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Abstract
The genus Motacilla belongs to Motacillidae (Passeriformes), where mitochondrial features are poorly 
understood and phylogeny is controversial. Whole mitochondrial genome (mitogenome) data and large 
taxon sampling are considered to be ideal strategies to obtain this information. We generated four com-
plete mitogenomes of M. flava, M. cinerea, M. alba and Dendronanthus indicus, and made comparative 
analyses of Motacilla species combined with mitogenome data from GenBank, and then reconstructed 
phylogenetic trees based on 37 mitochondrial genes. The mitogenomes of four mitogenome sequences 
exhibited the same gene order observed in most Passeriformes species. Comparative analyses were per-
formed among all six sampled Motacilla mitogenomes. The complete mitogenomes showed A-skew and 
C-skew. Most protein-coding genes (PCGs) start with an ATG codon and terminate with a TAA codon. 
The secondary structures of RNAs were similar among Motacilla and Dendronanthus. All tRNAs except 
for trnS(agy) could be folded into classic clover-leaf structures. Three domains and several conserved boxes 
were detected. Phylogenetic analysis of 90 mitogenomes of Passeriformes using maximum likelihood 
(ML) and Bayesian inference (BI) revealed that Motacilla was a monophyletic group. Among Motacilla 
species, M. flava and M. tschutschensis showed closer relationships, and M. cinerea was located in a basal 
position within Motacilla. These data provide important information for better understanding the mitog-
enomic characteristics and phylogeny of Motacilla.
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Introduction

In most animals, the mitochondrial genome (mitogenome) contains 13 protein-coding 
genes (PCGs), two rRNA genes (rRNAs), 22 tRNA genes (tRNAs), and one noncod-
ing region (the control region, CR) (Wolstenholme 1992; Boore 1999). Mitochon-
drial sequences are commonly used for inferring phylogeny (Hassanin et al. 2005), and 
the mitogenome has been used as an effective marker for exploring the phylogenies of 
some avian taxa (Li et al. 2016a; Mackiewicz et al. 2019; Cai et al. 2019).

Passeriformes comprises 6533 currently described species (Gill et al. 2020). The ge-
nus Motacilla belongs to Motacillidae (Passeriformes) and contains 12 species (Alström 
et al. 2003; del Hoyo et al. 2004), which show striking plumage pattern variation (Harris 
et al. 2018). Motacilla flava Linnaeus, 1758 is a small, insectivorous oscine (Ödeen and 
Björklund 2003) and is closely related to M. alba Linnaeus, 1758, distributed in the 
Palearctic (Dong and Zhang 2011). Some mitochondrial fragments, such as nad2 and 
CR of M. alba (Li et al. 2016b), have been used to study the phylogeography and popula-
tion history of Motacilla. Additionally, some mitochondrial genes, such as nad2 (Suppl. 
material 1: Fig. S1A; Dong et al. 2016) and cytb (Suppl. material 1: Fig. S1B; Zhang et al. 
2016), have been used to study the phylogenetic relationships of Motacilla. However, the 
phylogenetic position of some Motacilla species is still controversial. For example, M. alba 
has been reported to form a sister group with M. madaraspatensis Gmelin, 1789 (Suppl. 
material 1: Fig. S1A, Dong et al. 2016), but it has also been grouped with M. cinerea 
Tunstall, 1771 (Suppl. material 1: Fig. S1B; Zhang et al. 2016). In addition, phylogenetic 
results reconstructed from genome-wide SNPs (Suppl. material 1: Fig. S1C, Harris et al. 
2018) have some incongruence with those based on mitochondrial genes or mitogenomes 
(Suppl. material 1: Fig. S1A, B, D; Dong et al. 2016; Zhang et al. 2016; Gao et al. 2019).

