munoai, A. myersi, A. nana, A. nigricauda, A. occidentalis, A. polygrammica, A. prunicolor, A. rozei, A. sanctaeritae, A. saxosa, A. schmidti, A. slateri, A. slevini, A. spurrelli, A. steindachneri, A. supernumeraria, A. talisiae, A. tyaraju, A. townsendi, A. tragorrhectes, and A. vermicularis); conspicuous autotomic site between 4th–6th caudal annuli (vs absent in A. acangaoba, A. alba, A. angustifrons, A. bakeri, A. barbouri, A. brasiliana, A. carioca, A. carlgansi, A. cayemite, A. cunhai, A. fenestrata, A. gonavensis, A. hastata, A. hoogmoedi, A. innocens, A. lumbricalis, A. occidentalis, A. ridleyi, A. saxosa, and A. uroxena; or from the 7th caudal annuli in A. albocingulata, A. arda, A. arenicola, A. carvalhoi, A. cegei, A. cuiabana, A. darwini, A. heathi, A. kingi, A. metallurga, A. mongoyo, A. myersi, A. nana, A. prunicolor, A. schmidti, A. slateri, A. steindachneri, A. supernumeraria, A. talisiae, A. tyaraju, A. townsendi, A. tragorrhectes, and A. vanzolinii), smooth and rounded tail tip [vs bluntly ridged tail tip in A. bahiana; slightly dorsally compressed in A. acangaoba; with tubercles sit is depressed (compressed dorsoventrally) in A. uroxena; with modified conic pointed tubercles in A. caetitensis; and vertically keeled in A. borellii and A. steindachneri]; 16–21 dorsal segments at midbody (vs < 16 in A. albocingulata, A. arenaria, A. arenicola, A. barbouri, A. carlgansi, A. carvalhoi, A. cayemite, A. cuiabana, A. elbakyanae, A. fenestrata, A. heathi, A. hogei, A. elbakyanae, A. metallurga, A. munoai, A. nana, A. nigricauda, A. sanctaeritae, A. schmidti, A. slateri, A. slevini, A. supernumeraria, A. talisiae, A. tyaraju, A. tragorrhectes, A. uroxena, and A. vanzolinii); and > 21 segments in A. alba, A. arda, A. bolivica, A. camura, A. hoogmoedi, and A. kraoh); 16–21 ventral segments at midbody (vs < 16 in A. rozei, A. sanctaeritae, and A. tragorrhectes; and > 21 segments in A. alba, A. arda, A. bolivica, A. camura, A. cegei, A. gonavensis, A. hyporissor, A. kraoh, A. occidentalis, and A. townsendi); 3/3 supralabials (vs 2/2 in A. slevini and A. vanzolinii; and 4/4 in A. acangaoba, A. alba, A. angustifrons, A. arda, A. arenaria, A. bedai, A. camura, A. cayemite, A. occidentalis, A. plumbea, A. ridleyi, A. saxosa, A. townsendi, A. tragorrhectes, and A. vermicularis); and 3/3 infralabials (vs 2/2 in A. slevini and A. vanzolinii; and or 4/4 in A. occidentalis, A. plumbea, A. ridleyi, A. saxosa, A. townsendi, and A. tragorrhectes).

Table 1.

Diagnostic characters for the Amphisbaena species with four precloacal pores. PC – precloacal pore, CS – cephalic shield, DA – dorsal half-annulus, CA – caudal annulus, AS – autotomic site, DS – dorsal segment, VS – ventral segment, SL – supralabial, IL – infralabial, PM – postmalar, SN – snout, DG – dorsal groove, VG – ventral groove, a – absent, cp – compressed, n/a – non-available data, p – present, rd – rounded, and sc – slightly compressed. Differences from the new species in bold.

