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Abstract
Artemesia longinaris is a marine shrimp endemic to the southwestern Atlantic and distributed from Atafona, 
Rio de Janeiro (Brazil) to Rawson, Chubut (Argentina). In recent years, this species has become an impor-
tant target of the commercial fishery as a consequence of the decline in the fishery of more traditional and 
profitable marine shrimps. In addition, phenotypic variations have been documented in populations along 
its distribution. Therefore, investigations on the genetics of the fishing stocks are necessary for the develop-
ment of sustainable management strategies and for understanding the possible sources of these variations. 
The mitochondrial gene Cytochrome Oxidase I (COI) was used to search for evidence of genetic structure 
among the populations of A. longinaris and to analyze the phylogenetic relationships among them. A total of 
60 specimens were collected from seven different localities, covering its geographical range. The final align-
ment showed 53 haplotypes (48 individuals and 5 shared), with no biogeographical pattern. The low genetic 
divergence found, with a non-significant FST value, also suggests the absence of population structure for this 
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gene. These findings indicate a continuous gene flow among the populations analyzed, suggesting that the 
phenotypic variation is a consequence of different environmental conditions among the localities.
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Cytochrome Oxidase I, gene flow, Penaeoidea, phenotypic plasticity

Introduction

Artemesia longinaris Spence Bate, popularly known as Argentine stiletto shrimp, plays an 
important role in the marine trophic chain of the southwestern Atlantic, as food for dif-
ferent species of fish and cephalopods (Capitoli et al. 1994). In recent years, however, this 
species has become a common target of both artisanal and industrial fisheries. The former 
occurs along its entire distribution and the latter is mainly concentrated in southern Brazil 
and Argentina (D’Incao et al. 2002). The increase in the fishery of A. longinaris is a conse-
quence of a decline in the stocks of more traditional and profitable marine shrimps, such 
as the pink shrimp Farfantepenaeus brasiliensis (Latreille) and F. paulensis (Pérez-Farfante), 
the white shrimp Litopenaeus schmitti (Burkenroad) and the seabob shrimp Xiphopenaeus 
kroyeri (Heller) (D’Incao et al. 2002, Costa et al. 2004, Carvalho-Batista et al. 2011).

In the last decades, catches in the states of south and southeast Brazil have reached 
thousands of tons (D’Incao et al. 2002). Furthermore, in spite of the increase in its ex-
ploitation in recent years, there is no specific management plan for A. longinaris in Bra-
zil. The offseason in south and southeast coast of this country for this species and other 
commercial shrimps is based on the period of juvenile recruitment of Farfantepenaeus  
species, without taking account the possibility of the existence of more than one stock 
for these species (Franco et al. 2009).

Artemesia longinaris has a distribution restricted to the southwestern Atlantic, from Ata-
fona (Rio de Janeiro, Brazil, 21°37'S) to Rawson (Chubut, Argentina, 43°18'S) (D´Incao 
1999). Although its distribution is limited to the Argentinean biogeographical province, 
much of its extent (23° to 35°S) is considered a transitional region because of current 
mixing; this process leads to the formation of water masses with tropical and subantarctic 
characteristics (Boschi 2000). In addition, the northern boundary of its distribution is lo-
cated in the region of Cabo Frio (Rio de Janeiro, Brazil), where there is a strong influence 
of upwelling events, driven by the winds and coastal topography (Acha et al. 2004).

Consequently, environmental conditions differ considerably throughout the range 
of A. longinaris. For example, in the Ubatuba region (São Paulo, Brazil) the tempera-
ture (16–30 °C) and salinity (28–38) vary widely because of the intrusion of different 
water masses (Fransozo et al. 2004, Costa et al. 2005); whereas near Cabo Frio (Rio 
de Janeiro, Brazil) the water temperature is about 20 °C and the salinity is high (>37) 
during most of the year (Sancinetti 2011); and on Mar del Plata coast (Buenos Aires, 
Argentina) the temperature varies seasonally, from 6 to 17 °C, and the salinity is slight-
ly greater than 30 (Petriella and Bridi 1992, Guerrero et al. 1997, Acha et al. 2003).

