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Abstract
Niviventer confucianus sacer Thomas, 1908, which has been regarded as a subspecies of N. confucianus, was 
found to be a distinct species from N. confucianus based on molecular, karyotyping, and morphological 
characteristics in this study. Niviventer c. sacer was found to belong to a distinct phylogenetic clade in phy-
logenetic tree constructed using the mitochondrial gene Cytb, it clustered with N. bukit (Bonhote, 1903) 
from Vietnam and N. confucianus (Milne-Edwards, 1871) from Yunnan, but showed a distant relationship 
with N. confucianus from adjacent areas. The genetic distance between N. c. sacer and N. confucianus was 
more than 5.8%, reaching the level of interspecific differentiation. The species delimitation indicates that 
N. c. sacer is a monophyletic group. The karyotype of N. c. sacer (FN = 55, 8m+4st+32t+X(sm)Y(t)) dif-
fered from that of N. confucianus (FN = 59, 6m+4sm+2st+32t+X(sm)Y(t)). In terms of morphological fea-
tures, the length of incisive foramen (LIF) and length of auditory bulla (LAB) of N. c. sacer is significantly 
larger than that of N. confucianus and N. bukit (P < 0.05) and the proportion of white tail tip to total tail 
length is significantly longer at N. c. sacer (≥ 1/3) than that at N. confucianus (≤ 1/3). Therefore, integrated 
analysis confirmed that N. c. sacer is a distinct species of genus Niviventer rather than a subspecies of N. 
confucianus or N. bukit, namely N. sacer, which is only distributed in Shandong.
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Introduction

Niviventer confucianus sacer Thomas (1908) was named based on specimens collected 
from Mount Ai, Yantai, Shandong, China (type locality) according to its different mor-
phology from N. confucianus in other areas. The holotype (NHMUK 8.2.8.8) is preserved 
in the Natural History Museum, London (NHMUK). Thomas (1908) described it as a 
buff-grey subspecies of N. confucianus, with the tail long-haired and white-tipped. How-
ever, the taxonomic status of N. c. sacer remains controversial. These species were origi-
nally classified in the genus Mus and later in Rattus (Thomas 1908; Allen 1926), but the 
genus name was changed to Niviventer, established by Musser (1981). Niviventer c. sacer 
has been adopted as a subspecies of N. confucianus by taxonomists based on morphology. 
Allen (1940) considered N. c. sacer as one of the four subspecies of N. confucianus; Wang 
and Zheng (1981) divided N. confucianus into six subspecies and pointed out that N. c. 
sacer were distributed in Shandong, Shanxi, Shaanxi, and Gansu of central China; Huang 
et al. (1995) identified N. c. sacer as one of the eight subspecies of N. confucianus; Smith 
and Xie (2009) extended the view of Wang (2003) and considered that N. confucianus 
distributed in most northern areas of the Yangtze River in China were N. c. sacer.

In terms of molecular phylogeny, Zhang et al. (2016) estimated phylogenetic rela-
tionships using topotype specimens of white-bellied rats in China based on multi-locus 
analysis and firstly used five specimens from Yantai, Shandong. They found that N. 
c. sacer formed an independent clade in the phylogenetic tree and a sister clade with 
N. confucianus and N. bukit, indicating that N. c. sacer is a sister species or branch 
of N. confucianus. However, Zhang et al. (2016) considered that this genetic differ-
ence did not reach the species level. Ge et al. (2018a, b) analyzed a larger number 
of specimens to evaluate the internal differentiation of N. confucianus based on the 
above study, the results showed that N. c. sacer from Shandong were not clustered 
within the clades of N. confucianus, but were most closely related to N. confucianus 
from Yunnan and N. bukit from Vietnam. Therefore, they considered that N. c. sacer 
might not be a member of N. confucianus, but rather N. bukit. Karyotyping studies 
have shown that the chromosomal fundamental arm number (FN) and karyotypes of 
N. confucianus from Shandong were significantly different from those from Guang-
dong, Shaanxi, and Thailand. The karyotype of N. confucianus from Shandong (N. 
c. sacer) was 2n = 46, FN = 55, 8m+4st+32t+X(sm)Y(t), whereas that from Thailand 
was 2n = 46, FN = 58, 6m+6sm+2st+30t+X(t)+Y(t); that from Guangdong was 2n 
= 46, FN = 54, 6m+38t+X(sm)Y(t); and that from Shaanxi was 2n = 46, FN = 58, 
8m+2sm+2st+32t+X(sm)Y(t) (Jiang 1995; Wang et al. 1997; Wang et al. 2003).