Species PC CS DA CA AS DS VS SL IL PM SN DG VG Reference
A. amethysta sp. nov. 4 distinct and paired 185–199 13–16 4–6 16–21 16–21 3 3 a sc a a present study
A. acangaoba 4–8 distinct and paired 216–293 13–17 a 18–24 18–24 4 3 p rd a a Ribeiro et al. (2020)
A. alba 4–10 distinct and paired 198–248 13–21 a 30–42 35–46 4 3 p rd a a Gans (1962a)
A. albocingulata 4 distinct and paired 190–204 24–27 8–9 12–14 16–18 3 3 a rd a a Perez et al. (2012)
A. angustifrons 3–6 distinct and paired 190–215 12–18 a 20–31 21–30 4 3 p rd a a Gans (1965a); Gans and Diefenbach (1972)
A. arda 4 distinct and paired 242 30 8 23 23 4 3 p rd a a Rodrigues et al. (2003)
A. arenaria 4 distinct and paired 285–307 22–23 6–7 12–14 14–16 4 3 a rd a a Teixeira Junior et al. (2016)
A. arenicola 4 distinct and paired 199–216 20–22 8–9 12–14 16–18 3 3 P rd n/a n/a Perez and Borges-Martins (2019)
A. bahiana 4 distinct and paired 204–223 14–16 4–5 12–16 14–16 3 3 p sc p p Gans (1964b); Dal Vechio et al. (2018)
A. bakeri 4 distinct and paired 239–255 14–16 a 14–16 16–17 3 3 a rd n/a n/a Gans and Alexander (1962)
A. barbouri 4–6 distinct and paired 226–240 13–18 a 12–14 16–18 3 3 a rd n/a n/a Gans and Alexander (1962); Thomas (1966)
A. bedai 4 distinct and paired 272–284 22–23 6 18–20 16–18 4 3 p sc a a Oliveira et al. (2018)
A. bolivica 4–6 distinct and paired 200–231 18–26 4–5 27–36 26–36 3 3 p rd a a Montero (1996)
A. borellii 4 distinct and paired 239–245 17–19 6–8 14–16 16–20 3 3 n/a rd a a Gans (1964b) and Oliveira et al. (2018)
A. brasiliana 4 distinct and paired 213–229 11–15 a 18–21 18–22 3 3 p sc P a Oliveira et al. (2018)
A. caeca 4–6 distinct and paired 217–236 13–18 4–8 13–18 14–20 3 3 p rd n/a n/a Gans and Alexander (1962)
A. caetitensis 4 distinct and paired 186–194 10–12 a 16 19–22 3 3 a rd a a Almeida et al. (2018)
A. camura 4–6 distinct and paired 188–207 14–19 4–5 28–42 29–46 4 3 p rd a a Gans (1965a); Hoogmoed and Ávila-Pires (1991)
A. carioca 4 distinct and paired 186 21 a 10–12 n/a 3 3 p rd a a Rocha et al. (2023)
A. carlgansi 4 distinct and paired 212–228 14–16 a 14 18–20 3 3 a rd a a Thomas and Hedges (1998)
A. carvalhoi 4 distinct and paired 231–245 19–22 7–8 12–14 16–18 3 3 a rd a a Gans (1965b)
A. caudalis 4 distinct and paired 193–217 17–21 6 12–16 18–21 3 3 a rd n/a n/a Gans and Alexander (1962); Thomas and Hedges (1998)
A. cayemite 4 distinct and paired 150–164 10–13 a 12–13 18 4 3 p rd n/a n/a Thomas and Hedges (2006)
A. cegei 4 distinct and paired 198 22 7 21–22 22–23 3 3 a rd n/a n/a Montero et al. (1997)
A. cubana 4–6 ocular and second SL fused 199–218 10–16 6–9 12–16 14–18 3 3 a rd n/a n/a Gans and Alexander (1962); Thomas (1966)
A. cuiabana 4 distinct and paired 286–292 18–20 9–10 14 16 3 3 a rd p a Strüssmann and Carvalho (2001)
A. cunhai 4 distinct and paired 226–239 25–26 a 14–16 14–18 3 3 p rd a a Hoogmoed and Ávila-Pires (1991)
A. darwini 2–5 distinct and paired 174–195 19–25 7–10 13–19 16–23 3 3 n/a rd a a Perez et al. (2012)
A. elbakyanae 4 distinct and paired 245–257 20–24 6–7 13–15 16–18 3 3 p rd p a Torres-Ramírez et al. (2022)
A. fenestrata 4 distinct and paired 236–249 12–14 a 13–14 14–16 3 3 p rd n/a n/a Gans and Alexander (1962
A. frontalis 0–4 distinct and paired 235–275 23–29 5–7 14–18 14–16 3 3 a rd a a Ribeiro-Júnior et al. (2022)
A. gonavensis 4 distinct and paired 214–225 10–13 a 15–18 22–25 3 3 p rd n/a n/a Gans and Alexander (1962)
A. gracilis 4 distinct and paired 224–248 21–24 6–7 13–16 14–17 3 3 p rd p a Gonzales-Sponga and Gans (1971)
A. hastata 4 distinct and paired 266–273 40 a 18 16 3 3 a rd a p Vanzolini (1991)
A. heathi 4 distinct and paired 183–187 n/a 7–8 12 18–20 3 3 a rd a a Gans (1965b)
A. hogei 4 distinct and paired 177–191 15–19 4–7 10–13 14–18 3 3 p rd a a Gans (1966); Vanzolini (1950)
A. hoogmoedi 4 distinct and paired 247–252 27 7–8 22–24 19–21 3 3 a sc a a Oliveira et al. (2018)
A. hyporissor 4 distinct and paired 199–227 16–21 5 14–18 22–24 3 3 p rd n/a n/a Thomas (1965); Thomas and Hedges (2006)
A. innocens 4 distinct and paired 185–220 11–14 a 13–16 18–21 3 3 a rd n/a n/a Gans and Alexander (1962); Thomas and Hedges (1998)
A. kingi 4 distinct and paired 214–244 15–23 7 12–19 14–22 3 3 p cp a a Gans and Rhodes (1964); Oliveira et al. (2018)
A. kraoh 4–6 distinct and paired 270–281 15 5 28 24–27 3 3 n/a sc n/a n/a Oliveira et al. (2018)
A. leali 4 distinct and paired 188–206 17–20 6 14–16 20–22 3 3 a rd n/a n/a Thomas and Hedges (2006)
A. lumbricalis 2–6 distinct and paired 225–247 20–26 a 12–16 16–20 3 3 n/a rd a a Vanzolini (1996)
A. manni 4–9 distinct and paired 209–243 17–22 5–7 12–16 14–20 3 3 a rd n/a n/a Gans and Alexander (1962)
A. medemi 4 distinct and paired 230–235 17–18 5–7 16 18 3 3 a rd a p Gans and Mather (1977)
A. metallurga 2–4 distinct and paired 185–199 23–25 7–9 12–14 14–16 3 3 p or a rd a a Costa et al. (2019)
A. mongoyo 4 distinct and paired 208 25 10 14 16 3 3 a rd a a Teixeira Junior et al. (2019)
A. munoai 4 distinct and paired 202–218 18–23 5–9 10–14 13–18 3 3 p rd a a Perez and Borges-Martins (2019)
A. myersi 4 distinct and paired 221 28 8 16 16 3 3 n/a rd a a Hoogmoed (1989)
A. nana 4 distinct and paired 195–216 18–22 7–10 12–14 14–17 3 3 p rd n/a n/a Perez and Borges-Martins (2019)
A. nigricauda 4 distinct and paired 222–226 19–24 6–9 10 16 3 3 a rd a a Gans (1966)
A. occidentalis 4 distinct and paired 261–279 18–21 a 16–19 22–27 4 4 p rd p p Gans (1961)
A. pericensis 4 distinct and paired 198–218 16–19 6–8 12–16 16–20 3 3 a rd a a Gans (1963a)
A. plumbea 4 distinct and paired 233–282 16–21 5–9 18–27 20–30 4 4 p rd a a Gans and Diefenbach (1972)
A. polygrammica 4 distinct and paired 270 20 n/a 18 16 n/a n/a n/a n/a n/a n/a Vanzolini (2002)
A. prunicolor 4 distinct and paired 181–215 18–27 7–10 10–17 14–20 3 3 p rd a a Perez et al. (2012)
A. ridleyi 4 distinct and paired 172–192 14–17 a 16–18 20–28 4 4 p rd a a Gans (1963b)
A. rozei 4 distinct and paired 205–209 20 6 or a 15–16 14 3 3 p rd a a Vanzolini (2002); Costa et al. (2019)
A. sanctaeritae 4 distinct and paired 269–288 18–20 6–7 10 14 3 3 p rd a a Costa et al. (2019)
A. saxosa 4 distinct and paired 253–272 17–21 a 18–24 16–21 4 4 p sc a a Oliveira et al. (2018)
A. schmidti 4 distinct and paired 198–202 20–22 7–8 14 16–17 3 3 p rd a a Gans (1964a)
A. slateri 4 distinct and paired 176–213 20–24 7–10 10–14 14–16 3 3 p or a rd a a Gans (1967); Costa et al. (2018)
A. slevini 4 distinct and paired 204–211 23–25 5–6 10–14 10–12 2 2 a rd p a present study
A. spurrelli 4 distinct and paired 218–222 18–20 6–7 16–18 16–18 3 3 p rd a a Gans (1962b); Costa (2020)
A. steindachneri 4 distinct and paired 256–266 17–18 7 14–16 16 3 3 a rd p p Gans (1964b)
A. supernumeraria 4 not distinct 333–337 22–23 10–12 14 17–18 3 3 n/a rd a n/a Mott et al. (2009)
A. talisiae 4 distinct and paired 205–234 17–29 7 10–14 14–18 3 3 a rd a a Vanzolini (1995); Costa et al. (2019)
A. tyaraju 4 distinct and paired 204–221 18–25 7–9 10–14 13–16 3 3 p rd n/a n/a Perez and Borges-Martins (2019)
A. townsendi 4 distinct and paired 261–279 22–26 7–8 16–19 22–27 4 4 p rd n/a n/a Gans (1961)
A. tragorrhectes 4 distinct and paired 196 31 12 12 12 4 4 p rd a a present study
A. uroxena 0–4 distinct and paired 210–213 12–13 a 14 14–15 3 3 p rd a p Mott et al. (2008)
A. vanzolinii 4 distinct and paired 225–228 n/a 7 12–13 16–17 2 2 p rd a a Gans (1963c)
A. vermicularis 4 distinct and paired 211–254 23–34 5–7 18–26 18–25 4 3 n/a rd a a Gans and Amdur (1966)
A. xera 4 distinct and paired 225–234 13 –16 5 12–16 14–16 3 3 a rd a a Thomas (1966)

Description of the holotype

medium-sized specimen; snout-vent length 233 mm plus 0.50 mm of cloacal portion; tail length 21.24 mm, representing 9.1% of snout-vent length; midbody diameter 8.2 mm (3.5% of snout-vent length); head relatively small, 6.90 mm (~ 2.9% of snout-vent length); snout compressed in dorsal view and slightly convex in profile view, hardly keratinised, rostrum projecting forward beyond the jaw (prognathous). Anterior portion of body is slightly narrower. Rostral subtriangular, visible in dorsal and ventral view (Fig. 1), almost as high (2.21 mm) as wide (2.11 mm), in contact with nasal and first supralabial lateroposteriorly. Nasals subrectangular, aligned at the midline (1.00 mm suture) (Fig. 1A), almost as long (2.05 mm) as wide (1.99 mm), in contact with first supralabial laterally and prefrontals posteriorly, with nostrils placed near the antero-inferior angle of the nasal shield (Fig. 1B).

