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Abstract
We determined the complete mitogenome sequence of the bioluminescent fish Malacosteus niger using 
long-read sequencing technologies. The 21,263 bp mitogenome features a complex structure with two 
copies of a 1198-bp inverted-repeat and a region of 2616-bp containing alternating copies of 16 and 26 
bp repeat elements. Whole mitogenome phylogenies inferred from both nucleotide and amino-acid data-
sets place M. niger among Melanostomiinae. The need for additional complete mitogenome sequences 
from the subfamily Malacosteinae is discussed.
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Introduction

Sunlight is filtered by seawater and only blue/green light with wavelengths between 
460 and 490 nm penetrates into the deep sea. Many deep-sea animals with well-adapt-
ed eyes can see this very weak light down to about 1500 m (Warrant 2004; de Busse-
rolles et al. 2020). Most of them detect only these blue-green colors, and often produce 
themselves similar colors by bioluminescence for three main functions: attack, defense/
camouflage, and communication.

The peculiar mesopelagic black loose-jaw dragonfish, Malacosteus niger Ayres 1848 
(Figs 1, 2), represents one of the very few exceptions to this “blue-light rule” (Ayres 
1848, 1849; Crossman 1960). This animal lives between 600 and 1000 m and possess-
es two light-emitting eye glands (Figs 1, 2) (Kenaley 2007, 2008). The suborbital deep-
red-emitting photophore is thought to function in intra-specific communication and 
as a “private torchlight” to detect prey items that are unable to see red light (Mensinger 
and Case 1988). A bioluminescence reaction in this red eye gland produces blue light 
that is never emitted, because its energy is transferred to red light-emitting fluorescent 
proteins via a Bioluminescence Resonance Energy Transfer (BRET) reaction (Camp-
bell and Herring 1987; Herring and Cope 2005). The postorbital eye gland emits blue-
green light and is thought to serve intra- and inter-specific exchanges.

Like almost all deep-sea fish, M. niger encode only blue opsin photoreceptor genes 
in order to detect the down welling as well as the bioluminescent light omnipresent in 
the environment. However, M. niger adapted its eyes by linking antenna-pigments (a 
red-absorbing bacterio-chlorophyll c) to its blue opsin proteins (Douglas et al. 1998a), 
in order to detect its own red-light emission. Chlorophyll use by vertebrates is very 
rare and M. niger shares this capacity thus far only with a salamander (Isayama et al. 
2006). How the fish obtains or produces this chlorophyll is also still an enigma, but it 
is hypothesized to be retrieved through the food-chain by consuming small copepods 
which have eaten bacterio-chlorophyll c – containing bacteria (Douglas et al. 1998b, 
1999, 2000; Schwab and Marshall 2004). Finally, M. niger is the only known verte-
brate lacking a hyoid membrane (the membrane that closes the space between the 
lower jaw), a feature which comes in addition to the unique occipito-vertebral gap 
observed in several Stomiidae (Schnell et al. 2010; Kenaley 2012; Schnell and Johnson 
2017 a, b). For a long time, this 15–20 cm long fish was thought to be a top-predator 
that mainly eats “big fish”. However, stomach content analysis showed that the animal 
prefers smaller prey, including the 3–5 mm calanoid copepod Chirundina streetsi Gies-
brecht, 1895 (Sutton 2005; Drazen and Sutton 2017). This raises the question about 
how this animal retains its meal in a seemingly open mouth.

We initiated this study by analyzing the mitogenome of M. niger with short read 
sequencing technologies. However, all our efforts to assemble the complete M. niger 
mitogenome proved unsuccessful. The mitogenome always came out as two distinct 
contigs of similar coverage and all attempts to join them were fruitless whatever param-
eters were used for assembly. It quickly appeared that repeated sequences were at the 



Inverted repeats in the mitochondrial genome of Malacosteus niger 179

Figure 1. Malacosteus niger model made by 10TONS (www.10tons.dk). These most peculiar and unique 
fishes are frequently damaged by fishing gear and this model allows for the first time to visualize a faithful 
representation. Courtesy of Esben Horn.