The Shandong Peninsula is surrounded on three sides by the Bohai and Huanghai 
seas. The southwest mountain area and east hill area are isolated by consecutive plains 
of North China Plain and middle and lower Yangtze River plain. Also, the plain sepa-
rates mountain habitats in Shandong from those in adjacent areas, forming unique 
topographical features. Between the southwest mountains and east hills in Shandong 
is the Jiaolai Plain, which forms an inner isolated area. Studies showed that the unique 
topographical features in Shandong resulted in the development of endemic species. 
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For example, Rana kunyuensis is only distributed in Mount Kunyu in Yantai, Shan-
dong, and Pseudohaplotropis culaishanica is only distributed in Mount Culai in Shan-
dong. These new species are unique to the habitats of Shandong and were discovered 
in recent years (Lu and Li 2002; Cao and Yin 2008). More detailed study is needed to 
understand the diversity of the region.

Molecular methods are effective for identifying sister species with similar appear-
ance and detecting cryptic species in species complexe (Francis et al. 2010; Chen et al. 
2011; Lu et al. 2015; Zhang et al. 2016; Li et al. 2019). Geometric morphometrics is 
a statistics-based quantitative way of comparing shape (morphology) across different 
specimens. It not only offers the ability to describe shape precisely and accurately, but 
also facilitates visualization and interpretation of results of the analysis. With the de-
velopment and improvement of geometric morphometry, it has become an important 
method to study the morphological differentiation between species and within spe-
cies, and has been widely used in rodents (Cardini and O’Higgins 2004; Renaud and 
Michaux 2007; Lu et al. 2015; Alhajeri 2018). In this study, we systematically reas-
sessed the taxonomic status of N. c. sacer by using the mitochondrial Cytb sequence as 
a molecular marker to analyze phylogenetic relationships. We also used the automatic 
barcode gap discovery (ABGD) method to define the species status combined with 
karyotyping results, morphological characteristics, and measurement indices.

Materials and methods

Sample collection and ethics

A total of 214 specimens of N. confucianus species complex was collected from 35 
sampling sites in China using Sherman living cages from March 2009 to August 2018. 
The sampling sites covered the distribution range of N. confucianus (Fig. 1), and sam-
ple information is shown in Suppl. material 1: Table S1. Chromosome preparations 
were made by the live bone marrow method (Searle 1986). All specimens including 
the pelt, carcass, and skull were stored at Shandong University (Weihai). All animal 
sample collection protocols complied with the current laws of China and all animals 
were handled in a manner consistent with the guidelines approved by the American 
Society of Mammalogists (Sikes et al. 2016).

DNA sequencing

DNA was extracted from muscle samples using the Easy Pure Genomic DNA Kit 
(TransGen Biotech Co., Ltd., Beijing, China). The complete mitochondrial cy-
tochrome b gene (Cytb, 1140 bp) was amplified by PCR using the primers described 
by Irwin et al. (1991). The primer sequences were as follows: Nivicob1 (5'-TGT-
CATTATTTCTACACAGCACTTA-3') and Nivicob2 (5'-TTTGGGTGTTGATG-
GTGGG-3'). PCR was performed in a volume of 50 μL containing 30 ng template 
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Figure 1. Distribution of phylogenetic clades of N. confucianus species complex obtained from Cytb. The 
numbers correspond to the locality code in Suppl. material 1, Table S1.

