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Abstract
For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools 
of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard 
jet airplanes; advanced technology allows humans to access environments that were once utterly inacces-
sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings 
of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro-
scopes have been replaced by an array of technologies ranging from scanning electron microscopy to 
DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of 
all – which we are still in the midst of, and which has not yet been fully realized – is the means by which 
taxonomists manage and communicate the information of their trade. The rapid evolution in recent dec-
ades of computer database management software, and of information dissemination via the Internet, have 
both dramatically improved the potential for streamlining the entire taxonomic process. Unfortunately, 
the potential still largely exceeds the reality. The vast majority of taxonomic information is either not yet 
digitized, or digitized in a form that does not allow direct and easy access. Moreover, the information 
that is easily accessed in digital form is not yet seamlessly interconnected. In an effort to bring reality 
closer to potential, a loose affiliation of major taxonomic resources, including GBIF, the Encyclopedia of 
Life, NBII, Catalog of Life, ITIS, IPNI, ICZN, Index Fungorum, and many others have been crafting 
a “Global Names Architecture” (GNA). The intention of the GNA is not to replace any of the existing 
taxonomic data initiatives, but rather to serve as a dynamic index to interconnect them in a way that 
streamlines the entire taxonomic enterprise: from gathering specimens in the field, to publication of new 
taxa and related data.
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Introduction

Although biological taxonomy is sometimes referred to as the “oldest profession” 
(Hedgpeth 1961, Chmielewski and Krayesky 2013), its current incarnation began 
with the start of modern nomenclature in the middle part of the eighteenth century 
(Linnaeus 1753, 1758). Throughout this time, the fundamental unit of taxonomy has 
been the “species”, the concept for which has eluded a clear consensus definition (e.g., 
Wheeler and Meier 2000). Linnaeus himself was a creationist, and therefore saw spe-
cies as the work of God (Linnaeus 1736:18; translation from Wilkins 2009:41):

Species tot sunt diversae quot diversas formas ab initio creavit infinitum Ens. [There 
are as many species as the Infinite Being produced diverse forms in the beginning.]

This is not at all surprising, given that Darwin’s concept of evolution was not pro-
posed until a century after the start of modern nomenclature (Darwin 1859). But even 
then, Darwin opted not to attempt a precise definition of “species”, writing (p. 40):

Hence, in determining whether a form should be ranked as a species or a variety, the 
opinion of naturalists having sound judgment and wide experience seems the only guide to 
follow. We must, however, in many cases, decide by a majority of naturalists, for few well-
marked and well-known varieties can be named which have not been ranked as species by 
at least some competent judges.

This idea was reflected by the definition of species by Regan (1926: 75):

A species is a community, or a number of related communities, whose distinctive mor-
phological characters are, in the opinion of a competent systematist, sufficiently definite to 
entitle it, or them, to a specific name. [often paraphrased as, “a species is what a competent 
taxonomist says it is”]

Many modern taxonomists have dismissed this definition as unscientific or too 
reliant on the notion of what “competent” means, and as a result, debates regarding a 
more precise and biologically meaningful definition of species have continued over the 
decades well into modern times (publications too numerous to cite, but see Wilkins 
2009 for a review).

Regardless of its merit, acceptance, or adoption, a variant of this definition, effec-
tively “a species is what a community of taxonomists says it is” is the de-facto species 
definition that has been applied since the time of Linnaeus. Taxonomists have asserted 
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individual species circumscriptions over the course of centuries, and those circumscrip-
tions that have met with approval by subsequent taxonomic communities have endured 
the test of time. In the modern context, while there are certainly species that are subject 
to ongoing debate, the vast majority of species have achieved some level of stability.

In stark contrast to the dynamic, ongoing, and seemingly endless debates about 
what a “species” is, the nomenclatural system used by taxonomists during the past two 
and a half centuries has been remarkably consistent, universal, and stable. The primary 
reason for this consistent and universal stability has to do with the Codes of scientific 
Nomenclature (e.g., ICZN 1999, Lapage et al. 1990, McNeill et al. 2012), which 
have enjoyed near-universal adoption for more than a century. A major reason for the 
contrast between “species” and scientific names is that the former are, and likely always 
will be subjective in their core nature; whereas the latter leverage the objectivity of the 
nomenclatural codes to reduce matters of opinion and dispute to a minimum. In ef-
fect, the Linnaean nomenclatural system represents a stable scaffolding against which 
which the ever-changing landscape of species can be reliably referenced.

It is the objective and largely stable nature of scientific names of organisms that 
makes them well-suited for large-scale indexing of the sort that Charles Davies Sher-
born (1861–1942) dedicated his life to. Whereas the majority of the nearly 4,400 
species circumscriptions described by Linnaeus in his 1758 Systema Naturae bear very 
little resemblance to the species boundaries asserted by modern biologists, most of the 
scientific names he established are not only available under the current Code, but are 
in current use (though often in combination with different generic names than what 
Linnaeus used). Even when historical scientific names have been synonymized by later 
workers, they remain available (when Code-compliant), and therefore potentially rel-
evant centuries after their establishment. Although catalogs of species (e.g., Linnaeus 
1758) may begin to lose their taxonomic relevance almost immediately after publica-
tion, the scientific names established within such catalogs retain their nomenclatural 
relevance indefinitely. Ultimately, this is why the career-long labors of Sherborn have 
retained their value well beyond his own life, up until today and continuing indefi-
nitely into the future.

The more things change, the more they stay the same

The system of scientific nomenclature is not the only aspect of the taxonomic enter-
prise that has remained relatively constant over the centuries. Certainly there have 
been some improvements to the way taxonomists do their jobs. For example, it once 
required months to journey across the seas aboard sailing ships, whereas now almost 
any part of the world can be reached within a few hours aboard modern jet airplanes 
(Figure 1). Early naturalists had to rely on crude maps drawn by sailors to figure out 
where their specimens were collected, whereas the Global Positioning System (GPS) 
and digital mapping tools such as Geographic Information Systems (GIS) and Google 
Earth allow modern taxonomists to pinpoint the collection location for a specimen 
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Figure 1. In centuries past, months-long journeys aboard sailing ships were required for taxonomists to 
reach their destinations (left, Thomas Whitcombe). Today, almost any part of the world can be reached 
aboard modern aircraft (right, R. L. Pyle).

