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Abstract
Canopy fogging was used to sample the diversity of bark and ambrosia beetles (Coleoptera, Curculioni-
dae, Scolytinae) at two western Amazonian rainforest sites in Ecuador. Sampling was conducted by Dr 
Terry Erwin and assistants from 1994–2006 and yielded 1158 samples containing 2500 scolytine speci-
mens representing more than 400 morphospecies. Here, we analyze a subset of these data representing 
two ecological groups: true bark beetles (52 morphospecies) and ambrosia beetles (69 morphospecies). 
A high percentage of these taxa occurred as singletons and doubletons and their species accumulation 
curves did not reach an asymptote. Diversity estimates placed the total scolytine species richness for this 
taxon subset present at the two sites between 260 and 323 species. The α-diversity was remarkably high 
at each site, while the apparently high β-diversity was an artifact of undersampling, as shown by a Monte 
Carlo resampling analysis. This study demonstrates the utility of canopy fogging for the discovery of new 
scolytine taxa and for approximate diversity assessment, but a substantially greater sampling effort would 
be needed for conclusive alpha as well as beta diversity estimates.
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Introduction

First pioneered by Southwood (1961) in temperate forests and then later adapted for 
tropical research by numerous others (Lowman and Wittman 1996), canopy fogging 
methods use insecticide to collect arthropods from the upper architecture of the forest 
habitat. These methods have been used in surveying arthropod diversity, particularly 
in lowland rain forests and at several neotropical localities (Erwin 1982; Basset 2001; 
Rice 2015). These data in part were used to make Erwin’s (1982) bold estimate of 
30–50 million arthropod species which was a stark contrast to previous estimates of 
1.5–10 million (Erwin 1982). Although this provocative publication produced im-
mediate criticism, it initiated focused scientific inquiry for an improved estimate of the 
number of worldwide arthropod species (e.g., May 1988; Adis 1990; Gaston 1991; 
Erwin 1991; Ødegaard 2000; Hamilton et al. 2010).

For a more than a decade, Erwin and colleagues sampled arthropod diversity in the 
Ecuadorian Amazon rainforest canopy at two lowland sites with identified trees, separated 
by 21 km of contiguous primary forest, using a standardized insecticidal fogging protocol 
(Erwin 1983a, 1983b; Pitman et al. 2001; Erwin et al. 2005). Sampling occurred during 
dry, wet, and transitional seasons to measure temporal turnover in species composition. 
Over nine million specimens were collected from these fogging events (Rice 2015) and 
many new taxa have been described from the specimens (e.g., Erwin 2010).

The Scolytinae (Coleoptera, Curculionidae) is comprised of approximately 257 
genera containing 6000 species worldwide (Hulcr et al. 2015). Scolytine species feed 
sub-cortically on a wide variety of woody and herbaceous plants. The typical life cycle 
of scolytines consists of a brief dispersal flight period after adult emergence, followed 
by colonization of new hosts. Once a suitable host has been located, adults bore galler-
ies into the host tissue, where eggs are laid, and larvae complete their development into 
the next generation of adults (Kirkendall et al. 2015).

