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Abstract
Fruit fly sexual behaviour is directly influenced by chemical and non-chemical cues that play important 
roles in reproductive isolation. The chemical profiles of pheromones and cuticular hydrocarbons (CHs) 
of eight fruit fly populations of the Andean, Brazilian-1 and Brazilian-3 morphotypes of the Anastrepha 
fraterculus cryptic species complex originating from Colombia (four populations) and Brazil (four popula-
tions) were analysed using two-dimensional gas chromatography with mass spectrometric detection. The 
resulting chemical diversity data were studied using principal component analyses. Andean morphotypes 
could be discriminated from the Brazilian-1 and Brazilian-3 morphotypes by means of male-borne phero-
mones and/or male and female CH profiles. The Brazilian-1 and Brazilian-3 morphotypes were found to 
be monophyletic. The use of chemical profiles as species- and sex-specific signatures for cryptic species 
separations is discussed.
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Introduction

Communication is a crucial process for both intra- and interspecific interactions (Kroiss 
2008). Chemical signals are probably the oldest form of communication in living or-
ganisms, and insects constitute one group of animals that rely heavily on chemical com-
munication signals (Levine and Millar 2009). Unique messages are created by varying 
the structure of the chemicals that comprise a message and by combining these chemi-
cals in blends with different ratios (Jallon 1984, Millar 2000). Over time, the compo-
nents of the messages have been tuned up by natural selection according to function 
within the context in which they evolved (Levine and Millar 2009, Vaníčková 2012).

The South American fruit fly, Anastrepha fraterculus (Wiedemann 1830) (Diptera: 
Tephritidae) constitutes a cryptic species complex with different degrees of pre- and 
postzygotic isolation (reviewed by Vaníčková et al. 2015a). Eight taxonomically dis-
tinct morphotypes have been recognized thus far; these are the Andean, Brazilian-1, 
Brazilian-2, Brazilian-3, Ecuadorian, Mexican, Peruvian and Venezuelan morpho-
types (Hernández-Ortiz et al. 2004, 2012, 2015). Recent studies have shown that the 
Andean, Brazilian-1, Brazilian-3, Mexican, and Peruvian morphotypes have varying 
degrees of sexual incompatibility (Vera et al. 2006, Cáceres et al. 2009, Segura et al. 
2011, Rull et al. 2013, Devescovi et al. 2014). Anastrepha fraterculus exhibits a com-
plex mating system, which involves auditory, visual and chemical signals (Morgante 
et al. 1983, Aluja 1994). Males of this species form leks on host or non-host trees to 
release volatile compounds, which serve at first to attract other males and subsequently 
to attract conspecific females. These chemical mixtures therefore act as aggregation 
as well as sexual pheromones. Differences in the A. fraterculus male-borne volatiles 
produced by flies from geographically distinct populations from Argentina, Brazil and 
Peru were previously described (Lima et al. 2001, Cáceres et al. 2009, Břízová et al. 
2013, Lima-Mendonça et al. 2014). Recently, chemical and electrophysiological anal-
yses have shown that six compounds of the volatile mixture produced by males of A. 
fraterculus from northeastern Brazil are antennaly active in conspecific females (Milet-
Pinheiro et al. 2015). The attractiveness of conspecific females in laboratory and semi-
field bioassays for a synthetic mixture of the six components to conspecific females is 
similar to the attractiveness of male headspace samples (Milet-Pinheiro et al. 2015).

It is thought that tephritid fruit flies use contact pheromones in the last phase of 
courtship when a female briefly touches a male with its proboscis or front legs (Mor-
gante et al. 1980, Vaníčková et al. 2014, Vaníčková et al. 2015b). Contact or short-
range pheromones are relatively non-volatile, nonpolar compounds called cuticular hy-
drocarbons (CHs), which are synthesized from fatty acid precursors and deposited on 
an insect’s cuticle. Essentially, they serve as protection against desiccation. They also 
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play a crucial role in communication and sex, species, or reproductive status recognition 
(Blomquist and Bagnères 2010, Kather and Martin 2012). Due to their species-speci-
ficity, CH profiles are widely used for cryptic species determination, as documented in 
diverse insect families such as Termitoidae (Haverty et al. 2000), Miridae (Gemeno et 
al. 2012), Tephritidae (Vaníčková et al. 2014, Vaníčková et al. in press), Drosophilidae 
(Oliveira et al. 2011, Jennings et al. 2014), and many others.