In addition, phenotypic variations among A. longinaris populations have been not-
ed. The body size and the mean size at sexual maturity (CL50%) increase with the lati-
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tude, from Ubatuba (São Paulo, Brazil) to Mar del Plata (Buenos Aires, Argentina), but 
decrease with latitude from the Farol de São Tome (Rio de Janeiro, Brazil) to Ubatuba 
(Boschi 1969a, Ruffino and Castello 1992, Castilho et al. 2007b, Semensato and Di 
Beneditto 2008, Costa et al. 2010). Differences in certain morphometric relationships 
have also been detected (Dumont and D’Incao 2010), as well as in the reproductive 
period, which tends to be continuous in lower latitudes and seasonal in higher latitudes 
(Christiansen and Scelzo 1971, Petriella and Bridi 1992, Castilho et al. 2007a).

In view of these environmental variations, Nascimento (1983) proposed that the 
populations off southern Brazil and northern Argentina are likely separated, based on 
the differences in their environmental preferences. However, an analysis of enzyme 
polymorphisms provided no support for this proposition (Weber et al. 1993). Further 
studies to investigate the possibility of genetic structure and covering the entire distri-
bution of A. longinaris were still lacking.

Knowledge of the genetic structure of populations is important for the develop-
ment and success of strategies for sustainable long-term management of fishery re-
sources (Hillis et al. 1996). Mitochondrial DNA has been an important tool for these 
investigations, for terrestrial as well as aquatic organisms (Avise 1994). Among the 
mitochondrial molecular markers, the Cytochrome Oxidase I (COI) gene has been 
successfully employed to detect population structures in many species of Decapoda 
(Schubart and Huber 2006, Aoki et al. 2012, De Croos and Pálsoon 2012, Terossi 
and Mantelatto 2012). This property, together with other characteristics, has resulted 
in the choice of this gene as the standard marker for animal identification in the DNA 
barcoding technique (Hebert et al. 2003).

This study had the following aims: to evaluate the hypothesis of genetic structure 
among the populations of A. longinaris; investigate their phylogenetic relationships; 
and detect, if possible, evidences of speciation. To achieve these purposes, we used 
a partial sequence of the mitochondrial COI gene as the molecular marker. The 
population concept adopted was proposed by Roughgarden et al. (1989) and Krebs 
(1994). According to them, a population is a group of organisms of the same species 
that occupy the same place at a certain time. Our findings provide an appropriate 
theoretical basis for the development of management strategies for this fishery re-
source, as well as help to understand the origin of the phenotypic differences among 
populations of this species.

Methods

Sample collection

The specimens were obtained, at scientific cruises, from seven localities in the south-
western Atlantic (Table 1 and Fig. 1). The specimens were identified based on Costa et 
al. (2003), and were immediately preserved in 80% ethanol and deposited in the Crus-
tacean Collection of the Department of Biology (CCDB), Faculty of Philosophy, Sci-
ences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP) (Table 1).
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DNA extraction, PCR amplification, purification and sequencing

The protocols for DNA extraction, amplification and sequencing followed Mantelatto 
et al. (2009) and Pileggi and Mantelatto (2010).

An ~700-bp region of a partial sequence of the mitochondrial COI gene 
was amplified by the polymerase chain reaction (PCR) using the pair of primers: 
HCO1 (5’-TAAACTTCAGGGTGACCAAAAAATCA-3’) and LCO1 (5’-GGT-
CAACAAATCATAAAGATATTGG-3’) (Folmer et al. 1994). The PCR reaction was 
performed in an Applied Biosystems Veriti® 96-well thermocycler, using the following 
thermal cycle: initial denaturing for 2 min at 94 °C followed by 35 denaturing cycles 
at 94 °C for 30 s, primer annealing at 50–58 °C for 30 s and extension at 72 °C for 1 
min, and a final extension for 5 min at 72 °C. The PCR products were purified using 
the SureClean Plus® purification kit (Bioline) and were sequenced with the Big Dye® 
Terminator Cycle Sequencing kit in an ABI 3100 Genetic Analyzer® (Applied Biosys-
tems Life Technologies). All sequences were confirmed by sequencing both strands.

