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Abstract
Studies using complete mitochondrial genome data have the potential to increase our understanding on 
gene organisations and evolutionary species relationships. In this study, we compared complete mito-
chondrial genomes between all 22 squamate species listed in South Korea. In addition, we constructed 
Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) phylogenetic trees 
using 13 mitochondrial protein-coding genes. The mitochondrial genes for all six species in the suborder 
Sauria followed the same organisation as the sequenced Testudines (turtle) outgroup. In contrast, 16 
snake species in the suborder Serpentes contained some gene organisational variations. For example, all 
snake species contained a second control region (CR2), while three species in the family Viperidae had 
a translocated tRNA-Pro gene region. In addition, the snake species, Elaphe schrenckii, carried a tRNA-
Pro pseudogene. We were also able to identify a translocation of a tRNA-Asn gene within the five tRNA 
(WANCY gene region) gene clusters for two true sea snake species in the subfamily Hydrophiinae. Our BI 
phylogenetic tree was also well fitted against currently known Korean squamate phylogenetic trees, where 
each family and genus unit forms monophyletic clades and the suborder Sauria is paraphyletic to the sub-
order Serpentes. Our results may form the basis for future northeast Asian squamate phylogenetic studies.
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Introduction

Elucidating comparative gene organisations and phylogenetic relationships between 
species is essential for improving our understanding of their evolutionary histories 
and may allow for the successful conservation of endangered taxa (Vane-Wright et al. 
1991; Crozier 1992; Boore et al. 1995; Mouquet et al. 2012). Knowledge of genetic 
organisational variations often give further insights into the evolutionary history of 
species and could be helpful in developing conservation management plans (Swenson 
2019). Additionally, gene organisation data provide reliable phylogenetic information 
within the evolutionary branches (Boore 1999). Furthermore, defining a phylogenetic 
species, using mitochondrial and nuclear genes, is often vital to designate if a species is 
endangered at a national level (An et al. 2010).

The mitochondrial genome is an important model system used to understand ge-
nome structure, molecular evolution and phylogenetic relationships amongst verte-
brates (Moritz and Brown 1986; Pääbo et al. 1991; Inoue et al. 2003; Krishnan et al. 
2004; Jiang et al. 2007; Qian et al. 2018). Specific mitochondrial genes, such as the 
12S ribosomal RNA (12S rRNA), 16S ribosomal RNA (16S rRNA), NADH dehy-
drogenase subunit 4 (ND4), cytochrome c oxidase subunit I (COI) and cytochrome b 
(Cytb) have been often used to compare phylogenetic relationships between vertebrates 
(Malhotra and Thorpe 2004; Rivera et al. 2018; Sidharthan et al. 2021). Although 
phylogenetic studies using mitochondrial sequences have both advantages and disad-
vantages (Rubinoff and Holland 2005), using the complete mitochondrial genome 
may provide higher phylogenetic resolution between species (Inoue et al. 2003; Nardi 
et al. 2003; Qian et al. 2018). In addition, a comparison of gene organisations, using 
complete mitochondrial genomes, could give a more precise understanding of the evo-
lutionary histories between species (Boore 1999). To date, a total of 6,781 complete 
vertebrate mitochondrial genome sequences have been deposited in GenBank (Na-
tional Center for Biotechnology Information; NCBI), of which 303 are squamates. 
These 303 sequenced mitochondrial genomes account for approximately 3.8% of the 
total 7,953 known squamate species (http://www.reptile-database.org/).