Scolytines are divided into two main ecological groups: bark and ambrosia beetles. 
The degree to which scolytines specialize on specific hosts varies considerably depend-
ing on these ecological groups. Bark beetles bore into the phloem of trees, feed on 
tree tissues, and tend to have more specialized host preferences. Ambrosia beetles bore 
into the xylem, feed on species of symbiotic fungi, which grow along the walls of 
their galleries, and tend to have more generalized tree host preferences (Beaver 1979; 
Hulcr et al. 2007; Kirkendall et al. 2015). The majority of scolytine diversity occurs 
in tropical regions of the world, and many tropical species remain undescribed (Wood 
2007; Hulcr et al. 2015; Smith et al. 2017). The Ecuadorian canopy fogging samples 
collected in Erwin’s surveys offer a rich source of new scolytine specimens because of 
observed scolytine species specialization to tree taxa, tree parts, and other microclimate 
factors (e.g., Hulcr et al. 2007; Kirkendall et al. 2015). In addition, only fewer than 
200 species have been recorded for Ecuador (Wood 2007; Martínez et al. 2019; Jordal 
and Smith 2020), but the Ecuadorian species richness is likely underestimated given 
the continuous discovery of new species (e.g., Petrov and Flechtmann 2013; Petrov 
and Mandelshtam 2018; Smith and Cognato, in prep.).
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Remarkably few studies have addressed the spatial and temporal turnover of sco-
lytine species (β-diversity) (Deyrup and Atkinson 1987; Thunes 1998; Peltonen et 
al. 1998; Hulcr et al. 2008a, b). The majority of studies have focused on the com-
position of the scolytine fauna of temperate regions and examined the distributions 
of a few economically important species (Deyrup and Atkinson 1987; Jakus 1998; 
Peltonen et al. 1998; Oliver and Mannion 2001; Gaylord et al. 2006). Several stud-
ies in the tropics have attempted to determine the effects of seasonal changes in 
rainfall and temperature on the composition of scolytine communities (Beaver and 
Löyttyniemi 1991; Madoffe and Bakke 1995; Morales et al. 2000; Flechtmann et 
al. 2001; Hulcr et al. 2008a; Sandoval Rodríguez et al. 2017; Martinez et al. 2019; 
Sanguansub et al. 2020). Studies in Malaysian forests have examined the spatial dis-
tribution of scolytines across horizontal (Maeto et al. 1999; Chung 2004) and ver-
tical gradients (Maeto and Fukuyama 2003; Simon et al. 2003). Recent studies in 
Thailand (Hulcr et al. 2008a; Sanguansub et al. 2020) and Papua New Guinea (Hulcr 
et al. 2008b) have used quantitative sampling to examine scolytine community com-
position and attempt to determine the proximate causes of the distribution of species 
in tropical habitats. Scolytine communities in lowland homogeneous Papua New 
Guinean rainforests have a low β-diversity, thus contradicting the expected trend 
of high β-diversity in the tropics. Novotny et al. (2007) similarly demonstrated low 
species turnover for insect communities when examined on a large scale across Papua 
New Guinea. In Thailand, two study sites separated by only 5 km were found to have 
significantly different scolytine species composition (Hulcr et al. 2008a), however the 
differences were attributed to differences in forest type, elevation, seasonality, mean 
annual temperature and humidity (Hulcr et al. 2008a; Sanguansub et al. 2020). Giv-
en the scenarios above, it is uncertain whether Amazonian forests will produce the 
same trend of low β-diversity seen in Papua New Guinea or high β-diversity, as was 
observed between different Thai forests.

In tropical ecosystems, an increase in host specificity combined with an increase 
in plant diversity is often used to explain high levels of species diversity. However, 
bark and ambrosia beetles show a reverse trend with at least some groups exhibiting 
lower host specificity in tropical regions. This is largely due to the greater abundance 
of ambrosial feeding scolytines which, as discussed above, tend to be relative host plant 
generalists (Beaver 1979), with high symbiont specificity. Nevertheless, most scolyt-
ine groups have higher species diversity in tropical regions than they do in temperate 
ones (Beaver 1979; Deyrup and Atkinson 1987; Hulcr et al. 2015). It is therefore 
expected that canopy fogging will yield a high number of scolytine species, but that 
the β-diversity of scolytines across the Amazonian canopy may not necessarily be high.

In this study, we use a subset of scolytine specimens representing both the bark 
beetle and ambrosia beetle ecological groups to assess the diversity of scolytines at two 
western Amazonian forest study sites. We use these data to assess the value of canopy 
fogging as a source of scolytine specimens, determine the spatial turnover of scolytine 
species, and use the data collected from these fogging stations to predict the scolytine 
species richness at the two sites.
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Materials and methods

Field sites and sampling

The two study sites in this investigation were typical lowland rain forest habitats in 
the western Amazon Basin at the margin of Yasuní National Park, separated by 21 km 
of contiguous primary forest: Onkone Gare Station (cited as “Piraña” in Pitman et al. 
2001 and Erwin et al. 2005) (0°39'25.685"S, 76°217'10.813"W; 216 m) and Tiputini 
Biodiversity Station (0°37'55.397"S, 76°08'39.205"W; 216 m). The Onkone Gare 
and Tiputini study plots were established in 1994 and 1997, respectively. The study 
sites receive an average of 2.7 m of rainfall per year (Erwin et al. 2005). Precipitation at 
the two sites is seasonal, with the wet season occurring from May to October and the 
dry season occurring from November to April.