Figure 1. 

Amphisbaena amethysta sp. nov. (Holotype, CEPB 2311) A dorsal B lateral, and C ventral views of head. Scale bar: 3 mm.

Prefrontals paired, relatively large (41.6% of head length), with a shorter middorsal suture (2.01 mm; 29.3% of head length), longer than the nasal middorsal suture (1.00 mm, 14.6% of head length), almost as long as frontal middorsal suture (2.10 mm, 30.6% of head length), anterior border convex, lateroposterior portion projected, in contact with second supralabial and ocular laterally, frontals posteriorly and in point contact with postocular posteriorly (Fig. 1A). Frontals subtriangular, longer (suture length) than wide (1.58 mm), aligned at midline (2.10 mm), in narrow contact with the oculars, and in broad contact posterolaterally with the postocular and parietal. Parietals in two larger irregulars segments, wider (1.48 mm) than long (1.04 mm), intercalated by four very smalls segments; not aligned at the midline, in narrow contact with postoculars laterally, and followed by the first dorsal half-annulus. Occipitals absent (Fig. 1A). Oculars almost diamond-shape, almost as long (1.57 mm) as high (1.51 mm), in contact with prefrontals and second supralabial anteriorly, third supralabial and postocular posteriorly, and in point contact with postsupralabial. Eyes slightly visible. Postocular longer than wide, sub-pentagonal, in contact with frontal, labial, parietal and the segments of the first dorsal half-annulus, and in point contact with prefrontal. Temporal subrectangular, higher (1.55 mm) than long (0.92 mm), in contact with third supralabial anteriorly, postocular and postsupralabial laterally and first dorsal half-annulus posteriorly (Fig. 1B).

Three supralabials, irregularly polygonal; first subtrapezoid, longer (2.05 mm) than high (1.50 mm), in contact with second supralabial posteriorly; second supralabial sub-pentagonal, higher (1.76 mm) than long (1.59 mm maximum length), in contact with prefrontal, ocular and third supralabial; third supralabial subtrapezoid, almost as high (1.37 mm) as long (1.24 mm), in contact with ocular and postsupralabial. Postsupralabial subquadrangular, representing almost 50% of third supralabial high, in contact with temporal laterally and first half-annulus posteriorly (Fig. 1B). Mental longer (1.72 mm) than wide, anterior border wider (1.72 mm) than posterior (1.08 mm), in contact with the first pair of infralabials and postmental. Postmental longer (2.01 mm) than wide (1.65 mm), in contact with the first and second infralabial, narrowly with malar, and two anterior postgenials. Postgenials with five shields irregularly distributed, in contact with malars and first ventral half-annuli (Fig. 1C).

Three infralabials, first medium sized, irregular polygonal, almost as long (1.55 mm) as wide (1.56 mm), in contact with second supralabial; second the largest, sub-pentagonal, wider (2.36 mm) than long (1.81 mm maximum length), in contact with third infralabial; third infralabial smallest, almost as long (1.24 mm) as wide (1.37 mm) (Fig. 1C).

Body annuli well demarcated, first and second annuli without enlarged dorsal segments. Segments become regularly rectangular toward posterior portion of body and progressively longer than wide, and smaller in size, and larger towards midventral areas starting from the fifth half-annulus. One hundred ninety-four dorsal and 195 ventral half-annuli, three lateral half-annuli, 14 caudal annuli plus tip rounded; tail relatively long with autotomy line on the fifth annulus, 18/18 dorsal and ventral segments at midbody, respectively and 28 segments in fourth caudal annulus. Lateral sulci clearly visible from the forty-ninth annulus; dorsal and ventral sulci absent. Cloacal plate with six segments increasing in size from towards midline, eleven postcloacal segments; four precloacal pores strongly visible on the row of segments on the last ventral half-annulus; each pore placed on the posterior half of a single segment, and distributed along a continuous series of segments, but pores in the medial scales placed laterally (Fig. 2).

Figure 2. 

Tail of Amphisbaena amethysta sp. nov. (Holotype, CEPB 2311). Detail of the autotomic site and four precloacal pores. Scale bar: 3 mm.

Intraspecific variation

The main variations in the type series for meristic and morphometric data are given in Table 2. Variation in the arrangement and contact of shields were also observed. CEPB 2280 presents frontal fused with the parietal and segments of first and second body annuli (Fig. 3A), CEPB 2309 present four parietals shields (Fig. 3B), and CEPB 2303 present supralabials fused in left side (Fig. 3C).

Figure 3. 

Amphisbaena amethysta sp. nov. in life (not identified specimen of type series) A lateral view and B dorsal. Photograph by T.B.S.

Table 2.

Variation in meristic and morphometric (mm) data in the type series of Amphisbaena amethysta sp. nov. S – sex, DA – dorsal half–annuli, LA – lateral half–annuli adjacent to cloacal region, VA – ventral half–annuli, CA – caudal annuli, AS – autotomic site, DS – dorsal segment in midbody, VS – ventral segment in midbody, SCA – segments of fourth caudal annulus, PRCL – precloacal segments, POCL – postcloacal segments, PGE – postgenials, PA – parietals, SVL – snout–vent length, TL – tail length, BW – body width in midbody, bs – brooked specimen, lta – last tail annuli, n/a – non-available data, +n – mutilated tail, * – tail cicatrised, ** – tail not cicatrised, un- unidentified.