DNA, 2×EasyTaq PCR SuperMix 25 μL, and 0.5 μM primers. The thermocycling 
protocol was as follows: initial denaturation of 4 min at 94 °C; 32 cycles of 94 °C for 
30 s, annealing temperature (Tm) for 30 s, 72 °C for 70 s; and final extension for 6 
min at 72 °C. Detection was carried out by 1% agarose gel electrophoresis, and PCR 
products were directly sequenced by Sanger sequencing.

Phylogenetic analysis

We supplemented our new Cytb data with homologous sequences (>1,140 bp) of Ni-
viventer available in GenBank (Balakirev and Rozhnov 2010; Chen et al. 2011; Zhang 
et al. 2016). Here, six species were selected as outgroup taxa: Bandicota indica, Berylmys 
bowersi, Leopoldamys nielli, Maxomys surifer, Rattus norvegicus, and Rattus andamanensis 
(Michaux et al. 2007; Balakirev et al. 2012, 2013; Koma et al. 2013; Conroy et al. 
2013). GenBank accession numbers for the original sequences used in this study are 
MT333860-MT334073 (Suppl. material 1: Table S1).

All sequences were aligned with Clustal X 2.0 (Larkin et al. 2007), manually edited 
in BioEdit 7.2.5 (Hall 1999), and corrected to eliminate interference from degener-
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ate bases. We used the Akaike Information Criterion (AIC) in jModeltest 1.0 (Posada 
2008) to select the best-fit model of sequence evolution for locus alignment. We calcu-
lated the population haplotypes in DnaSP (Librado and Rozas 2009) and performed 
phylogenetic reconstructions based on Cytb using the maximum likelihood (ML) and 
neighbor-joining (NJ) approaches with the TN93+G+I model and K2P model in 
MEGA 7 (Kumar et al. 2016), respectively. Bootstraps were obtained using a rapid 
bootstrapping algorithm with 1000 replicates. We also constructed a phylogenetic tree 
using Bayesian inference (BI) in MrBayes 3.2 (Ronquist et al. 2012, Balakirev et al. 
2013) based on the TN93 model. This step was repeated twice, the replacement rate 
of the sequence with invgamma was determined, and the process was conducted four 
Markov chain Monte Carlo runs with four chains for 10 million generations, sampling 
every 1000 trees and discarding the first 25% as burn-in. We calculated Kimura-2-pa-
rameter (K2P) distances of Cytb in MEGA 7 (Kumar et al. 2016) for pairwise compari-
sons of genetic differentiation within and between different phylogenetic lineages, and 
standard error was analyzed using 1000 bootstrap tests.

Species delimitation

We used ABGD (Puillandre et al. 2012) to recover candidate species. All aligned haplo-
type sequences (166 Cytb) were uploaded to the web interface (http://wwwabi.snv.jus-
sieu.fr/public/abgd/abgdweb.html) and run with the following settings: P (prior limit 
to intraspecific diversity) range of 0.001–0.1 and relative gap widths (X) of 0.5, 1.0, 
1.5, 2.0, and 2.5. Transition/transversion bias (TS/TV) was estimated using MEGA 
7. We selected the Kimura 80 model to analyze our data and set the number of both 
steps and bins to 25.

Karyotype analysis

We captured and analyzed the mitotic phase with improved chromosome dispersion 
using Cytovision System (Applied Imaging, Newcastle upon Tyne, UK). The diploid 
number (2n) and chromosome fundamental arm number (FN) were determined in 
each karyotype. Chromosomes were classified according to Levan et al. (1964) and 
Motokawa et al. (2001) to analyze the differences in karyotypes among different clades.