Figure 2. A specimen of Malacosteus niger illuminated from below by UV light (360 nm) clearly showing 
the fluorescence of the suborbital red and the green postorbital eye gland (arrow). The specimen has been 
damaged during capture.
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base of this problem and that long-read sequencing technologies were clearly needed 
to resolve the complex mitochondrial genome. The results presented here show yet an-
other peculiarity of M. niger with the discovery of a large and complex mitochondrial 
genome harboring inverted-repeat-like structures.

Materials and methods

Biological material and DNA extraction

The Malacosteus niger specimen used in this study was caught during the Bear Seamount 
cruise DE200611 (station 012, 18/6/2006). Pieces of the caudal fin and muscle were 
sent to the “Plateforme d’Analyses Génomiques” of the “Institut de Biologie Intégrative 
et des Systèmes” of the Université Laval (Québec, Canada) for DNA library prepara-
tion and sequencing. For DNA extraction, 300 mg of muscle were crushed in liquid 
nitrogen and digested at 65 °C for 30 min in 1.0 ml lysis buffer containing 50 mM 
Tris-HCl pH 8.0, 200 mM NaCl, 20 mM EDTA, 2.0% SDS and 20 mg/ml proteinase 
K. An equal volume of CTAB buffer containing 50 mM Tris-HCl pH 8.0, 1.4 M NaCl, 
20 mM EDTA, 2.0% CTAB, 1.0% PVP 40,000 was added to the lysate and incubation 
was pursued for an additional 30 min at 65 °C. This mixture was extracted with phenol: 
chloroform: isoamylalcohol (25:24:1), and following centrifugation, 5 µl of RNase A 
(100 mg/ml) was added to the aqueous phase and incubated at room temperature for 
20 min. This mixture was then extracted twice with an equal volume of chloroform: 
isoamylalcohol (24:1) and DNA was precipitated with two volumes of EtOH, dried 
and dissolved in 100 µl of TE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA).

Short reads sequencing

The library preparation protocol for short reads sequencing was as follows. Genomic DNA 
(500 ng in 55 ul TE buffer) was mechanically fragmented for 40 s using a Covaris M220 
(Covaris, Woburn MA, USA) with default settings. Fragmented DNA was transferred to 
PCR tubes and library synthesis was performed using a NEB Next Ultra II kit (New Eng-
land Biolabs) according to the manufacturer’s instructions. To barcode the samples, TruSeq 
HT adapters (Illumina, SanDiego, CA, USA) were used. The library was sequenced on the 
Illumina MiSeq platform (300-bp paired-end reads). Of the 15 335 342 raw paired-end 
reads obtained, 11 121 576 remained after elimination of low-quality reads.

Long reads sequencing

For long-read sequencing, DNA was quantified using a Qubit fluorometer (Ther-
moFisher) and quality checked on a Femto Pulse System with a genomic DNA 165-kb 
kit (Agilent, Santa Clara, CA, USA). A DNA aliquot of 8 µg was fragmented with a 
Covaris g-tube (Covaris Woburn, MA, USA) and small fragments were removed using 
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Short Read Eliminator XS (Circulomics/PacBio, Menlo Park, CA, USA). The library 
for Oxford Nanopore MinIon sequencing was prepared using 1.69 µg of DNA and 
the LSK-109 ligation sequencing kit (Oxford Nanopore, Littlemore, UK), following 
repair and end-polishing of the sheared DNA using the NEBNext  Companion Mod-
ule for Oxford Nanopore Technologies ligation kit (New England Biolabs, Ipswich, 
MA, USA). Finally, 0.595 µg of library were loaded on a R9.4.1 MinION flow cell 
and sequencing was performed on a GridIon benchtop platform (Oxford Nanopore).

Assembly and annotation

All bioinformatics analyses were performed on the THOT superdome flex server at 
“Université Laval”. MiSeq reads were first processed with AfterQC (Chen et al. 2017) 
to remove adapters and low-quality reads. They were assembled using SPAdes v.3.15.5 
(Bankevich et al. 2012), with a k-mer parameter of 125. Data mining in the pool of 
contigs was done with blastn command line (Camacho et al. 2009). Boundaries of 
the contigs were extended using the addSolexaReads.pl script of Consed (Gordon and 
Green 2013). Basic statistics of the Nanopore reads were obtained with NanoStat (De 
Coster et al. 2018). Nanopore reads were first filtered using Filtlong v.0.2.1 (https://
github.com/rrwick/Filtlong), with the two contigs obtained from short reads as a ref-
erence. The filtered reads were assembled using Canu v.2.2 (Koren et al. 2017) with a 
genome size parameter of 0.05M. The contig obtained from Canu was polished with 
Pilon v.1.24 (Walker et al. 2014) using the MiSeq paired-end reads. Polishing with 
Pilon was stopped after four iterations, the last one leading to a single base correction.