An increasing number of avian mitogenome sequences are being generated with 
high-throughput sequencing technology (Morinha et al. 2016; Yang et al. 2018), fa-
cilitating the identification of mitogenomic characteristics such as gene order and base 
composition through the comparison of mitogenomes. However, the limited Motacilla 
mitogenomic sequences available from the GenBank database restricts the exploration 
of mitogenome features in this genus. For example, recent studies of Motacilla (Dong 
et al. 2016; Zhang et al. 2016; Harris et al. 2018; Gao et al. 2019) have focused on 
the phylogenetic relationships within this genus but have not conducted further com-
parative analyses among mitogenomes. In the present study, we obtained complete 
mitogenome sequences of M. flava, M. cinerea, M. alba, and Dendronanthus indicus 
Gmelin, 1789, performed comparative analyses and generated phylogenies (Subspecies 
differentiation was not discussed here). The new mitogenome data not only may help 
us understand the mitogenomic characteristics of Motacilla but also provide a basis for 
exploring phylogenetic relationships.
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Methods

Specimen collection

Muscle samples were collected from the following species: M. flava (from China, 
Shaanxi Province, Hongjiannao in 2013); M. cinerea (from China, Shaanxi Province, 
Feng County in 2017); and M. alba and D. indicus (from China, Shaanxi Province, 
Lantian in 2018). All specimens of muscle samples were preserved in 100% ethanol 
and stored at -20 °C at the Shaanxi Institute of Zoology, Shaanxi Province, China.

Mitogenome sequencing, assembly and annotation

The mitogenome of M. flava was sequenced by Genesky Biotechnologies Inc., Shang-
hai, China, using the Illumina HiSeq2000 platform, while those of M. cinerea, M. alba 
and D. indicus were sequenced at Biomarker Technologies Inc., Beijing, China, using 
the Illumina Xten platform and a 150 bp paired-end strategy. Genomic DNA was 
extracted using a DNeasy kit and fragmented using ultrasonic methods to prepare a 
small-inserted-fragment library. The library data were obtained via Bridge PCR and 
Illumina paired-end sequencing.

There were 15,149,744 paired-end raw reads of M. flava, of which 47,390 reads 
were used for mitogenome assembly, with average coverage of 417.1X. There were 
20,702,440 paired-end raw reads of M. cinerea, with clean data 6.92 G. A total of 
261,229 reads were used for mitogenome assembly, with average coverage of 2256.2X. 
There were 7,868,047 raw reads in M. alba, with 7,860,296 reads with clean data, and 
8,430,436 raw reads of D. indicus, with 8,420,710 reads with clean data.

The raw data from M. flava, M. cinerea and M. alba were quality trimmed with CLC 
Genomics Workbench 9.5.2 (CLC bio, Aarhus, Denmark) using the default param-
eters. Mitogenome assembly was performed in MITOBIM 1.8 (Hahn et al. 2013), with 
M. alba (GenBank: NC029229) as a reference. The mitogenomic sequences of D. indic-
us were assembled using MitoZ 2.4 (Meng et al. 2019). Mitochondrial PCGs were iden-
tified using Geneious 11.1.3 (Kearse et al. 2012) by searching for open reading frames 
and employing the M. alba mitogenome (GenBank: NC029229) as a reference. Most 
tRNAs were identified using tRNAscan-SE 1.21 (Lowe and Eddy 1997), with second-
ary structures used as references. The remaining tRNAs, rRNAs and CRs were identified 
by comparison with other Motacilla species. Each mitochondrial gene was confirmed by 
alignment with the corresponding homologous genes from other Motacilla species avail-
able in GenBank. The secondary structures of rrnS and rrnL were generated using the 
mitogenomic rRNAs of Remiz consobrinus as a reference (Gao et al. 2013).

Comparative analysis and phylogenetic reconstruction

The six mitogenomes (M. flava, M. cinerea and M. alba mitogenomes from col-
lected specimens combined with M. tschutschensis, M. alba and M. cinerea genom-
es from GenBank) were used for comparative analysis. A mitogenome of M. lugens 

http://www.ncbi.nlm.nih.gov/nuccore/NC029229
http://www.ncbi.nlm.nih.gov/nuccore/NC029229
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(KU246035/NC_029703) was excluded because this has been shown to represent a 
chimera (Sangster and Luksenburg 2021). The nucleotide compositions of the mi-
togenomes and different datasets were calculated using Geneious 11.1.3 (Kearse et al. 
2012). Nucleotide bias was calculated using the formulas AT-skew = (A−T)/(A+T) and 
GC-skew = (G−C)/(G+C) (Perna and Kocher 1995). Relative synonymous codon us-
age (RSCU) was calculated with MEGA 11 (Tamura et al. 2021).