Morphological analysis

To understand the morphological diversity of N. confucianus, N. c. sacer, N. bukit and 
N. lotipes, which are closely related species in N. confucianus species complex, we ex-
plored differences in external and skull morphology among the four species, in which 
the measurements data of N. bukit was reference to Ge et al. (2018b), the other three 
were collected and measured by our laboratory. We determined four external indices 
(head and body length (HBL); tail length (TL); ear length (EL); hind foot length 
(HFL)) and eight skull indices (greatest length of skull (LS); zygomatic width (ZW); 

http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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interorbital breadth (IOB); breadth of rostrum (BR); length of incisive foramen (LIF); 
length of upper tooth row (LUTR); length of auditory bulla (LAB); length of upper 
diastema (LD)) according to Huang et al. (1995), Yang et al. (2005), Xia et al. (2006), 
and Ge et al. (2018b). Skull indices were measured with a digital vernier caliper (0.01 
mm). Adult specimens were identified by the full eruption of the molars and the fre-
quency histogram of head and body length (Yang 1990, Li et al. 1989, 1990). Male 
and female specimens were mixed in analyses since previous studies identified no sig-
nificant differences in the external and cranial measurements between sexes (Stefen and 
Rudolf 2007; Yang et al. 2011).

To characterize the differences among the four species, standard statistics includ-
ing the mean and standard error were applied. Pairwise differences between major 
species groups were tested by an analysis of variance (ANOVA) using least significant 
difference (LSD) tests, as LSD is more commonly used and sensitive to obtain statisti-
cal differences, and multivariate analysis (principal component analysis, discriminant 
analysis, cluster analysis) was also performed. These analyses were performed using 
SPSS Statistics 24.0 (SPSS, Chicago, IL, USA).

We photographed the skulls of specimens of N. confucianus, N. c. sacer and N. 
lotipes for quantitative analysis (as N. bukit was not sampled). The dorsal, ventral, and 
lateral sides of the skull and lateral view of the mandible were analyzed separately. 
Landmarks are homologous site of geometric morphology with biological significance 
on the specimen, which were selected to reflect the shape of the mandible (Bookstein 
1991). Landmarks and semi-landmarks were digitized in tpsDig 2.30 (Rohlf 2017), 
and their location is shown in Suppl. material 2: Figure S1. The raw datasets for each 
of the above four views were examined to evaluate whether the specimens greatly devi-
ated from the average values. Generalized procrustes analysis (GPA) was used to carry 
out the superimposition of landmarks, in order to remove shape-irrelevant variables 
like size, orientation and position from the original landmark configurations, leaving 
the real shape information. This is a necessary step in geometric morphometric analysis 
(Gower 1975, Rohlf and Slice 1990). Relative distortion analysis was performed with 
tpsRelw, and the relative warp score (RW) was determined. Principal component anal-
ysis was conducted to visualize shape differences between individuals, and thin-plate 
spline transformation grids of extreme value were used to show skull shape differences 
(Bookstein, 1997; Slice, 2007).

We also analyzed the dorsal hair color, spiny-ness of hairs, yellow patches, and white 
tail tip of N. c. sacer, N. confucianus and N. lotipes to compare external morphological 
features by Chi-square test. The dorsal hairs color and spiny-ness of hairs were identi-
fied by observing and touching on pelage of specimens on three-category records, as 
the color of dorsal hairs were all brown, tan and all yellow; the spiny-ness of hairs were 
hard, medium and soft; the yellow patches on the chest observed by direct observa-
tions of pelage specimen with confirmation of specimen photos, which were recorded 
by dichotomy, yes or no; and the white tail tip was calculated based on the ratio of the 
measured tail tip length to the total tail length, divided into 4 ranks: 0, 1/4, 1/3, 1/2.
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Results

Sequence data

We obtained 1140 bp of mitochondrial Cytb sequences from 312 individuals with 166 
haplotypes in this study. Among them, there were 708 conserved loci, 395 parsimoni-
ously informative loci, and 37 single-variant loci; no insertion, deletion, or termina-
tion codons were found. The transition/transversion bias was 5.40, and nucleotides in 
all sequences were accurately translated into amino acids.

Phylogenetic relationships

The phylogenetic trees constructed based on haplotype data using the NJ, ML, and 
BI methods showed essentially the same topology with high confidence values (Fig. 
2, Suppl. material 2: Figs S2, S3): (1) the N. confucianus individuals clustered into 
three well-supported clades (i.e., clades C1, C2, C3). Clade C1 is distributed in south-
western Yunnan and southeastern Tibet; Clade C2 is found from central to northern 
China, and includes two haplotypes of Linyi and Zibo from Shandong; Clade C3 
extended from the north of Southeast Asia to central China. (2) N. c. sacer split into 
two deep subclades in the central Shandong and Yantai, Weihai regions; interestingly, 
N. bukit from Vietnam and two haplotypes from Xishuangbanna in Yunnan clustered 
into one clade, forming a sister clade to N. c. sacer.