Annotation was performed with the help of MITOS (Bernt et al. 2013) and manually 
curated. tRNA genes were identified using Arwen v.1.2 (Laslett and Canbäck 2008). The 
exact boundaries of the inverted-repeat-like structure were found using the LAST aligner 
(Kiełbasa et al. 2011). The map of the organellar genome was obtained with OGDRAW 
(Lohse et al. 2013). The sequences corresponding to the inverted-repeat like structure and 
the simple repeat portion were displayed with WebLogo v.3 (Crooks et al. 2004).

Maximum likelihood phylogeny

Protein-coding genes and the corresponding amino-acid sequences were extracted from 
the mitochondrial genomes of 15 taxa of Stomiiformes, including M. niger. Xiphias 
gladius Linnaeus, 1758 was used as an outgroup. Nucleotide and inferred amino-acid 
sequences of all conserved mitochondrial genes (ATP6, ATP8, cox1, cox2, cox3, cytB, 
ND1, ND2, ND3, ND4, ND4L, ND5, ND6) were first concatenated for each species/
dataset and then aligned using MAFFT 7 (Katoh and Standley 2013) with the “-auto” 
option. Poorly aligned regions were filtered out with trimAl (Capella-Gutiérrez et al. 
2009) using the “-automated1” option, and the trimmed version of each data set was 
used to determine the best model of nucleotide and amino-acid evolution with Model-
Test-NG (Darriba et al. 2020). Maximum likelihood phylogenies were obtained using 
IQ-TREE v.2.2.0 (Minh et al. 2020), with 10 000 bootstrap replications in both cases.

https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
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Data resources

The mitochondrial genome has been submitted to GenBank with accession number 
OP326280. The raw fasta file, the annotated gbk file and a fastq file containing the 
longest Oxford Nanopore read supporting the assembly can be found on Zenodo fol-
lowing this link: https://doi.org/10.5281/zenodo.7330521.

Results

Malacosteus niger mitogenome assembly using short sequencing reads

The size and sequence coverage of the mitogenome contigs obtained after SPAdes 
assembly of short sequencing reads are indicated in Table 1. Two contigs contain-
ing protein-coding and ribosomal RNA genes were retrieved by blastn analyzes 
using mitogenome data from other Stomiiformes as queries, while the two other 
contigs were found by extending the end sequences of the former contigs using 
Consed. The 1198 bp contig displayed twice the coverage of other contigs and 
could be placed in an inverted-repeat position at both ends of the 12 311 bp con-
tig. One copy of the inverted repeat also proved to be linked to the 4467 bp contig. 
The 750 bp contig shared short sequences with the inverted repeat but this overlap 
remained ambiguous.

Assembly of the complete M. niger mitogenome using long sequencing reads

Oxford Nanopore sequencing was undertaken to confirm and resolve the contig 
overlaps that were identified using the short read approach. Table 2 shows the sta-
tistics of the Nanopore reads obtained before and after Filtlong filtering on the 
reference 12 311 and 4467 bp contigs. Canu assembly of the filtered reads returned 
a single 24 086 bp contig with overlapping end sequences. A 21 263 bp contig 
representing the complete mitogenome remained after trimming this overlap. It is 
worth noting that a single Nanopore read of 20 972 bp covered nearly the complete 
genome (Table 2).

Table 1. Sizes, coverage and gene contents of the M. niger mitogenome contigs obtained after assembly 
of short sequencing reads.

