
Spatial structure and morphometric relationships of 
the deep-sea shrimp Solenocera acuminata (Decapoda, 

Solenoceridae) in the Colombian Caribbean

Carlos Pacheco1,2,4, José Cusba3,4, Jorge Paramo4, Dante Queirolo3, Daniel Pérez4,5

1 Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile 2 Programa de Magister 
en Ciencias Aplicadas mención Biología Pesquera, Universidad Arturo Prat, Iquique, Chile 3 Pontificia Uni-
versidad Católica de Valparaíso, Escuela de Ciencias del Mar, Laboratorio de Tecnología Pesquera, Valparaíso, 
Chile 4 Universidad del Magdalena, Tropical Fisheries Science and Technology Research Group (CITEPT), 
Santa Marta, Colombia 5 Programa de Doctorado en Ciencias del Mar, Facultad de Ciencias Naturales e Ing-
eniería, Universidad de Bogotá Jorge Tadeo Lozano, Grupo de Investigación Dinámica y Manejo de Ecosistemas 
Marino-Costeros (DIMARCO), Santa Marta, Colombia

Corresponding author: Jorge Paramo (jparamo@unimagdalena.edu.co)

Academic editor: I. S. Wehrtmann  |  Received 21 November 2020  |  Accepted 11 April 2021  |  Published 26 May 2021

http://zoobank.org/C54F6DC9-5712-44FE-9F51-90773B34FD9B

Citation: Pacheco C, Cusba J, Paramo J, Queirolo D, Pérez D (2021) Spatial structure and morphometric relationships 
of the deep-sea shrimp Solenocera acuminata (Decapoda, Solenoceridae) in the Colombian Caribbean. ZooKeys 1040: 
1–24. https://doi.org/10.3897/zookeys.1040.61005

Abstract
Given the potential interest in targeting Solenocera acuminata in a new deep-sea fishery in the Colombian 
Caribbean, biological information is needed to support the management of this species. The objective of 
this study is to provide biological information about size structure, size at sexual maturity, morphometric 
relationships, abundances and spatial and bathymetric distribution of S. acuminata in the Colombian 
Caribbean. Specimens of S. acuminata were collected during four deep-sea prospecting surveys in the 
Colombian Caribbean Sea, which were conducted between Punta Gallinas and the Gulf of Uraba. A total 
of 87 exploratory fishing trawls were made between 100 and 550 m depth. Sexual dimorphism was evi-
dent, with males being smaller than females. The size at sexual maturity of the females was 95.2 mm total 
length (23.82 mm CL). Relatively high biomass values were found in the northern zone of the Colombian 
Caribbean, between Santa Marta and Riohacha. In the southern zone, higher biomass was found between 
Cartagena and Morrosquillo Gulf. The biomass of S. acuminata was higher at night (mean 1.82 kg/km2) 
than during daylight (mean 0.15 kg/km2). This species was distributed between 150 and 400 m depth 
and the highest biomass was associated with depths between 330 and 380 m. Before starting a new fishery, 
more research is needed to understand the life cycle parameters of deep-sea resources, such as growth, 
reproduction, recruitment, mortality, spawning areas and times, nursery areas and associated biodiversity.
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Introduction

Amongst decapod crustaceans, some species of the family Solenoceridae, which inhabit 
mostly tropical and subtropical zones, have been recognised worldwide for their impor-
tance in the development of many deep-sea fisheries (Holthuis 1980; Alves-Júnior et al. 
2017; Purushothaman et al. 2017). Additionally, some shrimp of the genus Solenocera 
represent a high percentage of catches in these fisheries (Demestre and Abelló 1993; 
Despalatovic et al. 2006; Puentes et al. 2007; Villalobos-Rojas and Wehrtmann 2018).

Solenocera acuminata (Pérez-Farfante and Bullis 1973), also called “orange shrimp”, 
is distributed in the Caribbean Sea, including the region from the Bahamas to French 
Guiana, at depths between 31 and 662 m (Pérez and Kensley 1997). Although some 
aspects of distribution and abundance of this species have been described previously 
(Maynou et al. 1996; Guéguen 1997, 1998a, 2000; Charbonnier et al. 2010), de-
tailed information about ecology and fishery-biology of this resource is lacking in other 
countries where the species is caught. This shrimp is endobenthic during daytime and 
benthic at night (Guéguen 1998a) and is only caught during the night (Charbonnier et 
al. 2010). This species generally inhabits the upper part of slopes (Maynou et al. 1996; 
Guéguen 1997, 1998a) and dense aggregations are found on muddy sediments. This 
species is found along the continental slope of French Guiana (western tropical Atlan-
tic) within a very narrow bathymetric distribution (between 200 and 300 m), where 
S. acuminata is clearly dominant, reaching a maximum abundance, with average yields 
of 10 kg/hour by trawl (Guéguen 1997, 1998a, 2000).