In A. fraterculus age- and sex-dependent CHs production has been investigated 
in one Argentinean population (Vaníčková 2012, Vaníčková et al. 2012b). Males of 
A. fraterculus from this population produce a set of unsaturated CHs, not present in 
female body washes, suggesting these compounds may function as contact pheromones 
in chemical communication. A recent study on intraspecific variation of male CH pro-
files from six populations of the A. fraterculus cryptic species complex, ranging from 
Argentina to Mexico, has shown that the chemical signatures are specific to the putative 
species and therefore may be used for identification of particular morphotypes within 
the complex (Vaníčková et al. in press). In the same study, female CH profiles of Brazil-
ian-1, Peruvian and Mexican morphotypes revealed qualitative and quantitative differ-
ences in CH composition. Nevertheless, a detailed study using more populations of the 
same A. fraterculus morphotype from different regions is necessary for further evaluation 
of the male pheromone and CH profiles as potential chemotaxonomic markers in spe-
cies differentiation. Furthermore, information on the variability of female CH profiles 
within putative species of the A. fraterculus complex needs to be evaluated.

The present work aims to (i) clarify differences in the composition of male-borne 
volatiles among eight different populations belonging to three morphotypes (Andean, 
Brazilian-1 and Brazilian-3) of the A. fraterculus cryptic species complex; (ii) evaluate 
the potential use of male CH profiles for A. fraterculus identification of the Andean, 
Brazilian-1 and 3 morphotypes; (iii) investigate divergence in female CH profiles of 
the Andean and Brazilian morphotypes.

Methods

Insects

Eight laboratory populations, previously analysed for the morphotype identification by 
Hernández-Ortiz et al. (2004, 2012, 2014 unpublished data), originated from unique 
collections (for more detail see Table 1). After eclosion, the insects were separated by sex 
and put into plastic chambers (30 × 20.5 × 16 cm). The flies were fed an artificial diet 
(Sobrinho et al. 2009). Brazilian morphotypes were reared in the Chemical Ecology 
Laboratory at the Universidade Federal de Alagoas (Maceio, Brazil). The temperature 
of the insectarium was 25 °C, relative humidity was 60%, and the photoperiod was 
14:10 light:dark. The Andean morphotypes were kept in the entomological laboratories 
at the Universidad del Tolima (Ibague, Colombia). They were reared at 22 °C; relative 
humidity was 70%, and the photoperiod was 12:12 light:dark.
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Male-borne volatile collection

For the male-volatile collection following populations were available: three Colombian 
(Duitama, Ibague, Sibundoy) and four Brazilian (Alagoas, Bento Gonçalves, Pelo-
tas, São Joaquim) (Table 1). To obtain male-borne volatiles, procedures described by 
Břízová et al. (2013) and Milet-Pinheiro et al. (2015) were used. Groups of 20 sexually 
mature virgin males of A. fraterculus were placed in a glass desiccator (180 mm high; 
200 mm diameter), and volatiles were collected using dynamic headspace methods. 
The inlet of the desiccator was modified by the addition of an inlet tube containing Su-
perQ® (100 mg; Chromapack) to adsorb the released volatiles. The volatiles were then 
collected using an air pump (Resun® AC 2600) coupled to a flow meter (Supelco®) and 
absorbed on the SuperQ® filter. The air flow through the filter was 500 mL min-1 for 
24 h. The volatiles trapped in the filter were then eluted with 500 µL of redistilled trace 
analysis grade hexane (Sigma-Aldrich, Brazil). The samples were stored in 2 mL vials, 
which were kept in the freezer (-5 °C) until chemical analyses. Ten replicate samples of 
volatiles were collected for each of the study populations.

