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Abstract
Parasitic wasps of the genus Tamarixia represent important biological control agents of members of the 
true bug group, Psylloidea, and are host specific; therefore, they can be used to control insect pests. In this 
study we report, for the first time, the presence of the parasitoid Tamarixia dahlsteni in Mexico and its mi-
tochondrial barcode region of the cytochrome oxidase I gene (COI). We also review the species diversity 
of the genus Tamarixia in Mexico.
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Introduction

Biological control agents represent a sustainable pest management option that help to 
maintain pest populations under accepted levels (Wang et al. 2019; Al-Ani et al. 2020). 
Parasitic wasps from the family Eulophidae represent a very important group of bio-
logical control agents as they have a wide range of insect hosts with different degrees of 
specialization. The genus Tamarixia Mercet represents one example of parasitoids with 
a high degree of host specificity (Urbaneja-Bernat et al. 2019). Most species act as ec-
toparasitoids, but in some cases endoparasitism has been reported (Noyes 2022). Species 
of the genus Tamarixia parasitize free-living and gall-forming species of true bugs, Psyl-
loidea. It was proposed that they reached this host restriction through a specialization on 
their host (LaSalle 1994), although the species has also been reported parasitizing aphids 
(Zuparko et al. 2011). According to the Universal Chalcidoidea database, the genus 
Tamarixia comprises 54 species to date, which are distributed worldwide (Noyes 2022).

In Mexico, five species (both native and exotic) of Tamarixia are found: Tamarixia 
aguacatensis Yefremova (Yefremova et al. 2014), Tamarixia leucaenae Boucek (McClay 
1990), Tamarixia radiata (Waterston) (González-Hernández et al. 2009), Tamarixia 
schina Zuparko (Zuparko et al. 2011), and Tamarixia triozae (Burks) (Lomelí-Flores 
and Bueno 2002). Some of these species have already been part of integrated pest man-
agement strategies with remarkable results. For instance, T. triozae, the parasitoid of the 
potato psyllid Bactericera cockerelli, was introduced to New Zealand for the biological 
control of the psyllids that vector the bacterium Candidatus Liberibacter solanacearum 
(CLso) (Workman and Whiteman 2009). This bacterium has been linked to differ-
ent diseases in plants of the nightshade family Solanaceae (Munyaneza et al. 2007). 
In Mexico, T. triozae was found naturally in tomato crops and, according to parasit-
ism evaluation, the percentage of parasitism reached by T. triozae on B. cockerelli has 
been up to eighty percent when insecticides are not used to control the psyllid popu-
lations (Lomelí-Flores and Bueno 2002). Tamarixia triozae is commercially available 
in Mexico through Koppert Mexico, and several studies have been carried out on its 
biological cycle (Rojas et al. 2015), its release into the environment either individually 
or in combination with other natural enemies for the control of B. cockerelli (Cerón-
González et al. 2014; Ramírez-Ahuja et al. 2017). Other examples of Tamarixia spe-
cies used for biological control are T. schina, which was introduced in California for 
the control of Calophya schini Tuthill (Psyllidae: Calophyidae), T. dahlsteni Zuparko, 
which was introduced for the control of Trioza eugeniae Froggatt (Hemiptera: Triozi-
dae) (Zuparko et al. 2011) and T. radiata. The latter is native to Pakistan (Chen and 
Stansly 2014), but has been introduced into countries such as Taiwan, the United 
States and France (Guadeloupe), to control populations of the psyllid Diaphorina citri 
Kuwayama (Hemiptera: Liviidae), a vector of the bacterium Candidatus Liberibacter 
asiaticus (Chien et al. 1989; Michaud 2002; De León and Sétamou 2010). In Texas, a 
reduction of more than ninety percent of D. citri populations has been observed in re-
gions where T. radiata was released (Flores and Ciomperlik 2017). In Mexico, the para-
sitoid was reported as an accidentally introduced species (De León and Sétamou 2010).
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Currently, DNA barcodes are important tools for species identification with poten-
tial for bio-surveillance programs in agriculture (Ashfaq and Hebert 2016). DNA bar-
codes have been useful to identify important arthropod pests even at immature stages 
(Ashfaq and Hebert 2016). The common barcoding method used for animal identi-
fication is based on the sequencing of a part of the mitochondrial gene cytochrome 
oxidase subunit I (COI). COI has been used to create universal and public databases of 
sequences, such as the Barcode of Life Data System (BOLD), which includes agricul-
turally important insect sequences (Hebert et al. 2003). In this regard, here we report 
the occurrence of T. dahlsteni in Mexico for the first time, and the first mitochondrial 
cytochrome oxidase subunit one (COI) sequences for this species. We also discuss the 
potential of additional species of Tamarixia in Mexico.