Given the potential interest in S. acuminata for a new deep-sea fishery in the 
Colombian Caribbean, biological fisheries information, such as spatial distribution, 
growth, size structure, morphometric relationships and size at sexual maturity, is 
needed for an efficient fisheries management (Hilborn and Walters 1992; Haedrich 
and Barnes 1997; Shin et al. 2005). This allows the design and implementation of 
management measurements, such as protected breeding areas and fishing ban, that 
support sustainable use, as well as monitoring and conservation strategies (Crocos and 
van der Velde 1995; Ramírez-Llodra 2002; Aragón-Noriega and García-Juárez 2007). 
The occurrence of S. acuminata has been reported in the Colombian Caribbean Sea in 
areas, such as Magdalena, Tayrona, Palomino and La Guajira (Campos et al. 2005), 
with high values of occurrence frequency (41.3%), representing 2.1% in biomass and 
2.1% in abundance in scientific surveys (Pérez et al. 2019). Recently, studies on the 
diversity of continental slope decapods and the biology of deep-sea species with poten-
tial commercial importance have been developed in the central and southern western 
Atlantic (Wehrtmann et al. 2012; Pérez et al. 2019). However, knowledge of some 
species is still quite limited. Currently, information about the biology and ecology of 
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S. acuminata in the Colombian Caribbean is scarce. Most studies have reported only 
taxonomic records and biological information has been limited to qualitative aspects, 
with little information on the distribution and abundance of this species (Campos 
et al. 2005). The lack of knowledge on the life cycle of most deep-sea species with 
potential commercial interest limits the development and implementation of appro-
priate management measures (Villalobos-Rojas and Wehrtmann 2011). Therefore and 
because there are currently no management plans in place in Colombia, it is necessary 
to broaden our knowledge about deep-sea species and their role in the ecosystem to 
support their conservation and sustainable use. The objective of this study is to provide 
biological information about the spatial and bathymetric distribution, abundance, size 
structure, size at sexual maturity and morphometric relationships of S. acuminata in 
the Colombian Caribbean.

Materials and methods

Specimens of S. acuminata (Fig. 1) were collected during four deep-sea prospecting sur-
veys in the Colombian Caribbean Sea, which were conducted between Punta Gallinas 
and the Gulf of Urabá (Fig. 2), in August and December 2009 and March and May 
2010. Sampling was carried out onboard the commercial shrimp trawler “Tee Claude”. A 
Furuno FCV-1150 echo sounder with a transducer with a frequency of 28 kHz was used 
to identify the trawlable soft sea bottoms. A total of 87 exploratory fishing trawls were 
carried out in depths ranging from 100 to 550 m using a shrimp trawl with an opening 
of 11.6 m at the footrope and a cod-end mesh size of 44.5 mm from knot to knot. The 
hauls lasted 30 minutes and were conducted at an average speed of 2.5 knots, which 
was estimated using a Garmin Map 76CSx GPS. The swept area, which was used to 

Figure 1. A specimen of Solenocera acuminata captured in the Colombian Caribbean.
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calculate the catch per unit area (CPUA; kg/km2), was estimated from the spread of the 
net (11.6 m) using the vulnerability correction factor for shrimp trawl nets (0.7) (Sparre 
and Venema 1995) and the speed of the vessel (average of 2.5 knots) (King 2007).

In the laboratory, the total wet weight (W) of the S. acuminata individuals was 
measured using a digital balance with an accuracy of 0.01 g. Afterwards, the samples 
were measured using a caliper with an accuracy of 0.01 mm, recording twelve morpho-
metric measurements, based on previous studies developed by Tzeng et al. (2001) and 
Tzeng and Yeh (2002). The recorded measurements were (1) total length (TL; from the 
posterior margin of the ocular margin indent to the telson), (2) antennal spine width 
(ASW), (3) hepatic spine width (HSW), (4) cephalothorax length (CL; from the pos-
terior margin of the ocular indent to the posterior margin of the carapace, excluding 
the rostrum), (5) diagonal cephalothorax length (DCL), (6) first abdominal segment 
length (FSL), (7) first abdominal segment width (FSW), (8) first abdominal segment 
height (FSH), (9) second abdominal segment length (SSL), (10) sixth abdominal seg-
ment height (SISH), (11) abdomen length (AbL; this measurement, which is used 
since the head is removed in fishing activities, extends from the end of the thorax to 
the telson) and (12) head length (HL; from the rostrum to the posterior margin of 
the carapace) (Fig. 3). The individuals were sexed, with males being identified by the 
presence of a petasma and females by the presence of a thelycum. The macroscopic 
maturity stage was determined for females using, as a reference, the five-stage scale 
(immature, early maturing, late maturing, mature and spent-recover) proposed for 
Solenocera choprai (Dineshbabu and Manissery 2008).

Data analysis

Size structure was analysed by means of a frequency distribution, grouping the data in 
5 mm intervals, for both females and males. Differences in the size frequency distribu-
tion between females and males were tested using a non-parametric Kruskal-Wallis Test 
(Gotelli and Ellison 2004).