Figure 2. Early taxonomists had only crude maps to plot the locations of their specimens; in this case the 
French Polynesian islands of Tahiti and Moorea (top, from Prévost D’Exiles 1746–1789). Today, highly 
accurate maps and satellite imagery can pinpoint particular locations within a few meters (bottom, Landsat).
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within a meter or so (Figure 2). A century ago, highly skilled illustrators painstakingly 
created colorful works of art by hand, based on direct observations and descriptions of 
the color and form of living organisms, whereas modern digital imaging technology 
allows us to generate extremely high quality photographs of living and freshly prepared 
specimens in an instant (Figure 3). To examine his specimens, Linnaeus used primi-
tive candle-lit microscopes with hand-ground optics, whereas today we can generate 
high-resolution three-dimensional images of the internal and external structures of 
organisms using 3D photogrammetry and CT scanning without even dissecting them, 
create crisp images of tiny structures using electron microscopy, and read the very code 
of life by sequencing DNA (Figure 4). Finally, the technology we use to access the 
environments in which organisms live has changed dramatically from centuries past 
(Figure 5).

However, despite these important technological advancements in the tools of the 
trade for taxonomy, the fundamental process remains the same today as it was centu-

Figure 3. Highly trained artisans once labored to produce detailed hand-painted illustrations of speci-
mens (top, from Jordan and Evermann 1903). Modern digital cameras can generate far more accurate and 
detailed images almost instantly and with minimal skill (bottom, R. L. Pyle). Both images depict Bodianus 
sanguineus Jordan and Evermann 1903.
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Figure 4. Carl Linnaeus used candle-lit microscopes with primitive optics to examine his specimens 
(left, H. Kingsbury). Modern technology allows us to generate high-resolution 3D CT scans of the in-
ternal structures of specimens without displacing a single scale (right top, Digimorph; Chromis abyssus), 
capture crisp images of tiny organisms through electron microscopy (right middle, NOAA; single-celled 
foraminifera), and read DNA sequences (right bottom, BOLD, unspecified taxon).

Figure 5. Methods of collecting specimens from the field have advanced from earlier eras (left, from 
C.Delon, 1889) to modern high-tech equipment of today (right, Ken Corben).
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ries ago: impassioned naturalists seek financial support from governments and private 
entities to travel the globe to discover new species of organisms; they take detailed 
notes and acquire specimens, which they carefully transport back to Museums; they 
create color images, dissect, poke, prod, count, and measure their biological treasures; 
they write detailed descriptions that are printed on paper in books and periodicals. 
These fundamental steps in the taxonomic process, while aided by advanced technol-
ogy, have remained fundamentally unchanged since the time of Linnaeus (Figure 6).

A revolution in information technology

There is one aspect of technological change that has been truly revolutionary, which is 
the means by which taxonomists manage and communicate the information of their 
trade. The rapid advancement in recent decades of computer database management 
software, and of information dissemination via the Internet, have both dramatically 
improved the potential for streamlining the entire taxonomic process. Less than two 
decades ago, graduate students in taxonomy spent untold hours in libraries, scouring 
through pages and pages of paper documents to find original descriptions and key tax-
onomic revisions. Today, with a few searches on Google and with the extremely useful 
Biodiversity Heritage Library, many original sources are only a few mouse clicks away. 
And the ease of access is not limited to digitized literature; specimens, images, and vast 
amounts of biological information are freely available through the Internet. One of the 
last remaining barriers to information availability – the pay-walls behind which many 

Figure 6. Despite many technological advancements in the tools of the taxonomic trade, the fundamen-
tal paradigm for the taxonomic enterprise remains almost unchanged from centuries ago (left, from Bates 
1863; right Bishop Museum).
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newly published research hides – is gradually eroding through an increasing demand 
for open-access models of publication.

This revolution in digital information technology is extremely fortunate, given 
the rate at which species have been (and continue to be) described. In 1758, the tenth 
edition of Linnaeus’ Systema Naturae contained nearly 4,400 species-group names. At 
the time, this compilation represented the entire catalog of all known animals. In the 
century that followed, the number of scientific names for species had increased by two 
orders of magnitude, as represented in the volumes of Sherborn’s Index Animalium 
(Figure 7). Today, the online edition of the Catalogue of Life includes more than 2.7 
million names (representing more than 1.5 million species). Sherborn spent most of 
his professional career compiling what is effectively one sixth the number of names 
that likely exist in biology today. Without the electronic information revolution, the 
Catalogue of Life would be far less complete than it currently is.

As exciting as the electronic information revolution is, however, in the context of 
taxonomy there is still far more potential than there is reality in terms of harnessing 
the power of information technology. The vast majority of taxonomic information 
either remains non-digitized, or is digitized in a form that does not allow direct and 
easy access. Moreover, much (if not most) of the information that is easily accessed 
in digital form is not yet seamlessly interconnected. At present, the total biodiversity 
knowledge-base for all life forms is scattered across an estimated half-billion pages of 

Figure 7. At the start of modern zoological nomenclature, Linnaeus’ tenth edition of Systema Naturae 
contained almost 4,400 species-group names (left). By 1850, the number of species names for animals had 
reached nearly 430,000 – an increase of two orders of magnitude.
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printed literature, thousands of natural history collections housing billions of speci-
mens, hundreds of thousands of digital databases and websites, and hundreds of mil-
lions of DNA sequences. Consumers of this knowledge-base, which includes tens of 
thousands of taxonomists, hundreds of thousands of biologists, a hundred million 
citizen scientists, governmental resource managers and policy makers, and ultimately 
much of the total human population, have not had easy access to this information 
(Heidorn 2008; IISE 2010; Thessen and Patterson 2011; Fontaine et al. 2012). There 
are many excellent websites containing valuable information, including nomenclatu-
ral, taxonomic, biogeographic, life-history and ecological information about species, 
not to mention genetic data, images and videos, and countless other data sources. To 
find all this information – even when it is readily available through the Internet – usu-
ally requires multiple web searches and visits to dozens of different online resources.

The next step in the information revolution for biodiversity information involves 
not just the digitization of content, but will involve the cross-linking and more seam-
less integration of existing digital resources.