Size of the contig (bp) 12 311 4467 1198 750
Coverage 162.46X 156.70X 270.75X 121.78X
Gene content ND2, cox1, cox2, ATP8, ATP6, cox3, 

ND3, ND4L, ND4, ND5, ND6, cob, 
18 tRNA genes

ND1, rrnS, rrnL, 3 tRNA genes None None

http://www.ncbi.nlm.nih.gov/nuccore/OP326280
https://doi.org/10.5281/zenodo.7330521
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Table 2. Basic statistics of the Nanopore reads before and after Filtlong filtering.

Nanopore reads (before filtering) Nanopore reads (after filtering)
Mean read length (bp) 3854 4093
Mean read quality 13.2 14.4
Median read length (bp) 1754 3304.0
Median read quality 13.2 14.4
Number of reads 212 934 153
Read length N50 (bp) 8515 6327
Total bases (bp) 820 590 847 626 269
Top 5 longest reads (bp) 78 432, 77 491, 63021, 58 837, 58 554 20 972, 17 597, 14 526, 14 300, 12 821

Figure 3. Map of the mitochondrial genome of Malacosteus niger. The type of genes are indicated in the 
legend. The additional black boxes correspond to the two inverted-repeat structures and the long single-
repeats fragment.



Romain Gastineau et al.  /  ZooKeys 1157: 177–191 (2023)184

Structure and gene content of the M. niger mitogenome

The 21 263 bp mitogenome of M. niger (GenBank: OP326280) contains 46% G+C 
and encodes 13 proteins, 22 tRNAs and 2 rRNAs (Fig. 3). It features a 1198 bp 
inverted-repeat structure with 44% G+C (Fig. 4); one copy of this repeat is located 
between the genes encoding tRNA-Thr and tRNA-Ile, while the second copy is located 
between the genes encoding tRNA-Met and tRNA-Pro. Another region rich in repeated 
elements is found between the genes encoding tRNA-Phe and tRNA-Met. This region 
of 2616 bp contains 36% G+C and features repeat elements of 41 and 26 bp (Table 3): 
The 41-bp and 26-bp elements are repeated 16 and 26 times, respectively, at positions 
that alternate between the two elements. There is an overlap between ATP6 and ATP8 
and also between ND4L and ND4. Finally, it should be noted that the cox2, ND4 and 

Figure 4. Sequence of the 1198 bp inverted-repeat structure found in the mitochondrial genome of 
Malacosteus niger.

Table 3. Sequences of the repeat elements identified in the region of the M. niger mitogenome located 
between the tRNA-Met and tRNA-Phe genes.

Sequence of the repeated motif Number of occurrences
(5’-CATATATCAATATCGACATATGTCAATATTGACATATATCA-3’) 16
(5’-GTCAATACAAACGCATGTGTTTTTAT-3’) 26

http://www.ncbi.nlm.nih.gov/nuccore/OP326280
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Figure 5. Maximum likelihood phylogenetic tree obtained from concatenated amino-acid sequences 
of the mitochondrial proteins of Malacosteus niger and other Stomiiformes, with a phylogenetically very 
distant carangiform Xiphias gladius as an outgroup.

cob genes feature stop codons that are carried by flanking sequences of tRNA genes. 
Genes are coded on both strands. Our long-read supported assembly proves that ND1, 
rrnL and rrnS are on the opposite strand in contrast to most other genes.

Phylogenic position of M. niger among the Stomiiformes

Phylogenetic analyses of the 11 411 nucleotides and 3795 amino-acid datasets were 
conducted using the GTR+I+G and mtMAM+I+G+F evolutionary models, respec-
tively. Separation between the Stomiidae and Gonostomatidae was weakly support-
ed in trees inferred from both datasets, but several nodes within the Stomiidae clade 
proved to be more robust, especially in the amino acid inferred phylogeny. Both the 
nucleotide and amino-acid trees revealed that the Malacosteinae M. niger is sister to the 
Melanostomiinae Tactostoma macropus Bolin, 1939 (LC377784), forming a clade with 
the Melanostomiinae Photonectes margarita (Goode & Bean, 1896) (AP018417) and 
Trigonolampa miriceps Regan & Trewavas, 1930 (AP012961). This group of taxa is sis-
ter to a clade containing the Stomiinae Stomias atriventer Garman, 1899 (MG321595) 
and the Chauliodontinae Chauliodus sloani Bloch & Schneider, 1801 (AP002915) 
in the amino-acid phylogeny (Fig. 5), and to the Astronesthinae Astronesthes lucifer 
Gilbert, 1905 (AP012959) in the nucleotide phylogeny (Fig. 6).