Specimens S DA LA VA CA AS DS VS SCA PRCL POCL PGE1 PA SVL TL BW
CEPB 2311 (Holotype) male 194 3 195 14 5 18 18 28 6 11 5 1/1 233 21.2 8.2
CEPB 2301 (Paratype) female 191 3 191 5 + n lta5** 19 17 29 7 13 5 1/1 206 3.5 + n 6.4
CEPB 2302 (Paratype) male 194 4 192 15 5 20 18 31 7 13 5 1/1 199 17.8 7.2
CEPB 2303 (Paratype) female 194 4 197 5 + n lta5* 17 16 27 6 14 5 1/1 197 8.2 + n 7.0
CEPB 2308 (Paratype) female 195 4 196 15 5 18 18 28 n/a 13 4 1/1 150 13.0 5.1
CEPB 2327 (Paratype) female 196 3 196 14 5 20 19 31 6 13 5 1/1 205 16.5 6.0
CEPB 2331 (Paratype) female 197 4 195 15 5 18 16 30 6 11 5 1/1 175 14.4 5.8
CEPB 2346 (Paratype) male 195 4 195 14 5 18 18 29 6 14 5 1/1 138 11.3 4.3
CEPB 2379 (Paratype) male 185 4 189 5 + n lta5** 19 18 29 6 13 5 1/1 180 5.0 + n 7.0
CEPB 2381 (Paratype) female 189 4 189 15 4 16 16 24 6 12 5 1/1 165 14.8 5.6
CEPB 2298 female 199 3 199 14 n/a 18 18 30 7 13 5 1/1 215 16.7 7.4
CEPB 2299 female 193 4 193 6+n lta5* 18 15 29 6 13 4 1/1 186 7.6 + n 5.1
CEPB 2300 male 194 3 195 14 5 18 17 26 6 12 5 1/1 213 15.3 6.1
CEPB 2304 female 190 4 192 14 5 18 n/a 26 6 12 5 1/1 155 11.6 3.5
CEPB 2305 female 192 4 192 15 5 18 16 28 6 13 6 1/1 170 14.8 5.6
CEPB 2306 female 197 4 196 14 4 18 18 28 8 12 5 1/1 145 10.8 4.2
CEPB 2307 male 190 3 190 6 + n lta6** 18 17 27 6 13 5 2/2 220 6.8 + n 7.9
CEPB 2309 un 196 3 197 6 + n lta5* 19 16 n/a 6 14 6 1/2 125 7.9 + n 4.5
CEPB 2310 female 193 4 194 14 5 18 18 26 6 11 2 0/1 195 15.7 5.5
CEPB 2312 female 192 3 192 15 5 18 18 30 6 15 3 1/1 190 15.1 6.6
CEPB 2313 female 189 3 190 15 5 18 15 28 6 14 5 1/1 130 11.7 4.2
CEPB 2314 female 191 3 193 14 5 18 16 26 6 13 6 1/1 185 11.9 5.7
CEPB 2315 female 193 3 193 14 5 18 19 27 6 12 5 1/1 177 14.1 5.9
CEPB 2316 female 195 3 195 16 6 20 18 28 7 13 5 1/1 173 15.2 6.4
CEPB 2317 female 195 5 196 5 + n lta5** 18 n/a n/a 6 13 5 1/1 180 3.0 + n 5.3
CEPB 2318 female 196 3 195 15 5 20 18 31 6 11 5 1/1 120 16.1 4.3
CEPB 2319 female 186 4 186 5 + n lta5** 19 18 29 6 12 5 1/1 95 2.0 + n 3.2
CEPB 2320 female 185 4 182 15 5 19 18 26 7 13 2 1/1 92 7.7 2.6
CEPB 2321 female 194 3 192 16 6 18 18 30 6 12 5 1/1 160 14.1 6.0
CEPB 2322 female 196 4 195 5 + n lta5** 21 18 27 6 11 4 1/1 155 3.7 + n 5.3
CEPB 2323 female 194 4 193 15 5 16 16 24 6 13 2 1/1 112 8.8 3.0
CEPB 2324 male 193 3 193 16 6 19 18 31 6 13 5 1/1 162 14.6 5.7
CEPB 2325 female 193 4 190 14 5 19 18 27 6 11 5 1/1 174 14.2 6.1
CEPB 2326 male 198 3 197 16 6 17 17 28 6 10 5 1/1 195 16.4 6.4
CEPB 2328 female 192 3 194 15 6 18 18 28 6 12 5 1/1 173 15.5 6.5
CEPB 2329 male 195 4 196 15 5 19 18 30 6 13 6 1/1 170 13.0 5.7
CEPB 2330 male 194 4 193 5 + n lta5** 20 18 30 6 13 5 1/1 178 2.6 + n 6.0
CEPB 2332 male 190 + n 4 190 15 5 18 16 28 6 15 5 1/1 bs 11.1 4.0
CEPB 2333 female 196 3 194 15 n/a 18 17 26 6 10 2 1/1 203 16.9 6.3
CEPB 2334 female 194 3 192 5 + n 5 20 18 30 6 14 6 1/1 190 7.0 + n 7.3
CEPB 2335 female 197 3 197 14 5 20 18 31 6 12 5 1/1 135 9.7 3.9
CEPB 2336 female 190 4 190 15 6 18 17 29 6 13 4 1/1 105 9.1 3.4
CEPB 2337 female 186 4 185 5 + n lta5** 19 18 29 6 13 5 1/1 145 3.7 + n 4.9
CEPB 2338 female 190 + n 4 186 13 5 18 17 28 6 12 5 1/1 ~ 160 13.8 5.1
CEPB 2339 female 192 4 193 16 5 19 18 32 6 13 5 1/1 127 10.6 4.0
CEPB 2356 male 188 3 189 16 n/a 18 18 28 7 13 3 1/1 190 16.7 5.8
CEPB 2380 female 192 3 195 14 5 17 16 25 6 12 5 2/2 140 11.5 5.6
Minimum 185 3 182 13 4 16 15 24 6 10 2 92 2.2 2.6
Maximum 199 5 199 16 6 21 19 32 8 15 6 n/a 233 21.2 8.2
Mean 192.9 3.6 193.0 14.8 5.0 18.4 17.4 28.3 6.2 12.6 4.7 n/a 167.3 13.4 5.5
Mode 194 4 195 15 5 18 18 28 6 13 5 n/a 190 n/a n/a
Standard deviation 3.4 0.5 3.4 0.8 0.4 1.0 1.0 1.9 0.5 1.1 1.0 n/a 34.1 3.5 1.3

Colour in life

Dorsum and lateral parts with dark brown coloration on the segments, which is more pronounced in the vertebral (Fig. 4A) and dorsal section of the tail regions (Fig. 4B). Pink predominates in areas where the brown colour is less pronounced. We do not have photographs of the ventral region of the live specimen.

Figure 4. 

Variation (grey in the drawings) of cephalic shields of Amphisbaena amethysta sp. nov. A dorsal view of the head of CEPB 2280 with frontal variation B dorsal view of CEPB 2309 with four parietal shields, and C lateral view of left side of CEPB 2303 (paratype) with supralabials fused. Scale bar: 3 mm.

Colour in preservative

(ethylic alcohol 70%). Dorsum cream, with brown colouring on the segments in the dorsum, lateral parts, and dorsal portions of the tail portions. Dorsal, lateral, and ventral portions of head pale brown, darker than the ventral portion. Venter cream coloured.

Etymology

The specific epithet refers to the mineral amethyst that is a type of quartz and also the name of the region of the type locality “Brejinho das Ametistas”, a district located south of the municipality of Caetité, state of Bahia. This region has been an amethyst mining centre since the beginning of the 20th century. Spix and Martius (1938) defined the mineral from the “Brejinho das Ametistas” mines as “the beautiful amethysts” on their trip through the “Alto Sertão” of Bahia at the beginning of the 19th century (Cotrim 2015). The region currently has an economy based on mining and energy activities focused on wind energy production. The type series was collected during the execution of environmental programs within the scope of Bahia Mineração (BAMIN), which operates in the exploration of iron ore in the “Brejinho das Ametistas” region.

Distribution and habitat

Amphisbaena amethysta sp. nov. is known from municipality of Caetité municipality, state of Bahia, Brazil (Fig. 5). The region is in the northern portion of the Espinhaço Mountain Range, has an average altitude of 1000 m a.s.l., and lies within the ecotone between two morphoclimatic domains, Caatinga and Cerrado. In the region there are patches of deciduous and semi-deciduous forests [“Floresta Estacional Decidual” and “Floresta Semidecidual Montana” sensu IBGE (2023)] associated with valleys, slopes, and gallery forests, and containing floristic elements common to the vegetation of the Caatinga, Cerrado, and Atlantic Forest morphoclimatic domains. Areas of savannah vegetation with rock outcrops, typical of the woody Caatinga, occur at higher elevations (Fig. 6).

Figure 5. 

Geographic distribution of Amphisbaena amethysta sp. nov. and others Amphisbaena species from Espinhaço Mountain Range locality. Black arrows indicate the type localities of the species with more than one known geographic record.

Figure 6. 

Caatinga site where the holotype of Amphisbaena amethysta sp. nov. was collected in the in the northern portion of Espinhaço Mountain Range, in state of Bahia, Brazil.