The global names architecture

In an effort to bring reality closer to potential, a loose affiliation of major taxonomic 
resources, including the Global Biodiversity Information Facility (GBIF; http://www.
gbif.org), the Encyclopedia of Life (EOL; http://eol.org), the former U.S. National 
Biological Information Infrastructure (NBII), Catalog of Life (CoL; http://www.cata-
logueoflife.org), the Integrated Taxonomic Information System (ITIS; http://www.itis.
gov), the International Plant Names Index (IPNI; http://ipni.org), the International 
Commission on Zoological Nomenclature (ICZN; http://iczn.org), Index Fungorum 
(IF; http://www.indexfungorum.org), and many others have been crafting a “Global 
Names Architecture” (GNA). The intention of the GNA is not to replace any of the 
existing taxonomic or other biodiversity data initiatives, but rather to serve as a dynamic 
suite of web services and two primary indexes (GNI and GNUB, described below) that 
interconnect existing data systems in a way that streamlines the entire taxonomic enter-
prise: from gathering specimens in the field, to publication of new taxa and related data.

The basic premise behind the GNA is that scientific names of organisms represent 
the key to integrating disconnected biological data, to allow efficient and effective co-
ordination between biological research and exploration activities, and broader under-
standing and management of biodiversity (Patterson et al. 2010). Throughout the vast 
global biological knowledge base – including natural history collections, historical and 
modern literature, observational databases, multimedia (image and video) resources, 
genetic data repositories, nomenclators, taxonomic catalogs, data aggregators, and ma-
jor Internet search engines – the majority of data are given taxonomic context through 
simple text-string scientific names (Figure 8).

Unfortunately, sources of imprecision and ambiguity severely limit the use of these 
text-string names for cross-linking digital data content. For example, there are ap-

http://www.gbif.org
http://www.gbif.org
http://eol.org
http://www.catalogueoflife.org
http://www.catalogueoflife.org
http://www.itis.gov
http://www.itis.gov
http://ipni.org
http://iczn.org
http://www.indexfungorum.org
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proximately two million scientifically described species (Chapman 2009; Trontelj and 
Fišer 2009; Mora et al. 2011); yet the Global Names Index (GNI) – the component of 
the GNA that indexes text-string scientific names – already contains nearly 20 million 
distinct name-strings (and this index is far from complete). The more than ten-fold 
discrepancy between species and text-string names results from several factors, includ-
ing synonymy (multiple names for the same species), alternate nomenclatural com-
binations (the same species epithet combined with different generic and subgeneric 
names, and applied at different ranks), alternate spellings (orthographic variations, 
misspellings, abbreviations, etc.), and inconsistent formatting of names (e.g., with and 
without qualifiers, alternate formats for authorships and/or year, etc.). Additional con-
fusion results from homonymy (the same name assigned to different species).While 
text-string names are generally easy to interpret and disambiguate by a human, they 
represent a substantial barrier to electronic cross-linking of data.

To overcome the limitations of text-string scientific names, the GNA includes a 
core component called the Global Names Usage Bank (GNUB). GNUB is a highly 
normalized database system, the primary purpose of which is to index and assign persis-
tent globally unique identifiers (GUIDs) to Agents, References, and Taxon Name Usage 
(TNU) instances (among other relevant data objects). Agents are people and organiza-

Figure 8. The icons around the periphery represent examples of where biological data tagged with sci-
entific names currently exist. The cluster of names in the center represent examples of distinct text-strings 
that have been used to represent the same species within different data sources.
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tions, and in the context of GNUB mostly represent Authors of References. References 
include all published literature, as well as many forms of unpublished documentation 
(e.g., unpublished reports and manuscripts, specimen labels, herbarium sheets, field 
notes, etc.). Any static documentation source can be a Reference in the GNUB architec-
ture. A TNU is any usage or treatment of a scientific name within a Reference. TNUs 
are the foundation for all Code-governed nomenclatural acts, taxon concept definitions, 
taxonomic treatments, synonymies and classifications, and any other forms of taxo-
nomic assertions. The subset of TNUs that represent the establishment of new scientific 
names (i.e., original descriptions) are called “Protonyms” (Pyle 2004). Every scientific 
name (at every rank) has one Protonym TNU, and all subsequent TNUs refer back 
to the Protonym. For example, the fish genus Gasterosteus was described by Linnaeus 
(1758), so the TNU for that name in that Reference is the Protonym. Linnaeus (1766) 
also treated the genus Gasterosteus, and that TNU links back to the Protonym TNU in 
Linnaeus (1758). Protonyms apply to names at all ranks. For example, Linnaeus 1766 
established the new species Gasterosteus saltatrix. Whereas the TNU for Gasterosteus 
within this publication is not the Protonym for that genus, the TNU for the species 
epithet saltatrix within Linnaeus 1766 is the Protonym for that species-group name 
(because this publication is the original description of the species, but not the genus).

The core elements of a TNU include the following items (see Table 1; not all ele-
ments are required for all TNUs):

1)	 A unique and persistent identifier for the TNU itself;
2)	 A link to the Reference (including page, if applicable) in which the TNU appears;
3)	 A recursive link to the Protonym-TNU for the name represented by the TNU;
4)	 An indication of the taxonomic rank at which a name was treated (e.g., “genus” for 

the TNU for Gasterosteus within Linnaeus 1766, and “species” for the TNU for 
saltatrix within Linnaeus 1766);

5)	 The exact spelling (as best as can be represented using UTF-8 encoding) of the 
name as used within the Reference (e.g., Regan 1909 spelled the genus Gasterosteus 
as “Gastrosteus”, and Günther 1860 spelled the species saltatrix as “saltator”);

6)	 A link to the TNU (within the same Reference) representing the immediate par-
ent taxon (e.g., the Protonym TNU for the species saltatrix within Linnaeus 1766, 
would link to the non-Protonym TNU for the genus Gasterosteus as treated by 
Linnaeus 1766);

In cases where a name is treated as a junior synonym of another name, a link to 
the TNU (within the same Reference) representing the senior synonym as asserted by 
the indicated Reference for this junior synonym (e.g., Günther 1860 treated the name 
Pomatomus skib (Lacepède 1802) as a junior synonym of Temnodon saltator (Linnaeus 
1766), so the TNU for the Günther 1860 treatment of skib links to the TNU repre-
senting the Günther 1860 treatment of saltator [=saltatrix Linnaeus 1766]).

By building an index of all TNUs across historical literature (starting with the Proto-
nym TNU for each name), GNUB data services can efficiently perform powerful analyses 



Richard L. Pyle  /  ZooKeys 550: 261–281 (2016)272

Ta
bl

e 
1.