Extraction of cuticular hydrocarbons

For the extraction of CHs following populations were available: three Colombian 
(Duitama, Cachipay, Sibundoy) and four Brazilian (Alagoas, Bento Gonçalves, Pelotas, 
São Joaquim) (Table 1). CHs of 20-days-old virgin males (N = 10) and females (N = 
10) were extracted from the study populations following previously described methods 
(Vaníčková et al. 2012b, Vaníčková et al. 2014, Vaníčková et al. in press). 1-Bromde-
cane (Sigma-Aldrich, Czech Republic) was added as an internal standard for quantifi-
cation (10 ng per 1 µL of the extract). Each extract was concentrated to approximately 
100 µL under a constant flow of nitrogen and stored in a freezer (-5 °C) until analysis.

Chemical analyses

Two-dimensional gas chromatography with time-of-flight mass spectrometric detec-
tion (GC×GC/MS) was used for the quantification and identification of male-borne 
volatiles and CH profiles. Identical conditions were used for the analyses of all samples 
and for chromatographic data evaluation, as described in previous studies on A. fra-
terculus male pheromones (Břízová et al. 2013, Milet-Pinheiro et al. 2015) and CHs 
(Vaníčková 2012, Vaníčková et al. 2012b, Vaníčková et al. in press). Standards of n-
alkane (C8–C38; Sigma-Aldrich, Czech Republic) were co-injected with authentic sam-
ples to determine the retention indices (RI) of the analytes. Compounds were identi-
fied by comparison of their mass spectra fragmentation patterns, RI and authentic syn-
thetic standards when available (Van Den Dool and Kratz 1963, Carlson and Yocom 
1986, Vaníčková 2012, Vaníčková et al. 2012a, Břízová et al. 2013, Milet-Pinheiro et 
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al. 2015, Vaníčková et al. 2014, Vaníčková et al. in press). Detailed chemical identifica-
tion of the CHs has been published previously (Vaníčková et al. 2012b, Vaníčková et 
al. in press).

Chemicals

Except for (S,S)-(-)-epianastrephin, which was provided by Prof. Jim Nation (Univer-
sity of Florida, Gainesville, USA), all chemicals were purchased either from Sigma-Al-
drich, Brazil [α-pinene, limonene, (Z)-3-nonen-1-ol] or from Penta, USA [(E,Z)-3,6-
nonadien-1-ol]. Chemicals were > 95% pure, based on the results from capillary gas 
chromatography.

Statistics

The relative peak areas of seven male-borne volatile compounds and forty-eight male 
and female CHs (as identified by the GC×GC/MS in the deconvoluted total-ion chro-
matogram mode) were calculated for each replicate of the study populations.

The differences in the chemical composition of the samples from study popula-
tions were analysed by principal component analysis (PCA). Prior to PCA, peak areas 
were subjected to logarithmic transformation; intraspecific scaling was performed by 
dividing each species score by its standard deviation; the data were centred by species’ 
scores. In PCA analyses, hierarchical clustering based on Pearson correlation showed 
that populations with similar chemical profiles cluster together.

A heat map was used to visualize male-borne volatiles organized as matrices. The 
heat map performed two actions on a matrix. First, it reordered the rows and columns 
so that rows and columns with similar profiles were closer to one another, causing 
these profiles to be more visible to the eye. Second, each entry in the data matrix was 
displayed as a colour, making it possible to view the patterns graphically. Dendrograms 
were created using correlation-based distances and the Ward method of agglomeration 
was used in the present analysis (Key 2012). All computations were performed with R 
3.1.2 (R Core Team 2014), and the R packages FactoMineR (Husson et al. 2015), and 
gplots (Warnes et al. 2015) were used.