Phylogenetic relationships

Our concatenated alignment totalled 4806 base pairs (1007 bp for 12S, 528 bp for 16S, 761 bp for nd2, 679 bp for bdnf, 574 bp for c-mos, and 1257 bp for rag1). Partition Finder identified a best-fit scheme composed of ten partitions with the GTR + G model. The resulting ML topology (Fig. 7) for the higher-level affinities was similar to those reported by previous studies (Mott and Vieites 2009; Longrich et al. 2015; Graboski et al. 2022) (Fig. 7). Amphisbaena amethysta sp. nov. was recovered as a sister group of A. caetitensis, with 92% of bootstrap support. The clade composed by Amphisbaena amethysta sp. nov. and A. caetitensis was recovered as a sister group of A. angustifrons, A. darwini, A. kingi, A. leeseri, and A. munoai with low bootstrap support (21%). The genetic distance (p-distance) between Amphisbaena amethysta sp. nov. and A. caetitensis is 6.1% for 16S.

Figure 7. 

Maximum likelihood tree zoomed in Central and South American Amphisbaenidae resulting from the RAxML analysis based on six concatenated genes, three nuclear (BDNF, c-mos, and RAG1), and three mitochondrial (12S, 16S, and ND2) genes. Red branches denote the clade composed of the new species and its sister species. Numbers on branches represent bootstrap values RAxML (> 70%). The grey codes on the right side of the clades represent the South American subclades of Amphisbaena (G01–G09) and West Indies clades (WIC01–WIC02).

Discussion

Amphisbaena amethysta sp. nov. is the 73rd species of the genus with four precloacal pores, the 22nd species from Caatinga, and sixth species with a restricted distribution from this morphoclimatic domain. The recognition of A. amethysta as a new species is based on molecular data and on set of morphological characters that includes four precloacal pores, a slightly compressed snout, 185–199 dorsal and 182–199 ventral half-annuli, 13–16 caudal annuli, 16–21 dorsal and ventral segments in the midbody, 3/3 supralabials and infralabials, a smooth and rounded tail tip, an autotomic site between 4th and 6th caudal annuli, and by the absence of fusion of the cephalic shields, postmalar shields, and of dorsal and ventral grooves.

The new species is most closely related to A. caetitensis (from an elevation of 854 m in the municipality of Caetité, state of Bahia), a sister species with a genetic distance (p distance) of 6.1% for the 16S gene, and which differs morphologically mainly in the modified conic pointed tubercules on the tip tail and absence of an autotomic site (see diagnosis). This tail shape appears to have arisen independently in A. caetitensis and A. uroxena. Almeida et al. (2018) reported a genetic distance of the 7.65% between A. uroxena and A. caetitensis, and stated that Bayesian inference does not allow a clear resolution of the relationship between the two species. Our phylogenetic analyses corroborate the results of Almeida et al. (2018), and do not structure a clade for species with the modified conic pointed tubercules on the tip tail. We found an even lower distance between A. caetitensis and A. amethysta sp. nov. and a phylogenetic correlation between the species (Fig. 7), and recovered A. uroxena with sister species of A. mongoyo, structuring a clade with A. longinqua and A. bahiana (Clade G05, Fig. 7). Additionally, with a low support, we retrieved the clade formed by Amphisbaena amethysta sp. nov. and A. caetitensis as a sister group to clade G02 (Fig. 7) formed by A. leeseri, A. darwini, A. munoai, A. angustifrons, and A. kingi. This grouping showed a relationship between the species from the Espinhaço Mountain Range and those in other areas of the Atlantic Forest and Cerrado. Additionally, it can indicate a probably convergent evolution between the species with a tuberculate tail shield (A. caetitensis and A. uroxena) and those species present on mountain within the Espinhaço Mountain Range (clade 5; Fig. 7).

Amphisbaena amethysta appears to be endemic to the northern portion of the Espinhaço Mountain Range with an average altitude of 1000 m a.s.l. Within this, its known extent of occurrence is some 38 km. This distributional pattern is similar to other five species of Amphisbaena restricted to the high-altitude areas of the Espinhaço Mountain Range in Bahia [A. bahiana, A. longinqua, A. metallurga, A. mon­goyo, and A. uroxena (Costa et al. 2015; Teixeira Junior et al. 2019)], four of which are closely related phylogenetically, but show no close phylogenetic relations with A. amethysta (A. metallurga has no molecular sample available) (Fig. 7). The other three species show no apparent relationship to those from the Espinhaço Mountain Range but also occur at similar altitudes and vegetation types: A. kiriri Ribeiro, Gomides & Costa, 2018 (at least 17 km from the nearest A. bahiana locality), A. acangaoba (occurring in sympatry with A. kiriri), and A. ignatiana (recorded from the lower sections of the northwestern extremity of the Espinhaço Mountain Range) (Fig. 5) (Roberto et al. 2014; Ribeiro et al. 2018b, 2020).

In the last years morphological characters were commonly used to diagnose Amphisbaena, mainly meristics (e.g. Roberto et al. 2014; Costa et al. 2015; Ribeiro et al. 2016, 2019, 2018a, b, 2020; Torres-Ramírez et al. 2021; Ribeiro-Júnior et al. 2022; Rocha et al. 2023) and morphometrics (e.g. Ribeiro et al. 2009; Oliveira et al. 2018) but also with the addition of genetic analyses (e.g., Almeida et al. 2018; Perez and Borges-Martins 2019; Ribeiro et al. 2019), but it is still unclear which characters best represent the interspecific variation of the genus. The identification of diagnostic characters depends on the recognition of intraspecific variations of different species, as well as the analysis of relatively large numbers of samples for each species, the latter being hampered by the fossorial habits of the species in this group and the consequently low frequency of encounters with them. Cryptic species of Amphisbaena are rare in bibliographic citations, but recent studies have described new species using diagnoses based on overlapping phenotypic variation and the divergence of the 16S and ND2 genes, complicating species identification using external morphology alone. To reduce the limitations in the identification of new amphisbaenid species, in addition to applying integrative taxonomy whenever possible, we consider it important to standardise the use of meristic and morphometrics characters that do not overlap and to explore new characters, such as the morphometry of the shields (Ribeiro et al. 2008, 2009, 2011, 2015, 2016, 2018a, 2019; Sindaco et al. 2014); analysing characters of internal morphology, such as osteology and gonadal morphology (Ribeiro et al. 2015, 2018a; Oliveira et al. 2018; Angiolani-Larrea et al. 2021); and studying similar species, including type series (Costa et al. 2019; Ribeiro-Júnior et al. 2022).

Amphisbaena amethysta sp. nov. varies in the number of dorsal and ventral half-annuli, caudal annuli, and dorsal and ventral segments in the midbody, the shape and number of parietal shields, and the position of the autotomic site. In addition to variations in shape and number of cephalic shields, specimens of the new species also included individuals with shield fusion, mainly in the parietal region (see discussion of variation). On the other hand, the sample did not vary the number and shape of supra and infralabials and postlabials; the presence of a malar; the shape of the rostral, prefrontal, and frontal shields; the presence and number of precloacal pores; nor in the shape of the segments of the half-annuli of the body and tail. Despite its use as an invariable character, the number of pores can vary intraspecifically. Among the other Amphisbaena species with four precloacal pores, 14 vary in the number of precloacal pores: A. acangaoba, A. alba, A. angustifrons, A. barbouri, A. bolivica, A. caeca, A. camura, A. cubana, A. darwini, A. frontalis, A. kraoh, A. lumbricalis, A. manni, and A. uroxena (Gans 1962a, 1965a; Gans and Alexander 1962; Thomas 1966; Gans and Diefenbach 1972; Hoogmoed and Ávila-Pires 1991; Montero 1996; Vanzolini 1996; Mott et al. 2008; Perez et al. 2012; Ribeiro et al. 2020; Ribeiro-Júnior et al. 2022). Additionally, sexual dimorphism in the presence or absence of pores for Amphisbaena has already been reported for A. frontalis and A. uroxena (Mott et al. 2011; Ribeiro-Júnior et al. 2022).