Data analysis

The editing and construction of a consensus sequence for the two strands were conduct-
ed using the computational program BIOEDIT 7.3.1.0 (Hall 1999). Sequences were 
aligned using the program CLUSTAL W (Thompson et al. 1994), with interface to 
BIOEDIT (Hall 1999) using default parameters. The computational program MEGA 
5.0 (Tamura et al. 2011) was used to estimate the average nucleotide composition and 

Table 1. List of specimens used for molecular analysis with respective site of collection, catalogue num-
bers, and GenBank accession numbers for Artemesia longinaris. The letters CCDB preceding the catalogue 
numbers represent the Crustacean Collection of the Department of Biology, Faculty of Philosophy, Sci-
ences and Letters at Ribeirão Preto, University of São Paulo.

Locality Catalogue numbers GenBank Accession Numbers
Macaé-Rio de Janeiro, Brazil
(22°23'44"S; 41°44'57"W) CCDB 3782 KF572060–KF572069

Ubatuba-São Paulo, Brazil
(23°27'24"S; 45°01'20"W) CCDB 3806, 3429 KF572070–KF572082

Santos-São Paulo, Brazil
(24°03'59"S; 46°16'57"W) CCDB 4008 KF572083–KF572084

Cananéia-São Paulo, Brazil
(25°08'15"S; 47°50'40"W) CCDB 3655 KF572085–KF572089

São Francisco do Sul-Santa Catarina, Brazil
(26°05'52"S; 48°33'82"W) CCDB 3851 KF572090–KF572098

Rio Grande-Rio Grande do Sul, Brazil 
(32°10'23"S; 52°06'10"W) CCDB 3928 KF572099–KF572108

Mar del Plata-Buenos Aires, Argentina 
(37°58'57"S; 57°32'15"W) CCDB 869, 4150 KF572109–KF572119

http://www.ncbi.nlm.nih.gov/nuccore/KF572060
http://www.ncbi.nlm.nih.gov/nuccore/KF572069
http://www.ncbi.nlm.nih.gov/nuccore/KF572070
http://www.ncbi.nlm.nih.gov/nuccore/KF572082
http://www.ncbi.nlm.nih.gov/nuccore/KF572083
http://www.ncbi.nlm.nih.gov/nuccore/KF572084
http://www.ncbi.nlm.nih.gov/nuccore/KF572085
http://www.ncbi.nlm.nih.gov/nuccore/KF572089
http://www.ncbi.nlm.nih.gov/nuccore/KF572090
http://www.ncbi.nlm.nih.gov/nuccore/KF572098
http://www.ncbi.nlm.nih.gov/nuccore/KF572099
http://www.ncbi.nlm.nih.gov/nuccore/KF572108
http://www.ncbi.nlm.nih.gov/nuccore/KF572109
http://www.ncbi.nlm.nih.gov/nuccore/KF572119
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genetic distances, and to construct a Neighbor-Joining dendrogram, both based on 
the Kimura 2-parameter substitution model (Kimura 1980). The phylogram using the 
Maximum Likelihood criterion was constructed in the program RAxML-HPC2 on 
X-SEDE (Stamatakis 2006) through the online version of the Cyber Infrastructure for 
Phylogenetic Research (CIPRES) website (Stamatakis et al. 2008, Miller et al. 2010). 
The default parameters of RAxML were used to perform the analysis for the GTR 
model. To measure the consistency of the topology, we selected the option to automati-

Figure 1. Southwest Atlantic collection sites. Map showing the localities of the specimens of Artemesia 
longinaris analyzed: 1 Macaé, Brazil 2 Ubatuba, Brazil 3 Santos, Brazil 4 Cananéia, Brazil 5 São Francisco 
do Sul, Brazil 6 Rio Grande, Brazil 7 Mar del Plata, Argentina. The gray band indicates the complete 
geographical distribution of Artemesia longinaris.
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cally determine the number of bootstraps to be run in RAxML. Consequently, 1000 
bootstrap pseudo-replicates were run, and only the values >50% were reported.

