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Abstract

We obtained and analyzed whole genome data for more than 160 representatives of skipper butterflies
(family Hesperiidae) from all known subfamilies, tribes and most distinctive genera. We found that two
genera, Katreus Watson, 1893 and Ortholexis Karsch, 1895, which are sisters, are well-separated from
all other major phylogenetic lineages and originate near the base of the Hesperiidae tree, prior to the
origin of some subfamilies. Due to this ancient origin compared to other subfamilies, this group is
described as Katreinae Grishin, subfam. n. DNA sequencing of primary type specimens reveals that
Ortholexis melichroptera Karsch, 1895 is not a female of Ortholexis holocausta Mabille, 1891, but instead
a female of Ortholexis dimidia Holland, 1896. This finding establishes O. dimidia as a junior subjective
synonym of O. melichroptera. Furthermore, we see that Chamunda Evans, 1949 does not originate within
Pyrginae Burmeister, 1878, but, unexpectedly, forms an ancient lineage of its own at the subfamily rank:
Chamundinae Grishin, subfam. n. Finally, a group of two sister genera, Barca de Nicéville, 1902 and
Apostictoprerus Leech, [1893], originates around the time Hesperiinae Latreille, 1809 have split from their
sister clade. A new subfamily Barcinae Grishin, subfam. n. sets them apart from all other Hesperiidae.
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Introduction

New methods bring new discoveries. While careful expert-driven morphological
analysis can be insightful in revealing synapomorphies and predicting evolutionary
relationships between animals, DNA sequences offer additional insights. Phylogenetic
analysis at the genomic scale is expected to give an unprecedented resolution and clarify
many questions, providing a firm basis for the best taxonomic classification. Butterflies
are attracting attention with a number of large scale phylogeny studies published
recently (Espeland et al. 2015; Cao et al. 2016; Espeland et al. 2018; Seraphim et al.
2018; Toussaint etal. 2018; Li et al. 2019;). The butterfly family Hesperiidae (skippers),
which includes butterflies with stout bodies, large heads and rapid wing beats, is still
comparatively less known. Groundbreaking DNA analysis by Warren et al. (2008,
2009) based on several genes revealed many new phylogenetic relationships compared
to the last comprehensive morphological treatment (Evans 1937, 1949, 1951, 1952,
1953, 1955) and offered an updated classification of Hesperiidae. Additional insights
came from follow-up studies (Sahoo et al. 2016; Sahoo et al. 2017; Espeland et al.
2018; Toussaint et al. 2018; Li et al. 2019; Zhang et al. 2019) posing questions about
phylogenetic and taxonomic placement of genera such as Ortholexis Karsch, 1895,
Barca de Nicéville, 1902 and Apostictopterus Leech, 1893 (Fig. 1).

Here, we tackle the questions about deep phylogeny of Hesperiidae using whole
genome shotgun analysis. We selected 160 representative species of skippers that cover
all known subfamilies and tribes, including some genera that we thought would be
interesting to analyze at the genomic scale. To make this work taxonomically sound,
we used type genera and their type species where possible, and for some species used
their primary type specimens. Our genomic methods break the time barrier and allow
us to work with specimens more than a century old from museum collections. We
find that while the backbone of the current classification of Hesperiidae stands the test
of genomic data (Li et al. 2019), unexpected deep divergence of some groups awards
them the status of subfamilies that are described here.

Materials and methods

Bodies of freshly collected specimens were stored in RNAlater, and their wings and
genitalia dried and kept in envelopes to address possible misidentification issues. DNA
was extracted from a piece of tissue of these specimens. For specimens in museum col-
lections, DNA was extracted either from the abdomen or from a leg. The abdomen was
gently pushed from above and below (while watching for the legs not to be damaged)
until it cracked off, and placed in a DNA extraction buffer. After extraction (see be-
low), the abdomen was transferred to 10% KOH solution and genitalia were dissected
in a standard manner. A leg was used for primary type specimens. A leg was removed
from a specimen using fine forceps and placed in a plastic tube. The forceps were wiped
with clean paper tissue after each sample was taken.
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Figure |. Sequenced specimens from the new Hesperiidae subfamilies. DNA sample numbers are
given for each specimen, additional data are in the Suppl. material 1: Table S1 a Ortholexis holocausta
syntype, NVG-18053C02 b Ortholexis hollandi, NVG-18082A08 ¢ Ortholexis melichroptera, holotype
of Acallopistes dimidia Holland, 1896; NVG-18053C05 d Ortholexis melichroptera, holotype, NVG-
18053A06 e Katreus johnstonii, NVG-18053B05 f Chamunda chamunda, NVG-18086E02 g Barca bicolor,
NVG-17069C10 h Apostictopterus fuliginosus, NVG-17069C12.