According to the constructed phylogenetic relationship, the K2P genetic distances 
within and between each clade were calculated. Genetic distances were found to range 
from 0.011 to 0.022 within the four clades and 0.053 to 0.084 between the four clades 
(N. confucianus, N. sacer, N. lotipes, and N. bukit). Among them, the genetic distance 
between N. c. sacer and N. bukit showed the lowest value (0.053); however, the genetic 
distance between N. c. sacer and other species was higher than 0.058 (Table 1).

Species delimitation

Five ABGD analyses with different relative gap width values (X = 0.5, 1, 1.5, 2, and 
2.5) were performed on 166 Cytb sequences, and two gaps (distance = 0.05 and 
0.11) were observed (Suppl. material 2: Fig. S4). All analyses consistently supported 
a 17-group scenario when intraspecific divergence(p) = 0.001-0.0083 (Suppl. mate-
rial 2: Table S2).

The species tree constructed by ABGD based on genetic distance is shown 
in Figure 3. The N. confucianus specimens are included in seven groups (groups 
11–17), the haplotypes of N. c. sacer appeared as a monophyletic group (group 12), 
and the haplotypes of N. confucianus from Xishuangbanna in the Yunnan (group 
16) and N. bukit from Vietnam (group 4) corresponded to N. bukit clade in the 
phylogenetic tree.
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Figure 2. Phylogenetic analyses of Cytb gene from all haplotypes by maximum likelihood.

Karyotype analysis

Karyotype analysis showed that the karyotype of N. c. sacer (♀2, ♂4) differed from 
that of N. confucianus (♂3). The diploid number (2n) is 46 for both, but the karyo-
type characteristics of N. c. sacer is FN = 55, 8m+4st+32t+X(sm)Y(t), chromosome 
composition: four pairs with metacentric chromosomes, two pairs with subtelocen-
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Figure 3. Comparison of ABGD species tree based on genetic distance and phylogenetic tree.
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tric chromosomes, 16 pairs telocentric chromosomes, and two sex chromosomes; in 
contrast, the karyotype of N. confucianus is FN = 59, 6m+4sm+2st+32t+X(sm)Y(t), 
chromosome composition: three pairs with metacentric chromosomes, two pairs with 
submetacentric chromosomes, one pair with subtelocentric chromosomes, 16 pairs 
telocentric chromosomes, and two sex chromosomes (Fig. 4).

Morphological analysis

A total of 98 adult individuals of N. confucianus, N. c. sacer and N. lotipes was screened 
by age identification, and the complete external indices of 84 individuals and skull 
indices of 72 individuals were obtained. Most characteristics showed normal distribu-
tions (P > 0.05), and thus we performed parametric statistics analysis (Suppl. mate-
rial 2: Table S3). Information on general variation in body form of the four species is 
given in Table 2 and Suppl. material 2: Tables S4 and S5. The ANOVA results showed 
significant morphological differences between the species in external indices and most 
skull indices (Suppl. material 2: Table S4). Multiple comparison results showed the 
skull indices (LIF and LAB) of N. c. sacer are significantly larger than those of other 
three species (Table 2, Suppl. material 2: Table S5).

In the PCA of external indices, two factors had eigenvalues exceeding 1.0, and the 
first two axes captured 36.6% and 27.6% of the total variation, accordingly (Table 3). 
The TL and EL provided the greatest contribution to the factor loadings of PC1(0.764 
and 0.619, respectively; Table 3). PC2 was mainly influenced by HBL (-0.711; Ta-
ble 3). The main scatter plots showed that the specimens from the four species had 
greatly mixed external indices, indicating they cannot be distinguished by the external 
measurement method alone (Fig. 5a). In the PCA of skull indices, the first two axes 
captured 54.1% and 16.4% of the total variation, accordingly. LS, LD and LIF are 
the three measurements that have the highest correlation with PC1(0.936, 0.875 and 
0.874, respectively; Table 3), which is obviously associated with size, as all the meas-

Figure 4. Karyotype of N. sacer (S3307) and N. confucianus (S1101).
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Table 3. Factor loadings, eigenvalues, and the variance explained by each principal component based on 
the external and skull measurements of N. sacer, N. bukit, N. confucianus, and N. lotipes.