 E
xa

m
pl

es
 o

f T
ax

on
 N

am
e 

U
sa

ge
 in

sta
nc

es
 (T

N
U

s)
. R

ec
or

ds
 re

pr
es

en
tin

g 
Pr

ot
on

ym
s a

re
 h

ig
hl

ig
ht

ed
 in

 y
el

lo
w.

 R
ec

or
ds

 re
pr

es
en

tin
g 

tre
at

m
en

ts 
of

 a
 n

am
e 

as
 a

 sy
no

ny
m

 is
 h

ig
hl

ig
ht

ed
 in

 g
re

y. 
El

lip
se

s (
…

) i
n 

th
e 

Pa
re

nt
 c

ol
um

n 
re

pr
es

en
t l

in
ks

 to
 h

ig
he

r-
ra

nk
 T

N
U

s n
ot

 in
cl

ud
ed

 in
 th

e 
sa

m
pl

e 
be

lo
w.

 Th
is 

ta
bl

e 
is 

hi
gh

ly
 

sim
pl

ifi
ed

 a
nd

 d
oe

s n
ot

 re
pr

es
en

t t
he

 a
ct

ua
l G

N
U

B 
da

ta
 m

od
el

.

T
N

U
ID

R
ef

er
en

ce
Pr

ot
on

ym
R

an
k

Sp
el

lin
g

Pa
re

nt
Va

lid
R

ep
re

se
nt

at
iv

e 
U

sa
ge

1
Li

nn
ae

us
 1

75
8:

29
5

1
G

en
us

G
as

te
ro

st
eu

s
…

1
Pr

ot
on

ym
 o

f g
en

us
 G

as
te

ro
st

eu
s

2
Li

nn
ae

us
 1

76
6:

48
9

1
G

en
us

G
as

te
ro

ste
us

…
2

Su
bs

eq
ue

nt
 u

sa
ge

 o
f G

as
te

ro
ste

us
3

Li
nn

ae
us

 1
76

6:
49

1
3

Sp
ec

ie
s

Sa
lta

tr
ix

2
3

Pr
ot

on
ym

 o
f s

pe
ci

es
 G

. s
al

ta
tr

ix
4

Sc
hö

pf
 1

78
8:

16
7

1
G

en
us

G
aſt
ero
ſte
us

…
4

Su
bs

eq
ue

nt
 u

sa
ge

 &
 v

ar
ia

nt
 o

f G
as

te
ro

ste
us

5
Sc

hö
pf

 1
78

8:
16

8
3

Sp
ec

ie
s

Sa
lla

tri
x

4
5

Su
bs

eq
ue

nt
 u

sa
ge

 &
 v

ar
ia

nt
 o

f G
. s

al
ta

tri
x

6
La

cé
pè

de
 1

80
2:

43
5

6
G

en
us

Po
m

at
om

us
…

6
Pr

ot
on

ym
 o

f g
en

us
 P

om
at

om
us

7
La

cé
pè

de
 1

80
2:

43
6

7
Sp

ec
ie

s
Sk

ib
6

7
Pr

ot
on

ym
 o

f s
pe

ci
es

 P
. s

ki
b

8
C

uv
ie

r 
18

16
:3

46
8

G
en

us
Te

m
no

do
n

…
8

Pr
ot

on
ym

 o
f g

en
us

 T
em

no
do

n
9

G
ün

th
er

 1
86

0:
47

9
8

G
en

us
Te

m
no

do
n

…
9

Su
bs

eq
ue

nt
 u

sa
ge

 o
f T

em
no

do
n

10
G

ün
th

er
 1

86
0:

47
9

3
Sp

ec
ie

s
Sa

lta
to

r
9

10
Su

bs
eq

ue
nt

 u
sa

ge
 &

 v
ar

ia
nt

 o
f G

. s
al

ta
tri

x
11

G
ün

th
er

 1
86

0:
47

9
7

Sp
ec

ie
s

Sk
ib

-
10

Sy
no

ny
m

 tr
ea

tm
en

t o
f P

. s
ki

b
12

Be
an

 1
90

3:
44

5
6

G
en

us
Po

m
at

om
us

…
12

Su
bs

eq
ue

nt
 u

sa
ge

 o
f P

om
at

om
us

13
Be

an
 1

90
3:

44
5

3
Sp

ec
ie

s
Sa

lta
tr

ix
12

13
Su

bs
eq

ue
nt

 u
sa

ge
 &

 c
om

bi
na

tio
n 

of
 G

. s
al

ta
tri

x



Towards a Global Names Architecture: The future of indexing scientific names 273

and transformations of taxon names across different spellings, synonymies and classifica-
tions. For example, the species Gasterosteus saltatrix Linnaeus, 1766, has also been spelled 
Sallatrix in at least one Reference, spelled saltator in at least 16 References, and the spe-
cies epithet (by whichever spelling) has been variously combined with the genus names 
Pomatomus Lacépède, 1702, Temnodon Cuvier, 1816 and Cheilodipterus Lacépède, 1801. 
Moreover, the GNUB index also records the fact that at least twelve other species have 
been treated as a junior synonyms of saltatrix, and these species have been variously com-
bined with at least ten different genus names. Thus, through GNUB we can see that the 
species originally established by Linnaeus 1766 as Gasterosteus saltatrix has been variously 
referred to in literature by at least 28 different text-string scientific names (inclusive of 
both homotypic and heterotypic synonyms, suite of GNUB and GNI services, content in 
otherwise disconnected datasets can be cross-linked despite heterogeneous taxon names.

A successful proof of concept

Largely through support from two separate NSF grants (DBI-1062441; DBI- 
0956415), the GNA has been developed into a highly successful proof of concept. The 
most visible representation is the ZooBank registry (http://zoobank.org). ZooBank 
was first proposed as an official online nomenclatural registry for zoology, under the 
auspices of the International Commission for Zoological Nomenclature (ICZN) by 
Polaszek et al. 2005. It was first launched as an early prototype on 1 January 2008 to 
commemorate the 250th anniversary of the official start of all zoological nomenclature 
(Pyle et al. 2008; Pyle and Michel 2008; Pyle and Michel 2010; Rosenberg et al. 
2012). ZooBank was later reconceived as a service operating on top of GNUB (Pyle 
and Michel 2009), and the new GNUB-based ZooBank was publicly launched on 
September 4, 2012, coinciding with the amendment to the ICZN Code supporting 
electronic publication (ICZN 2012a; 2012b). The amended Code requires all elec-
tronically published works in Zoology be registered in ZooBank, thus representing 
the first mandatory electronic/online registration requirement for any major Code of 
Nomenclature (the bacteriological Code includes a paper-based registration system 
[Tindall 2009], and the Code for algae, fungi and plants includes a registration system 
for fungal names that went into effect on 1 January 2013).