The length-weight relationship was determined using the potential equation (W = a 
TLb), the parameters of which were obtained from least squares fitting, having previously 
performed a linearisation of the function by logarithmic transformation: ln W = ln a + b 
ln TL, where W is the total weight in g, TL is the total length in mm, a is the intercept 
(condition factor or initial growth coefficient) and b is the growth coefficient (Ferreira et 
al. 2008). As a measure of goodness of fit, the coefficient of determination (r2) was used. 
A 95% confidence interval was also estimated for the parameters and a Student’s t-test 
was conducted to determine if the sample presented isometric growth (H0: β = 3, α = 
0.05). On the other hand, morphometric relationships were identified by a linear model 
(Y = a + bX) using least squares estimation, where (Y = TL), X = each independent vari-
able (ASW, HSW, CL, DCL, FSL, FSW, FSH, SSL, SISH, AbL and HL) and a and b are 
the parameters of the equation. To evaluate the existence of possible differences between 
the slopes of the sexes, an analysis of covariance was performed (ANCOVA) (Zar 2009).



Deep-sea shrimp Solenocera acuminata (Decapoda, Solenoceridae) Colombia 5

The analysis of the size at sexual maturity was performed by the logistic function:

( )( * )

1
1 a b X

P
e +

=
+

where P is the proportion of mature females, a and b are the parameters and X corre-
sponds to total length (TL) or cephalothorax length (CL). The size at sexual maturity 
is obtained by TL50% = (-a/b) and CL50% = (-a/b) (King 2007), fitting the logistics 
curve using a generalised linear model (GLM) with a binomial distribution and logis-
tics link (Dobson 2002; Wheeler et al. 2009) using the GLM function in R software. 
The estimated TL50% and CL50% confidence intervals were calculated using a bootstrap 
procedure that randomly re-sampled the data 10,000 times, resulting in correspond-
ing numbers for the generalised and estimated linear models of TL50% and CL50%. The 
2.5 and 97.5 percentiles of the TL50% and CL50% estimates were used as the confidence 
intervals (CI) (Haddon 2001).

The total and cephalothorax lengths were determined to be the primary measure-
ments for the break point analysis in females and males, since these measurements are 
the most frequent recorded values in crustaceans (Özcan and Katağan 2011). The TL 
and CL were linked to the different morphometric measurements recorded for each 
individual (Queirós et al. 2013) to be compared with the size at sexual maturity calcu-
lated with the logistic function. A segmented regression model from the segment pack-
age in R software was used for estimating the break point; this model is based on the re-
lationships between two explanatory variables that are represented by two straight lines 
connected by a break point (Muggeo 2003, 2008). The fitting was made by minimising 
the gap parameter, which measures the space between the two regression lines on each 
side of the break point. When the algorithm converges, the gap parameter approaches 
zero, minimising the standard error of the break point. The break point was considered 
an indicator of the size at the beginning of maturity for females and males, as long as 
the t value associated with the gap parameter was less than two (Muggeo 2008). In 
addition, the Davies Test was used to test for significant differences in slopes between 
fitted segments (Davies 1987; Muggeo 2008; Queirós et al. 2013; Williner et al. 2014).

The spatial distribution of the biomass (kg/km2) and size (CL, mm) of S. acuminata 
was determined by a geostatistical method (Rivoirard et al. 2000; Paramo and Roa 2003), 
in which the populations are seen as spatially stochastic processes, with the variable of 
interest varying randomly at any given location (Paramo and Roa 2003). First, spatial dis-
tribution was modelled using an average model for the entire sampling region of interest, 
based on the computed structural tool. This structural tool and model are the experimen-
tal and model variograms, respectively (Paramo and Roa 2003). Several variogram models 
(e.g. spherical, exponential and Gaussian models) were fitted to the experimental vari-
ogram according to the weighted least square minimisation criterion (Cressie 1993). Then, 
ordinary point kriging was used to interpolate the data for the not-sampled stations inside 
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the spatial distribution area (Isaaks and Srivastava 1989). Finally, an intrinsic geostatistical 
method was applied to estimate the variance in the mean biomass (Rivoirard et al. 2000; 
see Paramo and Roa 2003 for more explanation). The spatial analysis was performed by 
R software (geoR library) (Ribeiro and Diggle 2001). A non-parametric Kruskal-Wallis 
Test was used to test for possible differences in biomass (kg/km2) during the day and night 
(Gotelli and Ellison 2004). A cumulative frequency distribution (CFD) (Perry and Smith 
1994) was applied to evaluate the relationship between S. acuminata biomass and depth. 
The maximum absolute vertical distance between the curves was calculated to determine 
the statistical significance (P) of the difference between curves. The hypothesis of a random 
relationship between both CFDs was evaluated with 2000 randomisations by Monte Car-
lo re-sampling for the CPUA and depth (Perry and Smith 1994; see Paramo et al. 2003).

Results

A total of 147 individuals were captured in 26 stations (Fig. 2), of which 59.9% (88 in-
dividuals) were female, 37.4% (55 individuals) were male and 2.7% (4 individuals) were 
indeterminate. The sizes of the females and males ranged from 56.18 to 146.70 mm 
TL (mean 105.95 ± 18.10 mm) and from 71.18 and 113.22 mm TL (mean 91.46 
± 11.30 mm), respectively. The females’ CL varied from 12.92 to 38.17 mm (mean 

Figure 2. Study area in the Colombian Caribbean Sea. The white circles indicate the sampling stations 
and the black circles indicate the sampling station where Solenocera acuminata was observed.
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27.03 ± 4.98 mm) and that of the males between 17.33 and 27.97 mm (mean 22.17 
± 2.6 mm). The weights of the females and males fluctuated between 3.50 and 38.40 
g (14.91 ± 7.63 g) and 4.30 and 15.30 g (8.44 ± 3.01 g), respectively. Statistically 
significant differences in sizes and weight were found between the sexes (P < 0.05) and 
sexual dimorphism was evident, with males being smaller than females (Fig. 4).