http://www.ncbi.nlm.nih.gov/nuccore/LC377784
http://www.ncbi.nlm.nih.gov/nuccore/AP018417
http://www.ncbi.nlm.nih.gov/nuccore/AP012961
http://www.ncbi.nlm.nih.gov/nuccore/MG321595
http://www.ncbi.nlm.nih.gov/nuccore/AP002915
http://www.ncbi.nlm.nih.gov/nuccore/AP012959
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Discussion

With 21 263 bp, the mitogenome of M. niger is among the largest described so far 
among the Actinopterygii. Recent studies have unveiled very large mitochondrial ge-
nomes among metazoan invertebrates, with a current record of 93 065 bp being held 
by the parasitic cnidarian Polypodium hydriforme Ussov, 1885 (MN794187) (Novo-
solov et al. 2022), closely followed by the 67 195 bp of the zebra mussel Dreissena poly-
morpha (Pallas, 1771) (CM035931) (McCartney et al. 2022). Among Chordata, the 
largest known mitogenomes belong to the amphibian Breviceps adspersus Peters, 1882 
(AB777216) and the Actinopterygii Drepane punctata (Linnaeus, 1758) (KM273123), 
which reach 28 757 and 23 152 bp, respectively.

Inverted-repeat structures are a common feature among plastomes (Turmel and 
Lemieux 2018), with a few exceptions such as the microalgae Pelagophyceae (Ong 
et al. 2010) and some species of the Dictyochophyceae (Han et al. 2019). However, 
the presence of such structures in mitogenomes is unusual. To our knowledge, mi-
togenome inverted repeats have been reported so far only among Stramenopiles and 
Basidiomycetes (Nieuwenhuis et al. 2019), and a few Chlorophyceae (Robbens et al. 
2007; Worden et al. 2009; Pombert et al. 2013; Satjarak et al. 2017; Turmel et al. 
2020). Inverted repeats have been identified in some metazoan mitogenomes but their 
sizes rarely exceed 30 bp (Čechová et al. 2018).

Unveiling unusual features in mitogenomes often faces technical limitations, such 
as those described in the current study that resulted from the use of short sequenc-
ing reads. Discovery of metazoan mitogenomes with anomalous characteristics will 
certainly become more common with increased use of long-read sequencing. In re-
cent studies, long-read sequencing has been decisive in resolving the complex control 

Figure 6. Maximum likelihood phylogenetic tree obtained from concatenated nucleotide sequences of 
the mitochondrial proteins of Malacosteus niger and other Stomiiformes, with a phylogenetically very 
distant carangiform Xiphias gladius as an outgroup.

http://www.ncbi.nlm.nih.gov/nuccore/MN794187
http://www.ncbi.nlm.nih.gov/nuccore/CM035931
http://www.ncbi.nlm.nih.gov/nuccore/AB777216
http://www.ncbi.nlm.nih.gov/nuccore/KM273123
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regions of mitogenomes from Gastropoda (De Vivo et al. 2022) and trematodes 
(Kinkar et al. 2021), and to assess the presence of two mitochondrial chromosomes in 
the isopod Isocladus armatus H. Milne Edwards, 1840 (Pearman et al. 2022) and the 
Tuatara lizard, Sphenodon punctatus Gray, 1842 (Macey et al. 2021).

Additional mitogenome sequences from the Malacosteinae are clearly needed to 
resolve the phylogenetic position of these bioluminescent fishes. Malacosteus niger is 
the only representative of the Malacosteinae that has been sampled so far among the 
three genera described in this subfamily. It will be particularly important to analyze 
the mitogenomes from the two remaining genera (Aristostomias Zugmayer, 1913 and 
Photostomias Collett, 1889) that harbor a total of 14 valid species. These studies are 
expected to shed light not only on the phylogenetic positions of these bioluminescent 
fishes but also on the putative presence, origin and evolution of the inverted-repeat 
structure among the mitogenomes of Malacosteinae.
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