Prior to 2012, ZooBank registrations grew steadily from approximately 100 reg-
istrations per month in 2008-2010, to approximately 500 registrations per month in 
2011–2012. After the new GNUB-based implementation of ZooBank was launched 
in September 2012, registrations increased almost ten-fold, to nearly 5,000 per month. 
The vast majority of these regiwstrations are prospective – that is, for works and names 
that are newly established. Retrospective content for ZooBank will be added through 
the bulk importation of existing databases, and through harvesting protonyms from 
BHL and other sources. Commensurate with the rise in registrations has been an in-
crease in the ZooBank user-base. From 2008–2012, the ZooBank user base grew stead-
ily to a little over 100 active users. In less than a year since the GNUB-based ZooBank 

http://zoobank.org


Richard L. Pyle  /  ZooKeys 550: 261–281 (2016)274

was launched, the user base has also grown nearly ten-fold, to over 1,000 users (and 
it continues to grow). As successful as the new GNUB-based ZooBank has been, it is 
important to emphasize that ZooBank is only one example of a service that GNUB can 
facilitate. In addition to ZooBank as a model for GNUB-based registration systems in 
other nomenclatural domains, there are many other services that GNUB can facilitate.

Whereas name-usages within static References are indexed directly as TNUs, these 
are mapped to records in external and/or dynamic data sources through a simple iden-
tifier cross-link feature in GNUB. This feature, which currently includes nearly half 
a million links from records in more than 200 external databases to over 320,000 
GNUB records, enables much more than simply linking GNUB records to external 
databases; specifically, it allows external databases to be linked to each other.

For example, GNUB includes links to over 111,000 registered names in ZooBank, 
nearly 140,000 records (taxonomic serial numbers) in ITIS, and nearly 70,000 genus-
group and species-group name records in the Catalog of Fishes (CoF). Besides allowing 
these three datasets to link directly to GNUB (and vice-versa), the Identifier cross-link 
service also enables direct cross-links between each of these otherwise disconnected 
datasets (in this case, 67,000 linked records between ZooBank and CoF; 26,555 linked 
records between ZooBank and ITIS, and 26,467 linked records between ITIS and 
CoF). Because of this cross-linking feature, new names registered in ZooBank could 
be presented to ITIS and CoF for inclusion in their databases, and corrections made to 
errors in CoF could be propagated to both ZooBank and ITIS. By establishing cross-
links between equivalent records in different database systems, we not only expand 
the ability for end-users to directly access records in the different systems, but we also 
create novel opportunities for proactive collaboration between different systems with 
overlapping content. While other systems include support for similar features (e.g., the 
EoL “Partner Links”, and the NCBI Taxonomy “LinkOut”), the GNA provides a sin-
gle shared platform for all cross-links, such that anytime a record is indexed in GNUB, 
it is automatically cross-linked to all other data systems that are indexed in GNUB.

This cross-linking service is not limited to taxon names. For example, GNUB 
includes links to over 3,300 journals registered in ZooBank and over 3,200 journals 
scanned in the Biodiversity Heritage Library (BHL). Through the BHL “OpenURL” 
service, over 50,000 ZooBank species pages (as well as nearly 100,000 other TNU 
records) now have direct access to the corresponding page image in BHL. Likewise, 
because GNUB is linked to over 34,000 authors in the Authors of Plant Names (APN) 
directory, and nearly 21,000 authors registered in ZooBank, we can compare author-
ship trends in both domains (e.g., fewer than 1% of all authors have published new 
scientific names for both plants and animals).

This same cross-linking service applies to records in more than 200 different exter-
nal databases (not all databases have been fully indexed yet). As such, GNUB can serve 
as a universal hub to cross-link records (not only Authors, References, and TNUs/
Protonyms; but virtually any other data object as well), which will facilitate collabora-
tion and data exchange (as in the names-linking example), enhance web services to 
infer and establish other links (as in the BHL page example), and to allow analysis of 
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patterns that had not previously been possible (e.g., patterns of authorship over time, 
such as those as used by Costello et al. 2012). This cross-linking service developed for 
GNUB represents an important step towards empowering the collective utility of bio-
logical datasets on a global scale.

Several other services and APIs were developed for searching, dereferencing, ed-
iting, and inserting Agents, References, and TNUs (particularly Protonyms), with 
a variety of output formats (e.g., HTML, JSON). The most recent service is called 
“GNIE” (originally an acronym for “Global Names Index Export”, and retained de-
spite its expanded utility), which accepts an identifier for a Protonym and returns a 
set of all scientific names indexed in GNUB that have been used to represent the same 
taxon, including all homotypic synonyms (spelling variants, alternate genus combina-
tions, etc.) and heterotypic synonyms (names that have been treated as either junior or 
senior synonyms of the indicated Protonym). Documentation for all of these services 
is included on the ZooBank API page (http://zoobank.org/Api).

Although these services were used extensively in the development of ZooBank 
(Figure 9), funding from NSF supported the development and implementation of 
these and other as-yet undocumented services in various stages of development and 
testing on two other database systems as well: Bishop Museum natural science da-
tabases (http://nsdb.bishopmuseum.org/), and the “Explorer’s Log” (http://www.
explorers-log.com/). Bishop Museum manages several major specimen and occurrence 
databases (Plants, Insects, Birds, Mammals, Amphibians and Reptiles, Fishes, Ma-
rine Invertebrates, Mollusks, and Pacific Center for Molecular Biodiversity, as well as 
several regional checklist databases), and we are currently in the process of building 
support for GNUB as the taxonomic authority against which Bishop Museum speci-
men databases are indexed. The “Explorer’s Log” (http://www.explorers-log.com) is a 
feature-rich suite of web-based applications designed to support field-based data col-
lection for organismal occurrence records (including specimens and associated tissue 
samples, multi-media documentation such as images, videos, audio recordings and 
telemetry data, visual observations, and literature-based occurrence records) and asso-
ciated data. This system has now completely replaced its internal taxonomy tables and 
utilizes GNUB services to assign taxonomic identifications to organism occurrences. 
The purpose of developing these prototype services was to demonstrate the ability for 
external data management systems to utilize GNUB data and web services directly to 
support broader biological datasets, without the need to re-invent a custom taxonomic 
authority system (as is currently done for most biological data management systems).