Tree data were recorded for collecting stations within Erwin’s canopy fogging study 
transects. Trees with a diameter at breast height (diameter measured at 1.33 m from 
tree base) greater than 10 cm that had at least part of a branch hanging over the col-
lecting sheet were tagged by Erwin’s team and subsequently identified (Pitman et al. 
2001). In terms of trees, the Onkone Gare and Tiputini sites are very different at the 
species level (73% occurring at only one site), moderately dissimilar at the generic level 
(53% occurring at only one site), and fairly similar at the family level (26% occurring 
at only one site). With approximately 250 species each, the two study sites represent 
individually 21.26% (Onkone Gare) and 21.42% (Tiputini) and collectively 34% of 
the regional tree diversity (Erwin et al. 2005).

The fogging protocol followed Erwin (1983a, b). The study plot area at each site 
(100 m × 1000 m) was divided into 10 transects (10 m × 100 m). Each transect con-
sisted of 10 collecting stations, catches for falling arthropods (3 m × 3 m), which were 
randomly arrayed on both sides of the transect centerline. Each station was constructed 
of a sampling sheet tied, suspended 1 m off the ground, and fixed with a collecting jar 
attached to the center of the sheet. The total area of these collecting stations was 9250 
m2, which represented just 1.11% of the entire transect at each site.

Fogging occurred at Onkone Gare from 1994–1996 and 2005–2006, and at Ti-
putini from 1998–2002 three times per year: January/February (dry), June/July (wet), 
and October (transitional). Foggings occurred at 0345–0500 hr in order to minimize 
insecticidal drift outside of the column due to air currents. The pyrethroid insecticide 
resmythrim was fogged for 60 seconds in a column from just above the sheet to a 
height that was then recorded for each fogging event (for details on fogging techniques 
and equipment used see Lucky et al. 2002). Previous studies demonstrated that arthro-
pod repopulation occurs within 10 days after fogging (Lucky et al. 2002). Hence, the 
same stations could be resampled seasonally without an effect on sampling.

 The samples examined herein represent only a subset (1158 samples) of the total 
(1400+ samples) taken during the decade of canopy fogging. Samples from several 
collecting expeditions were not exported from Ecuador and were therefore not avail-
able for this study. Scolytine beetles were extracted from the adult Coleoptera samples, 
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sorted to morphospecies, and identified using published keys (e.g., Wood 2007). For 
this study, subset of scolytine specimens representing both the bark beetle (Bothros-
ternini, Phloeosinini, Phloeotribini, Phrixosomini) and ambrosia beetle (Xyleborini, 
Ipini: Premnobius) were included for the diversity assessments. We excluded the Cor-
thylini, Trypophloeini, Hexacolini and other former Cryphalini, and Scolytini because 
of potential inflation of the diversity estimates due to sexual dimorphism and cryptic 
species boundaries.

Analysis of communities

We compared the differences between the communities of scolytines occurring at 
Onkone Gare and Tiputini with statistical analyses used in similar studies (Hulcr et al. 
2008a, b). All calculations were performed with the EstimateS software (Colwell 2004).

Accumulation curves of species richness were estimated using the Mao Tau 
function which is an analytical analog of a randomized rarefaction procedure. Im-
pact of rare species on these accumulation curves was evaluated with abundance-
based, Chao1 (Chao 1984) and the Abundance-based Coverage Estimator (ACE) 
(Chao and Lee 1992; Chao et al. 1993), and incidence-based, Chao2 (Chao 1987) 
and the Incidence-based Coverage Estimator (ICE) (Lee and Chao 1994), richness 
estimators. ACE and ICE considered two classes of species for their calculations: 
those that are rare and those that are not rare. For analytical purposes, ACE and 
ICE considered species with fewer than 10 individuals in the sample to be rare (the 
default setting in EstimateS Colwell 2004). Chao1 and Chao2 treat all species (rare 
and not rare) the same in their calculations. These calculations also estimate the 
effect of unseen rare species (rare species that were not sampled). The default bias-
corrected option was used to calculate Chao1 and Chao2. This analysis estimated 
the critical value for the abundance distribution as > 0.5 for all subsets of the data 
analyzed. In cases such as these the recalculation of the Chao1, Chao2, ACE, and 
ICE using the Classic option is recommended. Thus, the richness estimators re-
ported herein were calculated using the Classic option under diversity settings in 
EstimateS (Colwell 2004).

In addition to the above richness estimators, a second-order Jackknife (Burnham 
and Overton 1978, 1979) was calculated. This measure is based on the number of 
species that occur in one sample, as well as those that occur in exactly two samples. 
Colwell and Coddington (1994) have shown the second-order Jackknife to be one of 
the more reliable predictors of species diversity.

