

Research Article

Uneven species occurrence and richness of lowland snakes (Serpentes, Squamata) in Terengganu, Peninsular Malaysia, with new locality records

Muhamad Fatihah Syafiq¹⁰, Baizul Hafsyam Badli-Sham¹⁰, Larry Lee Grismer²⁰, Amirrudin B. Ahmad^{1,30}

1 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

2 Herpetology Laboratory, Department of Biology, La Sierra University, Riverwalk Parkway, Riverside, California 92505, USA

3 Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

Corresponding author: Amirrudin B. Ahmad (amirrudin@umt.edu.my)

Abstract

This study documents information on the composition, diversity, richness, and temporal occurrence of snakes at Sekayu's lowland forest (SLF), Terengganu, Peninsular Malaysia for the first time. The snakes recorded within the SLF were sampled opportunistically from 2013 to 2019, employing the Visual Encounter Survey method (VES) and L-shape pitfall traps with drift fences. Forty-six snake species from 37 genera belonging to the nine families were recorded, of which 11 were new records to Terengganu. Individual-based rarefaction and extrapolation curves were not reaching asymptote, indicating that additional species can be recorded at the study area. Non-parametric species richness estimators estimated and produced a range between 51 and 57 species. ACE was the best estimator based on the quantitative evaluation. All species showed some variations of occurrence patterns across months. Fourteen species were only encountered once across the sampling years, and interestingly 11 of them were only detected during the rainy season (late October to January). In general, the number of species richness, abundance, and rare species were high during this season. Species richness of snakes is high at SLF but sampling effort should be intensified, especially during these rainy months, to obtain a robust estimated snake species richness in SLF. Terengganu harbor considerably high species richness of snakes with a total of 71 species to date (excluding marine snakes), but snake diversity is still underestimated as only a few localities were surveyed in the past years, primarily at the northern part. Future surveys should be commenced at the central and southern parts of Terengganu to complement the current investigation.

Key words: Monsoon, reptiles, species richness estimation, species turnover, tropical rainforest

Introduction

Snakes are some of the most significant faunal components of an ecosystem. They play a crucial role in predator-prey relationships (Marshall et al. 2020; D'souza et al. 2021; Natusch et al. 2021), are highly potential bio-indicators for the ecosystem including for climate change (Bickford et al. 2010; Weatherhead et al. 2012; Böhm et al. 2016; Lourenço-de-Moraes et al. 2019; Zipkin et al.

Academic editor: Robert Jadin Received: 30 September 2022 Accepted: 11 March 2023 Published: 26 June 2023

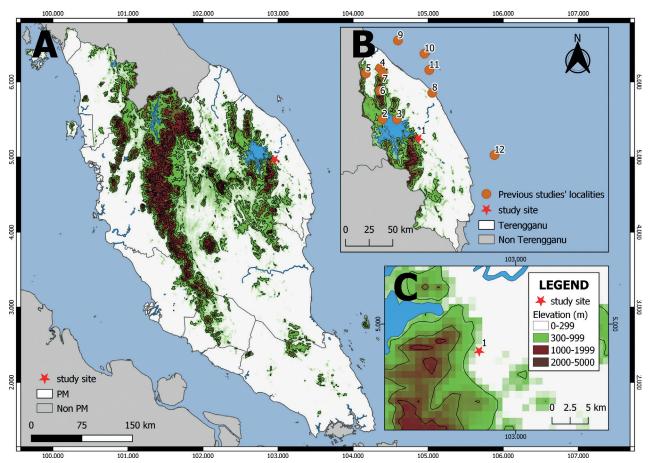
ZooBank: https://zoobank.org/ C575EFE1-3151-4AAC-8322-CCFE9664772C

Citation: Syafiq MF, Badli-Sham BH, Grismer LL, Ahmad AB (2023) Uneven species occurrence and richness of lowland snakes (Serpentes, Squamata) in Terengganu, Peninsular Malaysia, with new locality records. ZooKeys 1168: 11–39. https://doi. org/10.3897/zookeys.1168.95833

Copyright: [©] Muhamad Fatihah Syafiq et al. This is an open access article distributed under terms of the CC0 Public Domain Dedication. 2020) and habitat degradation monitoring (Todd and Andrews 2008; Beaupre and Douglas 2009; Pike et al. 2010; Shelton et al. 2020). Regrettably, snakes as well as lizards receive poor conservation attention compared to other reptile groups such as tortoises and turtles (Böhm et al. 2013; Shahirah-Ibrahim et al. 2018) and crocodiles and gharials (Martin 2008; Somaweera et al. 2019, 2020).

Malaysia is a tropical region with high endemism and richness of snakes (Roll et al. 2017). Currently, there are at least 191 species reported from Malaysia (MyBis 2021). Although snake species richness in this region is high, the distribution and genetic information are scarce due to limited sampling opportunities (Quah et al. 2018a, b, c; Chan and Grismer 2021a). This is likely because snakes are elusive fauna and notoriously difficult to sample due to their mobility (Barnes et al. 2017; Marshall et al. 2019; Fujishima et al. 2021; Jones et al. 2022), phenological idiosyncrasies (Brown and Shine 2002; Rahman et al. 2013), cryptic morphology and detection, and naturally occur in low densities (Chan and Ahmad 2009; Durso et al. 2011). Therefore, this hampers the conservation efforts and ecological studies of Malaysian snakes (Chan and Grismer 2021a, b).

Terengganu's forests are still relatively understudied regarding snake diversity compared to other group of reptiles, and most of the information available for snakes are only from herpetofauna checklists, derived from short-term inventories (e.g., Dring 1979; Grismer et al. 2011; Sumarli et al. 2015; Badli-Sham et al. 2019; Zakaria et al. 2019; Fatihah-Syafiq et al. 2020; Komaruddin et al. 2020). In comparison to the lizards, freshwater turtles, and tortoises, ecological studies solely focusing on snakes in Terengganu is non-existent (Grismer and Chan 2008; Grismer et al. 2009, 2014a; Chan and Norhayati 2010; Chan and Chen 2011; Shahirah-Ibrahim et al. 2018).


Sekayu's lowland forest (SLF), provide a potential site for conducting an ecological study on snake assemblages. A large part of this area resides within the Hulu Terengganu Tambahan Forest Reserve. The lowland forest includes a protected area, Sekayu Recreational Forest (SRF) and Sekayu Agricultural Park (SAP). The latter was developed for agro-based tourism and ecotourism purposes (Bhuiyan et al. 2012). The presence of visitors at these areas may induce human-wildlife conflict, between human and snakes. However, data on snake species richness in SLF is limited. Data to inform park' managers to spread the awareness and information among the visitors are lacking. Only two snake species, Naja sumatrana Muller, 1887 and Tropidolaemus wagleri (Boie, 1827) are known from this locality based on Zakaria et al. (2019) checklist. Regrettably, this number is likely seriously underestimating the species richness of snakes from this area due to the short-term inventory executed by the study. In contrast, a few new discoveries in various faunal groups were made here such as crabs (Ng and Ahmad 2016; Ng 2020), frogs (Chan et al. 2020), and skinks (Grismer et al. 2014b, 2018; Sumarli et al. 2016), implying that the diversity of fauna is high in this underexplored forest.

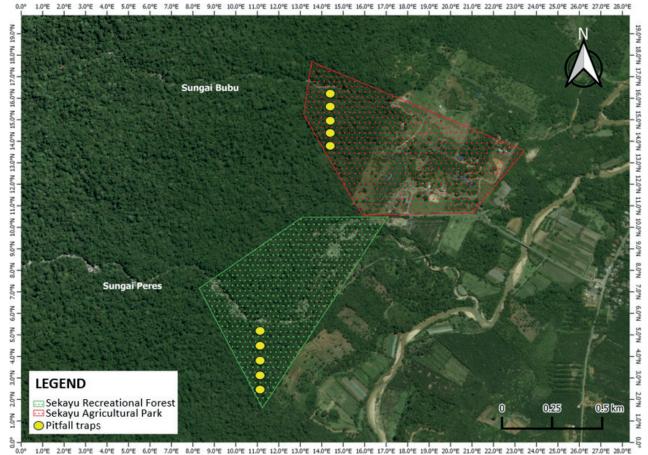
Herein, we compiled a checklist of snakes from Sekayu's lowland forest (SLF) from our study and included information on snakes from previous studies at other localities in Terengganu. We also examined the snake composition using our data at SLF, Terengganu, delivering information about snakes' diversity, richness, and their temporal occurrence from this locality.

Materials and methods

Survey area

Sekayu's lowland Forest (**SLF**) is situated in the state of Terengganu, Peninsular Malaysia (4.9676°N, 102.9549°E) (Fig. 1). The Hulu Terengganu Tambahan Forest Reserve comprises approximately 10,899 hectares. The landscape of SLF ranges from flat lowland forest to hilly terrain (area focused upon in this study: \leq 150 m a.s.l). Primary and secondary dipterocarp forests characterize the vegetation at SLF. The lowland dipterocarp forest can be found at the elevation of < 300 m at the study area, characterized by several tree layers and the upper layers of emergent trees as tall as or > 35 m. The lower strata consist of various species of trees including many small shrubs, herbs, and understory palms (Saw 2010). Common tree species in lowland dipterocarp forests of Hulu Terengganu include *Hopea* spp., *Shorea leprosula*, and *Dipterocarpus* spp. from the major timber family Dipterocarpaceae (Pounsin et al. 2018). Two main streams flow through the study site, namely the Sungai (= river) Bubu and Sungai Peres. These rivers consist of fast-flowing cascades and waterfall at the upper section, followed by rocky and sandy streams in the middle and

Figure 1. A map of Peninsular Malaysia (left) showing the Sekayu's lowland forest, and the study site indicated by the red star. Insets illustrate **B** the localities of previous studies in Terengganu state where data of snake occurrences were compiled: 1. Sekayu lowland forest, 2. Tembat Forest Reserve, 3. Kenyir Lake, 4. Lata Belatan, 5. Lata Tembakah, 6. Gunung Lawit, 7. Gunung Tebu, 8. Universiti Malaysia Terengganu (UMT), 9. Pulau Perhentian Besar, 10. Pulau Redang, 11. Pulau Bidong, 12. Pulau Tenggol, and **C** the elevation of the study area.


lower parts. The former river runs through the Sekayu Agricultural Park (**SAP**) and the latter flows through the Sekayu Recreational Forest (**SRF**). Within SAP and SRF, there are anthropogenic structures such as authority offices, roads, and public facilities such as chalets, toilets, cemented walls, wooden huts, as well as including artificial lakes and pools built for various reasons. The mean rainfall of SLF is < 250 mm during the dry period (April to September) and > 250 mm during the rainy period (October to March). The rainy period is also known as monsoon season, and the dry period occurs during the non-monsoon. We divided the non-monsoon season into two categories, post-monsoon (April to August) and pre-monsoon (September) periods. This area has average temperatures of 30 °C and high humidity (> 80%) throughout the year and generally heavy rainfalls are experienced in the months of November and March.

Data collection

Surveys were executed opportunistically during the years 2013-2019. Most of the collections were made for a few months within the year and more surveys were done in the dry period because the SLF was closed between November and February. The collection area spanned the low-lying to the hilly areas (< 300 meters), anthropogenic areas, and along the streams. Visual Encounter Survey (VES) and drift-fenced pitfall traps were employed during the study as collecting methods. There were ten sets of pitfall trap installed in the forested area at both Sekayu Recreational Forest and Sekayu Agricultural Park (five sets for each site; Fig. 2). Each set comprised three 18-L buckets with 1.5 m aluminum zinc fences. The pitfalls were set in a straight line. The distance between each set of pitfall traps varied from 20 to 30 m due to geographical constraints. The surveys were aggregated into two time periods: daily surveys (ranging between 1000 hr and 1500 hr) and nocturnal surveys (ranging between 1900 hr and mid-night). Surveys were conducted with field parties consisting of four or five people. Voucher specimens were collected for each species, snakes were euthanized using benzocaine, fixed with 10% formalin, and tagged with the Universiti Malaysia Terengganu Zoological Collection (UMTZC) and Universiti Malaysia Terengganu Zoological Collection Photograph (UMTZCP) codes before being stored in 70% ethanol (see Appendix 1). Liver tissue was taken before the fixation with formalin and stored in 95% ethanol for future molecular studies. All vouchered specimens were deposited in the General Lab Biology, Universiti Malaysia Terengganu (UMT). Identification of species followed Cox et al. (1998) and Das (2010). The latest taxonomic nomenclature follows The Reptile Database (Uetz et al. 2020). For the consolidated checklist and notes, information was searched for through Google Scholar using English language terms to identify published herpetofaunal studies in Terengganu, in order to obtain available records of the snake species in this state. The following terms in various combinations were used: "herpetofauna", "reptiles", "snakes", and "Terengganu". Non-peer reviewed sources such as technical reports were excluded.