For both the genetic distance and phylogenetic analyses, sequences of three other  
penaeid species were included in the alignment as an outgroup: F. brasiliensis,  
F. paulensis (GenBank accession numbers KF783861–KF783862) and Rimapenaeus 
constrictus (Stimpson) (GenBank accession number KF783863). We also attempted 
to use a sequence of the same portion of the COI gene of A. longinaris available in 
GenBank (accession number EU400383.1) (Dumont et al. 2009). However, it was 
not possible to obtain alignments without gaps when this sequence was included. This 
observation, allied to the fact that its translation to an amino-acid sequence showed 
the presence of stop codons, indicates that this sequence must be reviewed. The pre-
sence of stop codons in the middle of an encoding gene suggests the possibility of the 
amplification and sequencing of a pseudogene (Buhay 2009).

The haplotype number was calculated in the program DNASP 4.10.9 (Rozas and 
Rozas 1999). The haplotype network was constructed by the Median-Joining method 
in NETWORK software (Bandelt et al. 1999), with data preparation in DNASP. 
The haplotype and nucleotide diversities were calculated for each locality using  
ARLEQUIN Version 3.1 (Excoffier et al. 2005). The genetic variation was analyzed 
with a analysis of molecular variance (AMOVA) (Excoffier et al. 1992), and was com-
puted in ARLEQUIN Version 3.1 (Excoffier et al. 2005).

Results

A total of 60 sequences of the COI gene from individuals sampled in the seven lo-
calities was obtained. The final multiple sequence alignment included 645 base pairs. 
The number of variable sites was 66 (10.23%), 8 (12.12%) in the first codon position 
and 58 (87.88%) in the third position, and 30 of the variable sites were phyloge-
netically informative. Adding three species as the outgroup, the number of variable 
sites was 143 (28.49%), 72 of which were phylogenetically informative. The average 
nucleotide composition for A. longinaris was 28.41% (A), 30.99% (T), 19.47% (G), 
and 21.12% (C).

The intraspecific genetic distance of A. longinaris ranged from 0 to 2.7%, and the 
average distance was 1.1 ± 0.2%. The interspecific genetic distance, including the out-
group, ranged from 21.3 to 27.1%. Average distance among individuals in each popu-
lation ranged from 0.81 ± 0.25% at Cananéia to 1.42 ± 0.24% at Macaé (Table 2). 
Among localities, distances ranged from 0.8 ± 0.2% between Santos and Cananéia to 
1.4 ± 0.2% between Macaé and São Francisco do Sul (Table 3).

Both the Neighbor-Joining and Maximum Likelihood analysis indicated no struc-
ture by localities (Figs 2 and 3).

Based on the 60 sequences, 53 haplotypes were identified. Of these, 48 represented 
single individuals. The locality of Santos was not included in the analysis of haplotype, 
nucleotide diversity and molecular variance (Tables 4 and 5), since only two sequenc-

http://www.ncbi.nlm.nih.gov/nuccore/KF783861
http://www.ncbi.nlm.nih.gov/nuccore/KF783862
http://www.ncbi.nlm.nih.gov/nuccore/KF783863
http://www.ncbi.nlm.nih.gov/nuccore/EU400383.1
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Table 2. Average distance (%) among Artemesia longinaris individuals ± standard deviation in each locality.

Locality Average distance (%) Standard deviation (±)
Macaé 1.42 0.24

Ubatuba 1.07 0.19
Santos 1.25 0.43

Cananéia 0.81 0.25
São Francisco do Sul 1.37 0.26

Rio Grande 1.08 0.19
Mar del Plata 0.88 0.21

Table 3. Artemesia longinaris: average distance (%) among localities (numbers on bottom) ± standard 
deviation (values on top).

Locality 1 2 3 4 5 6 7
1 Macaé 0.19 0.25 0.21 0.22 0.19 0.19
2 Ubatuba 1.21 0.23 0.18 0.19 0.18 0.17
3 Santos 1.30 1.08 0.23 0.23 0.23 0.23
4 Cananéia 1.17 0.95 0.78 0.20 0.18 0.19
5 São Francisco do Sul 1.37 1.21 1.13 1.02 0.19 0.20
6 Rio Grande 1.20 1.04 1.13 0.96 1.20 0.17
7 Mar del Plata 1.16 0.96 0.97 0.83 1.11 0.95

Table 4. Number of Artemesia longinaris individuals sampled, number of haplotypes, D.H. = haplotype 
diversity, and D.N. ± D.P. = nucleotide diversity ± standard deviation for each locality.

Locality Number of samples Number of haplotypes D. H. D. N. ± D. P.