Mining activities cause several irreversible changes to the environment, including the loss of habitat due to the removal of vegetation and the relocation and excavation of soil during the opening and operation of new mines. Such actions have a direct impact on terrestrial and fossorial species such as amphisbaenians. In this context, applied studies, such as the evaluation of species as biomarkers for metal exposure, mainly with fossorial reptile species, are neglected (Grillitsch and Schiesari 2010; Gil-Jiménez et al. 2021). In such circumstances, the development and execution of environmental programs are critical for effective impact mitigation. Such studies can form valuable tools when conducted by specialised teams with a focus on the scientific use of collected material (Vaz-Silva 2009), and teams concerned with the technical quality of the project, which would result in more careful projects in relation to the sampling design and analytical aspects of the results, allowing greater decision-making power for effective conservation actions (Dias et al. 2019). In this case, environmental studies have made an important contribution to knowledge of the biodiversity of the area under BAMIN’s control, Bahia Mineração. Finally, the identification of a new species indicates that the fossorial fauna, as well as that of other groups, in the Espinhaço Mountain Range region is far from being completely known and that it may harbour a much greater diversity of endemic taxa than has been realised so far.

Acknowledgements

We would like to thank the curators and/or collection technicians D. Frost and D. Kizirian (AMNH), G.R. Colli, M. Viana and M. Ayub (CHUNB); S. Carreira (FC-UDELAR); H.M. Chalkidis (LPHA); G. Pontes (MCT-PUCRS); J. Moura-Leite (MHNCI); M. Motte (MNHNP); P. Passo, R. Fernandes and M. Soares (MNRJ); A. Prudente, A. Travassos and F. Sarmento (MPEG); H. Zaher and A. Carvalho (MZUSP); E. Freire and T. Mott (MUFAL); A. Argolo and M. Solé (UESC); V. Ferreira (UFMS/CEUCH/AFB); and F. Curcio (UFMT) for permits, care, and access to specimens. We are grateful to D. M. Soares for photography of the holotype Amphisbaena amethysta sp. nov. and to D. Passos, one anonymous reviewer, and the editors N. Yonow and U. Garcia for suggestions that improved the quality of the manuscript. We thank BAMIN Bahia Mineração and the time of Tecsan – Tecnologia e Saneamento responsible for environmental mitigation actions that culminated in the collection of specimens from the type series: Patrícia de Rossi Belufi, Andrezza Sayuri, Victoriano Hirota, Roberto Aires de Assunção, Inácio Fernandes Brito, Fabiana Soares dos Santos, Márcio Santos Borges, and Gabryelle Santos Nascimento. We thanks the National Council for Scientific and Technological Development – CNPq, through the program to support research projects and training human resources for biological taxonomy – PROTAX 22/2020, process number 441967/2020-5 CNPq. RG thanks Fundação de Amparo à Pesquisa do Estado de São Paulo for fellowships (FAPESP, 2012/ 24755-8 and 2016/06866-8) and IGM thanks Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA, 00000.9.000794/2023).

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

RG was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2012/ 24755-8 and 2016/06866-8). IGM was supported by grants from the Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA, 00000.9.000794/2023).

Author contributions

SR, WVS, and APSJ identified the new species. WVS, and RG gathered the molecular data; SR, ECS, APJS, and IGM gathered the morphological data; all authors wrote and revised the text.