Data analysis

A pie chart, bar chart, and Rank Abundance Curve (RAC) were plotted to assess snake composition and species abundance distribution using Microsoft Excel.

The species composition was based on cumulative abundance from all collections since 2013. The Chi-square goodness of fit test was used to fit the species abundance with four abundance models and evaluate which model best fits the dataset of snakes present in Sekayu lowland forests. This test was run using the PAST software (Hammer et al. 2001).

The "iNEXT" R package v. 2.0.20 (Hsieh et al. 2016) was utilized by using R v. 4.1.3 (R Core Team 2022), aided by RStudio integrated development environment (RStudio 2022). The first three Hill numbers (richness, q = 0; Shannon diversity index, q = 1; Simpson diversity index, q = 3) (Hill 1973) were measured. The Hill numbers for these species diversity orders were then used to plot the sample rarefaction and extrapolation curve to measure the sampling effort.

The eight non-parametric species richness estimator values, abundance-based coverage estimator (ACE), incidence-based coverage estimator (ICE), Chao 1 estimator, Chao 2 estimator, first-order Jackknife (Jack 1), second-order Jackknife (Jack 2), Michaelis–Menten Mean (MMMean), and Michaelis–Menten Runs (MMRuns), were calculated using EstimateS v. 9.10 (Colwell 2005). The sample order was randomized 100 times to compute the mean estimator and species richness for each accumulation sample level. To evaluate the estimators, three quantitative evaluation measures were used: bias (scaled mean error), precision (coefficient of variation), and accuracy (scaled mean square error). The bias, precision, and accuracy were calculated following Walther and Moore (2005). Later, each of the measure values for each estimator was ranked accordingly. The value close to "0" was ranked as the number "1" rank and the rank number increased as the estimated value far from "0". The final ranking was based on a total of each estimator's number of ranks. The lowest value of the total accumulation was chosen as the best estimator.

The seriation of species presence/absence across months of the sampling years (January to December) was performed using a constrained algorithm (Brower and Kile 1988), done using PAST software. The seriation diagram of species presence/absence was edited to represent species abundance in each respective month. Temporal indices comprised of total turnover, species appearances, and species disappearances were calculated using the "codyn" R package v. 2.0.5 (Collins et al. 2008; Hallett et al. 2016). The total turnover calculated was the proportion of species richness (lost and gained) in relation to the total species in each month-to-month comparison. The turnover metric varied from 0 (no species gained or lost) to 1 (complete species replacement) (Collins et al. 2000).

Results

Species checklist of snakes in Terengganu

Table 1 incorporates data from this study and previous studies (Grismer et al. 2011; Sumarli et al. 2015; Nur Amalina et al. 2017; Badli-Sham et al. 2019; Zakaria et al. 2019; Fatihah-Syafiq et al. 2020; Komaruddin et al. 2020) that included snake species known to the state of Terengganu to date. This consolidated checklist documents 71 species of snakes found in Terengganu. Of this, 46 snake species from 37 genera belonging to the nine families were recorded from SLF. There were 11 new records acquired from this study, namely *Bungarus candidus* (Linnaeus, 1758) (Fig. 3A), *Dendrelaphis haasi* Van Rooijen & Vogel, 2008 (Fig. 3B), *Dendrelaphis striatus* (Cohn, 1905), *Dryophiops rubescens* (Gray, 1834) (Fig. 3C), *Lycodon albofuscus* (Dumeril, Bibron & Dumeril, 1854), *Lycodon effraenis* Cantor, 1847, *Oligodon purpurascens* (Schlegel, 1837), *Oligodon signatus* (Gunther, 1864) (Fig. 3D), *Ptyas fusca* (Gunther, 1858) (Fig. 3E), *Argyrophis muelleri* (Schlegel, 1839) (Fig. 3F), and *Xenopeltis unicolor* Reinwardt, 1827 to the state of Terengganu.

Notes on the new record species and their distribution in Peninsular Malaysia

Bungarus candidus (Linnaeus, 1758) Fig. 3A Blue Krait Snake

Natural history notes. This species can be identified by its cylindrical body with enlarged vertebral scale row; head not distinct from neck; head black dorsally and connected with the first body marking forming chevron shape; body with black crossbands with white interspaces; chin, neck, and ventral of the body white. Most individuals were frequently found during the rainy period (October to March), either crossing roads or foraging near the slow-flowing stream.

Table 1. Consolidated checklist of snakes in Terengganu. This list was compiled from results of this study as well as published works of Grismer et al. (2011)¹, Sumarli et al. (2015)², Nur Amalina et al. (2017)³, Badli-Sham et al. (2019)⁴, Zakaria et al. (2019)⁵, Fatihah-Syafiq et al. (2020)⁶, and Komaruddin et al. (2020)⁷. Asterisks (*) denote new records. Codes are included for species recorded from SLF.

No	Code	Family/ Species	Pulau Bidonde	Pulau Perhentian Besar ¹	Pulau Redang ¹	Pulau Tenggol ¹	Tembat	Forest Reserve ³	Kenyir Lake ^{5,7}	Lata Belatan²	Lata Tembakah²	Gunung Lawit ²	Gunung Tebu ²	UMT⁴	Sekayu (this study)
	1	Achrochordidae											1		
1		Achrochordus javanicus Hornstedt, 1787						х							
		Colubridae													
2	Ahmyc	Ahaetulla mycterizans (Linnaeus, 1758)						х							х
3	Ahpra	Ahaetulla prasina (Boie, 1827)		х	х	х			х					х	х
4	Bocyn	Boiga cynodon (Boie, 1827)						х							х
5	Bodra	Boiga drapiezii (Boie, 1827)								х		х	х		х
6	Bojas	<i>Boiga jaspidea</i> (Dumeril, Bibron & Dumeril, 1854)						х		х					x
7	Bomel	Boiga melanota (Boulenger, 1896)		х	х			х	х			х		х	х
8	Bonig	Boiga nigriceps (Gunther, 1863)										х	х		х
9		Calamaria lumbricoidea Boie, 1827						х							
10	Capav	<i>Calamaria pavimentata</i> Dumeril, Bibron & Dumeril, 1854						х	х						x
11	Chorn	Chrysopelea ornata (Shaw, 1802)		х				х						х	х
12	Chpar	Chrysopelea paradisi Boie, 1827						х							х
13	Chpel	Chrysopelea pelias (Linnaeus, 1758)						х							х
14	Cofla	Coelognathus flavolineatus (Schlegel, 1837)						х	х						х
15		Coelognathus radiatus (Boie, 1827)												х	
16	Decau	Dendrelaphis caudolineatus (Gray, 1834)						х							х
17		Dendrelaphis cyanochloris (Wall, 1921)											х		
18	Defor	Dendrelaphis formosus (Boie, 1827)									х				х
19	Dehaa	<i>Dendrelaphis haasi*</i> Van Rooijen & Vogel, 2008													х
20	Depic	Dendrelaphis pictus (Gmelin, 1789)		х	Х			х	х					х	х
21	Destr	Dendrelaphis striatus* (Cohn, 1905)													х
22	Drrub	Dryophiops rubescens* (Gray, 1834)													х
23	Lyalb	<i>Lycodon albofuscus*</i> (Dumeril, Bibron & Dumeril, 1854)													х
24	Lycap	Lycodon capucinus Boie, 1827	х	х											х
25	Lyeff	Lycodon effraenis* Cantor, 1847													х
26	Lysuba	<i>Lycodon subannulatus</i> (Dumeril, Bibron & Dumeril, 1854)		х											х
27	Lysubc	Lycodon subcinctus Boie, 1827		х				х		х					х
28		Gonglyosoma longicauda (Peters, 1871)						х							
29		Gonyosoma prasinum (Blyth, 1854)						х							
30	Gooxy	Gonyosoma oxycephalum (Boie, 1827)		х											х
31		Oligodon octolineatus (Schneider, 1801)						х							
32	Olpur	Oligodon purpurascens* (Schlegel, 1837)													х

No	Code	Family/ Species	Pulau Bidond ⁶	Dulan	Perhentian Besar ¹	Pulau Redand ¹	Pulau	Tenggol	Tembat	rorest Reserve ³	Kenyir Lake ^{s,7}	Lata Belatan²	Lata Tembakah²	Gunung Lawit ²	Gunung Tebu ²	UMT⁴	Sekayu (this study)
33	Olsig	Oligodon signatus* (Gunther, 1864)															х
34	Pslon	Pseudorhabdion longiceps (Canthor,1847))	¢							х
35		Pseudorhabdion cf. longiceps													х		
36		Ptyas carinata (Gunther, 1858))	ĸ							
37	Ptfus	Ptyas fusca* (Gunther, 1858)															х
38		Ptyas korros (Schlegel, 1837))	ĸ							
39		Xenelaphis hexagonotus (Cantor, 1847))	ĸ							
40	Xeuni	Xenopeltis unicolor* Reinwardt, 1827															х
		Elapidae															
41	Bucan	Bungarus candidus* (Linnaeus, 1758)															х
42		Bungarus fasciatus (Schneider, 1801))	ĸ							
43	Bufla	Bungarus flaviceps Reindhart, 1843							>	ĸ	х						x
44		Calliophis bivirgatus (Boie, 1827))	ĸ		х					
45	Caint	Calliophis intestinalis (Laurenti, 1768))	ĸ							х
46	Nakou	Naja kaouthia Lesson, 1831)	ĸ						х	х
47	Nasum	Naja sumatrana Muller, 1887)	ĸ							х
48		Ophiophagus hannah (Cantor, 1836))	ĸ							
		Homalopsidae										1					
49	Enenh	Enhydris enhydris (Schneider, 1799))	ĸ						х	x
50	Hyplu	Hypsiscopus plumbea (Boie, 1827))	ĸ		х				х	х
51	Hobuc	Homalopsis buccata (Linnaeus, 1758))	ĸ	х					х	х
52		Phytolopsis punctata Gray, 1849)	ĸ							
		Natricidae															
53		<i>Rhabdophis flaviceps</i> (Dumeril, Bibron & Dumeril, 1854							>	K							
54		Rhabdophis rhodomelas (Boie, 1827)											х				
55	Rhchr	Rhabdophis chrysargos (Schlegel, 1837))	ĸ				x			х
56		Rhabdophis subminiatus (Schlegel, 1837)							>	ĸ							
57	Xetri	Xenochrophis trianguligerus (Boie, 1827))	ĸ							х
58		Fowlea piscator (Schneider, 1799))	<							
		Pareidae															
59	Apboa	Aplopeltura boa (Boie, 1828)													х		х
60		Asthenodipsas laevis (Boie, 1827))	‹							
61	Pacar	Pareas carinatus Wagler, 1830)	‹							х
62	Pamar	Pareas margaritophorus (Jan, 1866)										х					х
	1	Pythonidae				1						1	1	1			
63	Maret	Malayopython reticulatus (Schneider, 1801)	х		х	х	x		>	(x	х
64		Python brongersmai Stull, 1938							>	<							
	1	Typhlophidae				1						1	1	1	1		1
65		Argyrophis diardii (Schlegel, 1839))	<							
66	Inbra	Indotyphlops braminus (Daudin, 1803)	х	1	х												x

No	Code	Family/ Species	Pulau Bidong ⁶	Pulau Perhentian Besar ¹	Pulau Redang ¹	Pulau Tenggol¹	Tembat Forest Reserve ³	Kenyir Lake ^{s,7}	Lata Belatan²	Lata Tembakah²	Gunung Lawit ²	Gunung Tebu ²	UMT⁴	Sekayu (this study)
67	Armue	Argyrophis muelleri* (Schlegel, 1839)												х
		Viperidae												
68	Trwag	Tropidolaemus wagleri (Boie, 1827)		х			х			х				х
69		<i>Trimeresurus hageni</i> (Lidth De Jeude, 1886)						х		х				
70		<i>Trimeresurus sabahi</i> Regenass & Kramer, 1981					х				х	х		
71		Trimeresurus sumatranus (Raffles, 1822)									х			

Distribution. This species is known from a few localities from the states of Kedah, Kelantan, and Johor (Grismer and Pan 2008; Muin et al. 2017; Ayob et al. 2020).