Results

Male-borne volatiles

Significant quantitative differences (P < 0.05) were found in the male-borne volatiles, 
namely α-pinene, limonene, (Z)-3-nonen-1-ol, (E,Z)-3,6-nonadien-1-ol, (Z,E)-α-
farnesene, (E,E)-α-farnesene and epianastrephin, among the investigated populations 



Characterisation of the chemical profiles of Brazilian and Andean morphotypes... 199

of A. fraterculus. A heat map was constructed to visualize the relative proportions of the 
seven volatiles in each of the populations (Figure 1). Colombian populations (DUI, 
IBA, SIB) have similar proportions of the seven compounds, whereas the Brazilian 
populations (AL, BEN, PEL, SAO) have diverse volatile profiles. In the compound 
dendrogram, monoterpenes (α-pinene, limonene) formed one cluster, while sesquiter-
penes [(Z,E)-, (E,E)-α-farnesenes], unsaturated alcohols [(Z)-3-nonen-1-ol, (E,Z)-3,6-
nonadien-1-ol] and a lactone (epianastrephin) grouped in a second cluster. The most 
abundant volatile among all the populations was limonene. (Z)-3-Nonen-1-ol was the 
least abundant compound in the study strains. α-Pinene was more abundant in the 
Andean morphotype (DUI, IBA, SIB) than in the Brazilian morphotypes (AL, BEN, 
PEL, SAO). The relative proportion of (E,Z)-3,6-nonadien-1-ol varied the most be-
tween populations.

The PCA analyses of GC×GC/MS data showed the Andean morphotype formed 
one cluster while Brazilian-1 and Brazilian-3 morphotypes formed another cluster 
(Figure 2, Hierarchical clustering). The first two dimensions represented 85% of 

Figure 1. Heat map of seven male-borne volatiles (columns) identified by GC×GC/MS analyses in 
seven populations (rows) of the Anastrepha fraterculus cryptic species complex. The dendrograms were 
created using correlation-based distances and the Ward method of hierarchical clustering (P < 0.05). Key: 
AL – Alagoas, AL, Brazil; BEN – Bento Gonçalves, RS, Brazil; DUI – Duitama, Colombia; IBA – Iba-
gue, Colombia; PEL – Pelotas, RS, Brazil; SAO – São Joaquim, SC, Brazil; SIB – Sibundoy, Colombia. 
Epianas – Epianastrephin; Z.E.Far – (Z,E)-α-farnesene; E.E.Far – (E,E)-α-farnesene; Z.Nonenol – (Z)-3-
nonen-1-ol; E.Z.Nona – (E,Z)-3,6-nonadien-1-ol; a.Pinene – α-pinene.
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the total variance. The monoterpenes α-pinene and limonene and (Z)-3-nonen-1-ol 
were specific to the Andean morphotype, whereas sesquiterpenes (Z,E)- and (E,E)- 
α-farnesene, the lactone epianastrephin and (E,Z)-3,6-nonadien-1-ol were typical for 
the Brazilian morphotypes (Figure 2, Variables factor map). The three populations 
representing the Andean morphotype (DUI, IBA, SIB) grouped together forming the 
first cluster (Figure 2, Hierarchical clustering) whereas the second cluster was formed 
by the Brazilian populations representing the Brazilian-1 (BEN, PEL, SAO) and Bra-
zilian-3 (AL) morphotypes.

Male CH profiles

Forty-eight male CHs, including 19 linear n-alkanes (A1-19), 11 methylbranched al-
kanes (B1-11), 11 alkenes (C1-11), and 7 alkadienes (D1-7), were evaluated by PCA 
for the possible use in the identification of Andean (CAC, DUI, SIB), Brazilian-1 
(BEN, PEL, SAO) and Brazilian-3 (AL) morphotypes (Figure 3). The first two PCA 
dimensions accounted for 55% of the total variance. The populations clustered in two 
main groups, and each group was composed of two clusters. Clusters one and two 
were formed by Andean morphotype populations (DUI and CAC, SIB, respectively), 