Author ORCIDs

Síria Ribeiro https://orcid.org/0000-0002-2301-7089

Alfredo P. Santos Jr https://orcid.org/0000-0002-2829-718X

Isabelly G. Martins https://orcid.org/0009-0002-4420-5713

Roberta Graboski https://orcid.org/0000-0002-9123-4819

Wilian Vaz-Silva https://orcid.org/0000-0001-6235-5331

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

  • Almeida JPFA, Freitas MADE, Silva MB, Valverde MCC, Rodrigues MT, Pires AM, Mott T (2018) A new four-pored Amphisbaena (Squamata: Amphisbaenidae) from northeastern Brazil. Zootaxa 4514(4): 553–562. https://doi.org/10.11646/zootaxa.4514.4.8
  • Angiolani-Larrea F, de Fraga R, Mortati A, Ribeiro S (2021) Sex-dependent divergence in asymmetrical reproductive tract morphology between two closely-related amphisbaenian species (Squamata: Amphisbaenidae). Amphibia-Reptilia 42(3): 317–330. https://doi.org/10.1163/15685381-bja10056
  • Costa HC, Resende FC, Teixeira Jr M, Dal Vechio F, Clemente CA (2015) A new Amphisbaena (Squamata: Amphisbaenidae) from southern Espinhaço Range, southeastern Brazil. Anais da Academia Brasileira de Ciências 87(2): 891–901. https://doi.org/10.1590/0001-3765201520140088
  • Costa HC, Welton LJ, Hallermann J (2018) An updated diagnosis of the rare Amphisbaena slateri Boulenger, 1907, based on additional specimens (Squamata, Amphisbaenia, Amphisbaenidae). Evolutionary Systematics 2(2): 125–135. https://doi.org/10.3897/evolsyst.2.28059
  • Costa HC, Velasquez S, Zaher H, Garcia PCA (2019) Updated diagnosis of Amphisbaena metallurga and A. sanctaeritae and first record of A. hiata in Brazil (Squamata: Amphisbaenidae). South American Journal of Herpetology 14(3): 233–241. https://doi.org/10.2994/SAJH-D-17-00105.1
  • Dal Vechio F, Teixeira Jr M, Mott T, Rodrigues MT (2018) Rediscovery of the poorly known Amphisbaena bahiana Vanzolini, 1964 (Squamata, Amphisbaenidae), with data on its phylogenetic placement, external morphology and natural history. South American Journal of Herpetology 13(3): 238–248. https://doi.org/10.2994/SAJH-D-16-00053.1
  • Dias AMS, Fonseca A, Paglia AP (2019) Technical quality of fauna monitoring programs in the environmental impact assessments of large mining projects in southeastern Brazil. Science of the Total Environment 650(1): 216–223. https://doi.org/10.1016/j.scitotenv.2018.08.425
  • Gans C (1961) Notes on amphisbaenids (Amphisbaenia: Reptilia). 2. Amphisbaena occidentalis Cope from the coastal plain of northern Peru. Postilla (56): 1–17.
  • Gans C (1962a) Notes on amphisbaenids (Amphisbaenia: Reptilia). 5. A redefinition and a bibliography of Amphisbaena alba Linné. American Museum Novitates 2105: 1–31.
  • Gans C (1962b) Notes on amphisbaenids (Amphisbaenia: Reptilia). 6. Redescription and range extension of Amphisbaena spurrelli Boulenger. Breviora 171: 1–11.
  • Gans C (1963a) Notes on amphisbaenids (Amphisbaenia: Reptilia). 10. Redescription and redefinition of Amphisbaena pericensis Noble from the mountains of northwestern Peru. Breviora 189: 1–15.
  • Gans C (1963b) Notes on amphisbaenids (Amphisbaenia: Reptilia). 9. Redescription of Amphisbaena ridleyi Boulenger. Copeia 1963(1): 102–107. https://doi.org/10.2307/1441276
  • Gans C (1963c) Notes on amphisbaenids (Amphisbaenia, Reptilia). 8. A redescription of Amphisbaena stejnegeri and the description of a new species of Amphisbaena from British Guiana. American Museum Novitates 2128: 1–18.
  • Gans C (1964a) Notes on amphisbaenids (Amphisbaenia: Reptilia). 11. On Amphisbaena schmidti, a third species of the genus from Puerto Rico (Amphisbaenia: Reptilia). Breviora 198: 1–11.
  • Gans C (1964b) On the South American species of Amphisbaena with a vertically keeled tail (Amphisbaenia: Reptilia). Notes on amphisbaenids. 15. Senckenbergiana biologia (Mertens Festschrift) 45(3/5): 387–416.
  • Gans C (1965a) Notes on amphisbaenids. 17. Redescription and discussion of Amphisbaena angustifrons Cope and A. camura Cope, large amphisbaenids of southern South America (Amphisbaenia: Reptilia). American Museum Novitates (2225): 1–32.
  • Gans C (1965b) Notes on amphisbaenids (Amphisbaena: Reptilia). 16. On Amphisbaena heathi Schmidt and A. carvalhoi new species, small forms from the northeast of Brazil (Amphisbaenia: Reptilia). Proceedings of the California Academy of Science 31(23): 613–630.
  • Gans C (1966) Studies on amphisbaenids (Amphisbaenia: Reptilia) 3. The small species from southern South America commonly identified as Amphisbaena darwini. Bulletin of the American Museum of Natural History 134(3): 185–260.
  • Gans C (1967) Redescription of Amphisbaena slateri Boulenger, with comments on its range extension into Bolivia. Herpetologica 23(3): 223–227.
  • Gans C, Alexander AA (1962) Studies on the amphisbaenids (Amphisbaenia; Reptilia). 2. On the amphisbaenids of the Antilles. Bulletin of the Museum of Comparative Zoology 128(3): 65–158.
  • Gans C, Amdur M (1966) Redescription of Amphisbaena vermicularis Wagler, with comments on its range and synonymy (Amphisbaenia: Reptilia). Notes on amphisbaenids 20. Proceedings of the California Academy of Science 33(5): 69–90. https://doi.org/10.2307/1441079
  • Gans C, Diefenbach COC (1972) Description and geographical variation in the South American Amphisbaena angustifrons; the southernmost amphisbaenian in the world (Reptilia: Amphisbaenia). American Museum Novitates 2494: 1–20.
  • Gans C, Mather S (1977) Amphisbaena medemi, an interesting new species from Colombia (Amphisbaenia, Reptilia), with a key to the amphisbaenians of the Americas. Fieldiana (Zoology) 72(2): 21–46. https://doi.org/10.5962/bhl.title.5131
  • Gans C, Rhodes C (1964) Notes on amphisbaenids (Amphisbaenia: Reptilia). 13. A systematic review of Anops Bell, 1833. American Museum Novitates 2186: 1–25.
  • Gil-Jiménez E, Lucas M, Ferrer M (2021) Metalliferous mining pollution and its impact on terrestrial and semi-terrestrial vertebrates: a review. In: Voogt P (Ed.) Reviews of environmental contamination and toxicology 256: 1–69. Springer. https://doi.org/10.1007/398_2021_65
  • González-Sponga MA, Gans C (1971) Amphisbaena gracilis Strauch. Rediscovered (Amphisbaenia: Reptilia). Copeia 1971(4): 589–595. https://doi.org/10.2307/1442627
  • Graboski R., Grazziotin FG, Mott T, Rodrigues MT (2022) The phylogenetic position of Ridley’s worm lizard reveals the complex biogeographic history of New World insular amphisbaenids. Molecular Phylogenetics and Evolution 173: 107518. https://doi.org/10.1016/j.ympev.2022.107518
  • Graboski R, Arredondo JC, Grazziotin FG, Guerra-Fuentes RA, Da Silva AAA, Prudente ALC, Pinto RR, Rodrigues MT, Bonatto SL, Zaher H (2023) Revealing the cryptic diversity of the widespread and poorly known South American blind snake genus Amerotyphlops (Typhlopidae: Scolecophidia) through integrative taxonomy. Zoological Journal of the Linnean Society 197: 719–751. https://doi.org/10.1093/zoolinnean/zlac059
  • Grillitsch B, Schiesari L (2010) The ecotoxicology of metals in reptiles In: Sparling DW, Linder G, Bisho CA, Krest S (Eds) Ecotoxicology of amphibians and Reptiles, 2nd edn.: 337–448. CRC Press, New York, 944 pp. https://doi.org/10.1201/EBK1420064162-c12
  • Hoogmoed MS (1989) A new species of Amphisbaena (Amphisbaenia: Amphisbaenidae) from Suriname. Notes on the herpetofauna of Surinam XI in honour of Dr. Pieter Wagenaar Hummelinck. Foundation for Scientific Research in Surinam and the Netherlands Antilles (Amsterdam) 123: 65–73.
  • Hoogmoed MS, Ávila-Pires TCS (1991) A new species of small Amphisbaena (Reptilia: Amphisbaenia: Amphisbaenidae) from western Amazonian Brazil. Boletim do Museu Paraense Emilio Goeldi Série Zoologia 7(1): 77–94.
  • Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  • Kearney M, Stuart BL (2004) Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1549): 1677–1683. https://doi.org/10.1098/rspb.2004.2771