Macaé 10 10 0.10 1.38×10-3 ± 0.79×10-3

Ubatuba 13 13 0.08 1.05×10-3 ± 0.4×10-3

Santos 2 2
Cananéia 5 5 0.20 0.80×10-3 ± 0.5×10-3

São Francisco do Sul 9 9 0.11 1.34×10-3 ± 0.8×10-3

Rio Grande 10 9 0.12 1.05×10-3 ± 0.6×10-3

Mar del Plata 11 11 0.91 0.87×10-3 ± 0.5×10-3

es were obtained from this site. The caught of Artemesia longinaris in this locality is 
difficult, occurring only in some occasions with low temperatures and often in low 
abundances (Carvalho-Batista et al. 2011). The haplotype network did not reveal any 
genetic structure among groups (Fig. 4). Five haplotypes were shared, and the most 
frequent one was observed in four specimens from three localities (Fig. 4).

The analysis of molecular variance (AMOVA) did not detect structure among the 
localities, and the observed variation occurred predominantly within the localities. The 
FST indices were not significant (p > 0.05) (Table 5).
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Discussion

The intraspecific genetic distance for A. longinaris (0–2.7%) is much lower than the 
interspecific distance between A. longinaris and the out-group species (21.3–27.1%). 
This result not only confirms A. longinaris as a single taxon throughout its distribution, 
but also supports the utilization of this methodology in the identification of penaeid 
shrimps from the Brazilian coast. The difference between the intra and interspecific 
genetic variation of the barcode region of the COI gene is termed the “barcode gap” 
(Hebert et al. 2004). It is an efficient method for differentiating species through the 
DNA Barcoding technique (Hebert et al. 2004, Waugh 2007, Frézal and Leblois 2008, 
Ward 2009). The genetic divergence values are consistent with other studies involving 

Figure 2. Dendrogram based on Neighbor-Joining distance method of COI gene sequences of individu-
als of Artemesia longinaris. Localities represent the analyzed specimens. Numbers are bootstrap support 
values (1000 replicates); values below 50% are not shown.
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Table 5. Analysis of molecular variance (AMOVA) performed with specimens of Artemesia longinaris 
obtained from seven localities. *Significant values, P < 0.05.

Structure Variation Source % Fixation index P

Absent
Among localities -1.80

FST: -0.02 0.95
Within localities 101.80

Figure 3. Phylogram for individuals of Artemesia longinaris inferred from Maximum Likelihood analysis 
of COI gene sequences. Localities represent analyzed specimens. Numbers are bootstrap support values 
(1000 replicates); values below 50% are not shown.
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the family Penaeidae, with intraspecific values lower than 3.5% and interspecific values 
generally higher than 10% (in some cases exceeding 20%) (Gao et al. 2003, Quan et 
al. 2004, Keskin and Atar 2013).

Our analyses showed genetic homogeneity among the populations of A. longinaris 
along its entire geographical distribution. The FST value obtained reflects this absence 
of geographical genetic structure. In species with high genetic variation and few shared 
haplotypes, negative FST values are probably associated with the imprecision of the 
algorithms used in this type of analysis, and can be interpreted as zero (Winkelmann 
et al. 2013).

Despite the absence of significant genetic variability at the intraspecific level de-
scribed here, phenotypic variability was previously observed among the populations 
of A. longinaris (see introduction). The determination of an individual phenotype is 
a consequence of the interaction between genotype and environment (Templeton 
2006). Thus, the same genotype may be associated with different phenotypes under 
different environmental conditions (Miner et al. 2005, Vogt et al. 2008, Sotka 2012).

Figure 4. Haplotype network of Artemesia longinaris according to Median-Joining analysis. Each circle 
represent one haplotype found in the localities (53 haplotypes in 60 specimens). The size of the circle of 
each haplotype is proportional to its frequency in the sample. Each small dash represents a mutational step.
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Recent studies with other decapods, with sampling at several points of the South 
American coast, found similar results on genetic homogeneity (Laurenzano et al. 2012, 
Terossi and Mantelatto 2012, Rossi and Mantelatto 2013, Wieman et al. 2013, Lau-
renzano et al. 2013). These authors indicated the high capacity of planktonic larval 
dispersal as the main factor responsible for this homogeneity over their distributions, 
making it impossible to establish a population structure over this broad geographical 
range (Gopurenko and Hughes 2002).