Squamates are the most speciose order amongst reptiles, have high ecological and 
morphological diversity and are found nearly worldwide, with the exception of Ant-
arctica (Greene 1997; Pianka et al. 2003; Vitt and Caldwell 2013). Squamates are 
divided into two suborders, Sauria and Serpentes. In South Korea, there are six saurian 
species (five lizards and one gecko species) across four genera and 16 snake species 
across 10 genera. Together, these squamate species account for 71.0% of all South 
Korean reptiles (two orders, 11 families, 22 genera and 31 species). In South Korea, 
there have been several phylogenetic studies mapping reptilian phylogenetic associa-
tions. Lee (2010) morphologically demarcated several lizard species, while Lee (2011) 
combined two Elaphe schrenckii subspecies by comparing specific mitochondrial genes 
and microsatellite alleles. Rhabdophis tigrinus, listed in both South Korea and Japan, 
was recently reclassified as R. lateralis, based on mitochondrial genes (Takeuchi et al. 
2014). More recently, Kim (2018) applied morphological data in addition to complete 
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mitochondrial genome sequences to classify sea snake species found in Korean waters. 
Only one large-scale reptilian phylogenetic study has phylogenetically distinguished 
between Korean serpent species, based on both morphological and isozyme data (Paik 
1982). Thus far, there have been no phylogenetic reconstructions using gene organisa-
tions amongst Korean squamates using complete mitochondrial genomes.

Recent phylogenetic molecular advances have made it more possible to compare 
complete mitochondrial genome relationships between species (Lee et al. 2021; Zhang 
et al. 2021; Vanerelli et al. 2022). These molecular advances make it a prime occasion 
to update our understanding of the phylogenetic relationships amongst squamates, 
specifically in South Korea. In this study, we compared mitochondrial gene organisa-
tions and constructed three types of phylogenetic trees amongst all 22 squamate spe-
cies listed in South Korea, using complete mitochondrial sequence data. These results 
have the potential to impact future squamate phylogenetic studies in northeast Asia.

Materials and methods

Complete mitochondrial DNA (mtDNA) sequences, for all 22 squamate species listed 
in South Korea, were downloaded from GenBank (NCBI). We tried to obtain mtDNA 
sequence data from individuals, captured within South Korea. When it was not possible, 
we used mtDNA data from specimens collected in China, Japan or Russia (Table 1) that 
were within the distribution range of the same species listed in South Korea (Takeuchi 
et al. 2014; Lee et al. 2022). The downloaded, foreign-originated sequences from Gen-
Bank showed high similarity with the preliminary BLAST analysis using partial 16S 
ribosomal RNA (16S rRNA), cytochrome oxidase subunit I (COI) or cytochrome b 
(Cytb) sequences of South Korean specimens (Jeong et al. 2013). For Hydrophis cyan-
ocinctus and H. melanocephalus, we used the data from individuals caught at locations 
nearest to South Korea, as there were no data available from South Korean specimens. 
After confirming complete mitochondrial genes for each species, we arranged and com-
pared the mitochondrial genes between species, based on transfer RNA (tRNA) posi-
tions and ribosomal RNA (rRNA) and protein-coding gene (PCG) positions, which 
were determined using tRNAscan-SE 2.0 (Chan and Lowe 2019) and MITOS Web-
server (Bernt et al. 2013), respectively. We excluded H. cyanocinctus from the analysis 
due to the uncertainty of the nucleotide sequence in non-protein-coding regions, such 
as rRNA, tRNA, OL and CR within a cluster of five tRNA genes (WANCY gene region).

To construct the phylogenetic tree of all 22 squamate species listed in South Korea, 
we used 13 mitochondrial PCGs (Fenn et al. 2008; Douglas and Gower 2010; He et al. 
2010). The sequence of each PCG was extracted and aligned using MUSCLE, with a 
maximum of 20 iterations (Edgar 2004). Aligned sequence genes were concatenated into 
one sequence using Geneious v.9.1.8 (Kearse et al. 2012). We used two sea turtle spe-
cies, Caretta caretta and Chelonia mydas, as outgroups for our constructed phylogenetic 
tree. We used PAUP 4.0a168 (Swofford 2001) to create the Maximum Parsimony (MP) 
phylogenetic tree. To increase the reliability of the MP phylogenetic tree, we performed 
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1,000 bootstrap iterations. For estimating the MP tree, we applied a heuristic search us-
ing tree bisection and reconnection (TBR) and branch swapping approaches. We used 
RAxML v.7.2.8 (Stamatakis 2006) to create the Maximum Likelihood (ML) phylogenetic 
tree. To select the best nucleotide model for the ML analysis, we used jModelTest 2.1.10 
(Darriba et al. 2012) and selected the GTR GAMMA I model through AIC calculations. 
The rapid bootstrapping value was calculated while selecting the best-scoring tree from 100 
ML trees. To construct the Bayesian Inference (BI) phylogenetic tree, we used MrBayes 
v.3.2.6 (Huelsenbeck and Ronquist 2001). For the BI phylogenetic tree, each substitution 
model and rate variation was set to GTR and gamma, respectively. For the Markov Chain 
Monte Carlo (MCMC) analysis of the BI tree, the chain length was set to 1,000,000, 
while the subsampling frequency was set to 100. The MCMC heated chain was also set 
to 4, the heated chain temperature was set to 0.2 and the burn-in cut-off was at 50,000.