  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772–773. https://doi.org/10.1093/molbev/msw260
  • Longrich NR, Vinther J, Pyron RA, Pisani D, Gauthier JA (2015) Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proceedings of the Royal Society B: Biological Sciences 282(1806): 21396–21401. https://doi.org/10.1098/rspb.2014.3034
  • Montero R (1996) Amphisbaena bolivica Mertens 1929, nueva combinación (Squamata: Amphisbaenia). Cuadernos de Herpetología 9(2): 75–84.
  • Montero R, Sáfadez IF, González Álvarez L (1997) On a new species of Amphisbaena (Reptilia: Amphisbaenidae) from Bolivia. Journal of Herpetology 31(2): 218–220. https://doi.org/10.2307/1565389
  • Mott T, Vieites DR (2009) Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Molecular Phylogenetics and Evolution 51(2): 190–200. https://doi.org/10.1016/j.ympev.2009.01.014
  • Mott T, Rodrigues MT, Freitas MA, Silva TFS (2008) New species of Amphisbaena with a non-autotomic and dorsally tuberculate blunt tail from State of Bahia, Brazil (Squamata, Amphisbaenidae). Journal of Herpetology 42(1): 172–175. https://doi.org/10.1670/07-074R2.1
  • Mott T, Rodrigues MT, Santos EM (2009) A new Amphisbaena with chevron-shaped anterior body annuli from state of Pernambuco: Brazil (Squamata: Amphisbaenidae). Zootaxa 2165(1): 52–58. https://doi.org/10.11646/zootaxa.2165.1.4
  • Mott T, Carvalho-Neto CS, Carvalho-Filho KS (2011) Amphisbaena miringoera Vanzolini, 1971 (Squamata: Amphisbaenidae): New state record. Check List 7(5): 594–595. https://doi.org/10.15560/7.5.594
  • Oliveira ECS, Vaz-Silva W, Santos-Jr AP, Graboski R, Teixeira Jr M, Dal Vechio F, Ribeiro S (2018) A new four-pored Amphisbaena Linnaeus, 1758 (Amphisbaenia, Amphisbaenidae) from Brazilian Amazon. Zootaxa 4420(4): 451–474. https://doi.org/10.11646/zootaxa.4420.4.1
  • Perez R, Borges-Martins M (2019) Integrative taxonomy of small worm lizards from Southern South America, with description of three new species (Amphisbaenia: Amphisbaenidae). Zoologischer Anzeiger 283(58): 124–141. https://doi.org/10.1016/j.jcz.2019.09.007
  • Perez R, Ribeiro S, Borges-Martins M (2012) Reappraisal of the taxonomic status of Amphisbaena prunicolor (Cope 1885) and Amphisbaena albocingulata Boettger 1885 (Amphisbaenia: Amphisbaenidae). Zootaxa 3550(1): 1–25. https://doi.org/10.11646/zootaxa.3550.1.1
  • Ribeiro S, Eleutério JMP (2023) Anfisbênios dos Brasil. In: Silva-Soares T, Monjardim M, Figueiredo RG (Eds) Herpetologia para todos. Instituto Biodiversidade Neotropical, Espírito Santo, 93–105.
  • Ribeiro S, Castro-Mello C, Nogueira C. (2009) New species of Anops Bell, 1893, (Squamata, Amphisbaenia). Journal of Herpetology 43(1): 21–28. https://doi.org/10.1670/07-299R1.1
  • Ribeiro S, Nogueira C, Cintra CE, Silva Jr NJ, Zaher H (2011) Description of a new pored Leposternon (Squamata, Amphisbaenidae) from the Brazilian Cerrado. South American Journal of Herpetology 6(3): 177–188. https://doi.org/10.2994/057.006.0303
  • Ribeiro S, Gomes JO, Silva HLR, Cintra CED, Silva Jr N (2016) A new two-pored species of Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerrado, with a key to the two-pored species of Amphisbaena. Zootaxa 4147(2): 124–142. https://doi.org/10.11646/zootaxa.4147.2.2
  • Ribeiro S, Silveira A, Santos-Jr AP (2018a) A new species of Leposternon (Squamata: Amphisbaenidae) from Brazilian Cerrado with a key to pored species. Journal of Herpetology 52(1): 50–58. https://doi.org/10.1670/16-125
  • Ribeiro S, Sá V, Santos-Jr AP, Graboski R, Zaher H, Guedes AG, Andrade SP, Vaz-Silva W (2019) A new species of the Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerrado with a key for the two-pored species. Zootaxa 4550(3): 301–320. https://doi.org/10.11646/zootaxa.4550.3.1
  • Ribeiro LB, Gomides SC, Costa HC (2020) A new worm lizard species (Squamata: Amphisbaenidae: Amphisbaena) with non-autotomic tail, from Northeastern Brazil. Journal of Herpetology 54(1): 9–18. https://doi.org/10.1670/19-043
  • Ribeiro-Júnior MA, Ribeiro S, Cintra CED, Gomes JO (2022) Amphisbaena ibijara Rodrigues, Andrade & Lima, 2003 is a junior synonym of Amphisbaena frontalis Vanzolini, 1991 (Squamata, Amphisbaenia). Journal of Herpetology 56(2): 234–240. https://doi.org/10.1670/21-039
  • Roberto IJ, Brito LBM, Ávila RW (2014) A new six-pored Amphisbaena (Squamata: Amphisbaenidae) from the coastal zone of northeast Brazil. Zootaxa 3753(2): 167–176. https://doi.org/10.11646/zootaxa.3753.2.6
  • Rocha CFD, Barros-Filho JD, Sluys MV (2023) A new Amphisbaena species from a restinga habitat of Southeastern Brazil (Reptilia, Squamata, Amphisbaenidae). International Journal of Zoology and Animal Biology 6(4): 1–8. https://doi.org/10.23880/izab-16000501
  • Sindaco R, Panagiotis K, Roberto S, Petros L (2014) Taxonomic reassessment of Blanus strauchi (Bedriaga, 1884) (Squamata: Amphisbaenia: Blanidae), with the description of a new species from south-east Anatolia (Turkey). Zootaxa 3795(3): 311–326. https://doi.org/10.11646/zootaxa.3795.3.6
  • Spix JB, Martius KFP (1938) Através da Bahia: Excerptos da obra Reise in Brasilien. Transladados a português pelos Drs. Pirajá da Silva e Paulo Wolf. Compainha Editora Nacional, São Paulo, 342 pp.
  • Strüssmann C, Carvalho MA (2001) Two new species of Cercolophia Vanzolini, 1992 from the state of Mato Grosso, western Brazil (Reptilia, Amphisbaenia, Amphisbaenidae). Bollettino del Museo Regionale di Scienze Naturali di Torino 18(2): 487–505.
  • Swofford DL (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates. https://paup.phylosolutions.com [accessed 08 December 2023]
  • Teixeira Jr M, Dal Vechio F, Neto AM, Rodrigues MT (2014) A new two-pored Amphisbaena Linnaeus, 1758, from Western Amazonia, Brazil (Amphisbaenia: Reptilia). South American Journal of Herpetology 9(1): 62–74. https://doi.org/10.2994/SAJH-D-14-00004.1
  • Teixeira Jr M, Dal Vechio F, Rodrigues MT (2016) Diagnostic clarification, new morphological data and phylogenetic placement of Amphisbaena arenaria Vanzolini, 1991 (Amphisbaenia, Amphisbaenidae). Zootaxa 4205(3): 293–296. https://doi.org/10.11646/zootaxa.4205.3.9
  • Teixeira Junior M, Dal Vechio F, Recoder R, Cassimiro J, Sena MA, Rodrigues MT (2019) Two new highland species of Amphisbaena Linnaeus, 1758 (Amphisbaenia, Amphisbaenidae) from Bahia State, Brazil. South American Journal of Herpetology 14(3): 213–232. https://doi.org/10.2994/SAJH-D-17-00097.1
  • Thomas R (1965) Two new subspecies of Amphisbaena (Amphisbaenia, Reptilia) from the Barahona Peninsula of Hispaniola. Breviora 215: 1–14.
  • Thomas R (1966) Additional notes on the amphisbaenids of Greater Puerto Rico. Breviora 249: 1–23.
  • Thomas R, Hedges SB (2006) Two new species of Amphisbaena (Reptilia: Squamata: Amphisbaenidae) from the Tiburon Peninsula of Haiti. Caribbean Journal of Science 42(2): 208–219.
  • Torres-Ramírez JJ, Angarita-Sierra T, Vargas-Ramírez M (2021) A new species of Amphisbaena (Squamata: Amphisbaenidae) from the Orinoquian region of Colombia. Vertebrate Zoology 71(274): 55–74. https://doi.org/10.3897/vz.71.e59461
  • Vanzolini PE (1950) Contribuições ao conhecimento dos largartos brasileiros da família Amphisbaenidae Gray, 1825. I. Sobre uma nova subespécie insular de Amphisbaena darwini D. and B., 1839. Papéis Avulsos de Zoologia 9(6): 69–78. https://doi.org/10.11606/0031-1049.1950.9p69-78
  • Vaz-Silva W (2009) Herpetofauna im Zentralbrasilianischen Cerrado. Terraria (Munster) 17: 75–78.

Supplementary material

Supplementary material 1 

Supplementary information

Síria Ribeiro, Alfredo P. Santos Jr, Isabelly G. Martins, Elaine C. S. Oliveira, Roberta Graboski, Thiago Barbosa Da Silveira, Matheus H. M. Benício, Wilian Vaz-Silva

Data type: docx

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (41.51 kb)
login to comment