Dendrelaphis haasi Van Rooijen & Vogel, 2008

Fig. 3B Haas' Bronzeback Snake

Natural history notes. This species can be identified by its slender body; head orangish to pale brown color dorsally; narrow postocular stripe covering less than half of the temporal region, with some black spots at the lower temporal region; and dull ventrolateral stripe. The species was found ~ 1100 hr sleeping on a twig and leaf of an ornamental tree (0.5 m high above the ground) in the plant nursery situated adjacent to the secondary forest.

Distribution. van Rooijen and Vogel (2008) stated that this species is widely distributed in Peninsular Malaysia, but Pulau Tioman was the only locality mentioned in their article. Since then, no subsequent article has reported the occurrence of this species in any other locality. This study reports the first locality record of this species in Peninsular Malaysia, specifically in the state of Terengganu.

Dendrelaphis striatus (Cohn, 1905) Banded Bronzeback Snake

Banded Bronzeback Snake

Natural history notes. This species can be identified by its slender body; head bronze-brown in color; thick black stripe extending from the snout passing through the eye and ending at the neck region; neck yellow when inflated; body yellow at the anterior and blue at the posterior with oblique black band. The species was found sleeping during night (~ 2100 hr) on the ornamental tree near the Sekayu Recreational Forest authority's office.

Distribution. This species is widely distributed in Peninsular Malaysia (MyBis 2021) but there is no record of occurrence of this species specifically from Terengganu state in any published documentation to our knowledge.

Dryophiops rubescens (Gray, 1834) Fig. 3C

Brown Whip Snake

Natural history notes. This species can be identified by its slender but laterally compressed body; head pale greyish brown dorsally with three distinct short brown stripes at the occipital region; thick dark brown stripe extending from snout, through the eye to the nape area; body greyish to brown dorsally with dark brown and cream spots. The species was found sleeping at (~ 2000 hr) on a twig of a dipterocarp tree (2 m height above ground) situated near the stream.

Distribution. This species is widely distributed in Peninsular Malaysia (My-Bis 2021) but there is no record of occurrence of this species specifically from Terengganu state to our knowledge.

Lycodon albofuscus (Duméril, Bibron & Duméril, 1854) Dark Wolf Snake

Natural history notes. This species can be identified by its elongated, slender body; elongated, depressed head; blunt snout; dorsal body uniformly grey in color; pale ventrally; dorsal scale strongly keeled. An individual was found at night between (~ 2100 hr to 2300 hr), crossing the established trail adjacent to the secondary forest, near a fast-flowing stream.

Distribution. This species was previously recorded from a few localities such as Pasoh Forest Reserve, Krau Wildlife Reserve, and Pulau Tioman (MyBis 2021) and the species is now reported from Terengganu state for the first time.

Lycodon effraenis Cantor, 1847

Brown Wolf Snake

Natural history notes. This species can be identified by its slender body, head dark brown with white stripes extending from snout, passing through the eye and ending before the nape; dorsal body dark brown with white irregularly shaped crossbands. The species was found sleeping on the tree vines (2 m height above ground) situated near a slow-flowing rocky stream.

Distribution. The species has been reported from the states of Kelantan, Johor, and Pahang (MyBis 2021). To our knowledge, this species has not been recorded in Terengganu, which located in between Kelantan to the north and Pahang to the south on the northeastern part of Peninsular Malaysia. Hence this finding confirmed the presence of this species in Terengganu state.

Oligodon purpurascens (Schlegel, 1837) Brown Kukri Snake

Natural history notes. This species can be identified by its robust body; head dark purplish with brown ocular bars; dorsal body dark brown with faint blotches

Figure 3. The new records of snakes for Terengganu recorded in SLF **A** *Bungarus candidus* **B** *Dendrelaphis haasi* **C** *Dryophiops rubescens* **D** *Oligodon signatus* **E** *Ptyas fusca* **F** *Argyrophis muelleri.*

and irregular crossbands. The species was observed at night (~ 2200 hr) on the ground near a slow-flowing stream.

Distribution. This species is widely distributed in Peninsular Malaysia (My-Bis 2021).

Oligodon signatus (Günther, 1864) Fig. 3D Barred Kukri Snake

Natural history notes. This species can be identified by its robust body; head pale brown dorsally with dark brown ocular bars; dorsal body dark brown with reddish brown triangular markings; first red crossbar had a chevron pattern

pointing towards the head. The species was found on the leaf litter substrate near the slow-flowing stream.

Distribution. Based on Chan and Ahmad (2009), this rare species was reported to occur in the states of Selangor, Melaka, Johor, Pahang, and Negeri Sembilan. From the previous reports (e.g., Tweedie 1954; Hendrickson 1966), this species was only recorded in the southern part of Peninsular Malaysia. The findings of this study extended its distribution range to the northwestern part of Peninsular Malaysia, with a new locality.

Ptyas fusca (Günther, 1858) Fig. 3E White-bellied Rat Snake

Natural history notes. This species can be identified by its olive-green body dorsally and white ventral surface; black stripes present at the sides of the posterior body and tail. The species was found sleeping on a twig (3 m height above the ground) during a rainy night at about 2100 hr.

Distribution. This species was reported from Pahang and Johor (MyBis 2021). In the IUCN Red List of Threatened Species, this species is reported to be widely distributed in Peninsular Malaysia, Sumatra, Borneo, and southern Thailand, south of the Isthmus of Kra. As far as we know, this new record extends its distribution range further north in the northeastern part of Peninsular Malaysia.

Argyrophis muelleri (Schlegel, 1839)

Fig. 3F Müller's Blind Snake

Natural history notes. This species can be identified by its cylindrical body; head black dorsally; head indistinct from the neck; vestigial eyes; black dorsum; white ventrally; tail with sharp, terminal spine. The species was found foraging at night around 2200 hr in a man-made drain.

Distribution. This species was reported from Perak, Pahang, and Johor (My-Bis 2021). Despite being a widely distributed species, this species has never been reported from the state of Terengganu, and the distribution in Peninsular Malaysia is now extended to the northeastern part with a new record.

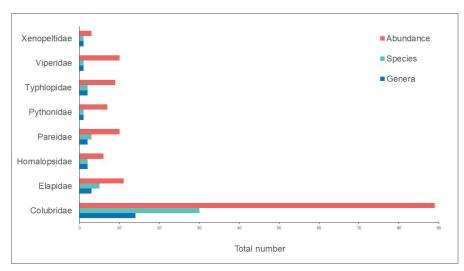
Xenopeltis unicolor Reinwardt, 1827

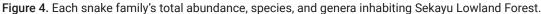
Sunbeam Snake

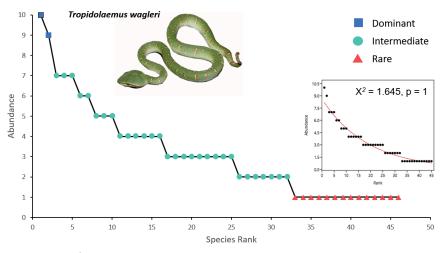
Natural history notes. This species can be identified by its relatively robust body; body and head brown in color dorsally but producing an iridescence under strong light; white ventrally; body scale smooth. The species was found foraging at night between 2000 hr and 2300 hr on the ground (sandy substrate) near the large fast-flowing stream.

Distribution. This species was reported from Kedah, Pulau Pinang, Negeri Sembilan, and Pahang (MyBis 2021). Despite being a widely distributed spe-

cies, this species has never been reported from the state of Terengganu, and the distribution in Peninsular Malaysia is now extended to the northeast.


Species abundance distribution and composition


The family Colubridae (89 individuals) has the highest number of individuals recorded in the study area (Fig. 4), followed by Elapidae (11 individuals), Paridae, Viperidae (ten individuals), Typhlophidae (nine individuals), Pythonidae (seven individuals), Homalopsidae (six individuals), and Xenopeltidae (three individuals). Genera-wise, the family has the highest number of genera (14 genera), followed by Elapidae (three genera), Homalopsidae, Paridae, Typhlophidae (two genera), and the remainder of the family with only one genus each. Concerning species richness, the family Colubridae was the most species-rich taxon (30 species), followed by Elapidae (five species), Paridae (three species), Homalopsidae, and Typhlophidae (two species), and the rest of the family with one species each (Table 1).


Fig. 5 showed that there are two dominant species, with *Tropidolaemus wagleri* had the highest number of individuals (ten individuals). Seven species were doubletons. Singletons in the rank abundance curve hereafter were considered as rare species recorded in this study. Thirteen rare species were recorded, while the remainder were intermediately abundant species. The species abundance distribution of snakes in SLF best fitted the geometric series model (X² = 1.65).

Sampling effort and species richness estimation

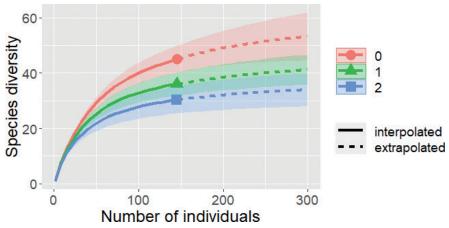

Individual-based rarefaction and extrapolation curves demonstrated that the curve for diversity measures of species richness (q = 0) does not reach the asymptote, even after the sample size was doubled to 300 individuals by the extrapolation (Fig. 6). The curves for diversity measures of Shannon's diversity (q = 1) and Simpson's diversity (q = 2) also showed an inclining trend that was not stabilized even when the sample size was increased and extrapolated. Having said that, the Simpson's diversity (q = 2) was superficially approaching asymptotic with the increasing abundance.

Figure 5. Rank abundance curve for snakes in Sekayu Lowland Forest. The X-axis indicates species rank, while the Y-axis denotes the numerical abundance of each species. Species were ranked from the most abundant to the rare species. The blue rectangle represents dominant species, the green circle represents intermediate species, and the red triangle represents rare species. The inset curve was the best fitted geometric series ($X^2 = 1.645$) model curve obtained from PAST software while the photograph is of the most abundant snake species, *Tropidolaemus wagleri*, recorded in this study.

Figure 6. Individual-based rarefaction (solid line segment) and extrapolation (dashed line segment) sampling curves with 95% confidence intervals (shaded areas) for diversity orders: q = 0 (species richness), q = 1 (Shannon's diversity), q = 2 (Simpson's diversity).

Table 2 showed that the estimated values from the non-parametric species richness estimators were varied between 51 and 73 species. An additional 5–27 species were expected by the non-parametric species richness estimators from the observed species richness. The least-bias estimator was MMMeans. All estimators seem to be highly precise except the two coverage-based estimators, ICE and ACE. However, ACE shows the most accurate species richness estimator in this study while MMRuns was the least accurate. Based on the final ranking, ACE was chosen as the best estimator to estimate the species richness of snakes in SLF, while the MMRuns estimator had the worst performance.