PC1 PC2
HBL 0.504 -0.711
TL 0.764 -0.277
EL 0.619 0.538
HFL 0.493 0.481
Eigenvalues 1.465 1.103
% of variance explained 36.614 27.577
LS 0.936 -0.036
ZW 0.825 -0.392
IOB 0.589 0.228
BR 0.716 -0.449
LIF 0.874 0.267
LUTR 0.589 0.271
LAB 0.184 0.873
LD 0.875 -0.012
Eigenvalues 4.329 1.315
% of variance explained 54.106 16.438

urements have the same sign, and most have the same magnitude. PC2 was mainly 
influenced by LAB and BR (0.873 and -0.449, respectively; Table 3), which seems to 
be a shape factor given the different magnitudes and signs. The changes of length of 
auditory bulla and breath of rostrum are associated with PC2. The main scatter plots 
showed that the four species mix with each other, but part of N. c. sacer can separated 
from those of others (Fig. 5b, Table 3). In discriminant analysis, 68.3–80.3% of the 
individuals were correctly classified (Suppl. material 2: Table S6). The scatter plots of 
the discriminant function showed that individuals between clades were more likely to 
be confused based on external indices; however, based on skull indices, most individu-
als of N. c. sacer were accurately identified and classified, whereas a few individuals 
were easily confused with N. confucianus but completely separated from N. bukit and 
N. lotipes (Fig. 5c, d).

Cluster analysis of external and skull measurement indices showed that the distri-
butions of N. c. sacer and other three species are mixed and mosaic in the dendrogram 
(Suppl. material 2: Fig. S5), indicating that N. c. sacer and its close relatives cannot be 
distinguished based on traditional morphological characteristics.

Geometric morphometric analysis

The average configuration of the superimposition on the dorsal, ventral, lateral view of 
the skull and lateral view of the mandible of the three species is shown in Suppl. ma-
terial 2: Figure S6. The main scatter plots constructed using RW1 and RW2 revealed 
no clear line between the three clades, indicating that variation in the samples from 
the three clades is not obvious, and geometric morphometric cannot distinguish the 
samples in the three clades (Fig. 6).
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Figure 5. Principal component analysis and discriminant analysis of external and skull morphological 
indices. Principal component plots of external and skull indices are shown in a and b. Discriminant func-
tion plots of external and skull indices are shown in c and d, respectively.

The thin-plate spline transformation grids of extreme value showed that there are 
some variations between the three clades (highlighted in red boxes): the maxilla of N. 
c. sacer is slightly wider than those of N. confucianus and N. lotipes in the dorsal view of 
the skull (Fig. 7a). The auditory vesicle of N. c. sacer is slightly larger than those of N. 
confucianus and N. lotipes in the ventral view of skull (Fig. 7b). The height of basion of 
N. confucianus is slightly higher than those of N. c. sacer and N. lotipes, and the top of 
the skull tended to be rounder in the lateral view of the skull (Fig. 7c). Samples from 
N. c. sacer showed a narrower coronal process of the mandibular teeth in the lateral 
view of the mandible (Fig. 7d). However, each deformation was not obvious enough 
to distinguish samples between the three species.