Figure 2. Principal component analyses (PCA) of transformed GC×GC/MS data of seven male-borne 
volatiles produced by groups of 20 sexually mature individuals from seven populations of the Anastrepha 
fraterculus cryptic species complex. Variables factor map represents projection of variables on the plane 
defined by the first two principal components. Hierarchical clustering is score plot describing the popula-
tions and their clustering. Key: AL – Alagoas, AL, Brazil; BEN – Bento Gonçalves, RS, Brazil; DUI – 
Duitama, Colombia; IBA – Ibague, Colombia; PEL – Pelotas, RS, Brazil; SAO – São Joaquim, SC, Brazil; 
SIB – Sibundoy, Colombia. Epianas. – Epianastrephin; Z.E.Far – (Z,E)-α-farnesene; E.E.Far – (E,E)-α-
farnesene; Nonen.1.ol – (Z)-3-nonen-1-ol; Nonadien. – (E,Z)-3,6-nonadien-1-ol; a.Pinene – α-pinene. 
Colored boxes indicate particular clusters.
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whereas clusters three and four consisted of Brazilian morphotypes populations (BEN 
and AL, PEL, SAO; Figure 3, Hierarchical clustering). Linear n-alkanes (n-nonacosane 
A14, n-hentriacontane A16), methylbranched hydrocarbons (3-methylheptacosane 
B3, methylheptatriacontane B11) and 11-tritriacontene (C10) were responsible for 
the formation of the Brazilian morphotype clusters (AL, BEN, PEL, SAO), whereas 
n-dodecane (A1) and the mix of odd methylbranched hydrocarbons (9-/11-/13-meth-
ylnonacosane B5) were characteristic for the Andean group (Figure 3, Variables factor 
map, Suppl. material 1).

Female CH profiles

Female CH profiles from study populations consisted of 48 saturated and unsaturated 
compounds with chain lengths ranging from 12-38 carbons. In female body wash-
es, unsaturated male-specific CHs were absent, namely 7-heneicosene, 7-docosene, 
7-tricosene and 7-pentacosene. In the PCA analyses the populations segregated into 
two main groups (Figure 4, Hierarchical clustering). The three Colombian popula-
tions (CAC, DUI, SIB) grouped together forming one cluster. The second cluster was 
formed by the four Brazilian populations (AL, BEN, PEL, SAO) (Figure 4, Hierarchi-
cal clustering). The compounds responsible for this separation were n-docosane (A7), 
methylbranched hydrocarbons (2-methyloctacosane B4, 3-methylnonacosane B7) and 

Figure 3. Principal component analyses (PCA) of transformed GC×GC/MS data of 48 male CHs from 
seven populations of the Anastrepha fraterculus cryptic species complex. Variables factor map represents 
projection of variables on the plane defined by the first two principal components. Hierarchical clustering 
is score plot describing the populations and their clustering. Key: AL – Alagoas, AL, Brazil; BEN – Bento 
Gonçalves, RS, Brazil; CAC – Cachipay, Colombia; DUI – Duitama, Colombia; PEL – Pelotas, RS, 
Brazil; SAO – São Joaquim, SC, Brazil; SIB – Sibundoy, Colombia. A1–19 – n-alkanes; B1–11 – methyl
branched hydrocarbons; C1–11 – alkenes; D1–7 – alkadienes. Colored boxes indicate particular clusters.
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unsaturated CHs (hentriacontene C8, tetratriacontadiene D4), which were specific to 
the Brazilian morphotypes. The Andean morphotype (CAC, DUI, SIB) was defined by 
the presence of linear compounds (n-dodecane A1, n-pentacosane A10, n-hentriacon-
tane A16), a mix of methylbranched CHs (9-/11-/13-methylhentriacontane B9) and 
heptatriacontadiene (D7) (Figure 4, Variables factor map, Suppl. material 1).