A total of 90 mitogenomes of Passeriformes were used to reconstruct phyloge-
netic relationships; the included mitogenomes came from 12 taxonomic families 
with Aethopyga gouldiae (Nectariniidae) used as an outgroup (Suppl. material 7: 
Table S1). Each mitochondrial gene was aligned individually using MUSCLE in 
MEGA 11 (Tamura et al. 2021), starting with the alignment of PCGs to amino 
acid sequences. One mitogenomic dataset (mtDNA) was used for phylogenetic 
analysis, which included the nucleotide sequences of 13 PCGs, two rRNAs and 22 
tRNAs, with a length of 15,722 bp. The best models of GTR+F+R5 for maximum 
likelihood (ML) analysis and GTR+F+I+G4 for Bayesian inference (BI) analysis 
were assessed in ModelFinder (Kalyaanamoorthy et al. 2017) using the Bayesian 
information criterion (BIC) in PhyloSuite 1.2.1 (Zhang et al. 2020). Phylogenetic 
relationships were analyzed using ML phylogenies with IQ-TREE 1.6.8 (Nguyen 
et al. 2015) with 1000 bootstrap replicates. The BI phylogeny was analysed with 
MrBayes 3.2.7 (Ronquist et al. 2012). Two independent runs with four simultane-
ous Markov chains were run for 5,000,000 generations and were sampled every 
100 generations. The first 25% of generations were discarded as burn-in. The effec-
tive sample size (ESS) values were estimated in Tracer 1.7 (Rambaut et al. 2018), 
with ESS values > 200.

Results and discussion

Mitogenomic structure and organization

The obtained complete mitogenomes of M. flava, M. cinerea, M. alba and D. in-
dicus ranged from 16,831 bp to 16,870 bp in length and each contained 37 genes 
and a noncoding region (CR) (Fig. 1). The complete mitogenome sequences were 
submitted to GenBank (MW929088–MW929091). Four gene arrangements have 
been identified among the Passeriformes mitogenomes sequenced to date (Capar-
roz et al. 2018; Mackiewicz et al. 2019). The gene order cytb-trnT-trnP-nad6-
trnE-CR-trnF-rrnS is found in the mitogenomes of three Motacilla species and 
D. indicus, which is consistent with the order observed in most Passeriformes spe-
cies (Mackiewicz et al. 2019). The major strand (J-strand) encodes 12 PCGs and 
two rRNAs as well as trnF, trnV, trnL(uur), trnI, trnM, trnW, trnD, trnK, trnG, 
trnR, the HSL cluster [trnH, trnS(agy), trnL(cun)] and trnT (Fig. 1). The lengths 
of the intergenic spacers range from 1–23 bp in the three Motacilla mitogenomes 
and 1–18 bp in D. indicus, with the longest intergenic spacer being located be-
tween the trnP and nad6 genes.

http://www.ncbi.nlm.nih.gov/nuccore/KU246035
http://www.ncbi.nlm.nih.gov/nuccore/NC_029703
http://www.ncbi.nlm.nih.gov/nuccore/MW929088
http://www.ncbi.nlm.nih.gov/nuccore/MW929091
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Comparative analysis of Motacilla mitogenomes

The gene orders and nucleotide compositions of the six sampled Motacilla mitogenom-
es were generally similar. For instance, the A+T content ranges from 53.5% to 53.9%, 
which was slightly higher than the G+C contents. All mitogenomes showed a tendency 
toward A-skew and obvious C-skew (Suppl. material 8: Table S2), which was similar to 
findings in other birds (Kan et al. 2010; Eberhard and Wright 2016; Li et al. 2016a).

Protein-coding genes

The A+T contents of the 13 PCGs excluding stop codons ranged from 52.4% to 
52.9% in sampled Motacilla mitogenomes (Suppl. material 8: Table S2). The highest 

Figure 1. Gene map of four newly sequenced mitogenomes. Notes: tRNAs are abbreviated with a single 
letter; mitochondrial genes encoded by the J- and N-strands, indicated in bold, are located outside and 
inside of the circle, respectively.
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A+T content was found at the second codon position in all Motacilla mitogenomes. 
Obvious T-skew was recovered at the second codon position, while the most signifi-
cant A-skew was found at the third codon position. The three codon positions showed 
different degrees of C-skew, which was most obvious at the third codon position.

The first and last codons of the PCGs of Motacilla were compared (Suppl. material 
9: Table S3). Twelve of the 13 PCGs started with an ATG codon, while nad3 started 
with ATT. The start codons were conserved in the six mitogenomes. The termination 
codons of the PCGs included TAA, TAG, AGG, AGA, TA and T, which are conserved 
among PCGs with the exception of cox2, cox3 and nad2. The incomplete T termina-
tion codons found in cox3 and nad4 have also been reported in other avian mitog-
enomes (Ma et al. 2014; Li et al. 2015; Eberhard and Wright 2016).