Faunal distinctness or dissimilarity between the two sites was measured with the 
Complementarity Index (CI) (Colwell and Coddington 1994). This calculation is 
based on the observed species for each sample, the total species richness, and the num-
ber of species unique to either sample. Complementarity Index value of 1 indicates 
that compared samples do not share any species in common. Complementary indices 
were calculated for each taxon, as well as for the ambrosia beetles, bark beetles, and for 
the total sample (all beetles) for Onkone Gare and Tiputini. In addition, for the total 
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sample, we used the Chao-Sørensen abundance-based estimator which corrects for 
biases of incomplete samples of the fauna by incorporating the effect of unseen shared 
species (Chao et al. 2005, 2006). Given that the Onkone Gare study site was sampled 
more than twice as much as the Tiputini site (311 lots versus 115 lots, respective), we 
rarefied the data for the Chao-Sørensen analysis. A lognormal distribution was used for 
rarefaction resulting in a Tiputini mean (SD) = 1.93 (12.21) and a Onkone Gare mean 
(SD) = 1.93 (12.70)]. The total number of individual specimens for both the Tiputini 
and the Onkone Gare rarefied samples equaled 230.

To test the hypothesis that the observed similarity is not statistically significant, 
but rather a result of random sampling of individuals from similar or identical scolyt-
ine communities, we performed a Monte Carlo analysis using the total rarefied dataset. 
In each replicate of this test individuals of each species were randomly distributed 
between the two sites. This randomized dataset was then used to calculate the Chao-
Sørensen similarity index and the procedure was repeated 100 times.

Results

A total of 1158 canopy fogging bulk samples were analyzed from the Ecuadorian Ama-
zon study transects; 965 from Onkone Gare and 293 from the Tiputini (Table 1). 
Scolytines were found in 60% of the Onkone Gare samples, 75% of the Tiputini 
samples, and 69% of the total samples from both sites. These samples contained a 
total of 2500 scolytines, representing more than 400 morphospecies including a large 
number of rare species occurring as singletons and doubletons. The subset of taxa 
examined here represented 688 individuals and 121 species (Tables 2, 3). The bark 
beetles (Bothrosternini, Phloeosinini, Phloeotribini, and Phrixosomini) totaled 183 
specimens representing 9 genera and 52 morphospecies (Tables 2, 4). The ambrosia 
beetles (Xyleborini, and Premnobiina) totaled 504 specimens representing nine genera 
and 70 species (Tables 3, 4).

Table 1. Numbers of scolytine species from canopy fogging two sites in Ecuador, complimentary index 
values and species richnessestimates. CI= complimentary index,  ACE= Abundance-based Coverage Esti-
mator, ICE= Incidence-based Coverage Estimator, Jack2 = second-order jackknife.

(A) All taxa No. Samples Species 
Observed

Unique 
Species

CI ACE ICE Chao1 Chao2 Jack2

Onkone Gare 965 98 74 NA 275 292 296 309 217
Tiputini 293 47 24 NA 90 96 85 90 95
Both Sites 1158 121 NA 0.81 301 323 308 311 260
(B) Bark beetles
Onkone Gare 965 42 32 NA 95 90 154 109 83
Tiputini 293 20 10 NA 38 35 32 30 35
Both Sites 1158 52 NA 0.81 121 119 154 137 109
(C) Ambrosia beetles
Onkone Gare 965 56 42 NA 179 184 153 208 128
Tiputini 293 27 14 NA 51 61 55 67 58
Both Sites 1158 69 NA 0.81 183 211 161 174 150
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Table 2. Numbers of bark beetle species collected at two sites in Ecuador.

Subtribe Genus Species Locality(ies) No. Specimens
Bothrosternini Akrobothrus ecuadoriensis Onkone Gare 3

Bothrosternus n. sp. nr. truncatus Onkone Gare/Tiputini 8
sp. 1 Tiputini 1
sp. 2 Onkone Gare 1
sp. 3 Onkone Gare 1
sp. 4 Onkone Gare 1

Cnesinus sp. 1 Onkone Gare 4
sp. 2 Onkone Gare 6
sp. 3 Tiputini 1
sp. 4 Tiputini 2
sp. 5 Tiputini 2
sp. 6 Onkone Gare/Tiputini 4
sp. 7 Onkone Gare/Tiputini 4
sp. 8 Onkone Gare 1
sp. 9 Onkone Gare/Tiputini 5
sp. 10 Onkone Gare 1