In addition to these services designed primarily to support external systems, sev-
eral services designed for internal GNUB use were also developed. These include a 
user/login account management system, a robust record de-duplication resolution 
system, a prototype data reconciliation tool (currently optimized for Agents and jour-
nal titles) used for bulk data imports, multi-lingual support, a tool for visualizing the 
publication timeline history for authors, a suite of database statistics visualization 
services, and services to facilitate data contribution and management by publishers 
and editors of journals.

http://zoobank.org/Api
http://nsdb.bishopmuseum.org/
http://www.explorers-log.com/
http://www.explorers-log.com/
http://www.explorers-log.com
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An integrative infrastructure for biodiversity data

Unlike most existing biodiversity data initiatives, the components of the GNA are not 
primarily intended to provide novel information; rather, the GNA includes an index 
of core facts (and associated data services) that are shared across all of biology. Noth-
ing in the GNA is original or novel content; it merely represents a structured way of 
organizing information to facilitate broader data integration among other databases 
that do contain original information. Thus, the GNA does not compete with other 
data resources; but rather serves as a core infrastructure for cross-linking (and thereby 
empowering) other biological data sources.

Although the GNA is primarily intended to provide a cross-linking service be-
tween existing databases, the data model is sufficiently robust and complete that it can 
fulfill the primary needs of representing nomenclature, taxonomy and classification for 

Figure 9. An example ZooBank page, illustrating several GNUB services: 1 user authentication 2 “fuzzy” 
searching of GNUB content 3 APIs and services 4 ZooBank registration 5 External Identifier cross-
linking 6 BHL page linking 7 record editing capabilities 8 similar/related name discovery (via GNI’s 
name searching service); and 9 multi-lingual support. Not shown are services to manage user accounts, 
de-duplicate records, prototype reconciliation tools, services for journal publishers, and visualization tools 
for author publication history and other statistics.
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groups that are not otherwise represented by existing databases. Thus, while its primary 
function is to integrate biodiversity data across multiple disparate systems, the GNA is 
capable of filling the gaps in taxonomic coverage for groups of organisms not already 
well-represented in the broader biodiversity data landscape.

Salvaging the global biodiversity library

Biodiversity is Earth’s greatest Library, representing the culmination of information 
that has been written and re-written, edited and re-edited, over the past four billion 
years. We are like Kindergartners running through the Library of Congress: surround-
ed by vast amounts of incredibly valuable information – the genomic equivalents of 
the works of Homer, Shakespeare, and blueprints for a nuclear power plant and 95% 
efficient conversion of sunlight energy to stored chemical energy, but we are currently 
only able to interpret this information at the equivalent of “See Spot Run”. Someday 
soon (within the next few decades) we will have the ability to truly understand the 
information in the Biodiversity Library. As we face the 6th Great Extinction event, we 
recognize that the Biodiversity Library is burning, so the information will be gone be-
fore we have a chance to understand its true value. Whenever a species goes extinct, it’s 
like burning the last copy of a book. Taxonomists are the Librarians, and have perhaps 
the most important job of all: building the digital equivalent of the “card catalog” for 
the Biodiversity Library.

This audacious task was begun in the 1750s by Carl Linnaeus, and was dra-
matically extended by Charles Davies Sherborn 150 years later. With the advent of 
modern electronic information management, we are poised to achieve the vision of 
these two pillars of science; but we are in a race against the destruction of what we 
seek to document. We are the first generation in human history to understand our 
own impact to biodiversity, and we are very likely the last generation in a position 
to do anything about it. The Global Biodiversity Library is burning, and we must 
tirelessly continue to document the richness of form and function in nature before 
it is lost forever.

Conclusions

Throughout most of the history of modern taxonomy and nomenclature, the basic 
tasks performed by taxonomists have remained remarkably unchanged. Technology 
has allowed some improvements, with modern electronic information dissemination 
representing the most significant advancement. At this point in history, biodiversity 
data are being digitized at an impressive rate, but in most cases the data remain in 
“silos”, with limited interconnectivity. As such, the accumulated digitized data cannot 
be used to its full potential. The most effective way to integrate disparate biodiversity 
datasets is through scientific names, but for many reasons, text-string names alone are 
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not effective for this purpose. The Global Names Architecture (GNA) has been de-
veloped to provide core indexes and cross-linking services, to help leverage otherwise 
disparate biodiversity data. ZooBank, the official online registry of zoological nomen-
clature, represents only one example of how the GNA can improve interconnectivity 
among biodiversity data. Going forward, the priority should be to continue digitizing 
data, and to develop robust cross-links among existing biodiversity datasets. Global 
biodiversity is precious – perhaps Earth’s most valuable resource – yet we have only 
begun to catalog its contents. With global climate change and accelerating rates of ex-
tinction, it is more important than ever to extend the work of Charles Davies Sherborn 
to apply to all known and yet-to-be-discovered taxa.

Sherborn himself seemed to understand the challenges of his task, many of which 
remain true today. In the Epilogue of Index Animalium, (Section 2, Part 29, pp. vi-
vii), he wrote:

Now my work is finished, it may well be to glance at the difficulties met with during 
compilation… This want of every book and every edition has been a serious hindrance and 
loss of time to me while working for over forty years in the British Museum (Natural His-
tory) and though I have acquired over a thousand volumes for the libraries, gaps still remain 
to be filled… On the whole one has met with a generous response, but the amused smile, real 
apathy, or the remark ‘we have no money’ … have been encountered…

He was also acutely aware of the nature of evolving technology:

And now that rotography has superseded photography as regards cost, a rare tract can be 
reproduced in a few hours and placed on its proper shelf in any Library for a few shillings.

But most important of all, Sherborn understood the grandeur of his quest, and 
knew full well that it was far greater than his own personal contributions:

In conclusion I may add that the whole of my papers, Books of Reference and apparatus 
will remain at the Museum for my continuator and I trust that arrangements will be made 
for the permanent indexing of even current literature as the only true method of economiz-
ing the time of the working zoologist.