Temporal occurrence of snakes across the sampling years

The data of 46 species of snakes recorded at SLF showed that more snake species were observed in October (26 species) while December had the lowest

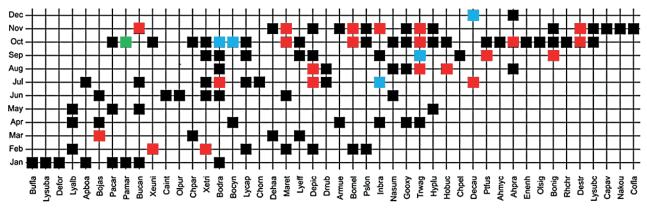

Estimators	Estimated value	Bias	Precision	Accuracy	Total Rank	Final Rank
Sobs (n = 46)						
ACE	52.48	-0.14 (2)	0.13 (2)	0.02 (1)	5	1
Chao 1	54.68	-0.20 (4)	0 (1)	0.05 (2)	7	2
MMMeans	66.79	0.05 (1)	0 (1)	0.16 (6)	8	3
Jack 2	60.04	-0.19 (3)	0 (1)	0.15 (5)	9	4
Chao 2	51.13	-0.24 (6)	0 (1)	0.10 (3)	10	5
Jack 1	57.25	-0.22 (5)	0 (1)	0.11 (4)	10	5
ICE	54.45	0.19 (3)	1.84 (3)	0.64 (7)	13	6
MMRuns	73.19	1.50 (7)	0 (1)	9.40 (8)	16	7

Table 2. Estimated values from eight non-parametric species richness estimators with their evaluation measures: bias, precision, and accuracy. Value 0 indicates no bias, high precision, and high accuracy. The ranking of the eight non-parametric estimators was based on their performance of each measure. The final ranking for each estimator was measured based on the summation of their performance (= total rank accumulation). Sobs = Observed species richness.

number of two species observed (Fig. 7). Pareas carinatus was the most frequently detected species in October (four individuals). The species that were detected thrice in the respective month across the sampling years were: July = I. braminus; September = T. wagleri; October = B. cynodon and B. drapiezii; December = D. caudolineatus. The species that were detected twice in the respective month across the sampling years were: February = X. trianguligerus and X. unicolor; March = B. jaspidea; July = B. drapiezii, D. caudolineatus, and D. pictus; August = D. pictus, H. buccata, and T. wagleri; September = B. nigriceps and P. fusca; October = A. prasina, B. melanota, D. striatus, M. reticulatus, and T. wagleri; November = B. melanota, B. candidus (Fig. 3A), D. striatus, I. braminus, M. reticulatus, and T. wagleri. The remaining species occurred only once throughout the months across the sampling years. In general, many species were recorded during early monsoon months (October-November) but fewer during the monsoon (December-January). However, the data showed that singletons/unique observations (black square) of snakes were not restricted in either monsoon (e.g, January) or non-monsoon (April–June) months.

Fig. 7 also shows that many species that were found during Jan-Feb and Feb-Mar were also found in other months during the dry and pre-rainy periods, namely *Aplopeltura boa* (Jan and Jul), *Boiga drapiezii* (Jan, Jun, Jul, Aug, Sep, and Oct), *Boiga jaspidea* (Mar, Apr, and Jun), *Boiga melanota* (Feb, Oct and Nov), *Bungarus candidus* (Jan, May, Jul and Nov), *Chrysopelea paradisi* (Mar and October), *Dendrelaphis haasi* (March and November), *Dendrelaphis pictus* (February, July, August, Sep and Nov), *Lycodon albofuscus* (Feb, Apr and May), *Lycodon capucinus* (Feb, Jul, Sep and Oct), *Lycodon effraenis* (Mar, Sep and Oct), *Malayopython reticulatus* (Feb, Jun, Oct, and Nov), *Pareas carinatus* (Jan, May and Oct), *Pareas margaritophorus* (Jan and Oct), *Pseudorhabdion longiceps* (Feb, Oct and Nov), *Xenochrophis trianguligerus* (Jan, Jun, July, Sep, and Oct), and *Xenopeltis unicolor* (Feb and Oct).

The months of May-June were in the middle of the dry period. The species found in May were *Bungarus candidus*, *Hypsiscopus plumbea*, *Lycodon albofuscus*, and *Pareas carinatus*. Meanwhile, the species found in June were *Boiga drapiezii*, *Boiga jaspidea*, *Calliophis intestinalis*, *Malayopython reticulatus*, *Naja sumatrana*, *Oligodon purpurascens*, and *Xenochrophis trianguligerus*. Both

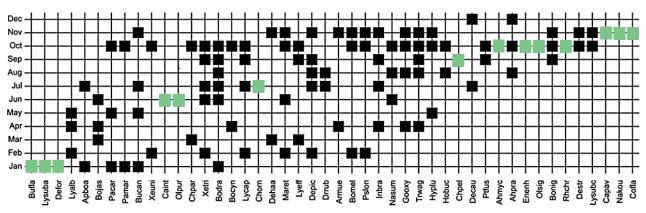


Figure 7. The seriation diagram of the species abundance in respective months over the sampling years (2013–2019). The X-axis indicates species name, and the Y-axis indicates months. Note: black rectangle = one individual, red rectangle = two individuals, blue rectangle = three individuals, green rectangle = four individuals. See Table 1 for species codes.

months showed a different observed species, indicating complete species replacement from May to June. The same pattern of differences with the different composition of snake species was also observed between the months Nov-Dec. This explained the high value of the turnover index for both pairs of months, May-Jun, and Nov-Dec. In addition, no species was found consistently every month across the 12 months of the sampling years.

Based on the presence/absence data, rare species that occurred only once (unique species) across the sampling years were detected more frequently during the pre-monsoon (October) and monsoon months (November and January) (Fig. 8). Unique species were reported during dry season as well (June and July). Species such as *Bungarus flaviceps*, *Dendrelaphis formosus*, and *Lycodon subannulatus* were detected only in January while *Calliophis intestinalis* and *Oligodon purpurascens* were seen once in June and *Chyropelea ornata* was detected in July. *Chrysopelea pelias* was detected in September only. In October, four unique species were recorded, namely *Ahaetulla mycterizans*, *Enhydris enhydris*, *Oligodon signatus*, and *Rhabdophis chrysargos* and in November, *Calamaria pavimentata*, *Coelognathus flavolineatus*, and *Naja kaouthia* were recorded.

Turnover index values varied over time in this study (Fig. 9). Species appearance was the highest and species disappearance was the lowest between

Figure 8. The seriation diagram of the species presents in respective months over the sampling years. The X-axis indicates species name, Y-axis indicates months. Note: Pale green rectangle = only one individual found across the months over the sampling years. See Table 1 for species codes.

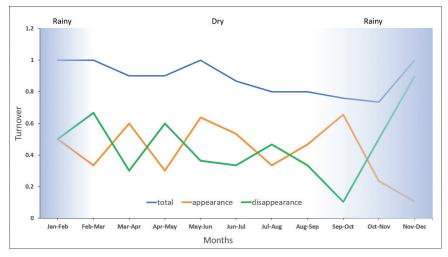


Figure 9. The turnover plot depicts the cumulative month-to-month total turnover with species appearances and disappearances. The blue shaded area indicates the rainy season, while the non-shaded area indicates the dry season.

September-October. Species appearance dropped drastically starting from the month September-October to November-December coinciding with the monsoon season. On the contrary, species disappearance rocketed from September-October to November-December as the monsoon season arrived.

Discussion

This study elevates the current knowledge of snakes in Terengganu regarding new records, species richness, and temporal occurrence of species at Sekayu's lowland forest (SLF). The number of snake species found in SLF represents 64% of the total recorded snake species found in Terengganu (Table 1). To date, SLF is regarded as the locality with the highest species richness of snakes in Terengganu. Tembat Forest Reserve, a site comparable with SLF due to the deployment of similar methods and efforts, had two species fewer than SLF, for which Nur Amalina et al. (2017) obtained a total of 44 species. Despite that, while we observed 46 species of snakes in SLF, we did not observe 16 of the species that were documented by Nur Amalina et al. (2017). In contrast, their study did not record 22 species that were recorded in our study. In total, 65 species of snakes were documented from both sites. The marked difference in species composition of snakes between both studies warrants future studies that compare the reptile diversity (snakes in particular) between these sites to elucidate the species distribution and diversity pattern and intersite similarity of the two locations.

Eleven new records were obtained in this study. These species are widespread and distributed around Peninsular Malaysia (MyBis 2021). However, these species were not found previously in other localities in Terengganu including the offshore islands (Table 1). In general, snakes are naturally rare and elusive due to their cryptic morphology, phenological idiosyncrasies, and climate and habitat-sensitivity, causing low detectability of snake species during inventories (Durso et al. 2011; Ward et al. 2017; Frazao et al. 2020; Asad et al. 2021). This factor may explain why these 11 species were previously not observed in other localities in Terengganu's forested area. Two species ranked as the topmost abundant snakes in SLF, *Tropidolaemus wagleri* (ten individuals) and *Boiga drapiezii* (nine individuals). The widespread distribution and many occurrence records (Vogel et al. 2007; HerpMapper 2023) of the former species may indicate that the species is more readily detected. Despite that, natural history information such as prey items and movement of most of the recorded snakes, including these two topmost abundant species, is limited to ascertain and explain their occurrence at the study area. However, multiple records at other sites in Terengganu (Table 1) imply that *T. wagleri* can inhabit a wide range of habitats including offshore islands while *B. drapiezii* can be found in most lowland to hilly areas near water bodies such as streams, which is the geographical characteristic of the study area.

The low number of dominant species (two species) with large proportions of rare species (14 singletons) results in high unevenness of SLF's snake assemblage (Fig. 5). The geometric series model was chosen as the best model to describe species abundance distribution for the snake assemblage of SLF. The large proportions of the singletons resulted from the rarity and elusiveness of these 14 species clearly shaped the species distribution pattern. These species only occurred once across the sampling years (Fig. 8). Despite being sampled relatively well, these species were really difficult to spot and are highly elusive species.

The individual-based rarefaction and extrapolation curves demonstrate that the sampling of snake species in SLF is not yet complete (Fig. 6). The species diversities showed an increasing trend that was not yet stabilized. Hence, the observed species richness from this study may not represent the true species richness of snakes in SLF. This may also be true for the abundance and evenness of the snake assemblages. This study attempted to estimate the species richness of snakes in SLF. Based on Table 2, an additional 5-27 species could be discovered with continuous sampling in the future. However, some of these estimates could be over-estimated due to the biasness, precision, and accuracy of the estimators used. This study evaluated the utilized estimators and found that the ACE estimator performed the best among the estimators (Table 2). The ACE estimator was moderately precise and had relatively low biasness (Table 2). The performance of low biasness and high precision of the ACE estimator in this study is also shown by the performance of this estimator in the study by Hortal et al. (2006). According to that study, the ACE estimator's advantage is that it is non-sensitive to the grain sizes (sampling effort units). Snake richness and abundance in the snake inventories can vary due to different methods used, sites, and times (e.g., Sumarli et al. 2015; Nur Amalina et al. 2017; Fiorillo et al. 2021). Hence, an estimator with such an advantage is crucial to estimate the snake species richness. According to this estimator, 54 snakes were estimated to be discovered at SLF, adding six species to the observed species richness in this study.

A study by Kery (2002) in Europe demonstrated that the probability of finding snake species might vary depending on habitat, year, season, the area surveyed, the population size of the species, and the observer. Hence, the occurrence of the snake species in the respective months in this study may or may not also apply to the same snake assemblages in other localities in Terengganu. However, we provided essential information on which months the respective snake species can be detected in this study. For instance, some species were repeatedly found in the same month over the sampling years (Fig. 7).

The snake species richness was the highest in Oct (Fig. 7). Consequently, species appearances were the highest during the transition of Sep to Oct (Fig. 9). The month of Sep marked the beginning of the monsoon season. Asad et al. (2021) demonstrated that snake species occurrence in Borneo was positively associated with humidity and rainfall. Although we did not statistically test the relationship between the rainfall and the snake assemblage, we postulate that the increase of humidity and the rainy period in Oct might also influence species richness and abundance (Figs 7, 9). Some of the species were found twice to four times during this month over the sampling years (Fig. 7): their breeding phenology may explain their high numbers of occurrences at certain months (Cox et al. 1998; Das 2010). Additionally, the snake species' high occurrence may also coincide with increased prey activity during the rainy period (Brown and Shine 2002; Natusch et al. 2021) and signal the onset of hunting period for the snake species (Natusch et al. 2022). This interaction has been demonstrated by previous studies on scrub python, Simalia amethistina (Schneider, 1801) in Australia, that has seasonal prey items (Natusch et al. 2021; 2022). Another example was a study in Thailand that radio-tracked Boiga cyanea (Dumeril, Bibron & Dumeril, 1854), and found an increase in their movements, space use, and activity during the nesting season of its prey, a songbird (D'souza et al. 2021). These results indicate that snakes have seasonal prey items, and their increased activity may be associated with prey nesting and the wet season. The previous studies used radio-tracking and yielded novel insights into the natural history, movement, and behavioral ecology of their snake species (D'souza et al. 2021; Natusch et al. 2021, 2022); hence this method also should be applied to the snakes recorded in this study area in the future to gain such information.