We can conjecture that similar larval dispersal occurs with A. longinaris, in which 
its larval development lasts 24 to 32 days, according to the temperature (Boschi and 
Scelzo 1977). This period is sufficient for the larvae to be passively transported for 
hundreds of kilometers by the currents (Palumbi 2003). The ability of larvae to travel 
for long distances was demonstrated for other penaeid shrimps. For example, larvae of 
Pleoticus muelleri (Spence Bate), on the Argentine coast, are able to travel for distances 
between 120 and 300 nautical miles (about 220 and 550 km, respectively), trans-
ported by the coastal currents (Boschi 1989).

It is thought that the dynamics of water masses in the region provides ideal condi-
tions for larval drift of A. longinaris through the southwestern Atlantic. Coastal Water 
(CW), for instance, is a water mass that cover the geographical range of this study 
(Campos et al. 2000), and can flow towards north or south depending on the wind 
conditions and season showing different properties of temperature and salinity, de-
pending the region and the influence of other water masses (Piola et al. 2005, Calado 
et al. 2006, Castro-Filho et al. 2008) allowing larval dispersal to different areas.

According to Fransozo et al. (2004), Costa et al. (2005) and Carvalho-Batista et al. 
(2011), the occurrence of adults of A. longinaris in São Paulo State is associated with 
the temperature decrease to 17–21 °C. During the spring (October to December) in 
Ubatuba, the number of animals in the larger size classes increased. It was associated 
with the coming of migrants into the population (Castilho et al. 2007a). Thus, the 
gene flow of A. longinaris is not limited to larval drift, but also is a consequence of juve-
nile and adult migration. Penaeid migration over long distances was also evidenced by 
Ruello (1975), who recaptured a female of Melicertus plebejus (Hess), on the Australian 
coast, 930 km from the site where the specimen was marked.

Our results, encompassing samples from its entire distribution, support the hypo-
thesis that A. longinaris migrates over long distances, and is able to establish populations 
in different areas when conditions are appropriate. It is therefore possible to consider 
A. longinaris as a metapopulation, which fits the model of source and sink proposed 
by Pulliam (1988). The populations (or subpopulations) that are continuously more 
stable and in high density throughout the year, such as those from southern Brazil to 
Argentina and from Macaé (Boschi 1969ab, Nascimento 1983, Sancinetti 2011), are 
probably sources of new individuals for the less-stable populations, the sinks, such as 
the populations (or subpopulations) from São Paulo State.

Thus, these localities, where the populations are considered sources, would be stra-
tegic for the implementation of management measures such as the creation of protected 
areas or offseason periods, in order to maintain the fisheries in these areas and also in all 
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range of its distribution. The role of marine protected areas in enhance fisheries in adja-
cent regions depend if they act as sources or as sinks (King 1995). Even connected one 
to each other, each subpopulation has its own dynamic (Begon et al. 2006), so the con-
servation policies must take into account the particular characteristics of each locality.

Studies investigating the larval dispersal and the migration of juveniles and adults of 
this species must be conducted in order to verify whether the model described by Pulliam 
(1988) is applicable or not. Apart from this, with the intent of providing a better quanti-
fication of the degree of exchange among the populations, as well as to evaluate the pos-
sibility of recent divergence among them, which is not detectable by the marker used here, 
additional molecular investigations using different genes are encouraged.

Conclusion

Our results confirm that the DNA barcoding technique is an efficient tool for the 
identification of penaeid shrimps from the Brazilian coast. In addition to the validation 
of A. longinaris as a single taxon, with no genetic differentiation among the popula-
tions through its entire geographical distribution, we showed the importance of the 
effect of the environmental conditions specific to each locality in the expression of the 
phenotypic characteristics of the individuals in a population.

The genetic homogeneity is maintained by the larval dispersal and high migratory ca-
pacity, which assure gene flow among populations. These characteristics make it possible 
for individuals to be transported by water masses and currents of the southwestern Atlantic.

In addition, this study also indicate the importance of populations of south Brazil 
and Macaé as sources, to provide individuals to other areas. Thus these populations 
should be considered essential in developing management strategies for the species.
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