The analysis of the length-weight relationship indicated allometric growth (b ≠ 3) 
in females, while males showed isometric growth (b = 3) (Table 1). The results of the 
ANCOVA revealed significant differences between the slopes of females and males 
in the weight-length relationship (Fig. 5a, Table 1). The morphometric relationships 
between TL vs. ASW, HSW, CL, DCL, FSL, FSW, FSH, SSL, SISH, AbL and HL 
showed high coefficients of determination (r2 > 0.81) indicating a high correlation 
between sizes. The ANCOVA showed statistically significant differences between 

Figure 3. Diagram of a shrimp showing the body segments measured (Tzeng et al. 2001): total length 
(TL), antennal spine width (ASW), hepatic spine width (HSW), cephalothorax length (CL), diagonal 
cephalothorax length (DCL), first abdominal segment length (FSL), first abdominal segment width 
(FSW), first abdominal segment height (FSH), second abdominal segment length (SSL), sixth abdominal 
segment height (SISH), abdomen length (AbL) and head length (HL).

Table 1. Parameters of the relation between size and weight in female (F) and male (M) Solenocera acumi-
nata from the Colombian Caribbean; a: intercept, b: the allometry coefficient, CI: confidence intervals.

Sex N a a (CI 95%) b b (CI 95%) r2 t - test F P-value
(b) (ANCOVA) (ANCOVA)

F 88 0.00002 0.00001 to 0.00004 2.868 2.734 to 3.002 0.955 0.054 30.17 < 0.05*
M 55 0.00002 0.00001 to 0.00004 2.848 2.681 to 3.016 0.956 0.075

* Significant (P < 0.05).
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parameter b of females and males in linear relationships (TL vs. CL, HL, FSL and 
FSW). In contrast, there was no significant difference in parameter b (TL vs. AbL, 
ASW, HSW, FSH, DCL, SSL and SISH) (Fig. 5b–l, Table 2).

The size at sexual maturity was calculated with a total of 68 females (34% imma-
ture and 66% mature). The size at sexual maturity (TL50%) of females was 95.2 mm 
TL (95% CI = 94.22–96.77) and 23.82 mm CL (95% CI = 23.6–24.2) (Fig. 6). The 
parameters of the logistic model of TL50% were as follows: a = 13.25 and b = 0.14; for 
the logistic model of CL50%, a = 11.59 and b = 0.49; for both cases, r2 = 0.99.

A total of 68 females and 42 males were analysed separately in the break point 
analyses. The values shown in Table 3 correspond to those estimates that showed sig-
nificant differences between the slopes (Davies’ Test, P < 0.05) and high coefficients of 
determination (r2 > 0.817), indicating a high correlation between sizes. For females, 
the slopes of the linear regression of the first segment were always greater than those 
of the second segment, while for the males, the slopes of the linear regression of the 
first segment were less than those of the second segment. The segmented regression 
with CL showed statistical significance only in females, with a break point of 23.80 ± 
1.83 mm for FSL vs. CL. On the other hand, the segmented regressions, performed 
with TL as the main measure, were significant only for the FSL vs. TL and HL vs. TL 
relationships in females, showing break point values of 88.87 ± 4.92 mm and 99.85 ± 
5.17 mm, respectively. For the males, a break point of 96.07 ± 33.3 mm was evident 
in the SISH vs. TL relationship (Table 3, Fig. 7a–d).

Figure 4. Frequency distributions of a total length (TL) and b cephalothorax length (CL) for females (F) 
and males (M) of Solenocera acuminata.
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The spatial structure of the biomass (kg/km2) of S. acuminata was modelled using 
an omnidirectional variogram, which is represented by a spherical model. The vari-
ogram showed a 59.33% nugget as a percentage of the sill (nugget = 0.39; sill = 0.27; 

Table 2. Parameters and confidence intervals (95%) of morphometric relationships in females and males 
of Solenocera acuminata: Total length (TL), cephalothorax length (CL), head length (HL), abdomen 
length (AbL), antennal spine width (ASW), hepatic spine width (HSW), first abdominal segment height 
(FSH), diagonal cephalothorax length (DCL), first abdominal segment length (FSL), first abdominal 
segment width (FSW), second abdominal segment length (SSL) and sixth abdominal segment height 
(SISH). Degrees of freedom for all relationships = 139.