Results

All six species within the suborder Sauria matched the mitochondrial organisation of the 
sea turtle outgroup (Fig. 1). In contrast, all 16 snake species in the suborder Serpentes 
had a second control region (CR2) between the NADH dehydrogenase subunit 1 
(ND1) and the NADH dehydrogenase subunit 2 (ND2). These 16 snake species also 

Table 1. All 22 analysed squamate species listed in South Korea and their sampling locations analysed in this 
study. Original sample location, GenBank accession number and mt-genome base pair length are provided.

Suborder Family Species Location GenBank No. Length (bp)
Sauria Gekkonidae Gekko japonicus S. Korea KR996131 16,544

Scincidae Scincella vandenburghi S. Korea KU646826 17,103
Scincella huanrenensis S. Korea KU507306 17,212

Lacertidae Takydromus amurensis China KU641018 17,333
Takydromus wolteri China JX181764 18,236

Eremias argus S. Korea JQ086345 18,521
Serpentes Colubridae Elaphe dione Russia MH460961 17,172

Elaphe schrenckii China KP888955 17,165
Oocatochus rufodorsatus China KC990020 17,159

Rhabdophis lateralis China KU641019 17,415
Hebius vibakari China KP684155 17,259

Lycodon rufozonatus China KJ179950 17,188
Orientocoluber spinalis S. Korea MT304473 17,196

Sibynophis chinensis S. Korea KF360246 17,163
Viperidae Gloydius ussuriensis China KP262412 17,208

Gloydius brevicaudus China EU913477 17,227
Gloydius saxatilis S. Korea MW143075 17,223

Elapidae Hydrophis cyanocinctus China MK953550 17,750
Hydrophis melanocephalus Japan MK775532 17,182

Hydrophis platurus S. Korea MK775530 18,101
Laticauda laticaudata S. Korea KY496323 17,209
Laticauda semifasciata S. Korea KY496325 17,170

Cryptodira Cheloniidae Chelonia mydas Cyprus JX454990 16,495
Caretta caretta USA JX454983 16,454