The heavy rain might interrupt the visual of the search parties hence causing low species richness detected in these months. Overall, these results elucidate that effort to sample snake species in SLF could be maximized during these rainy months to improve snake detection. Three other rare species, *Calliophis intestinalis*, *Chrysopelea ornata*, and *Oligodon purpurascens*, were found during the dry period. Sperry and Weatherhead (2008) found that the loss of and shifts in water availability increased the activity of the terrestrial snake *Pantherophis obosletus* (Say, 1823) in the USA. This might also be the case for the occurrence of terrestrial species of the first and last species above. Terrestrial snakes may prefer to be close to the riparian areas during the dry period (Asad et al. 2021), hence increasing the detectability of these species at our sampling sites (Figs 7, 9). Study that investigates and correlate snake species richness and abundance with rainfall and sampling sites (i.e., riparian versus hilly areas) in Terengganu should be conducted to test this hypothesis. We hope the information from our study can stimulate such study.

Herpetofaunal studies in riparian forests in Peninsular Malaysia have demonstrated that this forest type harbor significant number of species richness not only limited to reptiles but also amphibians, with new records and species (e.g., Chan et al. 2020; Badli-Sham et al. 2021; Fatihah-Syafiq et al. 2021; Quah et al. 2021). Previous studies suggested that riparian habitats should be preserved to reduce the extinction risk of many snake species as this habitat support high species richness (Todd et al. 2017; Guzy et al. 2019). Todd et al. (2017) discovered that human-dominated landscapes exacerbated snake species richness for those species that consume small vertebrates and species associated with aquatic habitats, and that species with these traits occurred more frequently in a natural landscape. Many of the observed species in Sekayu Lowland Forest (SLF) have similar traits, thus explaining the high species richness of snakes in this area. This number reflects the need for sustainable management of SLF particularly of the remaining undisturbed habitats of this area to safeguard the snake species.

Conclusions

Despite the SLF location within the forest reserve, many of the riparian forests within such reserves in Terengganu have been transformed into anthropogenic recreational areas (e.g., Lata Belatan and Lata Tembakah). This is worrying because unsustainable development and other anthropogenic activities affect reptile species richness, particularly of snakes (Gillespie et al. 2015; Bauder et al. 2020; Doherty et al. 2020; Mohd Izam et al. 2021). Sekayu's lowland forest has become the major source of new reptile species discoveries in Terengganu (Grismer et al. 2014b, 2018; Sumarli et al. 2016), implying that the remaining intact forests in SLF and other riparian forested areas in Terengganu should be preserved so that their yet unknown species are not lost before they are officially described (e.g., Grismer et al. 2016; Nur Amalina et al. 2017). The fact that SLF has two frequented localities by local visitors (Bhuiyan et al. 2012) increases the possibility of human-wildlife conflict between human and snakes. We hope the information available from this study is used to inform to park's authorities in SLF to spread awareness among the visitors to reduce such human-wildlife conflict. Overall, the results of this study echo the SLF's paramount importance as a potential conservation area for snakes of the Terengganu.

Acknowledgements

We are grateful to our field associates namely Associate Professor Dr. Evan S. H. Quah and Mr. Daicus Belabut for their assistance and guidance in completing this article. We also wish to express thanks to all Universiti Malaysia Terengganu staff and students for their participation in the field sampling. In particular, we thank Syed Ahmad Rizal, Mohd Luqman Hakim bin Ismail, Mohamad Aqmal bin Mohd Naser, Muhammad Fahmi bin Ahmad, Nur Izwan Anas, and Muhamad Izzathusna. Specifically, we thank Universiti Malaysia Terengganu for providing research equipment used during this study. We are also deeply grateful to the Department of Wildlife and National Parks Malaysia (DWNP) (research permit T-00563-16-17), Department of Forestry Peninsular Malaysia (JPSM), Forestry Department of Terengganu, Sekayu Recreational Forest staff, Agriculture Department of Terengganu, and Sekayu Agricultural Park authorities for permission to conduct the study. We thank anonymous reviewers for the insightful comments.

Additional information

Conflict of interest

No conflict of interest was declared.

Ethical statement

No ethical statement was reported.

Funding

No funding was reported.

Author contributions

Conceptualization: LLG, MFS, ABA. Data curation: BHBS, MFS. Formal analysis: BHBS, ABA, MFS. Investigation: BHBS, LLG, MFS. Methodology: BHBS, MFS, ABA. Project administration: ABA. Resources: LLG. Software: MFS. Supervision: ABA. Validation: BHBS, MFS. Visualization: BHBS, MFS. Writing - original draft: MFS, LLG. Writing - review and editing: ABA.

Author ORCIDs

Muhamad Fatihah Syafiq https://orcid.org/0000-0002-1185-3653 Baizul Hafsyam Badli-Sham https://orcid.org/0000-0003-2106-3361 Larry Lee Grismer https://orcid.org/0000-0001-8422-3698 Amirrudin B. Ahmad https://orcid.org/0000-0002-7775-1289

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

- Asad S, Ng ST, Sikui J, Rodel M-O (2021) Variable detectability and El-Nino associations with riparian snakes in Sabah, Malaysian Boreno. Journal of Tropical Ecology 38(1): 25–30. https://doi.org/10.1017/S0266467421000468
- Ayob N, Mustapha MA, Senawi J, Ahmad N (2020) Herpetofauna roadkills on Langkawi Island, Peninsular Malaysia: The influence of landscape and season on mortality distribution. Sains Malaysiana 49(10): 2373–2382. https://doi.org/10.17576/jsm-2020-4910-04
- Badli-Sham BH, Shahirah-Ibrahim N, Xian GS, Syamila-Noh H, Shukor NSAA, Shafie FA, Daud NM, Razak FAA, Rosli R, Aziz AAA, Mohammad FNF, Kamaruzzaman MF, Mohamad S, Dzu K, Shariffudin A, Najwa-Sawawi S, Ahmad A (2019) Herpetofauna of Universiti Malaysia Terengganu campus: Sustaining biodiversity in Campus Green area. Journal of Sustainability Science and Management 14(1): 11−28.
- Badli-Sham BH, Fatihah-Syafiq M, Halim M-RA, Ahmad AB (2021) Amphibian diversity of the Ulu Muda Forest Reserve, Kedah, Peninsular Malaysia. Malayan Nature Journal 73(3): 341–348.
- Barnes CH, Strine CT, Suwanwaree P, Hill JG III (2017) Movement and home range of green pit vipers (Trimeresurus spp.) in a rural landscape in north-east Thailand. Herpetological Bulletin 142: 19–28.
- Bauder JM, Breininger DR, Bolt MR, Legare ML, Jenkins CL, Rothermel BB, McGarigal K (2020) Movement barriers, habitat heterogeneity or both? Testing hypothesized effects of landscape features on home range sizes in eastern indigo snakes. Journal of Zoology 311(3): 204–216. https://doi.org/10.1111/jzo.12777
- Beaupre SJ, Douglas LE (2009) Snakes as indicators and monitors of ecosystem properties. In: Mullin SJ, Seigel RA (Eds) Snakes: Ecology and Conservation. Cornell University Press, New York, 244–261. https://doi.org/10.7591/9780801459092-013

- Bhuiyan MAH, Siwar C, Ismail SM, Islam R (2012) Envrionmental ecotourism for sustainable development in Sekayu Recreational Forest, Malaysia: Perception from the local communities. Advances in Environmental Biology 6(9): 2553–2557. https://doi. org/10.5539/ass.v9n9p11
- Bickford D, Howard S, Ng D, Sheridan J (2010) Impact of climate change on the amphibians and reptiles of Southeast Asia. Biodiversity and Conservation 19(4): 1043–1062. https://doi.org/10.1007/s10531-010-9782-4
- Böhm M, Collen B, Baillie JEM, Bowles P, Chanson J, Cox N, Hammerson G, Hoffmann M, Livingstone SR, Ram M, Rhodin AGJ, Stuart SN, van Dijk PP, Young B, Afuang LE, Aghasyan A, Garcia A, Aguilar C, Ajtic R, Akarsu F, Alencar LRV, Allison A, Ananjeva N, Anderson S, Andren C, Ariano-Sanchez D, Arredondo JC, Auliya M, Austin CC, Avci A, Baker PJ, Barreto-Lima AF, Barrio-Amoros CL, Basu D, Bates MF, Batistella A, Bauer A, Bennett D, Bohme W, Broadley D, Brown R, Burgess J, Captain A, Carreira S, Castaneda MDR, Castro F, Catenazzi A, Cedeno-Vazquez JR, Chapple DG, Cheylan M, Cisneros-Heredia DF, Cogalniceanu D, Cogger H, Corti C, Costa GC, Couper PJ, Courtney T, Crnobrnja-Isailovic J, Pierre-Andre C, Crother B, Cruz F, Daltry JC, Daniels RJR, Das I, de Silva A, Diesmos AC, Dirsken L, Doan TM, Dodd Jr CK, Doody JS, Dorcas ME, Filho JDDB, Egan VT, Mouden EHE, Flores-Villela O, Franca FGR, Frost D, Gadsden H, Gamble T, Ganesh SR, Garcia MA, Garcia-Perez JE, Gatus J, Gaulke M, Geniez P, Georges A, Gerlach J, Goldberg S, Juan-Carlos TG, Gower DJ, Grant T, Greenbaum E, Grieco C, Guo P, Hamilton AM, Hare K, Hedges SB, Heideman N, Hilton-Taylor C, Hicthmough R, Hollingsworth B, Hutchinson M, Ineich I, Iverson J, Jaksic FM, Jenkins R, Joger U, Jose R, Kaska Y, Kaya U, Keogh JS, Kohler G, Kuchling G, Kumlutas Y, Kwet A, Marca EL, Lamar W, Lane A, Lardner B, Latta C, Latta G, Lau M, Lavin P, Lawson D, LeBreton M, Lehr E, Limpus D (2013) The conservation's status of the world's reptiles. Biological Conservation 157: 372-385. https://doi.org/10.1016/j.biocon.2012.07.015
- Böhm M, Cook D, Ma H, Davidson AD, García A, Tapley B, Pearce-Kelly P, Carr J (2016) Hot and bothered: Using trait-based approaches to assess climate change vulnerability in reptiles. Biological Conservation 204: 32–41. https://doi.org/10.1016/j.biocon.2016.06.002
- Brower JC, Kile KM (1988) Sedation of an original data matrix as applied to paleoecology. Lethaia 21(1): 79–93. https://doi.org/10.1111/j.1502-3931.1988.tb01756.x

Brown GP, Shine R (2002) Influence of weather conditions on activity of tropical snakes. Austral Ecology 27(6): 596–605. https://doi.org/10.1046/j.1442-9993.2002.01218.x

- Chan KO, Ahmad N (2009) Distribution and natural history notes on some poorly known frogs and snakes from Peninsular Malaysia. Herpetological Review 40(3): 294–301.
- Chan EH, Chen PN (2011) Nesting activity and clutch size of Batagur affinis edwardmolli from the Setiu River, Terengganu, Malaysia. Chelonian Conversation and Biology 10(1): 129–132. https://doi.org/10.2744/CCB-0829.1
- Chan KO, Grismer LL (2021a) Integrating spatial, phylogenetic, and threat assessment data from frogs and lizards to identify areas for conservation priorities in Peninsular Malaysia. Global Ecology and Conservation 28: e01650. https://doi.org/10.1016/j.gecco.2021.e01650
- Chan KO, Grismer LL (2021b) A review of reptile research in Malaysia in the 21st century. The Raffles Bulletin of Zoology 69: 364–376.
- Chan KO, Norhayati A (2010) A new insular species of Cyrtodactylus (Squamata: Gekkonidae) from north-eastern Peninsular Malaysia, Malaysia. Zootaxa 2389(1): 47– 56. https://doi.org/10.11646/zootaxa.2389.1.2