Materials and methods

Biological samples

We obtained parasitoids emerged from nymphs of Trioza eugeniae feeding on Syzygium 
paniculatum, collected in an urban area from Zapopan, Jalisco, Mexico [Colonia 
Las Palomas, Tesistán (20.7890, -103.4831) and Club Deportivo UdeG (20.7793, 
-103.6075)]. The nymphs were taken to the laboratory (HR 70%, T 25 ± 2 °C) and 
were placed into Petri dishes until the parasitoids emerged. The parasitoids were placed 
in 96% ethanol for morphological and molecular determination.

Morphological determination

According to Zuparko et al. (2011), the psyllid Trioza eugeniae is parasitized by Tamarixia 
dahlsteni; therefore, we employed Zuparko’s morphological description to identify the 
newly emerged parasitoids. Voucher specimens of the recovered parasitoids were deposited 
in the Beneficial Insects Collection of the Universidad Autónoma de Nuevo León 
(CIBE–UANL). All individuals followed the same diagnosis and, given the low number 
of specimens recovered, only one female was photographed with a scanning electronic 
microscope (JEOL JSM–6510LV) in order to illustrate its diagnostic characteristics.

Barcoding determination

Genomic DNA was non-destructively isolated according to the protocol described by 
Giantsis et al. (2016). We extracted three individual specimens that corresponded to 
T. dahlsteni, two specimens of T. triozae and two of T. schina. Polymerase chain reac-
tion (PCR) was carried out to amplify the DNA barcode region of the cytochrome 
oxidase subunit I (COI) using the LCO1490 (5’-GGTCAACAAATCATAAAGA-
TATTGG-3’) and HCO2198 (5‘-TAAACTTCAGGGTGACCAAAAAATCA-3’) 
primers (Folmer et al. 1994). PCRs were performed in a 20 µl reaction volume: 2 µl 
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of DNA, 2 µl of 10× Qiagen PCR buffer containing 15 mM MgCl2, 0.9 µl of each 
primer (10 um), 0.6 µl of dNTPs (25 mM each), 0.2 µl of (5 U/µl) Taq DNA Poly-
merase (Qiagen, Hilden, Germany), and 13.4 µl of H2O. PCR conditions were as 
follows: 94 °C for 3 min, followed by 40 cycles of 94 °C for 30 s, 52 °C for 1 min, 
72 °C for 1 min with a final extension at 72 °C for 10 min. All PCR products were 
electrophoresed through an agarose gel (1%) and sequenced in both directions in an 
Applied Biosystems model 3500 automated sequencer in Lanbama–Ipicyt (San Luis 
Potosí, Mexico).

Phylogenetic analysis

We employed the resulting COI sequences to reconstruct the phylogenetic relations of 
the emerged parasitoids. For this objective, we included COI sequences of all available 
species of the genus Tamarixia, which were downloaded from the BOLD Systems da-
tabase and GenBank. All sequences were aligned in Mesquite ver. 3.70 (Maddison and 
Maddison 2021) with the program MUSCLE ver. 3 (Edgar 2004). Later, the align-
ment was used for the phylogenetic analysis inferred with the Maximum Likelihood 
method in the online server IQ-tree ver. 1.6.12 (Trifinopoulos et al. 2016), and the 
model GTR+F+I+G4 which was inferred with the function Model Finder (Kalyaana-
moorthy et al. 2017). Branch support was obtained with the ultrafast bootstrap ap-
proximation (Hoang et al. 2018) with 10 000 replicates. Sequences generated in this 
study were deposited in GenBank.

Results

Morphological and barcoding determination

From the collected material for this study, seven females and seven males of the genus 
Tamarixia emerged. They agreed with the diagnosis of T. dahlsteni: the entire ventral 
surface of the gaster was yellow, and in the dorsal part the yellow color extending 
to, or slightly beyond, the apex of the second tergite (Fig. 1). The specimens had a 
paraspicular carina posteriorly bifurcated and located medial to the propodeal spira-
cle (Figs 2, 3). Regarding the barcoding determination, the sequences generated in 
this study represent the first barcoding evidence for the species T. dahlsteni (GenBank 
accession ON491415, ON491416, ON491417) and T. schina (GenBank accession 
ON548243, ON684328).

Phylogenetic analysis

Our sequence alignment contained 893 bp, and included sequences of the species 
Tamarixia drukyulensis Yefremova and Yegorenkova, Tamarixia dryi Waterston, Tamarixia 

http://www.ncbi.nlm.nih.gov/nuccore/ON491415
http://www.ncbi.nlm.nih.gov/nuccore/ON491416
http://www.ncbi.nlm.nih.gov/nuccore/ON491417
http://www.ncbi.nlm.nih.gov/nuccore/ON548243
http://www.ncbi.nlm.nih.gov/nuccore/ON684328
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pronomus Walker, Tamarixia pubescens Nees, T. radiata, T. triozae and Tamarixia upis 
Walker, obtained from public databases and those of T. dahlsteni and T. schina generated 
in this study. In the phylogenetic reconstruction, sequences of each species were 
clustered in individual subclades with high support (ultrabootstrap values >95) (Fig. 4). 
Therefore, the barcoding region appears to be useful for the molecular identification of 
the Tamarixia species included in this study. Our analysis did not resolve interspecific 
relations due to the low bootstrap support for interior branches. On the other hand, the 
presence of highly supported (ultrabootstrap values >95) intraspecific subclades within 
T. drukyulensis and T. dryi suggests intraspecific genetic structure.