Discussion

Chemical profiles of A. fraterculus varied quantitatively among populations from di-
verse regions of South America. To some extent, the chemical profiles showed compa-
rable patterns among populations belonging to the same morphotype. Comparison of 
the chemical profiles of the Andean and two Brazilian morphotypes showed that the 
more geographically distant the morphotypes are, the more diverse their pheromone 
and CH profiles are. Nevertheless, this trend was not observed between the Brazilian-1 
and Brazilian-3 morphotypes. Within the A. fraterculus complex, the Andean morpho-
type is allopatric, while the Brazilian morphotypes (Brazilin-1, Brazilian-2 and Brazil-
ian-3) are sympatric (Hernández-Ortiz et al. 2012, Selivon et al. 2005). The sympatry 
of the Brazilian entities may be one of the possible factors contributing to the similarity 
of their chemical profiles. Evidence of similarities of pheromone profiles within and 
between the species complexes of sympatric populations comes from an extensive evo-

Figure 4. Principal component analyses (PCA) of transformed GC×GC/MS data of 48 female CHs 
from seven populations of the Anastrepha fraterculus cryptic species complex. (Variables factor map) pro-
jection of variables on the plane defined by the first two principal components. (Hierarchical clustering) 
score plot describing the populations and their clustering. Key: AL – Alagoas, AL, Brazil; BEN – Bento 
Gonçalves, RS, Brazil; CAC – Cachipay, Colombia; DUI – Duitama, Colombia; PEL – Pelotas, RS, 
Brazil; SAO – São Joaquim, SC, Brazil; SIB – Sibundoy, Colombia. A1–19 – n-alkanes; B1–11 – methyl
branched hydrocarbons; C1–11 – alkenes; D1–7 – alkadienes. Colored boxes indicate particular clusters.
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lutionary study of Hawaiian Drosophilidae CHs (Alves et al. 2010). Such evolutionary 
studies are missing for the A. fraterculus complex and nothing is known about the role 
of pheromones (short- or long-range) in the speciation process of this species.

The Andean morphotype populations had very different pheromone profiles from 
that of the two Brazilian morphotypes. Břízová et al. (2013) and Cáceres et al. (2009) 
reported extensive qualitative and quantitative differences in the male pheromone com-
position of Brazilian, Argentinean and Peruvian populations of the A. fraterculus com-
plex. Our study demonstrated that the common plant monoterpene, limonene, varies 
least among all populations. Two of the most variable volatiles from the male pheromone 
mixture were (E,Z)-3,6-nonadien-1-ol and (E,E)-α-farnesene. As reported by Milet-Pin-
heiro et al. (2015), (E,Z)-3,6-nonadien-1-ol, α-farnesene, and epianastrephin are highly 
attractive to conspecific females after approaching a mating site, while plant compounds 
such as α-pinene or limonene are used by female to find mating and brood sites (Roback-
er and Hart 1986). We speculate that the different ratios of (E,Z)-3,6-nonadien-1-ol, 
(E,E)-α-farnesene, and epianastrephin, together with the diverse CH profiles, result in 
the final rejection of a male by an heterospecific female. A recent study on reproductive 
compatibility demonstrated that the Andean morphotype is fully incompatible with the 
Brazilian-1 and Brazilian-3 morphotypes (Devescovi et al. 2014). The authors stated that 
prezygotic sexual incompatibility might be a result of the differences in the timing of 
mating activities between the morphotypes studied. Considering the mating of A. frater-
culus, where chemical communication plays an important role in acceptance or rejection 
of males, we suggest that the differences in the chemical profiles identified in the present 
study may also contribute to sexual incompatibility. Nevertheless, further electrophysi-
ological and behavioural studies involving different morphotypes of the A. fraterculus 
complex need to be performed in order to evaluate this hypothesis.

Male and female flies of the Andean morphotype and the Brazilian morphotypes 
can be separated using CH profiles (Vaníčková et al. in press). The Andean morphotype 
formes a separated group whereas the Brazilian-1 and Brazilian-3 morphotypes cre-
ate a monophyletic cluster. Nonetheless, Brazilian populations belonging to the same 
geographical areas do not group together. Variation in the chemical composition of 
CH profiles identified here may be influenced by genetic variability within and be-
tween populations of the Brazilian-1 and 3 morphotypes. It is important to note that 
all of the Brazilian populations investigated here were created during several genera-
tions under identical laboratory conditions, which could possibly influence the results 
presented here. Houot et al. (2010) reported the effects of laboratory acclimation on 
the variation of male courtship, mating and the production of sex pheromone, in D. 
melanogaster. These authors concluded that the reproduction-related characters could 
diverge between neighboring D. melanogaster populations, and differently adapt to sta-
ble laboratory conditions. Nevertheless, in tephritidae these kinds of studies are missing.