- Chan KO, Abraham RK, Badli-Sham BH (2020) A revision of the Asian tree toad complex Rentapia hosii (Anura: Bufonidae) with the description of a new species from Peninsular Malaysia. The Raffles Bulletin of Zoology 68: 595–607.
- Collins SL, Micheli F, Hartt L (2000) A method to determine rates and patterns of variability in ecological communities. Oikos 91(2): 285–293. https://doi.org/10.1034/j.1600-0706.2000.910209.x
- Collins SL, Suding KN, Cleland EE, Batty M, Pennings SC, Gross KL, Grace JB, Gough L, Fargione JE, Clark CM (2008) Rank clocks and plant community dynamics. Ecology 89(12): 3534–3541. https://doi.org/10.1890/07-1646.1
- Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.0. User's Guide and application http://purl.oclc.org/estimates [accessed 18 Feb 2020]
- Cox MJ, van Dijk PP, Nabithabhata J, Thirakhupt K (1998) A Photographic Guide to Snakes and Other Reptiles of Peninsular Malaysia, Singapore and Thailand. Ralph Curtis Publishing, Sanibel, FL, 144 pp.
- D'souza A, Gale GA, Marshall BM, Khamcha D, Waengsothorn S, Strine CT (2021) Space use and activity of Boiga cyanea – A major songbird nest predator in a seasonal tropical forest in Thailand. Global Ecology and Conservation 32: e01875. https://doi. org/10.1016/j.gecco.2021.e01875
- Das I (2010) A Field Guide to the Reptiles of South-East Asia. New Holland Publishers (UK) Ltd, London, 376 pp.
- Doherty TS, Balouch S, Bell K, Burns TJ, Feldman A, Fist C, Garvey TF, Jessop TS, Meiri S, Driscoll DA (2020) Reptile responses to anthropogenic habitat modification: A global meta-analysis. Global Ecology and Biogeography 29(7): 1265–1279. https://doi. org/10.1111/geb.13091
- Dring JCM (1979) Amphibians and reptiles from northern Terengganu, Malaysia, with descriptions of two new geckos: Cnemaspis and Cyrtodactylus. Bulletin of the British Museum of Natural History 34: 181–241.
- Durso AM, Willson JD, Winne CT (2011) Needles in haystacks: Estimating detection probability and occupancy of rare and cryptic snakes. Biological Conservation 144(5): 1508–1515. https://doi.org/10.1016/j.biocon.2011.01.020
- Fatihah-Syafiq M, Badli-Sham BS, Fahmi-Ahmad M, Aqmal-Naser M, Rizal SA, Azmi MSA, Grismer LL, Ahmad AB (2020) Checklist of herpetofauna in the severely degraded ecosystem of Bidong Island, Peninsular Malaysia, South China Sea. ZooKeys 985: 143–162. https://doi.org/10.3897/zookeys.985.54737
- Fatihah-Syafiq M, Badli-Sham BH, Halim MRA, Ahmad A (2021) Checklist of reptiles in Sungai Muda sub-catchment, Ulu Muda Forest Reserve, Kedah, Peninsular Malaysia. Malayan Nature Journal 73(3): 331–339.
- Fiorillo BF, Maciel JH, Martins M (2021) Composition and natural history of a snake community from the southern Cerrado, southeastern Brazil. ZooKeys 1056: 95–147. https://doi.org/10.3897/zookeys.1056.63733
- Frazao L, Oliveira ME, Menin M, Campos J, Almeida A, Kaefer IL, Hrbek T (2020) Species richness and composition of snake assemblages in poorly accessible areas in the Brazilian Amazonia. Biota Neotropica 20(1): e20180661. https://doi.org/10.1590/1676-0611-bn-2018-0661
- Fujishima K, Tomonori K, Kojima Y, Hossman M, Nishikawa K (2021) Short-term movements of Boiga nigriceps (Günther, 1863) with notes on its diet (Squamata: Colubridae). Herpetology Notes 14: 83–89.

- Gillespie GR, Howard S, Stroud JT, Ul-Hassanah A, Campling M, Lardner B, Scroggie MP, Kusrini M (2015) Responses of tropical forest herpetofauna to moderate anthropogenic disturbance and effects of natural habitat variation in Sulawesi, Indonesia. Biological Conservation 192: 161–173. https://doi.org/10.1016/j.biocon.2015.08.034
- Grismer LL, Chan KO (2008) A new species of Cnemaspis Strauch 1887 (Squamata: Gekkonidae) from Pulau Perhentian Besar, Terengganu, Peninsular Malaysia. Zootaxa 1771(1): 1–15. https://doi.org/10.11646/zootaxa.1771.1.1
- Grismer LL, Pan KA (2008) Diversity, endemism and conservation of the amphibians and reptiles of sounthern Peninsular Malaysia and its offshore islands. Herpetological Review 39(3): 270–281.
- Grismer LL, Wood Jr PL, Grismer JL (2009) A new insular skink of the genus Sphenomorpus Strauch, 1887 (Squamata: Scincidae) from Pulau Perhentian Besar, Terengganu, Peninsular Malaysia. Tropical Life Sciences Research 20: 51–69. https://doi. org/10.11646/zootaxa.1771.1.1
- Grismer LL, Grismer JL, Wood Jr PL, Ngo VT, Neang T, Chan KO (2011) Herpetology on the fringes of the Sunda Shelf: A discussion of discovery, taxonomy, and biogeography. Bonner Zoologische Monographien 57: 57–97.
- Grismer LL, Wood Jr PL, Ahmad AB, Sumarli ASI, Vazquez JJ, Ismail LHB, Nance R, Mohd-Amin MAB, Othman MNAB, Rizal SA, Kuss M, Murdoch M, Cobos A (2014a) A new species of insular rock gecko (Genus Cnemaspis Strauch, 1887) from the Bidong Archipelago, Terengganu, Peninsular Malaysia. Zootaxa 3755(5): 447–456. https:// doi.org/10.11646/zootaxa.3755.5.4
- Grismer LL, Ismail LHB, Awang MT, Rizal SA, Ahmad AB (2014b) A new species of lowland skink (genus Lipinia Gray, 1845) from northeastern Peninsular Malaysia. Zootaxa 3821(4): 457–464. https://doi.org/10.11646/zootaxa.3821.4.4
- Grismer LL, Wood Jr PL, Syafiq MF, Badli-Sham BH, Rizal SA, Ahmad AB, Quah ESH (2016) On the taxonomy and phylogeny of the skinks Lipinia sekayuensis Grismer, Ismail, Awang, Rizal, & Ahmad and Lipinia surda Boulenger from Peninsular Malaysia. Zootaxa 4147(1): 59–66. https://doi.org/10.11646/zootaxa.4147.1.3
- Grismer LL, Wood Jr PL, Ahmad AB, Baizul-Hafsyam BS, Afiq-Shuhaimi M, Rizal SA, Quah ESH (2018) Two new Tytthoscincus Linkem, Diesmos, & Brown (Squamata; Scincidae) from Peninsular Malaysia and another case of microsyntopy between ecologically specialised, unrelated, leaf-litter species. Zootaxa 4425(1): 87–107. https://doi. org/10.11646/zootaxa.4425.1.5
- Guzy JC, Halloran KM, Homyack JA, Thornton-Frost JE, Willson JD (2019) Differential responses of amphibian and reptile assemblage to size of riparian buffers within managed forests. Ecological Applications 29(8): e01995. https://doi.org/10.1002/eap.1995
- Hallett LM, Jones SK, Macdonald AAM, Jones MB, Flynn DFB, Ripplinger J, Slaughter P, Gries C, Collins SL, Poisot T (2016) Codyn: An R package of community dynamics metrics. Methods in Ecology and Evolution 7(10): 1146–1151. https://doi. org/10.1111/2041-210X.12569
- Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 1–9.
- Hendrickson JR (1966) Observations on the fauna of Pulau Tioman and Pulau Tulai. 5. The Reptiles. Bulletin of the National Museum (Singapore) 34: 53–71.
- HerpMapper (2023) HerpMapper A Global Herp Atlas and Data Hub. Iowa, U.S.A. http://www.herpmapper.org [accessed 26 February 2023]
- Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology 54(2): 427–432. https://doi.org/10.2307/1934352

- Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: Sensitivity to sample grain size. Journal of Animal Ecology 75(1): 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x
- Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7(12): 1451–1456. https://doi.org/10.1111/2041-210X.12613
- Jones MD, Marshall BM, Smith SN, Crane M, Silva I, Artchawakom T, Suwanwaree P, Waengsothorn S, Wüster W, Goode M, Strine CT (2022) How do King Cobras move across a major highway? Unintentional wildlife crossing structures may facilitate movement. Ecology and Evolution 12(3): e8691. https://doi.org/10.1002/ece3.8691
- Kery M (2002) Inferring the absence of a species: A case study of snakes. The Journal of Wildlife Management 66(2): 330–338. https://doi.org/10.2307/3803165
- Komaruddin SA, Mohamad NA, Fatihah-Syafiq M, Sham BHB, Mamat MA, Zakaria N (2020) Dataset of reptiles in fragmented forests at Tasik Kenyir, Hulu Terengganu, Malaysia. Data in Brief 28: e104994. https://doi.org/10.1016/j.dib.2019.104994
- Lourenço-de-Moraes R, Lansac-Toha FM, Schwind LTF, Arrieira RL, Rosa RR, Terribile LC, Lemes P, Rangel TF, Diniz-Filho JAFD, Bastos RP, Bailly D (2019) Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports 9(1): e8523. https://doi.org/10.1038/ s41598-019-44732-z
- Marshall BM, Strine CT, Jones MD, Artchawakom T, Silva I, Suwanwaree P, Goode M (2019) Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40(2): 163–178. https://doi.org/10.1163/15685381-18000008
- Marshall BM, Crane M, Silva I, Strine CT, Jones MD, Hodges CW, Suwanwaree P, Artchawakom T, Waengsothorn S, Goode M (2020) No room to roam: King cobras reduce movement in agriculture. Movement Ecology 8(1): 1–33. https://doi.org/10.1186/ s40462-020-00219-5
- Martin S (2008) Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia 595: 587–591. https://doi.org/10.1007/s10750-007-9030-4
- Mohd Izam NA, Shukor MN, Ahmad A, Grismer LL, Norhayati A (2021) Malayan Nature Journal 73(2): 177–186.
- Muin MMA, Evan QSH, Shahrul Anuar MS, Nur Munira A, Nur Juliani S, Mohd Yusof O, Rahmad Z, Asyraf M (2017) Annotated checklist of herpetofauna of Gunung Basor Forest Reserve, Pergau, Kelantan. In: Zahari I, Mohd Radhi CA, Razali AR, Nur Najwa DA, Suryani MN, Latiff A (Eds) Gunung Basor dan Tasik Pergau, Kelantan: Kepelbagaian Biologi Jabatan Perhutanan Negeri Kelantan, Kelantan.
- MyBis (2021) Malaysia Biodiversity Information System. https://www.mybis.gov.my
- Natusch DJD, Lyons JA, Shine R (2021) Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. Journal of Zoology 313(2): 114–123. https://doi.org/10.1111/jzo.12837
- Natusch D, Lyons J, Shine R (2022) Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia. Scientific Reports 12(1): 1–10. https://doi.org/10.1038/s41598-022-09369-5
- Ng PK (2020) Revision of the freshwater crabs of the Johora tahanensis (Bott, 1966) species group (Crustacea, Brachyura, Potamidae), with a key to the genus. ZooKeys 994: 1–34. https://doi.org/10.3897/zookeys.994.56810
- Ng PK, Ahmad AB (2016) A new genus and new species for an unusual semi-terrestrial potamid crab (Decapoda: Brachyura) with a bilobed mandibular palp from

Peninsular Malaysia. Journal of Crustacean Biology 36(6): 823-832.https://doi. org/10.1163/1937240X-00002492