http://www.ncbi.nlm.nih.gov/nuccore/KR996131
http://www.ncbi.nlm.nih.gov/nuccore/KU646826
http://www.ncbi.nlm.nih.gov/nuccore/KU507306
http://www.ncbi.nlm.nih.gov/nuccore/KU641018
http://www.ncbi.nlm.nih.gov/nuccore/JX181764
http://www.ncbi.nlm.nih.gov/nuccore/JQ086345
http://www.ncbi.nlm.nih.gov/nuccore/MH460961
http://www.ncbi.nlm.nih.gov/nuccore/KP888955
http://www.ncbi.nlm.nih.gov/nuccore/KC990020
http://www.ncbi.nlm.nih.gov/nuccore/KU641019
http://www.ncbi.nlm.nih.gov/nuccore/KP684155
http://www.ncbi.nlm.nih.gov/nuccore/KJ179950
http://www.ncbi.nlm.nih.gov/nuccore/MT304473
http://www.ncbi.nlm.nih.gov/nuccore/KF360246
http://www.ncbi.nlm.nih.gov/nuccore/KP262412
http://www.ncbi.nlm.nih.gov/nuccore/EU913477
http://www.ncbi.nlm.nih.gov/nuccore/MW143075
http://www.ncbi.nlm.nih.gov/nuccore/MK953550
http://www.ncbi.nlm.nih.gov/nuccore/MK775532
http://www.ncbi.nlm.nih.gov/nuccore/MK775530
http://www.ncbi.nlm.nih.gov/nuccore/KY496323
http://www.ncbi.nlm.nih.gov/nuccore/KY496325
http://www.ncbi.nlm.nih.gov/nuccore/JX454990
http://www.ncbi.nlm.nih.gov/nuccore/JX454983
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had translocated tRNA-Leu (UUA) genes between tRNA-Ile and tRNA-Gln. In addition, 
three species in the family Viperidae had a translocated tRNA-Pro gene. The tRNA-Pro 
gene was originally between tRNA-Thr and CR1 genes, but was translocated in between 
the tRNA-Ile and CR2 genes. Moreover, the three viperid species lacked any tRNA-Pro 
pseudogenes observed in the other serpent species. In H. platurus and H. melanocephalus, 
the tRNA-Asn gene, originally located between tRNA-Ala and the light strand replication 
origin (OL) in other snakes, had also been translocated between the OL region and the 
tRNA-Cys gene within the WANCY cluster region. Finally, a pseudo-tRNA-Pro gene was 
discovered between the tRNA-Ile and CR2 genes in Elaphe schrenckii.

The aligned sequence data for the 13 mitochondrial protein-coding genes 
were concatenated to 11,581 bp. The suborders Sauria and Serpentes each formed 
monophyletic clades in both MP and ML phylogenetic trees (Fig. 2). In contrast, all 
six species within the suborder Sauria were paraphyletic to the suborder Serpentes in 
the BI tree (Fig. 3). Branching patterns were the same between Viperidae and Elapidae 
families amongst our three constructed phylogenetic trees. Specifically, two species in 
the family Viperidae, Gloydius ussuriensis and G. brevicaudus, were more closely related, 
while G. saxatilis formed a sister clade. Within the genus Hydrophis, H. cyanocinctus 
and H. melanocephalus clustered more closely together than H. platurus. For the 
family Colubridae, species in the BI tree were paraphyletic, which differed from our 
constructed ML and MP trees. In the BI tree, Gekko japonicus was basal to all other 
saurian species.

Figure 1. Comparison of the mitochondrial gene organisation for all 22 squamate species listed in South 
Korea. Two sea turtle species (Caretta caretta and Chelonia mydas), served as outgroups. L1, L2, S1, S2. P* 
represent the following genes: tRNA-Leu (UUR), tRNA-Leu (CUN), tRNA-Ser (AGY), tRNA-Ser (UCN) 
and a pseudo tRNA-Pro gene, respectively. tRNA genes are abbreviated by the corresponding one-letter 
amino acid codes, such as F, V, I, M etc.
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Discussion

We compared gene organisations and elucidated phylogenetic relationships, using 
complete mitochondrial genomes, for all 22 squamate species listed in South Korea. 
Using this complete mtDNA approach, we were able to uncover unique evolutionary 
insights amongst South Korean squamates.

Relative to the six saurian species, we discovered that all 16 snake species in the 
suborder Serpentes had an additional control region (CR2) and a translocated tRNA-Leu 
(UUR) gene. These genetic characteristics have been documented in many other snake 
species, except for the infraorder Scolecophidia (Douglas et al. 2006; Jiang et al. 2007). 
The CR2 was located between ND1 and ND2 genes and may be an example of a non-in-
dependent replication event (Dover 1982; Kumazawa et al. 1998; Dong and Kumazawa 
2005). The presence of two control regions may increase the rate of mitochondrial gene 
replication (Jiang et al. 2007). Duplication of the CR is not novel amongst vertebrates 
and has been identified in fishes (Lee et al. 2001; Inoue et al. 2003), frogs (Sano et al. 
2005; Huang et al. 2019), lizards (Kumazawa and Endo 2004; Amer and Kumazawa 