External morphological features

In a comparison of the external morphological features of N. c. sacer, N. confucianus, 
and N. lotipes, we found that samples in the three clades could not be distinguished 
based on the dorsal hair color and yellow patches, but there were significant differences 
(P < 0.05) in the spiny hairs and white tail tip: the spiny hairs of N. c. sacer is softer 
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Figure 6. Principal component analysis of dorsal view (a), ventral view (b), lateral view (c) of skull, and 
lateral view of the mandible (d) of the three clades.

than those in the other clades; the tail color of N. c. sacer is the upper brownish black, 
the lower white, whereas the proportion of the white tail tip is more than 1/3, which is 
the same as the holotype specimens first found by Thomas (1908) in Yantai, Shandong. 
The ventral surface of the tail in N. confucianus is brownish black, the proportion of the 
white tail tip is less than 1/3, and the tail is more often without white hairs in N. lotipes, 
with a proportion of white hair of less than 1/4 (Table 4, Suppl. material 2: Fig. S7).

Discussion

Taxonomic status of N. c. sacer

We analyzed specimens from across China and surrounding countries and recover evi-
dence that Niviventer confucianus sacer should be elevated to Niviventer sacer. Molecular 
phylogenetic analysis indicated that N. sacer formed a sister branch with N. confucianus 
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Figure 7. Thin plate splines of dorsal view (a), ventral view (b), lateral view (c) of skull, and lateral view 
of the mandible (d) of N. sacer, N. confucianus, and N. lotipes.

Table 4. Comparison of external morphological features of N. sacer, N. confucianus, and N. lotipes in 
China using chi-square test.

Indices Category N. confucianus N. sacer N. lotipes χ2 P
Dorsal hair color all brown 13 7 14 2.900 0.575

tan 14 16 14
all yellow 9 7 6

Spiny hairs hard 7 7 18 19.573 0.001 ***
medium 10 3 10

soft 19 20 6
Yellow patches no 25 25 25 1.743 0.418

yes 11 5 9
White tail tip 0 10 2 14 27.036 <0.001 ***

1/4 7 2 8
1/3 11 6 3
1/2 4 12 2

from Yunnan and N. bukit from Vietnam rather than with N. confucianus from adjacent 
areas in Shandong (Shanxi, Jiangsu, Hebei, Henan, etc.), which is consistent with the 
results of Ge et al. (2018a, b). Niviventer sacer is also distinct according to the species 
delimitation (ABGD method), and the genetic distance (K2P) between N. sacer and N. 
confucianus was as high as 5.8%, whereas that with N. bukit was 5.3%, both exceeding 
the empirical threshold of dividing rodent species (5%, Avise and Walker 1999; Baker 
and Bradley 2006; Zhang et al. 2019), revealing that N. sacer is a distinct species.

In contrast to the conclusions of Ge et al. (2018a, b), who suggested that N. c. sacer 
may be a population of N. bukit, we consider that they are two independent species 
based on the following four reasons:

(1) in terms of geographical distribution, N. sacer and N. bukit are distributed in Shandong 
and Vietnam, respectively, separated by a distance of more than 2,000 kilometers;
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(2) Zhang et al. (2016) used nuclear genes to construct a multilocus phylogeny tree, 
indicating that N. c. sacer was nested among several geographically-adjacent sub-
species of N. confucianus to the exclusion of N. bukit;

(3) Ge et al. (2018b) only used Cytb and the number of specimens of N. c. sacer was 
limited, and for this reason N. c. sacer was clustered with N. bukit rather than N. 
confucianus, it may be the misleading effect of rapid or saturation mutation of Cytb;

(4) Morphological analysis shows there are significant differences between N. sacer and 
N. bukit in external and skull indices.

Interestingly, N. sacer distributed in the east hills and southwest mountains in 
Shandong is divided into two independent small lineages. However, N. confucianus 
is only distributed in the southwest mountains (Mount Lu and Mount Meng) in the 
Shandong area and forms the same clade with N. confucianus from adjacent areas. 
Therefore, N. sacer and N. confucianus show sympatry characteristics in the southwest 
mountains area, but their genetic distance (5.6%) is higher than 5% and they have 
significantly different karyotypes and morphologies. The sympatry of N. sacer and N. 
confucianus in the southwest mountains indicates that they are distinct species rather 
than subspecies without hybridization.