Eupagiocerus sp. 1 Onkone Gare/Tiputini 2
Pagiocerus sp. 1` Onkone Gare/Tiputini 4

Sternobothrus sp. 1 Tiputini 2
sp. 2 Onkone Gare 1
sp. 3 Onkone Gare 1
sp. 4 Onkone Gare 1

Phloeosinini Chramesus sp. 1 Onkone Gare 1
sp. 2 Tiputini 1
sp. 3 Onkone Gare 1
sp. 4 Tiputini 1
sp. 5 Onkone Gare 1
sp. 6 Onkone Gare 1

Phloeotribini Phloeotribus sp. 1 Onkone Gare/Tiputini 31
sp. 2 Onkone Gare 20
sp. 3 Onkone Gare/Tiputini 6
sp. 4 Onkone Gare/Tiputini 21
sp. 5 Onkone Gare 1
sp. 6 Onkone Gare 4
sp. 7 Onkone Gare 1
sp. 8 Onkone Gare 1
sp. 9 Onkone Gare 2
sp. 10 Onkone Gare 1
sp. 11 Onkone Gare 1
sp. 12 Tiputini 2
sp. 13 Onkone Gare 1
sp. 14 Tiputini 1
sp. 15 Onkone Gare/Tiputini 7
sp. 16 Onkone Gare 13
sp. 17 Onkone Gare 1
sp. 18 Tiputini 1
sp. 19 Onkone Gare 1
sp. 20 Onkone Gare 1
sp. 21 Onkone Gare 1

Phrixosomini Phrixosoma sp. 1 Onkone Gare 1
sp. 2 Onkone Gare 1
sp. 3 Onkone Gare 1

183
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Table 3. Numbers of ambrosia beetle species collected at two sites in Ecuador.

Subtribe Genus Species Locality(ies) No. Specimens
Xyleborini Ambrosiodmus sp. Onkone Gare 1

Callibora sarahsmithae Onkone Gare 1
Coptoborus sp. 1 Onkone Gare/Tiputini 6

sp. 2 Onkone Gare 1
sp. 3 Onkone Gare 2
sp. 4 Onkone Gare/Tiputini 15
sp. 5 Onkone Gare/Tiputini 11
sp. 6 Onkone Gare/Tiputini 2
sp. 7 Tiputini 1
sp. 8 Onkone Gare/Tiputini 2
sp. 9 Onkone Gare/Tiputini 5
sp. 10 Onkone Gare/Tiputini 6
sp. 11 Onkone Gare 1
sp. 12 Onkone Gare 1
sp. 13 Onkone Gare 1
sp. 14 Onkone Gare 1
sp. 15 Onkone Gare 1
sp. 16 Onkone Gare 1
sp. 17 Onkone Gare 3
sp. 18 Onkone Gare 1
sp. 19 Onkone Gare 1
sp. 20 Onkone Gare 1
sp. 21 Onkone Gare 1
sp. 22 Tiputini 1
sp. 23 Onkone Gare 1
sp. 24 Onkone Gare 1
sp. 25 Onkone Gare 2

vespatorius Onkone Gare 1
Dryocoetoides sp. 1 Onkone Gare 6

sp. 2 Onkone Gare 1
sp. 3 Onkone Gare 1
sp. 4 Onkone Gare 1
sp. 5 Onkone Gare 2

Theoborus sp. 1 Tiputini 1
sp. 2 Tiputini 3
sp. 3 Onkone Gare/Tiputini 5

nr. micarius Onkone Gare 1
sp. 4 Onkone Gare 3
sp. 5 Tiputini 1
sp. 6 Onkone Gare/Tiputini 8
sp. 7 Tiputini 1
sp. 8 Onkone Gare 1
sp. 9 Onkone Gare 1
sp. 10 Onkone Gare 1