Figure 2. Maximum Parsimony (MP) tree (left) and Maximum Likelihood (ML) tree (right) for all 22 squa-
mates listed in South Korea. Both MP and ML trees are based on 13 mitochondrial protein-coding genes. 
Caretta caretta and Chelonia mydas are outgroup species. Bootstrap values are denoted on each tree branch.
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Figure 3. The constructed Bayesian Inference (BI) tree for all 22 squamate species listed in South Korea, 
based on 13 mitochondrial protein-coding genes. Two cheloniid species (Caretta caretta and Chelonia 
mydas) were used as outgroups. Bayesian posterior probabilities are denoted on each tree branch.

2005) and birds (Eberhard et al. 2001; Sammler et al. 2011). The translocation of tRNA-
Leu (UUR) gene, identified in this study, is considered an ancestral trait of the infraorder 
Alethinophidia (Dong and Kumazawa 2005). In vertebrates, the tRNA-Leu gene has 
been shown to alter the transcribed ratios between the rRNA and protein-coding gene 
as terminators for heavy-stranded transcripts (Fernández-Silva et al. 2003). The presence 
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of the CR2 and the translocation of the tRNA-Leu gene might also prevent a thermody-
namic depression of transcriptional enzymes in snakes (Jiang et al. 2007).

All three Gloydius species, listed in South Korea, had translocated tRNA-Pro gene 
regions, which is consistent with other previously reported Viperidae species, such 
as Agkistrodon piscivorus (Jiang et al. 2007), Causus defilippi (Castoe et al. 2009), 
Bothrops pubescens (GenBank No. MG182598) and Vipera berus (Gao et al. 2018). 
In contrast, we did not detect any half-sized tRNA-Pro pseudogenes from the three 
analysed Gloydius species, although the half-sized pseudogenes have been previously 
reported in a closely-related species, G. strauchi (GenBank No. MF523224). The half-
sized tRNA-Pro pseudogene, adjacent to the 5’ end of CR1, has also been reported 
in Ovophis okinavensis (Kumazawa et al. 1996) and in several other crotaline species, 
such as Protobothrops kaulbacki (Kang et al. 2017), Trimeresurus albolabris (Song et al. 
2015) and T. sichuanensis (Zhu et al. 2016). The half-sized tRNA-Pro pseudogene is 
considered a shared ancestral trait amongst crotaline species and may have been lost 
and subsequently recovered independently between species (Wüster et al. 2008).

In H. platurus and H. melanocephalus, the tRNA-Asn gene was translocated between 
the OL and tRNA-Cys genes. The tRNA-Asn gene is usually located between tRNA-Ala 
and OL in the WANCY region in other snakes and vertebrates (Boore 2000; Qian et al. 
2018; Fig. 4). To our knowledge, this is the first finding of a tRNA-Asn translocation in 
the infraorder Alethinophidia. Mitochondrial genetic rearrangements are often found 
near control or WANCY regions in serpents (Qian et al. 2018). Tandem duplication 
random loss (TDRL) models often explain that some gene rearrangements may oc-
cur due to random paralog deletions (Moritz et al. 1987; Boore 2000; Xiaokaiti et al. 
2022). These random paralog deletions may explain our results, as paralog deletions 
have caused gene rearrangements in other vertebrates including lizards, marsupials, 
birds and fishes (Moritz and Brown 1986, 1987; Moritz et al. 1987; Pääbo et al. 1991; 
Boore 2000; Inoue et al. 2003). We were also able to identify a novel gene rearrange-
ment in sea snakes found off the coasts of South Korea. To our knowledge, this gene 
rearrangement has not been detected in other elapid species, including cobras (Yan et 
al. 2008; Castoe et al. 2009; Singchat et al. 2019) and sea kraits (Kim et al. 2018).