Morphological analysis showed that N. sacer, N. bukit, N. confucianus, and N. 
lotipes had significantly different morphological characteristics, which are reflected in 
the larger skull, but have similar skull shapes and characteristics. The morphological 
characteristics of the tail are important traits for distinguishing different species and are 
probably associated with adaptations for an arboreal lifestyle in different forest types. 
Moreover, tails may play important roles in the recognition of conspecifics (Siegel 
1970, Ge et al. 2018b). In a comparison of the morphological characteristics of N. 
sacer and N. confucianus, we found a significant difference in tail color: the upper tail 
color of N. sacer is brownish black, while the lower color is white, and approximately 
one-third of the tip was all white, which has been observed in holotype specimens 
found by Thomas (1908) in Yantai, Shandong; in contrast, the tail of most N. confu-
cianus are brown-black with only a white tail tip.

The karyotype of N. sacer in this study is 2n = 46, FN = 55, 8m+4st+32t+X(sm)Y(t), 
which is consistent with that of N. confucianus from Shandong as described by Wang 
et al. (1997, 2003). The karyotype of N. confucianus in this study is 2n = 46, FN = 59, 
6m+4sm+2st+32t+X(sm)Y(t), indicating that N. sacer differs from N. confucianus in 
karyotype. Cytogenetic evidence also supports N. sacer as a distinct and valid species.

Phylogenetic evaluation

The phylogenetic tree results showed that N. confucianus species complex is mainly 
divided into four clades. The first clade is N. confucianus, which is found in central Chi-
na, extending from the northeast to southwest of China; The second clade is N. sacer, 
which is endemic to Shandong; The third clade is N. lotipes, which is distributed in the 
southeast of China; The four clade is distributed in southwestern Yunnan and south-
eastern Tibet, which has been considered as a new combination, N. pianmaensis Ge et 
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al. 2018b. The range of the four species are consistent with Ge et al. (2018a, b). Ge et 
al. (2018a, b) conducted molecular phylogeny analysis of a species complex of com-
mon wild rat species in China and observed the historical dynamics of N. confucianus 
based on coalescence models. It was predicted that N. c. sacer was not a subspecies of 
N. confucianus, but rather N. bukit, and no N. confucianus was found in Shandong. The 
present study demonstrates that N. sacer is a valid species distributed only in Shandong.

The minimum genetic distance (K2P) between the four clades in this study was 
0.053. The results of ABGD species delimitation showed that N. confucianus are di-
vided into seven groups which are consistent with the phylogenetic tree.

In this study, N. sacer was found to be a relatively recent divergence from N. con-
fucianus, which differs from the results of Zhang et al. (2016) and Ge et al. (2018a, b). 
We used more specimens from the east hills branch and southwest mountains branch 
of N. sacer, which also indicated that different datasets had significant effects on the 
systematic evolution relationship analysis within the genus Niviventer.

In addition, the phylogenetic findings in this study are similar to those of Lu et 
al. (2015) and Zhang et al. (2016), who observed paraphyly among N. andersoni and 
N. excelsior, and N. fulvescens and N. huang. Niviventer fulvescens and N. huang form 
a clade in the phylogenetic tree; genetic distance within the clade is 0.019 and these 
species formed a group according to the ABGD method. Therefore, N. huang may 
require synonymization with N. fulvescens. The relationships and taxonomic status of 
these species require further investigation.

Conclusions

According to molecular phylogenetic tree and genetic distance, chromosome, and 
morphology analyses, we found that N. sacer should be considered as a distinct species 
rather than as a subspecies of N. confucianus or N. bukit. Is speciation from N. confu-
cianus should be further examined. Niviventer sacer is distributed in the mountains and 
hills throughout Shandong. Niviventer confucianus is also distributed in Shandong, 
but its distribution is limited to the Southwest mountain areas, which are sympatry 
of N. sacer and N. confucianus. The genetic distance (K2P) between these groups is 
more than 5%, and karyotype and morphology analysis showed significant differences. 
Thus, it is likely that no hybridization occurs between these species. This study clarifies 
the taxonomic status of species, thereby enriching biodiversity and improving the spe-
cies determination of small mammals in China.
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