Morphometric 
relationship

Sex N a a (C.I. 95%) b b (C.I. 95%) r2 F 
(ANCOVA)

P-value 
(ANCOVA)

TL = a+b*CL F 88 10.613 5.503 to 15.723 3.526 3.341 to 3.713 0.943 5.066 0.026*
M 55 1.353  -8.029 to 10.735 4.064 3.644 to 4.484 0.876

TL = a+b*HL F 88 5.711 3.018 to 8.403 2.755 2.682 to 2.828 0.985 5.245 0.024*
M 55 3.231 -1.961 to 8.423 2.971 2.797 to 3.144 0.957

TL = a+b*AbL F 88 7.488 3.496 to 11.479 1.452 1.394 to 1.509 0.967 0.441 0.508
M 55 5.352 -0.914 to 11.618 1.416 1.313 to 1.518 0.936

TL = a+b*ASW F 88 22.119 16.852 to 27.385 8.674 8.141 to 9.208 0.924 3.35 0.069
M 55 29.376 22.262 to 36.489 7.774 6.896 to 8.653 0.856

TL = a+b*HSW F 88 18.917 14.598 to 23.237 7.26 6.907 to 7.613 0.951 3.888 0.051
M 55 29.622 21.993 to 37.252 6.501 5.71 to 7.293 0.837

TL = a+b*FSH F 88 12.828 8.784 to 16.871 6.921 6.626 to 7.217 0.962 2.095 0.15
M 55 6.758 -1.529 to 15.046 7.517 6.787 to 8.247 0.889

TL = a+b*DCL F 88 24.507 20.143 to 28.871 2.413 2.286 to 2.539 0.94 1.287 0.259
M 55 17.759 8.854 to 26.663 2.625 2.302 to 2.928 0.84

TL = a+b*FSL F 88 -39.069 -50.748 to -27.391 64.398 59.248 to 9.547 0.88 219.94 < 0.05*
M 55 41.748 35.046 to 48.449 21.641 18.782 to 24.5 0.81

TL = a+b*FSW F 88 19.288 15.077 to 23.499 6.783 6.459 to 7.106 0.953 8.958 0.003*
M 55 6.453 -0.612 to 13.517 8.029 7.368 to 8.692 0.918

TL = a+b*SSL F 88 2.839 -3.214 to 8.892 18.833 17.743 to 19.923 0.932 2.012 0.158
M 55 5.067 -4.155 to 14.289 17.353 15.514 to 19.192 0.871

TL = a+b*SISH F 88 10.115 4.845 to 15.385 10.923 10.333 to 11.514 0.94 3.856 0.052
M 55 1.694 -6.316 to 9.704 12.362 11.266 to 13.457 0.906

* Significant (P < 0.05).

Table 3. The break point estimated by segmented regression for morphometric relationships of Solenocera 
acuminata: first abdominal segment length (FSL) vs. cephalothorax length (CL), FSL vs. total length (TL) 
and head length (HL) vs. TL for females; sixth abdominal segment height (SISH) vs. TL for males. The 
intercept and slope are presented for each segment.

Sex n Relationship Break point (mm) ±SE Segment Intercept Slopes r2 Davies’ test P-value
F 68 FSL vs. CL 23.80 1.83 First 0.470 0.069 0.817 0.039*

Second 1.078 0.044
FSL vs. TL 88.87 4.92 First 0.187 0.021 0.88 0.002*

Second 0.911 0.013
HL vs. TL 99.85 5.17 First -4.154 0.387 0.986 0.003*

Second 0.295 0.343
M 42 SISH vs. TL 96.07 3.33 First 1.914 0.057 0.906 0.018*

Second -2.832 0.106

* Significant (P < 0.05).
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Figure 5. Morphometric relationships of the females (grey circles) and the males (black circles) of 
Solenocera acuminata in the Colombian Caribbean: a total weight (W) vs. total length (TL) b TL vs. 
cephalothorax length (CL) c TL vs. head length (HL) d TL vs. abdomen length (AbL) e TL vs. antennal 
spine width (ASW) f TL vs. hepatic spine width (HSW) g TL vs. first abdominal segment height (FSH) 
h TL vs. diagonal cephalothorax length (DCL) i TL vs. first abdominal segment length (FSL) j TL vs. 
first abdominal segment width (FSW) k TL vs. second abdominal segment length (SSL) and l TL vs. sixth 
abdominal segment height (SISH).
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Figure 6. a Size at sexual maturity and total length (TL50%) and b cephalothorax length (CL50%) of Sole-
nocera acuminata females in the Colombian Caribbean.

Figure 7. Break points estimated for morphometric relationships in females and males of Solenocera 
acuminata: Female: a first abdominal segment length (FSL) vs. cephalothorax length (CL) b FSL vs. total 
length (TL) c head length (HL) vs. TL; male: d sixth abdominal segment height (SISH) vs. TL.
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range = 8.81 km). The spatial structure of the CL for females was also modelled by a 
spherical model. The variogram showed 0.00% of the nugget as a percentage of the sill 
(nugget = 0.00, sill = 10.72, range = 13.64 km). Relatively high biomass values were 
found in the northern zone of the Colombian Caribbean, between Santa Marta and 
Riohacha, where the mean biomass was 0.94 kg/km2 (coefficient of variation, CV = 
39.97). In the southern zone, higher biomass was found between Cartagena and the 
Morrosquillo Gulf and the mean biomass in this zone was 0.89 kg/km2 (CV = 17.55) 
(Fig. 8). The spatial distribution of CL in females showed that the largest shrimp were 
found off the coast in the north and northwest of Riohacha and to the west of Punta 
Gallinas. The smaller individuals (~ 21–22 cm CL) in this study were found closer to 
the coast (~ 10 nautical miles, at 150 m of depth) to the northeast of Santa Marta. 