Selivon et al. (2004) found conspicuous differences between sex chromosomes 
that separated the Brazilian-3 from the Brazilian-1 and Brazilian-2 morphotypes. The 
possibility for hybridization between distinct cryptic species within the A. fraterculus 
complex and meiotic recombination of chromosomal markers could form the genetic 
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basis by which CHs vary between related putative species. The evidence comes from 
experiments with Drosophila spp. that explained interspecific variation of CH profiles 
(Coyne et al. 1994, Coyne and Oyama 1995, Doi et al. 1996, Coyne and Charles-
worth 1997). Future genetic analyses are necessary for evaluation of this hypothesis 
within the A. fraterculus complex.

CHs in insects serve primarily to prevent desiccation by reducing water loss 
(Blomquist et al. 1987, Blomquist and Bagnères 2010). Populations living in warmer 
and drier environments lose water less rapidly and usually have longer chain-length 
CHs than populations in humid habitats (Blomquist and Bagnères 2010). However, 
the relationship between CH structure and the capacity to resist desiccation is not so 
simple. In our previous work on CH profiles from geographically distinct popula-
tions of the A. fraterculus complex, we reported that the relative proportions of these 
compounds vary, depending on relative humidity, relative temperature and altitude 
(Vaníčková et al. in press). In the present study, CH profiles from the Andean morpho-
type formed one single cluster. These populations live naturally at high altitudes with 
lower relative temperatures, and therefore their specific CHs are long methylbranched 
compounds (e.g. methylheptatriacontane). However, the same conclusion is not pos-
sible to draw for the Brazilian-1 and Brazilian-3 morphotypes studied. The three Bra-
zilian morphotypes may co-occur in the same localities infesting guava fruits (Psidium 
guajava L.) (Selivon et al. 2004). The Brazilian-3 morphotype seems to be restricted 
to the Atlantic coastal areas and may co-occur with the Brazilian-2 morphotype infest-
ing guava and tropical almond (Terminalia catappa L.). The Brazilian-1 morphotype 
occurs from northern Argentina through southern and southeastern Brazil and may 
also co-occur together with the Brazilian-2 morphotype infesting guavas and oranges 
(Citrus sp.). In Brazil there are 70 different host plants for the A. fraterculus complex 
recorded (Zucchi 2007). Etges and Jackson (2001) reported that the variation of CH 
profiles between closely related species or between populations of these species of D. 
mojavensis, reflects the adaptation to different host plants. In these flies, the ratio of the 
principal CHs rapidly changed with laboratory acclimation, and influenced courtship 
and mating (Stennett and Etges 1997, Houot et al. 2010). These CH changes depend 
on enzymes whose level could represent a metabolic adaptation to host-plant chemicals 
(Higa and Fuyama 1993, Jones 2001, Houot et al. 2010). Varying the availability of 
different nutrients could also account for CH variation between strains raised in the 
laboratory (Stennett and Etges 1997). These factors, possibly influencing CH compo-
sition in the A. fraterculus complex, need to be carefully investigated in future studies.

Conclusion

The present study demonstrates that pheromone components and CH profiles diverge 
qualitatively between Andean and Brazilian-1 and Brazilian-3 morphotypes and may 
be used to some extent to delimit morphotypes in the A. fraterculus species complex. 
Comprehensive studies, which simultaneously examine environmental, behavioural, 
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genetic and chemical features are necessary to be performed aiming to understand 
which factors affect the geographical variation in the male-borne volatiles and CH 
profiles in the A. fraterculus complex.
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