- Nur Amalina MI, Azhari M, Norshaqinah A, Nor Azrin NA, Shukor MN, Aisah MS, Amirrudin A, Grismer LL, Norhayati A (2017) Species composition of amphibians and reptiles in Tembat Forest Reserve, Hulu Terengganu. Malaysian Applied Biology 46(4): 119–129.
- Pike DA, Croak BM, Webb JK, Shine R (2010) Subtle but easily reversible anthropogenic disturbance seriously degrades habitat quality for rock-dwelling reptiles. Animal Conservation 13(4): 411–418. https://doi.org/10.1111/j.1469-1795.2010.00356.x
- Pounsin G, Wahab NS, Roslan A, Zahidin MA, Pesiu E, Tamrin NA, Abdullah MT (2018) Diversity of bats in contrasting habitats of Hulu Terengganu Dipterocarp Forest and Setiu Wetland BRIS forest with a note on preliminary study of vertical stratification of Pteropodid Bats. Tropical Life Sciences Research 29(1): 51–69. https://doi. org/10.21315/tlsr2018.29.1.4
- Quah ESH, Grismer LL, Jetten T, Wood Jr PL, Miralles A, Shahrul Anuar MS, Guek KHP, Brady ML (2018a) The rediscovery of Schaefer's spine-jawed snake (Xenophidion schaeferi Günther & Manthey, 1995) (Serpentes, Xenophidiidae) from Peninsular Malaysia with notes on its variation and the first record of the genus from Sumatra, Indonesia. Zootaxa 4441(2): 366–378. https://doi.org/10.11646/zootaxa.4441.2.10
- Quah ESH, Lim KKP, Leong EHH, Shahrul Anuar MS (2018b) Identification and a new record from Penang Island of the rare red-bellied reed snake (Calamaria albiventer) (Gray, 1835) (Serpentes: Calamariinae). The Raffles Bulletin of Zoology 66: 486–493.
- Quah ESH, Wood PL, Grismer LL, Sah SAM (2018c) On the taxonomy and phylogeny of the rare Selangor Mud Snake (Raclitia indica) Gray (Serpentes, Homalopsidae) from Peninsular Malaysia. Zootaxa 4514(1): 53–64. https://doi.org/10.11646/zoot-axa.4514.1.4
- Quah ESH, Badli-Sham BH, Rahman MF-SA, Ahmad A, Chan KO (2021) A new record and range extension for Philautus davidlabangi (Amphibia: Rhacophoridae) from Peninsular Malaysia. Herpetology Notes 14: 1181–1186.
- R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
- RStudio [R Studio Team] (2022) RStudio: Integrated Development for R. https://rstudio.com
- Rahman SC, Rashid SMA, Das K, Jenkins C, Luiselli L (2013) Monsoon does matter: Annual activity patterns in a snake assemblage from Bangladesh. The Herpetological Journal 23: 203–208.
- Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, Böhm M, Castro-Herrera F, Chirio L, Collen B, Colli GR, Dabool L, Das I, Doan TM, Grismer LL, Hoogmoed M, Itescu Y, Kraus F, LeBreton M, Lewin A, Martins M, Maza E, Meirte D, Nagy ZT, Nogueira CDC, Pauwels OSG, Pincheira-Donoso D, Powney GD, Sindaco R, Tallowin OJS, Torres-Carvajal O, Trape J-F, Vidan E, Uetz P, Wagner P, Wang Y, Orme CDL, Grenyer R, Meiri S (2017) The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology & Evolution 1: 1677–1682. https://doi.org/10.1038/ s41559-017-0332-2
- Saw GL (2010) Vegetation of Peninsular Malaysia. In Kiew R, Chung RCK, Saw LG, Soepadmo E (Eds) Flora of Peninsular Malaysia. Series II: Seed Plants. Malayan Forest Records, Forest Research Institute Malaysia, Kuala Lumpur, 21–45.
- Shahirah-Ibrahim N, Badli-Sham BH, Shafie NJ, Ahmad A (2018) Species diversity of freshwater turtles and tortoises in Terengganu, Malaysia. Journal of Sustainability Science and Management Monograph 1: 1–27.

- Shelton MB, Phillips SS, Goldingay RL (2020) Habitat requirements of an arboreal Australian snake (Hoplocephalus bitorquatus) are influenced by hollow abundance in living trees. Forest Ecology and Management 455: e117675. https://doi.org/10.1016/j. foreco.2019.117675
- Somaweera R, Brien ML, Sonneman T, Didham RK, Webber BL (2019) Absence of evidence is not evidence of absence: Knowledge shortfalls threaten the effective conservation of freshwater crocodiles. Global Ecology and Conservation 20: e00773. https://doi.org/10.1016/j.gecco.2019.e00773
- Somaweera R, Nifong JC, Rosenblatt AE, Brien ML, Combrink X, Elsey RM, Grigg G, Magnusson WE, Mazzotti F, Pearcy A, Platt SG, Shirley MH, Tellez M, van der Ploeg J, Webb GJ, Whitaker R, Webber BL (2020) The ecological importance of crocodylians: towards evidence-based justification for their conservation. Biological Reviews 95: 936–959. https://doi.org/10.1111/brv.12594
- Sperry JH, Weatherhead PJ (2008) Prey-mediated effects of drought on condition and survival of a terrestrial snake. Ecology 89(10): 2770–2776. https://doi. org/10.1890/07-2017.1
- Sumarli AX, Grismer LL, Anuar S, Muin MA, Quah ESH (2015) First report on the amphibians and reptiles of a remote mountain, Gunung Tebu in northeastern Peninsular Malaysia. Check List 11(4): 1–32. https://doi.org/10.15560/11.4.1679
- Sumarli A, Grismer LL, Wood Jr PL, Ahmad AB, Rizal S, Ismail LH, Izam NAM, Ahmad N, Linkem CW (2016) The first riparian skink (Genus: Sphenomorphus Strauch, 1887) from Peninsular Malaysia and its relationship to other Indochinese and Sundaic species. Zootaxa 4173(1): 29–44. https://doi.org/10.11646/zootaxa.4173.1.3
- Todd BD, Andrews KM (2008) Response of a reptile guild to forest harvesting. Conservation Biology 22(3): 753–761. https://doi.org/10.1111/j.1523-1739.2008.00916.x
- Todd BD, Nowakowski AJ, Rose JP, Price SJ (2017) Species traits explaining sensitivity of snakes to human land use estimated from citizen science data. Biological Conservation 206: 31–36. https://doi.org/10.1016/j.biocon.2016.12.013

Tweedie MWF (1954) Notes on Malayan reptiles, No.3. Bull. Raffles Mus (25): 107–117.

- Uetz P, Freed P, Hosek J [Eds] (2020) The Reptile Database. http://www.reptile-database.org van Rooijen J, Vogel G (2008) Contributions to a review of the Dendrelaphis pictus complex (Serpentes: Colubridae)-1. Description of a sympatric species. Amphibia-Reptilia 29(1): 101–115. https://doi.org/10.1163/156853808783431514
- Vogel G, David P, Lutz M, van Rooijen J, Vidal N (2007) Revision of the Tropidolaemus wagleri-complex (Serpentes: Viperidae: Crotalinae). I. Definition of included taxa and redescription of Tropidolaemus wagleri (Boie, 1827). Zootaxa 1644(1): 1–40. https://doi.org/10.11646/zootaxa.1644.1.1
- Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28(6): 815–829. https://doi.org/10.1111/j.2005.0906-7590.04112.x
- Ward RJ, Griffiths RA, Wilkinson JW, Cornish N (2017) Optimising monitoring efforts for secretive snakes: A comparison of occupancy and N-mixture models for assessment of population status. Scientific Reports 7(1): e18074. https://doi.org/10.1038/ s41598-017-18343-5
- Weatherhead PJ, Sperry JH, Carfagno GLF, Blouin-Demers G (2012) Latitudinal variation in thermal ecology of North American Ratsnakes and its implications for the effect of climate warming on snakes. Journal of Thermal Biology 37(4): 273–281. https://doi. org/10.1016/j.jtherbio.2011.03.008

Zakaria AA, Rahim NAA, Ahmad AB, Abdullah MT (2019) Species richness estimation of reptiles in selected sites of Tasik Kenyir, Hulu Terengganu, Malaysia. In: Abdullah MT, Mohammad A, Nor Zalipah M, Safiih Lola M (Eds) Greater Kenyir Landscapes. Springer Nature, Switzerland, 159–170. https://doi.org/10.1007/978-3-319-92264-5_15
Zipkin EF, DiRenzo GV, Ray JM, Rossman S, Lips KR (2020) Tropical snake diversity col-

lapses after widespread amphibian loss. Science 367(6479): 814–816. https://doi. org/10.1126/science.aay5733

Appendix 1

Table A1. List of species with UMTZC code.