Figure 8. Spatial distribution of the a biomass (kg/km2) and b cephalothorax length (CL) (mm) of 
females Solenocera acuminata in the Colombian Caribbean.
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However, in the southern area, two aggregations of small individuals (~ 21–22 cm CL) 
were found off the coast between Cartagena and the Gulf of Morrosquillo (Fig. 8).

The biomass of S. acuminata showed significant differences (P = 0.002) with the 
diel pattern, with higher values at night (mean 1.82 ± 3.81 kg/km2) than during day-
time (mean 0.15 ± 0.37 kg/km2) (Fig. 9).

The relationship between the biomass of S. acuminata and depth (m) showed signifi-
cant associations (P < 0.01). This species was distributed between 150 and 400 m and the 
highest biomass was associated with depths ranging from 330.00 to 380.90 m (Fig. 10).

Figure 9. Box plot of the biomass (kg/km2) of Solenocera acuminata in the Colombian Caribbean dif-
ferentiated by time of day.

Figure 10. Cumulative density functions (CFDs) of the depth (f(t)) and the weighted biomass (kg/km2) 
of Solenocera acuminata. f(t) is shown by the thick black line, g(t) is shown by the thin grey line and the 
dotted line (d) is the absolute difference between g(t) and f(t). The depth preferences are shown as the grey 
and black straight lines.



Carlos Pacheco et al.  /  ZooKeys 1040: 1–24 (2021)14

Discussion

Information about the reproductive biology of a species is one of the most important 
aspects in the assessment of strategies for managing exploited populations (Li et al. 
2012). The study of the reproductive biology in penaeid shrimp can facilitate our un-
derstanding of the adaptive strategies and reproductive potential of a species related to 
its environment (Gillett 2008). Although S. acuminata is of commercial interest, there 
are few studies about the biology of some species of the genus Solenocera and their 
roles in the ecosystems in which they are found (Demestre and Abelló 1993; Ohtomi 
and Irieda 1997; Ohtomi et al. 1998; Dineshbabu and Manissery 2008; Villalobos-
Rojas and Wehrtmann 2011). The size at sexual maturity for females of S. acuminata 
(95.2 mm TL; 23.82 mm CL) is the first report for the species. The maximum TL in 
this study (females: 146.70 mm; males: 113.22 mm) are within the range of sizes re-
corded for females of a species of the same genus Solenocera agassizii in the Colombian 
Pacific (Rodríguez et al. 2012) and both sexes of this species in the Pacific Ocean in 
Costa Rica (Villalobos-Rojas and Wehrtmann 2011, 2018). Furthermore, the maxi-
mum CL values in this study (females: 38.17 mm; males: 27.97 mm) are similar to 
those of the same species in French Guiana (Guéguen 1997, 1998b) and slightly lower 
than those reported in the Colombian Caribbean Sea (Campos et al. 2005). However, 
they are within the range reported for the Western Atlantic (Pérez-Farfante and Bul-
lis 1973) and French Guiana (Guéguen 1997, 1998b). For males, the maximum CL 
(27.97 mm) was within the ranges reported by previous authors (Pérez-Farfante and 
Bullis 1973; Guéguen 1997; Campos et al. 2005).

The mean size differences found between females and males are common amongst 
solenocerid shrimp (Dineshbabu and Manissery 2008; Li et al. 2012; Villalobos-Rojas 
and Wehrtmann 2018). The higher number of females than males in the larger size 
classes observed in S. acuminata (Fig. 4) has also been observed in other solenocerid 
species (Ohtomi and Irieda 1997; Dineshbabu and Manissery 2008; Li et al. 2012). 
The main factors that affect these variations in the sizes of females and males are dif-
ferential longevity, mortality, migration behaviour and growth rates (Villalobos-Rojas 
and Wehrtmann 2018). Differences in the sizes of females and males may be due to 
differential mortality, nutrition restriction, greater activity of one sex, migration of one 
of the sexes at a given period and the use of different habitats by sex (Charnov and 
Hannah 2002; Chiba et al. 2006; Lizárraga-Cubedo et al. 2008; Baeza and Piantoni 
2010; Grabowsky et al. 2014).

The highest biomass of S. acuminata was found in the northern zone of the Co-
lombian Caribbean. The northeast trade winds drive the surface currents to the west 
and southwest, almost parallel to the coast, leading to Ekman transport away from 
the coast, which is responsible for upwelling in the northern zone of the study area 
and increased productivity along the Guajira coast (Andrade et al. 2003; Paramo et 
al. 2003, 2009; Correa-Ramírez et al. 2020). In fact, in the Guajira Region, high bio-
masses have been found for other deep-sea crustaceans, such as Aristaeomorpha foliacea, 
Pleoticus robustus (see Paramo and Saint-Paul 2012a), Penaeopsis serrata (see Paramo 
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and Saint-Paul 2012b), Metanephrops binghami (see Paramo and Saint-Paul 2012c), 
Glyphocrangon longleyi, Glyphocrangon neglecta (see Pacheco et al. 2018) and Agononida 
longipes (see Espitia et al. 2019).