The existence of the intergenic spacers, which are non-coding regions between 
genes, is evidence of certain genetic deletions (San Mauro et al. 2006; Xiaokaiti et 
al. 2022). The gene rearrangement observed in the true sea snake species may be 
the result of a duplication of the WANCY genes and subsequent deletions of certain 
parts of other genes (Fig. 4A). We were also able to corroborate the occurrence of 
similar gene rearrangements in two other foreign sea snake species, Emydocephalus 
ijimae and H. curtus, for which complete mt-genome were available (GenBank 
MK775531, MT712129; Yi et al. 2019; Zhang and Yan 2020) (Fig. 4B, C). This 
WANCY gene rearrangement was not present in the four sequenced terrestrial 
cobra species (Bungarus fasciatus, Micrurus fulvius, Naja naja and Sinomicrurus 
macclellandi; GenBank No. EU579523, GU045453, DQ343648, MT547176; Yan 
et al. 2008; Castoe et al. 2009; Yao et al. 2020). Uploading and comparing additional 
mt-genome data for closely-related Australian terrestrial cobras and sea snakes may 

http://www.ncbi.nlm.nih.gov/nuccore/MG182598
http://www.ncbi.nlm.nih.gov/nuccore/MF523224
http://www.ncbi.nlm.nih.gov/nuccore/MK775531
http://www.ncbi.nlm.nih.gov/nuccore/MT712129
http://www.ncbi.nlm.nih.gov/nuccore/EU579523
http://www.ncbi.nlm.nih.gov/nuccore/GU045453
http://www.ncbi.nlm.nih.gov/nuccore/DQ343648
http://www.ncbi.nlm.nih.gov/nuccore/MT547176
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give further insights into elapid speciation and possibly adaptation from terrestrial 
to oceanic ecosystems.

Our constructed BI phylogenetic tree was well fitted amongst known Korean squa-
mate phylogenies. In our BI tree, the suborder Sauria was paraphyletic to the superfamily 
Lacertoidea and was sister to the suborder Serpentes. In addition, the family Gekkonidae 
formed an independent branch at the most basal position, which is consistent with previ-
ous studies (Townsend et al. 2004; Vidal and Hedges 2005; Hugall et al. 2007; Wiens et 
al. 2012; Pyron et al. 2013; Reeder et al. 2015). Our constructed BI tree also corrobo-
rated a recent phylogenetic investigation which used both morphological characters and 
specific mitochondrial and nuclear genes of 200 squamate species (Reeder et al. 2015). 
Due to the parallels between our constructed BI tree and the aforementioned study, we 
hypothesise that South Korean squamates most likely speciated in this manner.

In this study, we used complete mitochondrial sequenced genomes to determine 
mitochondrial gene organisations and phylogenetic relationships amongst all 22 squa-
mate species listed in South Korea. The analysed species appear to have several unique 
mitochondrial rearrangements, including family and order-specific gene duplica-
tions and translocations. Overall, our constructed BI phylogenetic tree was well fitted 
amongst Korean squamates and is consistent with other phylogenetic studies which 
utilised specific mt-gene sequences. These results may form the basis of future phylo-
genetic investigations, clarifying northeast Asian squamate speciation.

Figure 4. Intergenic spacers located in the cluster of five tRNA genes (WANCY gene region) of two 
sea snake species (Hydrophis platurus and H. melanocephalus) found off South Korean coastal waters A 
intergenic spacers located in the WANCY gene region of two sea krait species (Laticauda laticaudata and 
L. semifasciata), four terrestrial cobras (Bungarus fasciatus, Micrurus fulvius, Naja naja and Sinomicrurus 
macclellandi) B and two true sea snake species downloaded from GenBank (H. curtus and Emydocephalus 
ijimae) C intergenic spacer lengths amongst Hydrophiinae species are above the intergenic spacer in the 
same order as the species are listed. The hypothesised tRNA genes lost due to random deletions are written 
below the intergenic spacers. The tRNA genes are abbreviated by the corresponding one-letter amino acid 
codes, such as W, A, N etc.
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