RSCU analysis indicated that among all PCGs, codons including A or C at the 
third position were frequently overused relative to other synonymous codons (Fig. 2). 
The codon usage among Motacilla species was found to be conserved, with CUA (L), 
CGA (R) and UCC(S) representing the most frequently used codons.

RNA genes

Similar to other avian mitogenomes, rrnS was found to be located between trnF and 
trnV, and rrnL was located between trnV and trnL(uur). The length of rrnS was 975 bp 

Figure 2. RSCU analysis of the PCGs of six mitogenomes from the genus Motacilla. Note a M. alba 
b M. cinerea c M. flava d M. tschutschensis e M. alba (MN356232) f M. cinerea (NC_027933).

http://www.ncbi.nlm.nih.gov/nuccore/MN356232
http://www.ncbi.nlm.nih.gov/nuccore/NC_027933
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in M. alba (MN356232) and 973 bp in the other Motacilla mitogenomes, while the 
length of rrnL was 1595 bp in all Motacilla species. The A+T content was slightly 
greater than the G+C content in the rRNA genes, ranging from 52.2% to 52.3% in 
rrnS and 55.2% to 55.4% in rrnL, and both rRNA genes exhibited A-skew and C-
skew (Suppl. material 8: Table S2).

The rrnS included three domains and 47 helices in M. flava (Suppl. material 2: Fig. S2), 
while rrnL included six domains and 60 helices (Suppl. material 3: Fig. S3). Most of the 
identified sequences and secondary structures were conserved compared with those of 
other Motacilla rRNAs. In addition, most of the stems of the rRNA secondary structures 
were similar to those found in other Passeriformes mitogenomes. For example, stems 21 
and 47 of rrnS and 15 and 40 of rrnL were consistent with those found in R. consobrinus 
(Gao et al. 2013).

A total of eight tRNAs (trnQ, trnA, trnN, trnC, trnY, trnS(ucn), trnP and trnE) 
were located on the N-strand, while the remaining 14 tRNAs were located on the J-
strand (Fig. 1). The lengths of the 22 tRNAs in each Motacilla species ranged from 66 
to 75 bp. The A+T content ranged from 58.3% to 58.6% in the tRNAs, which exhib-
ited A-skew and G-skew (Suppl. material 8: Table S2).

Twenty-one of the 22 tRNAs of M. flava were folded into a clover-leaf-like second-
ary structure, with the exception of trnS(agy), lacking a dihydrouridine (DHU) stem 
(Suppl. material 4: Fig. S4), which is considered to be a typical feature of metazoan 
mitogenomes (Wolstenholme 1992). Comparisons among Motacilla tRNAs showed 
that the most conserved tRNAs were trnL(UUR), trnM, trnW, trnA, trnC, trnH, 
trnL(CUN), trnT, trnP and trnE (Suppl. material 4: Fig. S4), which contained the 
same nucleotides. Some mismatched base pairs found in Motacilla were similar to 
those observed in some other Passeriformes species (Pyrgilauda ruficollis, Ma et al. 
2014; R. consobrinus, Gao et al. 2013), such as the C-C pair located in the acceptor 
stem of trnL(uur) and the anticodon stem of trnG, A-A in the TφC stem of trnD, and 
U-U in the anticodon stem of trnG.

Control region

The CR was located between the trnE and trnF genes and were 1243–1250 bp in 
length. The average A+T content was 56.2% among all sampled Motacilla mitog-
enomes, which was slightly higher than that of G+C. The CRs showed a tendency 
toward T-skew and C-skew (Suppl. material 8: Table S2), with C-skew being more 
obvious. This C-skew was consistent with findings in other reported avian CRs (e.g., 
Huang et al. 2017).

The CR regulates the replication of the H strand and the transcription of all mi-
tochondrial genes (Clayton 1992) and can be divided into three domains: extended 
termination-associated sequence (ETAS) domain I, central conserved domain II, 
and conserved sequence block (CSB) domain III (Sbisà et al. 1997; Randi and 
Lucchini 1998; Ruokonen and Kvist 2002). Among the three domains of the CR, 
domain I showed slight A-skew and obvious C-skew, domain II showed a tendency 

http://www.ncbi.nlm.nih.gov/nuccore/MN356232
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toward T-skew and C-skew, and domain III exhibited A-skew and a highly signifi-
cant C-skew (Suppl. material 8: Table S2).