Figures 1–3. Tamarixia dahlsteni 1 gaster (dorsal view), arrow pointing the yellow color extending to 
the apex of the second tergite 2 mesosoma (dorsal view) 3 arrow pointing paraspicular carina. Scale bars: 
100 µm (2); 50 µm (3).
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Discussion

According to the literature, seven of the 54 existing species of Tamarixia are reported 
from the Nearctic and Neotropical regions (Noyes 2022). Mexico spans both regions 
and, following this study, the number of Tamarixia species was updated to six. In 
addition, our phylogenetic analysis suggested the COI barcoding region to be a useful 
molecular marker for the distinction of Tamarixia species. The phylogeny obtained 
suggested intraspecific genetic structure for some of the species, which unveils the 
necessity of robust and wider phylogenetic analysis at the genus level.

The host for T. dahlsteni is the eugenia psyllid Trioza eugeniae. Both species were 
found in Australia associated with the ornamental tree Syzygium paniculatum, and in 
1988 the psyllid was found for the first time in California, USA. The damage caused by 
the psyllid on S. paniculatum trees prompted a search for its natural enemies in Australia. 
As a result, the wasp T. dahlsteni was identified as the primary parasitoid of T. eugeniae 
and was later imported to the USA to control eugenia psyllid populations (Dahlsten 
et al. 1993). A similar case is the one of Tamarixia schina. The wasp was reported as a 
natural enemy of the exotic psyllid Calophya rubra (Blanchard) which feeds on Schinus 
molle trees (Álvarez-Zagoya and Cibrián-Tovar 1999). According to Zuparko et al. 
(2011), new undescribed Tamarixia species were found in both California and Florida, 
USA, parasitizing psyllid species which have potential distribution in Mexico.

In biological research, names of species are essential to ensure comparable results 
when working with model organisms (Pante et al. 2015), and in agriculture they are 
also required for biosecurity and quarantine concerns (Lyal et al. 2008). Notwith-
standing, in some cases species identification is not an easy task and deep taxonomic 
studies are needed. For instance, in 2019 the misidentification of the eugenia psyllid 
T. eugeniae was uncovered by Taylor and Martoni (2020), who indicated that the true 
name of the species should be Trioza adventicia Tuthill. Taylor and Martoni mentioned 
that the two exotic species resemble each other, and only a detailed study based on a 
series of morphological characters and DNA barcoding supported the separation and 
validity of both species.

As already mentioned, psyllids are main hosts for the Tamarixia species and because 
of their possible broad dietary tolerance some species might migrate and disperse to 
new geographic regions (Percy et al. 2012). This might also promote the introduction 
and dispersion of exotic or new species of parasitoids in countries like Mexico. For 
example, T. schina apparently migrated to Mexico from California (Yefremova et al. 
2014). According to the study by Percy et al. (2012), in the same region (California, 
USA), different species of psyllids attacked by some unidentified Tamarixia species 
exist, hosted by plants with potential distribution in Mexico. Moreover, in this country 
more than 114 species of psyllids (Méndez-Tobar 2015) exist, which may also represent 
possible hosts for exotic Tamarixia species. Therefore, the diversity of this genus might 
be currently underestimated in Mexico.

In agriculture, species identification protocols based on DNA represent powerful 
tools for the success of early detection programs, or monitoring of species (Lyal et al. 



Kenzy I. Peña-Carrillo et al.  /  ZooKeys 1129: 73–83 (2022)80

2008; Boykin et al. 2012; Poland and Rassati 2019). However, for some groups of in-
sects, the lack of reference barcodes, errors in databases, scarcity of voucher specimens 
and presence of cryptic species represent strong limitations. As an example, recently a 
new Tamarixia species (T. aguacatensis) was described based on morphological char-
acters, but because their sampling seems to be seasonally restricted (Yefremova et al. 
2014), the generation of barcodes for further studies on their biology and phylogeny 
represents a challenge.

Conclusion

Besides reporting the presence of Tamarixia dahlsteni in Mexico, we also provided bar-
codes that may be employed as a reference for further monitoring programs or studies 
about this economically important group of wasps. Moreover, our phylogenetic analy-
sis suggests the need for a deeper and wider taxonomic revision of the genus.
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