Morphometric relationships are an important factor for biological studies of fish-
ery resources and stock assessment. In addition, for the management, it is very impor-
tant to know the size structure, body growth and size at sexual maturity of this species 
(Hilborn and Walters 1992), all of which influence the structure and function of ma-
rine ecosystems (Haedrich and Barnes 1997; Shin et al. 2005). However, sometimes 
for practical reasons or due to body damage, only data from some body parts can be 
recorded (Zetina et al. 1996). Therefore, morphometric relationships have been estab-
lished to calculate sizes and weight. The morphometric relationships analysed in this 
study can be useful for population studies of the same species in different geographic 
locations. The size structure, growth type and morphometric relationships are impor-
tant parameters of life history and of great utility for the management of a new deep-sea 
fishery in the Colombian Caribbean. The most frequent dimensions used amongst the 
wide variety of morphometric measurements in penaeid shrimp are carapace length, 
total length, body width and wet weight (Özcan and Katağan 2011). Currently, studies 
on morphometric relationships in deep-water shrimp are scarce. However, these analy-
ses indicate whether there are morphometric variations between several body measure-
ments for the same species in a period of time (Kapiris 2005). These variations may be 
due to reproductive factors, since filled gonads can influence morphometry.

Morphometric analyses performed by Rudolph (1997, 1999, 2002) on other deca-
pods indicated that, in Samastacus spinifrons and Parastacus pugnax, females have long-
er and wider abdomens than males. However, in this study, the first abdominal seg-
ment was shorter (Fig. 5i), but wider (Fig. 5j) in females than in males. In some male 
decapods, gonopods and abdominal segments do not increase in size faster than the 
carapace or the total length (Daniels 2001). However, females have a marked increase 
in size and changes in the shape of abdominal segments, especially the first abdominal 
segment, as well as pleopods and other parts of the body, which increases the area avail-
able for the fixation of eggs on the pleopods, acting as an incubation chamber for de-
veloping eggs (Daniels 2001). Therefore, it is necessary to study whether these growth 
patterns are related to different types of habitats, ecology, migration and reproduction. 
All the morphological variations, observed between the sexes, could be associated with 
differences in the growth pattern of females (e.g. larger maximum size and higher 
growth rate) compared to those of males (Kapiris 2005). Morphometric variations can 
be caused by evolutionary and environmental factors and genetic analysis should be 
used to confirm that these variations are associated with changes in reproductive mor-
phology, rather than with environmental differentiation (Tzeng et al. 2001).

Penaeid shrimp usually show an allometric coefficient (b) close to 3. Female S. 
acuminata in the Colombian Caribbean followed an allometric growth pattern, which 
is consistent with previous studies regarding other decapods (Guéguen 1997; Josi-
leen 2011; Özcan and Katağan 2011; Li et al. 2012). Males of S. acuminata followed 
an isometric growth pattern, as reported by Josileen (2011) and Segura and Delgado 
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(2012) for other decapods. The length-weight relationship slope values of females 
in this study were similar to those reported in Kagoshima Bay, southern Japan, for 
Solenocera melantho (see Ohtomi and Irieda 1997) and higher than those reported 
for Solenocera membranacea in the coastal Aegean Sea of Turkey (Özcan and Katağan 
2011) and S. melantho in the East China Sea (Li et al. 2012). Boschi (2016) reported 
allometric growth of other juvenile decapods in Argentina, such as Pleoticus muelleri 
and Artemesia longinaris, due to fluctuations in the relationship between different body 
parts. Several studies have shown similar results on sexual dimorphism in decapod 
crustaceans (Romero-Sedano et al. 2004; Faye et al. 2015; Ramírez et al. 2020), with 
females being larger than males and this sexual dimorphism is thought to be related to 
differences in the functions of male gonopods and female pleopods (Daniels 2001). In 
fact, after the complete development of gonopods, an isometric growth pattern or even 
a negative allometric pattern is reported (Fadlaoui et al. 2019). The growth pattern of 
some specific body parts, such as abdominal segment, gonopods and pleopods, shows 
variations in the degree of allometry during the course of the development, which may 
coincide with gonad maturation, providing an important estimate for the size at which 
these animals are ready for spawning (Marochi et al. 2016; Fadlaoui et al. 2019). How-
ever, most studies on the functional significance of isometric and allometric growth 
have been superficial and more care needs to be taken in explaining these biological 
phenomena (Daniels 2001). On the other hand, allometric analysis can also provide 
valuable information about evolutionary modifications in the growth of species (Tzeng 
and Yeh 2002).