Xyleborinus sp. 1 Tiputini 2
Xyleborus sp. 1 Tiputini 21

spathipennis Onkone Gare/Tiputini 2
affinis Onkone Gare/Tiputini 317
sp. 2 Tiputini 1

nr. ferrugineus Onkone Gare/Tiputini 12
sp. 3 Onkone Gare 2
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Subtribe Genus Species Locality(ies) No. Specimens
Xyleborini Xyleborus sp. 4 Tiputini 8

sp. 5 Tiputini 1
sp. 6 Onkone Gare 1
sp. 7 Tiputini 1
sp. 8 Tiputini 1
sp. 9 Onkone Gare 1
sp. 10 Onkone Gare 2
sp. 11 Tiputini 1
sp. 12 Onkone Gare 1
sp. 13 Onkone Gare 1
sp. 14 Onkone Gare 2
sp. 15 Onkone Gare 1
sp. 16 Onkone Gare 1
sp. 17 Onkone Gare 1
sp. 18 Onkone Gare 1
sp. 19 Onkone Gare 1

Xylosandrus morigerus Onkone Gare/Tiputini 12
Premnobiina Premnobius cavipennis Onkone Gare 1
Total 504

Table 4. South American (SA) scolytine genera and species recorded and collected via canopy fogging.

Taxon SA Genera SA Species Genera Collected Species Collected
Xyleborini 11 233 8 69
Premnobiina 2 4 1 1
Bothrosternini 6 82 6 22
Phloeosinini 5 61 1 6
Phloeotribini 1 54 1 21
Phrixosomini 1 10 1 3

Species accumulation curves for both sites combined and for each site individually 
did not reach an asymptote (Fig. 1). The steady increase of the curves indicated a contin-
ued accumulation of rare species (singletons and doubletons). Estimates of species rich-
ness were very similar between abundance-based and incidence-based statistics (Table 
1; Fig.1). For the two sites combined, the abundance-based ACE and Chao1 estimated 
a total species richness of 301 and 308 species, respectively. The incidence-based ICE 
and Chao2 gave marginally higher estimates. Abundance-based and incidence-based 
estimates of species richness for the Onkone Gare overlapped slightly with 275–309 
species. Abundance-based and incidence-based (Chao1) statistics arrived at similar es-
timates and the incidence-based statistics, ICE and Chao2 estimated a slightly greater 
species diversity for the Tiputini site. The second-order Jackknife estimated a species 
richness of 260 species for both study sites (Table 1; Fig. 1). For Onkone Gare, the 
second-order Jackknife estimated 217 species and for Tiputini it estimated 95 species.

Simple Complementarity Indices suggested that the composition of the scolytine 
fauna was markedly different for the two study sites. Onkone Gare and Tiputini had a 
CI = 0.81 for the total analyzed subset of scolytine tribes (Table 1). Complementarity 
Indices for the tribes ranged from 0.73 to 1.00 (although a CI=1 for Premnobiina is 
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meaningless because only one specimen was collected) (Table 5). In the samples, at 
least half of all the species occurring at either site was unique to that site: 76% of spe-
cies at Onkone Gare and 50% or species at Tiputini (Table 1).

However, the correction for biases of incomplete sampling of the fauna using the 
Chao-Sørensen abundance-based estimator with the rarefied data estimated a faunal 
similarity of 0.79. Similarly, the Monte Carlo analysis returned a probability of 0.374 
[median modeled similarity L’ = 0.77 (lower and upper 2.5% quantiles = 0.634 and 
0.836)]. Both the Chao-Sørensen and the Monte Carlo analyses indicate that the ap-
parent difference between the two sites was due to stochastic sampling error and the 
difference does not appear to be biologically significant.

Figure 1. A species accumulation curves for Onkone Gare B species accumulation curves for Tiputini 
C species richness estimators for Onkone Gare D species richness estimators for Tiputini E species accu-
mulation curves for both sites combined F species richness estimators for both sites combined.
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Discussion

The goals of this study were to assess the scolytine species richness, the use of canopy 
fogging to enhance the discovery of new taxa, and to estimate the faunal turnover 
(β-diversity) between a short distance in Amazonian rain forest. Species records for 
Ecuador range from 50 recorded in a monograph (Wood 2007) to 85 collecting at one 
site over a year (Martinez et al. 2019) and 248 have been recorded for Peru (Smith et al. 
2017). Our entire collection of scolytines from the fogging represents 400 morphospe-
cies out of 2500 specimens. This species richness is proportionally 30x greater than the 
species richness recorded for a western Ecuadorian forest (85 species out of ~18,000 
specimens). Given the estimates of species richness suggest nearly twice the number 
of species in only these field sites (Tables 2, 3) and the diversity and long stability of 
Ecuadorian forest habitats (McKenna and Farrell 2006), it is likely the actual scolytine 
diversity exceeds 400 species.