The proportions of variable sites among the three domains were 3.6%, 2.4% and 
9.0%, respectively. Thus, most variation was found in domain III, similar to the find-
ings of previous studies (Ruokonen and Kvist 2002; Huang et al. 2017). A poly-C 
sequence was found near the 5’ end of CR domain I in M. flava, with a sequence of 
CCCCCCCCCCTTCCCCCCCC, and this sequence was relatively conserved in the 
sampled mitogenome CRs (Suppl. material 5: Fig. S5). Within the M. flava CR se-
quence, boxes F, E, D, C, B and a bird similarity box in domain II were identified. The 
F, E, D and C boxes were similar to those found in other avian mitogenomes (Suppl. 
material 5: Fig. S5; Huang et al. 2017). Among these boxes, the F-box, bird similarity 
box and B-box were fully conserved among sampled mitogenomic sequences. Do-
main III contained CSB1, whose sequence was similar to that found in other birds 
(Huang et al. 2017). However, it was difficult to identify sequences corresponding to 
OH, CSB2, CSB3 and bidirectional LSP/HSP promoters found in other birds (Li et 
al. 2015), which might play important roles in mitogenome replication. Furthermore, 
tandem repeat sequences in CRs are found in many avian mitogenomes (Yang et al. 
2018). However, none of the sampled Motacilla CRs contained tandem repeats.

Phylogenetic analysis

The ML and BI phylogenetic trees were reconstructed using the mtDNA dataset, show-
ing consistent topological results among Motacillidae (Fig. 3 and Suppl. material 6: 
Fig. S6). The analyses supported the monophyly of Motacillidae with 100% bootstrap 
support and posterior probabilities of 1.0. Among the three sampled genera among 
Motacillidae (Anthus, Dendronanthus and Motacilla), Anthus was sister to D. indicus 
and Motacilla. The monophyly of Motacilla was also recovered, with D. indicus form-
ing a sister group with Motacilla.

Within Motacilla, the following phylogenetic relationships were recovered: 
(((M. flava+M. tschutschensis)+M. alba)+M. cinerea), similar to previous studies (Suppl. 
material 1: Fig. S1A; Dong et al. 2016; Suppl. material 1: Fig. S1D; Gao et al. 2019). 
Motacilla cinerea was in the basal position within Motacilla, and M. flava showed a closer 
relationship with M. tschutschensis. However, M. alba showed a closer relationship with 
M. cinerea (Suppl. material 1: Fig. S1B; Zhang et al. 2016), while M. cinerea presented 
a closer phylogenetic relationship with M. flava (Suppl. material 1: Fig. S1C; Harris et 
al. 2018). These differences might be due to the different data types, dataset sizes and 
sampling strategies involved. For example, the phylogenetic tree topologies obtained 
from the complete mitogenome are not identical to those resulting from individual 
mitochondrial genes in some avian taxa (Campillo et al. 2019). In addition, the phy-
logenetic relationships recovered from nuclear segment datasets are inconsistent with 
those recovered from mitogenomes in some aves (Li et al. 2016a; Campillo et al. 2019). 
Therefore, our results indicate that further studies are needed to address the phyloge-
netic relationships within Motacilla by adding more sampling and some nuclear data.
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Conclusions

The complete mitogenomes of Motacilla flava, M. cinerea, M. alba and Dendronan-
thus indicus were sequenced and were shown to present the typical genome organ-
ization and gene order found in other Passeriformes mitogenomes. We focused on 
comparative analyses of the six mitogenomes to identify the mitogenomic character-
istics of the genus Motacilla, such as the base composition, codon usage and RNA 
secondary structures. The complete mitogenomes showed a tendency toward A-
skew and C-skew. Most PCGs start with typical ATG codons and terminated with 
TAA codons. All tRNAs could be folded into classic clover-leaf structures except for 
trnS(agy), which lacked a DHU arm. In addition, 90 mitogenomes of Passeriformes 
were used to build the tree of phylogenetic relationships. The phylogenetic tree sup-
ported the monophyly of Motacillidae. Within Motacilla, the phylogenetic topology of 
(((M. flava+M. tschutschensis)+M. alba)+M. cinerea) was recovered.
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