Knowledge of the reproductive season and the average size at sexual maturity of a 
species with potential applications in fisheries is fundamental to designing and estab-
lishing monitoring and control strategies for its conservation. The spatial size structure 
of S. acuminata in the Colombian Caribbean was determined for the first time, which 
is interesting because it indicates possible breeding areas. However, for the Colom-
bian Caribbean, there is currently no reproductive information available for the orange 
shrimp (S. acuminata). The analysis performed by Guéguen (1998a) on the continen-
tal slope of French Guiana revealed two seasons of sexual maturation of the gonads in 
females of S. acuminata (between May and June and between November and Decem-
ber). A very similar pattern arises in the species S. agassizii, which showed two spawn-
ing peaks per year from 2005 to 2011, one from May to July and another from De-
cember to January (Villalobos-Rojas and Wehrtmann 2018). However, these authors 
mentioned that this peak of high reproductive intensity fluctuates and is mainly asso-
ciated with changes in water temperature and salinity, as well as food availability. The 
size at sexual maturity for females of S. acuminata (95.2 mm TL and 23.82 mm CL) is 
the first report for the species; these values serve as a reference point for this species in 
the Colombian Caribbean. In addition, an important factor should be considered in 
relation to the assignment of ovarian maturity stages performed in this work, wherein 
Stage II (early maturing) is classified as an immature female. Nevertheless, due to the 
sampling period, it is possible that females classified as being in Stage II had previously 
extruded a clutch of eggs and that their ovaries were in regeneration, which may cause 
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confusion during classification. Incorrect classifications in our study may have affected 
the estimation of the maturity ogive. Moreover, it is recommended that, to validate 
these results, the future studies should use a histology analysis to obtain a more accu-
rate ogive estimation (Flores et al. 2020). Therefore, it is recommended to carry out a 
monthly study to determine the reproductive characteristics of S. acuminata, such as 
its reproductive season and maximum reproductive potential; in addition, histologi-
cal studies should be used to verify the stages of gonadal maturity and the activity of 
moults during the year to develop management measures, such as a temporal and/or 
spatial closure.

The discontinuities in the growth rates of some parts of the body in crustaceans 
may indicate variations in the morphological size of individuals at the onset of sexual 
maturity (Hall et al. 2006; Claverie and Smith 2009; Josileen 2011; Queirós et al. 
2013; Severino-Rodrigues et al. 2016). The estimated maturity ogive in this study was 
associated with the results obtained in the break point analysis. The analysis of the first 
abdominal segment length (FSL) versus CL in the females in this study had relatively 
similar results as the analysis of the size at sexual maturity: FSL vs. CL = 23.80 mm CL 
(Table 3) and CL50% = 23.82 mm (Fig. 6). These findings indicate that the variation in 
the length of the first abdominal segment, according to CL and TL, can be related to 
the morphological size at the onset of sexual maturity. Therefore, in this species, the 
growth of the first abdominal segment may be delayed until individuals reach CLs of 
23.8 mm and TLs of 88.87 mm (Fig. 7a, b). This is the approximate time at which 
the onset of sexual maturity occurs (following a moult in puberty) and an abdominal 
morphology consistent with reproduction (i.e. a wider abdomen) and with the objec-
tive of incubating eggs is observed as occurring in other crustaceans (Rudolph 2002; 
Cusba and Paramo 2017). However, this change may be also associated with the post-
maturing phase, when adult females with optimal abdominal sizes require energy for 
egg production, reducing the rate of abdominal growth (Claverie and Smith 2009). 
Therefore, evident changes in the size of the body area in the abdomen may be a good 
indicator of the beginning of morphological sexual maturity in S. acuminata females. 
However, the morphological size of the maturity (23.8 mm CL and 88.87 mm TL) is 
uncertain due to the inconsistencies that exist in the estimation of the maturity ogive 
presented in this study. For HL and SISH, several changes occur in decapods, particu-
larly in the increase in the SISH (Boschi 2016). This increase could also be related to 
individuals that are close to mating, during which a thoracic-abdominal junction oc-
curs from the male to the female, with the male facing the ventral regions of the female 
(Boschi 2016).

Guéguen (1997, 1998a) and Charbonnier et al. (2010) reported that S. acuminata 
is probably nocturnal-feeding, since it is captured only at night and burrowing during 
the day. This behaviour may be a crucial factor in the catch yields recorded during the 
present cruise, where daytime hauls showed significantly lower catches than night-
time hauls. These animals rest when light increases and feed in darkness (Aguzzi and 
Company 2010). These patterns of diel periodicity agree with our results for S. acumi-
nata, which also indicated a nocturnal feeding behaviour, as the largest catches were 



Carlos Pacheco et al.  /  ZooKeys 1040: 1–24 (2021)18

recorded during nocturnal trawls and burrowing behaviour during daylight. This be-
haviour should be considered in the sampling design of future surveys aimed at evalu-
ating the population of S. acuminata in the Colombian Caribbean.

Size structure, size at sexual maturity, growth type and morphometric relation-
ships presented in this work are initial reference parameters for fisheries managers. This 
important information could be useful and strengthened in future research in order 
to establish and implement management and conservation strategies for S. acuminata. 
Before starting a new fishery, more research is needed to understand the life cycle 
parameters of this deep-sea resource, such as its growth, reproduction, recruitment, 
mortality, spawning areas and times, nursery areas and associated biodiversity.
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