It is our responsibility as modern biologists to harness the power of new technol-
ogy to continue is this all-important task of documenting biodiversity.

Acknowledgements

I wish to thank Donat Agosti, Rod Page, Ross Mounce, and especially Michael P. 
Taylor (http://orcid. org/0000-0002-1003-5675) for their excellent and constructive 
reviews of this manuscript.

http://orcid


Towards a Global Names Architecture: The future of indexing scientific names 279

References

Bates HW (1863) The naturalist on the River Amazons, a record of adventures, habits of ani-
mals, sketches of Brazilian and Indian life and aspects of nature under the Equator dur-
ing eleven years of travel (volume 1). J. Murray, London [1892], 351 pp. doi: 10.5962/
bhl.title.21335

Bean TH (1903) Catalogue of the fishes of New York. Bulletin New York State Museum 60: 
1–784. doi: 10.5962/bhl.title.23134

Chapman AD (2009) Numbers of Living Species in Australia and the World (2nd edition). 
Australian Biological Resources Study, Australia. http://www.environment.gov.au/biodi-
versity/abrs/publications/other/species-numbers/2009/index.html

Chmielewski JG, Krayesky D (2013) General Botany Laboratory Manual. AuthorHouse, 
Bloomington, Indiana, 300 pp.

Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of 
species description and estimates of taxonomic effort. Systematic Biology 61(5): 871–883. 
doi: 10.1093/sysbio/syr080

Cuvier G (1816) Le règne animal distribué d’après son organisation, pour servir de base à 
l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Les reptiles, les 
poissons, les mollusques et les annélides [Vol. 2, Edition 1]. Déterville, Paris, 532 pp. doi: 
10.5962/bhl.title.49223

Fontaine B, van Achterberg K, Alonso-Zarazaga MA, Araujo R, Asche M, Aspöck H, Audisio 
P, Aukema B, Bailly N, Balsamo M, Bank RA, Belfiore C, Bogdanowicz W, Boxshall G, 
Burckhardt D, Chylarecki P, Deharveng L, Dubois A, Enghoff H, Fochetti R, Fontaine 
C, Gargominy O, Lopez MSG, Goujet D, Harvey MS, Heller K-G, van Helsdingen P, 
Hoch H, de Jong Y, Karsholt O, Los W, Magowski W, Massard JA, McInnes SJ, Mendes 
LF, Mey E, Michelsen V, Minelli A, Nafria JMN, van Nieukerken EJ, Pape T, de Prins 
W, Ramos M, Ricci C, Roselaar C, Rota E, Segers H, Timm T, van Tol J, Bouchet 
P (2012) New species in the Old World: Europe as a frontier in biodiversity explora-
tion, a test bed for 21st century taxonomy. PLoS ONE 7: e36881. doi: 10.1371/journal.
pone.0036881

Günther ACLG (1860) Catalogue of the acanthopterygian fishes in the collection of the Brit-
ish Museum [volume 2]. Squamipinnes, Cirrhitidae, Triglidae, Trachinidae, Sciaenidae, 
Polynemidae, Sphyraenidae, Trichiuridae, Scombridae, Carangidae, Xiphiidae. Taylor and 
Francis, London, 548 pp. doi: 10.5962/bhl.title.8321

Hedgpeth JW (1961) Taxonomy: Man’s Oldest Profession. University of the Pacific Research 
Lecture, Stockton (California), 18 pp.

Heidorn PB (2008) Shedding light on the dark data in the long tail of science. Library Trends 
57: 280–299. doi: 10.1353/lib.0.0036

ICZN (1999) International Commission on Zoological Nomenclature [4th edition]. The Inter-
national Trust for Zoological Nomenclature, London, 306 pp.

ICZN (2012a) Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoo-
logical Nomenclature to expand and refine methods of publication. ZooKeys 219: 1–10. 
doi: 10.3897/zookeys.219.3944

http://dx.doi.org/10.5962/bhl.title.21335
http://dx.doi.org/10.5962/bhl.title.21335
http://dx.doi.org/10.5962/bhl.title.23134
http://www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/2009/index.html
http://www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/2009/index.html
http://dx.doi.org/10.1093/sysbio/syr080
http://dx.doi.org/10.5962/bhl.title.49223
http://dx.doi.org/10.5962/bhl.title.49223
http://dx.doi.org/10.1371/journal.pone.0036881
http://dx.doi.org/10.1371/journal.pone.0036881
http://dx.doi.org/10.5962/bhl.title.8321
http://dx.doi.org/10.1353/lib.0.0036
http://dx.doi.org/10.3897/zookeys.219.3944


Richard L. Pyle  /  ZooKeys 550: 261–281 (2016)280

ICZN (2012b) Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoo-
logical Nomenclature to expand and refine methods of publication. Zootaxa 3450: 1–7.

IISE (2010) International Institute for Species Exploration. SOS – State of Observed Species 
Report. http://species.asu.edu/SOS_2010

Jordan DS, Evermann BW (1903) Descriptions of new genera and species of fishes from the 
Hawaiian Islands. Bulletin of the US Fish Commission 22(1902): 161–208.

de Lacépède BGÉ (1801) Histoire naturelle des poissons [Vol. 3]. Plasson, Paris, 558 pp. doi: 
10.5962/bhl.title.6882

de Lacépède BGÉ (1802) Histoire naturelle des poissons [Vol. 4]. Plasson, Paris, 728 pp. doi: 
10.5962/bhl.title.6882

Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1990) Interna-
tional code of nomenclature of Bacteria. ASM Press, Washington, DC, 232 pp.

Linnaeus C (1736) Fundamenta Botanica, quae Majorum Operum Prodromi instar Theoriam 
Scientiae Botanices by breves Aphorismos tradunt. Salomon Schouten, Amsterdam, 40 pp.

Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum 
differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum 
systema sexuale digestas. Laurentii Salvii, Holmiae [= Stockholm], 560 pp.

Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, 
species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae 
[= Stockholm], 824 pp.

Linnaeus C (1766) Systema naturae sive regna tria naturae, secundum classes, ordines, gen-
era, species, cum characteribus, differentiis, synonymis, locis. Edito duodecima, reformata. 
Laurentii Salvii, Holmiae, 532 pp. doi: 10.5962/bhl.title.37256

McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, 
Knapp S, Marhold K, Prado J, Prud’homme Van Reine WF, Smith GF, Wiersema JH, 
Turland NJ (2012) International code of nomenclature for algae, fungi, and plants (Mel-
bourne Code), Adopted by the Eighteenth International Botanical Congress Melbourne, 
Australia, July 2011. Koeltz Scientific Books, Koenigstein, 240 pp.