Alectula prasinaUMT2C13542Ahectula prasinaUMT2CP141120-74243Boiga cynodonUMT2CP141120-74244Boiga drapieziiSpecimen not preserved5Boiga papideaSpecimen not preserved5Boiga melanotaUMT2C161517Boiga nigricepsSpecimen not preserved8Calamaria pavimentataUMT2C14779Chrysopelea ornataUMT2C163910Chrysopelea paradisiSpecimen not preserved11Chrysopelea paradisiSpecimen not preserved12Coelognathus flavolineatusUMT2C136413Dendrelaphis caudolineatusUMT2CP7021449014Dendrelaphis formosusSpecimen not preserved15Dendrelaphis hasaiSpecimen not preserved16Dendrelaphis fullUMT2CP70214449017Dendrelaphis striatusUMT2CP70214449018Dryophiops rubescensUMT2C107119Lycodon albofuscusUMT2C107120Lycodon subannulatusUMT2C161821Lycodon subannulatusUMT2C167622Lycodon subannulatusUMT2C167623Lycodon subcinctusSpecimen not preserved24Gonyosoma oxycephalumUMT2C167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMT2C163828Kanopeltis unicolorUMT2C163829Kanopeltis unicolorUM	No.	Species name	Code
Boiga cynodonUMTZCP141120-742444Boiga drapieziiSpecimen not preserved55Boiga jaspideaSpecimen not preserved56Boiga melanotaUMTZC165177Boiga ingricepsSpecimen not preserved81Calamaria pavimentataUMTZC163990Chrysopelea onataUMTZC1639100Chrysopelea paradisiSpecimen not preserved111Chrysopelea paradisiSpecimen not preserved122Coelognathus flavolineatusSpecimen not preserved133Dendrelaphis caudolineatusUMTZC1364144Dendrelaphis formosusSpecimen not preserved155Dendrelaphis formosusSpecimen not preserved166Dendrelaphis formosusUMTZCP270214.4490177Dendrelaphis prubescensUMTZCP270214.4490178Dryophiops rubescensUMTZC1071188Dryophiops rubescensUMTZC1618199Lycodon albofuscusUMTZC1618212Lycodon subannulatusUMTZC1618213Lycodon subannulatusUMTZC1676214Gonyosoma oxycephalumUMTZC1676215Oligodon purpurascensSpecimen not preserved216Oligodon signatusSpecimen not preserved217PseudorhabdinolongicepsUMTZC1676218Pysa fuscaUMTZC1638219Xenopeltis unicolorUMTZC1638210Burgarus candidusUMTZC1638211Burgarus candidusUMTZC1639212Lycodon	1	Ahaetulla mycterizans	UMTZCP021113-2367
Bol yoSpecimen not preserved5Boiga drapieziiSpecimen not preserved5Boiga melanotaUMTZC16517Boiga melanotaUMTZC14778Calamaria pavimentataUMTZC14779Chrysopelea paradisiSpecimen not preserved10Chrysopelea paradisiSpecimen not preserved11Chrysopelea paradisiSpecimen not preserved12Coelognathus flavolineatusSpecimen not preserved13Dendrelaphis caudolineatusUMTZC136414Dendrelaphis caudolineatusUMTZC136415Dendrelaphis formosusSpecimen not preserved16Dendrelaphis striatusUMTZC192114-449017Dendrelaphis pictusUMTZCP270214-449018Dryophiops rubescensUMTZC107119Lycodon alubofuscusUMTZC107120Lycodon capucinusUMTZC107121Lycodon subannulatusUMTZC163822Lycodon subannulatusUMTZC167623Lycodon subcinctusUMTZC167624Gonyosoma oxycephalumUMTZC167625Oligodon unpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC163728Physe fuscaUMTZC163729Konpeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169732Calliophis intestinalisUMTZC1697 <td>2</td> <td>Ahaetulla prasina</td> <td>UMTZC1354</td>	2	Ahaetulla prasina	UMTZC1354
Degle and performent preserved5Boiga jaspideaSpecimen not preserved5Boiga nigricepsSpecimen not preserved8Calamaria pavimentataUMTZC16517Boiga nigricepsSpecimen not preserved8Calamaria pavimentataUMTZC14779Chrysopelea ornataUMTZC1639100Chrysopelea paraldisiSpecimen not preserved111Chrysopelea peliasSpecimen not preserved122Coelognathus flavolineatusUMTZC1364130Dendrelaphis caudolineatusUMTZC1364140Dendrelaphis caudolineatusUMTZC1364151Dendrelaphis prosusSpecimen not preserved152Dendrelaphis pictusUMTZCP20214-4490170Dendrelaphis pictusUMTZCP202114-2393181Drysophiops rubescensUMTZC1071192Lycodon albofuscusUMTZC1618193Lycodon albofuscusUMTZC1676194Lycodon subannulatusUMTZC1678195Oligodon subannulatusUMTZC1676196Digodon subannulatusUMTZC1676197Pseudorhabdion longicepsUMTZC1676198Piyas fuscaUMTZC1803199Lycodon subannulatusUMTZC1676199Lycodon subannulatusUMTZC1676199Specimen not preserved199Specimen not preserved199Lycodon subannulatusUMTZC1676190Lycodon subannulatusUMTZC1676191Lycodon subannulatus </td <td>3</td> <td>Boiga cynodon</td> <td>UMTZCP141120-7424</td>	3	Boiga cynodon	UMTZCP141120-7424
Bory metanotaUMT2C16517Boiga nelanotaUMT2C16517Boiga nigricepsSpecimen not preserved8Calamaria pavimentataUMT2C16399Chrysopelea omataUMT2C163910Chrysopelea paradisiSpecimen not preserved11Chrysopelea paliasSpecimen not preserved12Coelognathus flavolineatusUMT2C136413Dendrelaphis caudolineatusUMT2C136414Dendrelaphis caudolineatusUMT2C136415Dendrelaphis formosusSpecimen not preserved16Dendrelaphis pictusUMT2C270214-449017Dendrelaphis pictusUMT2CP2702113-239318Dryophiops rubescensUMT2C107120Lycodon albofuscusUMT2C107121Lycodon subannulatusUMT2C167822Lycodon subannulatusUMT2C167823Lycodon subannulatusUMT2C167624Gonyosoma oxycephalumUMT2C167625Oligodon signatusSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMT2C167628Pyas fuscaUMT2C167729Xenopeltis unicolorUMT2C163830Bungarus candidusUMT2C169731Bungarus flavicepsUMT2C169832Calliophis intestinalisUMT2C1670	4	Boiga drapiezii	Specimen not preserved
AABiga nigricepsSpecimen not preservedBiga nigricepsUMTZC1477Chrysopelea ornataUMTZC1639Chrysopelea paradisiSpecimen not preservedChrysopelea peliasSpecimen not preservedCoelognathus flavolineatusSpecimen not preservedDendrelaphis caudolineatusUMTZC1364Dendrelaphis formosusSpecimen not preservedDendrelaphis formosusSpecimen not preservedDendrelaphis pictusUMTZC19270214-4490Dendrelaphis pictusUMTZC1808UMTZC1808UMTZC1771Dendrelaphis pictusUMTZC1808UMTZC1071UMTZC1071Upricon capucinusUMTZC1071Lycodon subanulatusUMTZC1676UMTZC1658UMTZC1658Lycodon subanulatusUMTZC1676Uigdon signatusSpecimen not preservedDigdon signatusSpecimen not preservedPase fuscaUMTZC1676Colligodon signatusUMTZC1676Specimen not preservedUMTZC1676Colligodon signatusUMTZC1676Specimen not preservedUMTZC1676Specimen not preservedUMTZC1676Specimen not preservedUMTZC1676Specimen not preservedSpecimen not preservedSpecime	5	Boiga jaspidea	Specimen not preserved
ContractContract9Chrysopelea ornataUMTZC14779Chrysopelea paradisiSpecimen not preserved11Chrysopelea paradisiSpecimen not preserved12Coelognathus flavolineatusSpecimen not preserved13Dendrelaphis caudolineatusUMTZC136414Dendrelaphis formosusSpecimen not preserved15Dendrelaphis formosusSpecimen not preserved16Dendrelaphis triatusUMTZCP270214-449017Dendrelaphis striatusUMTZC180819Lycodon albofuscusUMTZC117120Lycodon capucinusUMTZC161821Lycodon subannulatusUMTZC165823Lycodon subannulatusUMTZC165824Gonyosoma oxycephalumUMTZC165825Oligodon signatusSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC167028Ptysa fuscaUMTZC163830Bungarus flavicepsUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1698	6	Boiga melanota	UMTZC1651
AChrysopelea ornataUMTZC1639100Chrysopelea paradisiSpecimen not preserved111Chrysopelea peliasSpecimen not preserved122Coelognathus flavolineatusUMTZC1364133Dendrelaphis caudolineatusUMTZC1364144Dendrelaphis formosusSpecimen not preserved155Dendrelaphis formosusSpecimen not preserved166Dendrelaphis striatusUMTZCP270214-4490177Dendrelaphis striatusUMTZCP021113-2393188Dryophiops rubescensUMTZC1701201Lycodon capucinusUMTZC1071202Lycodon capucinusUMTZC1618223Lycodon subannulatusUMTZC1658234Gonyosoma oxycephalumUMTZC1676255Oligodon signatusSpecimen not preserved266Oligodon signatusSpecimen not preserved277Pseudorhabdion longicepsUMTZC1807288Ptyas fuscaUMTZC1676290Xenopeltis unicolorUMTZC1638300Bungarus candidusUMTZC1697311Bungarus flavicepsUMTZC1698322Calliophis intestinalisUMTZC1670	7	Boiga nigriceps	Specimen not preserved
Independent100Chrysopelea paradisi111Chrysopelea paradisi112Coelognathus flavolineatus122Coelognathus flavolineatus133Dendrelaphis caudolineatus144Dendrelaphis caudolineatus155Dendrelaphis haasi166Dendrelaphis striatus177Dendrelaphis striatus188Dryophiops rubescens199Lycodon albofuscus190Lycodon capucinus191Lycodon capucinus192Lycodon subannulatus193Lycodon subannulatus194Specimen not preserved195Dingos nubescens196Lycodon capucinus197Dyrophiops rubescens198Lycodon capucinus199Lycodon capucinus190Lycodon subannulatus191Lycodon subannulatus192Lycodon subannulatus193Lycodon subannulatus194Lycodon subannulatus195Oligodon purpurascens196Lycodon subannulatus197Pseudorhabdion longiceps198Lycodon signatus199Lycodon subantus199Lycodon signatus199Lycodon signatus199Lycodon signatus199Lycodon signatus199Lycodon signatus199Lycodon signatus199Specimen not preserved199Specimen not preserved199Specimen not preserved199Speci	8	Calamaria pavimentata	UMTZC1477
International International InternationalInternational<	9	Chrysopelea ornata	UMTZC1639
DefinitionDefinition12Coelognathus flavolineatusSpecimen not preserved13Dendrelaphis caudolineatusUMTZC136414Dendrelaphis formosusSpecimen not preserved15Dendrelaphis formosusSpecimen not preserved16Dendrelaphis striatusUMTZCP20214-449017Dendrelaphis striatusUMTZCP021113-239318Dryophiops rubescensUMTZC180819Lycodon capucinusUMTZC177120Lycodon capucinusUMTZC107121Lycodon subannulatusUMTZC161822Lycodon subannulatusUMTZC166823Lycodon subcinctusUMTZC166824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC180728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC16770	10	Chrysopelea paradisi	Specimen not preserved
Interference13Dendrelaphis caudolineatus14Dendrelaphis formosus15Dendrelaphis formosus15Dendrelaphis haasi16Dendrelaphis striatus16Dendrelaphis striatus17Dendrelaphis striatus18Dryophiops rubescens19Lycodon albofuscus19Lycodon capucinus11Lycodon capucinus11Lycodon subannulatus12Lycodon subannulatus13UMTZC161814Conyosoma oxycephalum15Oligodon signatus16Pseudorhabdion longiceps17Pseudorhabdion longiceps18Bungarus flaviceps19Lycodon subannulatus19Lycodon subannulatus10UMTZC167611Lycodon subannulatus12Lycodon subcinctus13UMTZC167614Gonyosoma oxycephalum15Oligodon purpurascens15Oligodon signatus16Dendrelaphis formoscens17Specimen not preserved18Pysa fusca19Lycoton subolocitor19Lycoton subannulatus19Lycoton subantus10UMTZC167610Specimen not preserved12Lycoton subcinctus13Bungarus candidus14UMTZC169815Gonyosoma oxycephalum15UMTZC169816Gonyosoma oxycephalum17Specim	11	Chrysopelea pelias	Specimen not preserved
14Dendrelaphis formosusSpecimen not preserved15Dendrelaphis haasiSpecimen not preserved16Dendrelaphis pictusUMTZCP270214-449017Dendrelaphis striatusUMTZCP2702113-239318Dryophiops rubescensUMTZC180819Lycodon albofuscusUMTZC107120Lycodon capucinusUMTZC107121Lycodon subannulatusUMTZC161822Lycodon subannulatusUMTZC165823Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC163828Ptyas fuscaUMTZC163829Kenopeltis unicolorUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	12	Coelognathus flavolineatus	Specimen not preserved
Dendrelaphis haasiSpecimen not preserved16Dendrelaphis pictusUMTZCP270214-449016Dendrelaphis pictusUMTZCP270214-449017Dendrelaphis striatusUMTZCP021113-239318Dryophiops rubescensUMTZC180819Lycodon albofuscusUMTZC177120Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subcinctusUMTZC165823Lycodon subcinctusUMTZC167624Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC163828Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	13	Dendrelaphis caudolineatus	UMTZC1364
16Dendrelaphis pictusUMTZCP270214-449017Dendrelaphis striatusUMTZCP021113-239318Dryophiops rubescensUMTZC180819Lycodon albofuscusUMTZC177120Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZC165823Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusUMTZC180727Pseudorhabdion longicepsUMTZC180728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1670	14	Dendrelaphis formosus	Specimen not preserved
Dendrelapis striatusUMTZCP021113-239318Dryophiops rubescensUMTZC180819Lycodon albofuscusUMTZC177120Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZC165823Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusUMTZC177027Pseudorhabdion longicepsUMTZC163828Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	15	Dendrelaphis haasi	Specimen not preserved
InstantionInstantion18Dryophiops rubescensUMTZC180819Lycodon albofuscusUMTZC177120Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZCP280214-458023Lycodon subannulatusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC180728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	16	Dendrelaphis pictus	UMTZCP270214-4490
19Lycodon albofuscusUMTZC177120Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZC165823Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusUMTZC177027Pseudorhabdion longicepsUMTZC170422-64728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	17	Dendrelaphis striatus	UMTZCP021113-2393
20Lycodon capucinusUMTZC107121Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZCP280214-458023Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusUMTZCP170422-64727Pseudorhabdion longicepsUMTZC180728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	18	Dryophiops rubescens	UMTZC1808
21Lycodon effraenisUMTZC161822Lycodon subannulatusUMTZCP280214-458023Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusUMTZCP170422-64727Pseudorhabdion longicepsUMTZC180728Ptyas fuscaUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC1770	19	Lycodon albofuscus	UMTZC1771
222Lycodon subannulatusUMTZCP280214-458023Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZC170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	20	Lycodon capucinus	UMTZC1071
23Lycodon subcinctusUMTZC165824Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZCP170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	21	Lycodon effraenis	UMTZC1618
24Gonyosoma oxycephalumUMTZC167625Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZCP170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	22	Lycodon subannulatus	UMTZCP280214-4580
25Oligodon purpurascensSpecimen not preserved26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZCP170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	23	Lycodon subcinctus	UMTZC1658
26Oligodon signatusSpecimen not preserved27Pseudorhabdion longicepsUMTZCP170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	24	Gonyosoma oxycephalum	UMTZC1676
27Pseudorhabdion longicepsUMTZCP170422-64728Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	25	Oligodon purpurascens	Specimen not preserved
Ptyas fuscaUMTZC180729Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	26	Oligodon signatus	Specimen not preserved
29Xenopeltis unicolorUMTZC163830Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	27	Pseudorhabdion longiceps	UMTZCP170422-647
Bungarus candidusUMTZC169731Bungarus flavicepsUMTZC169832Calliophis intestinalisUMTZC1770	28	Ptyas fusca	UMTZC1807
31 Bungarus flaviceps UMTZC1698 32 Calliophis intestinalis UMTZC1770	29	Xenopeltis unicolor	UMTZC1638
32 Calliophis intestinalis	30	Bungarus candidus	UMTZC1697
	31	Bungarus flaviceps	UMTZC1698
33 Naja kaouthia UMTZC1660	32	Calliophis intestinalis	UMTZC1770
	33	Naja kaouthia	UMTZC1660

No.	Species name	Code
34	Naja sumatrana	UMTZC1550
35	Enhydris enhydris	UMTZC1648
36	Hypsiscopus plumbea	UMTZC1655
37	Homalopsis buccata	UMTZC1677
38	Rhabdophis chrysargos	Specimen not preserved
39	Xenochrophis trianguligerus	UMTZC1038
40	Aplopeltura boa	UMTZCP070214-4228
41	Pareas carinatus	UMTZC1356
42	Pareas margaritophorus	UMTZC1667
43	Malayopython reticulatus	Specimen not preserved
44	Indotyphlops braminus	UMTZC1476
45	Argyrophis muelleri	UMTZC1636
46	Tropidolaemus wagleri	UMTZC1652