Taxonomic study of these 400 morphospecies has yielded species descriptions of 
21 Scolytodes species (84% of the known Ecuadorian fauna) (Jordal and Smith 2020), 
seven Camptocerus species (39% of the known Ecuadorian fauna) (Smith and Cognato 
2010), and 15 Coptoborus (45% of the known Ecuadorian fauna) (Smith and Cognato, 
in prep.). In addition, faunal discoveries include descriptions of new genera with strik-
ing morphologies: Akrobothrus Dole & Cognato, 2007 and Callibora Cognato, 2018. 
These discoveries suggest that canopy fogging is not only a useful method for the col-
lection of known scolytine fauna, but it is also a mean to access a poorly explored fauna.

Our analysis of the partial scolytine samples fogged from the Ecuadorian Amazo-
nian canopy indicates a species-rich fauna but the estimate of a high β-diversity de-
pended on the method’s sensitivity to undersampling. Specifically, the simple measure 
of complementarity suggested substantial faunal difference between the sites, but the 
Chao-Sørensen and Monte Carlo resampling showed that the differences were statisti-
cally inconclusive.

Our results indicate that even a large-scale, long-term sampling effort, such as 
this one, did not provide a reliable estimate of scolytine diversity for the two western 
Amazonian sites. Despite over 1100 individual fogging events (representing 14 fogging 
expeditions), which collected 688 individual beetles representing 121 species (used in 
this analysis), the species accumulation curves did not reach an asymptote (Fig. 1). 
Likewise, the accumulation of rare species in the form of singletons and doubletons 

Table 5. Distribution of species by taxon between sites and the corresponding index values.

Taxon % Occurrence in 
Samples

Onkone Gare 
spp.

Tiputini 
spp.

Total 
spp.

Shared 
spp.

Unique 
spp.

CI

Xyleborini 27 56 27 69 14 55 0.81
Premnobiina 0.09 1 0 1 0 1 1.00
Bothrosternini 4.32 17 11 22 6 16 0.73
Phloeosinini 0.52 4 2 6 0 6 1.00
Phloeotribini 7.69 18 7 21 4 17 0.81
Phrixosomini 0.26 3 0 3 0 3 1.00
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did not decline. These phenomena were observed from the individual data collected for 
each study transect and for the collective species data for the two sites.

Despite this inconclusive result, we speculate on the scolytine diversity in the 
canopy. Given the relatively short distance (21 km) between Onkone Gare and Tipu-
tini the real β-diversity is likely low because of the sites’ relatively proximity and very 
similar environment. The Onkone Gare and Tiputini sites differ in the occurrence of 
tree species but share the same tree families (Erwin et al. 2005). Bark and ambrosia 
beetle’s tree host specificity usually occurs at the family level (Beaver 1979) thus pre-
dicting low β-diversity between these sites. Conversely, previous canopy fogging stud-
ies have found significant differences in the beetle species composition of different 
forest types. In Manaus, Brazil, 83% of beetle species in canopy fogging samples were 
found in only one type of forest (Erwin 1983a). Of the four forest types characterized 
and studied by Erwin, “mixed-water” forests were found to be the most species rich. 
However, “terra firme” (non-floodplain) forests had the second highest number of 
species and the highest number of restricted species. Both sites sampled in this study 
were “terra firme” forest. Erwin also found that smaller insect species (1 mm class, as 
defined for his study) comprise the majority of insects in “terra firme” forests. This 
offers another predictor of scolytine diversity in this habitat, as most scolytine species 
are within the 1–3 mm range. If scolytines follow the same general patterns found for 
all Amazonian insects, we can predict that further sampling would uncover an even 
richer scolytine fauna with possibly many species not found in other forest types. 
The high percentage of singletons and doubletons at each site supports this predic-
tion. Conversely, increased sampling may yield more specimens of rare species which 
would decrease β-diversity.

Large-scale sampling of tropical habitats offers a rich source of previously un-
known species, but as this study demonstrates, even the most ambitious sampling 
schemes may not be enough to adequately assess the true species richness of hyper-
diverse groups. Here we have uncovered a level of scolytine α-diversity that increases 
the known fauna of Ecuador nearly five-fold, only based on sampling a single Amazo-
nian habitat. Future studies will need even more extensive sampling protocols to avoid 
erroneous conclusions and over-estimates of β-diversity based on stochastic sampling 
(Hulcr et al. 2007; Lewinsohn and Roslin 2008).
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