Mora C, Tittensor DP, Sina Adl S, Simpson AGB, Worm B (2011) How many species are 
there on Earth and in the Ocean? PLoS Biology 9(8): e1001127. doi: 10.1371/journal.
pbio.1001127

Patterson DJ, Cooper J, Kirk PM, Pyle RL, Remsen DP (2010) Names are key to the big new 
biology. Trends in Ecology and Evolution 25: 686–691. doi: 10.1016/j.tree.2010.09.004

Polaszek A, Agosti D, Alonso-Zarazaga M, Beccaloni G, Bjørn PdP, Bouchet P, Brothers DJ, Earl 
of Cranbrook, Evenhuis N, Godfray HCJ, Johnson NF, Krell F-T, Lipscomb D, Lyal CHC, 
Mace GM, Mawatari S, Miller SE, Minelli A, Morris S, Ng PKL, Patterson DJ, Pyle RL, 
Robinson N, Rogo L, Taverne J, Thompson FC, van Tol J, Wheeler QD, Wilson EO (2005) 
Commentary: a universal register for animal names. Nature 437: 477. doi: 10.1038/437477a

Prévost D’Exiles AF (1746-1789) Histoire générale des voyages, ou nouvelle collection de 
toutes les relations de voyages par mer et par terre qui ont été publiées jusqu’à présent dans 
les différentes langues de toutes les nations connues. Didot, Paris, 24 pp.

Prévost D’Exiles AF (1746) Histoire générale des voyages. Paris.

http://species.asu.edu/SOS_2010
http://dx.doi.org/10.5962/bhl.title.6882
http://dx.doi.org/10.5962/bhl.title.6882
http://dx.doi.org/10.5962/bhl.title.6882
http://dx.doi.org/10.5962/bhl.title.6882
http://dx.doi.org/10.5962/bhl.title.37256
http://dx.doi.org/10.1371/journal.pbio.1001127
http://dx.doi.org/10.1371/journal.pbio.1001127
http://dx.doi.org/10.1016/j.tree.2010.09.004
http://dx.doi.org/10.1038/437477a


Towards a Global Names Architecture: The future of indexing scientific names 281

Pyle RL (2004) Taxonomer: a relational data model for managing information relevant to taxo-
nomic research. Phyloinformatics 1: 1–54. http://systbio.org/files/phyloinformatics/1.pdf

Pyle RL, Earle JL, Greene BD (2008) Five new species of the damselfish genus Chromis (Per-
ciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. 
Zootaxa 1671: 3–31. http://www.mapress.com/zootaxa/2008/f/zt01671p031.pdf

Pyle RL, Michel E (2008) ZooBank: Developing a nomenclatural tool for unifying 250 years of 
biological information. Zootaxa 1950: 39–50. http://www.mapress.com/zootaxa/2008/f/
zt01950p050.pdf

Pyle RL, Michel E (2009) Unifying nomenclature: ZooBank and Global Names Usage Bank. 
Bulletin of Zoological Nomenclature 66: 298.

Pyle RL, Michel E (2010) ZooBank: reviewing the first year and preparing for the next 250. In: 
Polaszek A (Ed.) Systema Naturae 250. The Linnaean Ark. CRC Press, Boca Raton, FL, 
173–184. http://www.routledge.com/books/details/9781420095012/

Ramsbottom J (1938) Linnaeus and the species concept. Proceedings of the Linnaean Society 
of London 150: 192–220. doi: 10.1111/j.1095-8312.1938.tb00181

Regan CT (1909) The species of three-spined sticklebacks (Gastrosteus). Annals and Magazine 
of Natural History 8(4): 435–437. doi: 10.1080/00222930908692694

Regan CT (1926) Organic evolution. Report of the ninety-third meeting of the British Associa-
tion for the Advancement of Sciience, Office of the British Association, London, 75–86.

Rosenberg G, Krell F-T, Pyle RL (2012) Nomenclature: Call to register new species in Zoo-
Bank. Nature 491(7422): 40. doi: 10.1038/491040b

Thessen AE, Patterson DJ (2011) Data issues in the life sciences. ZooKeys 150: 15–51. doi: 
10.3897/zookeys.150.1766

Tindall BJ (2009) Registration of names: the bacteriological experience. Bulletin of Zoo-
logical Nomenclature 66(2): 117–119. http://www.bionomenclature.net/documents/
BZN_66_2_Registration_of_names_article.pdf

Trontelj P, Fišer C (2009) Cryptic species should not be trivialized. Systematics and Biodiversity 7: 
1–23. doi: 10.1017/s1477200008002909

Wheeler Q, Meier R (2000) Species concepts and phylogenetic theory: A debate. Columbia 
University Press, New York, 256 pp.

Wilkins JS (2009) Defining Species: A Sourcebook from Antiquity to Today. Peter Lang Inter-
national Academic Publishers, New York, 238 pp.

http://systbio.org/files/phyloinformatics/1.pdf
http://www.mapress.com/zootaxa/2008/f/zt01671p031.pdf
http://www.mapress.com/zootaxa/2008/f/zt01950p050.pdf
http://www.mapress.com/zootaxa/2008/f/zt01950p050.pdf
http://www.routledge.com/books/details/9781420095012/
http://dx.doi.org/10.1111/j.1095-8312.1938.tb00181
http://dx.doi.org/10.1080/00222930908692694
http://dx.doi.org/10.1038/491040b
http://dx.doi.org/10.3897/zookeys.150.1766
http://dx.doi.org/10.3897/zookeys.150.1766
http://www.bionomenclature.net/documents/BZN_66_2_Registration_of_names_article.pdf
http://www.bionomenclature.net/documents/BZN_66_2_Registration_of_names_article.pdf
http://dx.doi.org/10.1017/s1477200008002909

	Towards a Global Names Architecture: The future of indexing scientific names
	Abstract
	Introduction
	The more things change, the more they stay the same
	A revolution in information technology
	The global names architecture
	A successful proof of concept
	An integrative infrastructure for biodiversity data

	Salvaging the global biodiversity library
	Conclusions
	Acknowledgements
	References