DNA was extracted from legs (and abdomens) non-destructively using Macherey-
Nagel (MN) reagents. 70 pl buffer T1 and 10 pl protK were added to the tube without
crushing the leg, and the mixture was incubated at 57 °C for 24 hours. Then, 80 pl buffer
B3 was added and incubation continued for 2 hours, after which 85 pl of absolute EtOH
was added and thoroughly mixed. The resulting liquid was transferred to a different tube
and DNA extraction continued according to MN protocol (https://www.MN-net.com/
Portals/8/attachments/Redakteure_Bio/Protocols/Genomic%20DNA/UM_gDNATis-
sueXS.pdf), leaving the leg intact. Mate-pair libraries were constructed according to our
published protocols (Cong et al. 2015; Cong et al. 2017; Li et al. 2019).

The libraries were sequenced for 150 bp from both ends targeting 4 to 6 Gbp of
data (depending on the expected genome size) on Illumina HiSeq x10 at GENEWIZ.
The resulting reads were matched using Diamond (Buchfink et al. 2015) to the
exons of the reference genome of Cecropterus lyciades (Shen et al. 2017), which we
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obtained previously, and the exons assembled and aligned to other Hesperiidae
genomes obtained using the same methods. Coding regions of the mitochondrial
genome (including the COI barcode) were assembled similarly. Exons expected to
be from the Z-chromosome were predicted assuming similar syntenic arrangement
with Heliconius (Heliconius Genome Consortium 2012). Phylogenetic trees were
generated from three sets of exons: whole nuclear genome, whole mitochondrial
genome and Z-chromosome using RAXML-NG (Kozlov et al. 2018) with default
parameters (-m GTRGAMMA). Further details of experimental and computational
protocols can be found in the “SI Appendix” to Li et al. (2019) (available at https://
www.pnas.org/content/pnas/suppl/2019/03/15/1821304116.DCSupplemental/
pnas.1821304116.sapp.pdf).

Diagnostic DNA characters were identified in nuclear genomic sequences us-
ing our recently published procedure (see SI Appendix to Li et al. 2019). Namely,
the positions in exons were found that are most likely synapomorphic to the clade
defined as a subfamily. For the clades where we had several species sequenced, posi-
tions that were invariant in all species and had a base pair different from the (mostly
invariant) base pair in the outgroups were found, and those with the smallest num-
ber of species with missing data were selected. If the subfamily had only one species
sequenced, we frequently looked for synapomorphic characters for its sister, noting
the base pair as the character state, and uniting these with synapomorphic characters
for the clade that leads to the common ancestor of this subfamily and its sister clade.
Such a treatment increased the chances that the character found is not a random,
non-conserved change or a sequencing error. The number of sequence reads covering
this position was taken into account in choosing the characters, and those positions
with higher coverage were given priority. The character states are given in diagnoses
below as abbreviations. For example, aly728.44.1:G672C means position 672 in
exon 1 of gene 44 from scaffold 728 of Cecropterus [formerly Achalarus] lyciades (aly)
reference genome (Shen et al. 2017) is C, changed from G in the ancestor. When
characters were found for the sister clade of the diagnosed taxon, the following state-
ment was used: aly5294.20.2:A548A (not C), which means that position 547 in
exon 2 of gene 20 on scaffold 5294 is occupied by the ancestral base pair A, which
was changed to C in the sister clade (so it is not C in the diagnosed taxon). 169A,
means position 169 is A, but the ancestral state is unclear. The sequences of exons
from the reference genome with the positions used as character states highlighted in
green are given in the Suppl. material 1. The distribution of these sequences together
with this publication ensures that the numbers given in the diagnoses can be easily
associated with actual sequences. Notations like A79T or 59C, without scaffold.
gene.exon prefix separated by colon, refer to positions in the standard COI barcode
region of 658 positions as defined previously (Ratnasingham and Hebert 2007). The
sequences reported in this paper have been deposited in the NCBI Sequence Read
Archive with accession PRINA544364.
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Results and discussion

Genomic phylogeny of Hesperiidae

We obtained whole genome shotgun sequence reads for 160 Hesperiidae specimen
of representative species. The lengths of resulting genomic regions were: nuclear total
11,835,126 +/-3,035,464, Z-chromosome 99,237 +/-24,462, mitogenomes 12,144
+/-958. We considered Z-chromosome separately. Butterfly males carry two copies
of Z, and females possess Z and W. In Z, recombination is reduced to half of that
in autosomes, and sexual selection acts differently on genes encoded by it. Thus, the
analysis of genes encoded by the Z-chromosome may provide additional information
about species evolution. Phylogenetic trees were constructed from coding regions of
nuclear genome, Z-chromosome and mitogenome. The trees were rooted with the
genomic sequence of Prerourus glaucus that we obtained previously (Cong et al. 2015).
Comparison of these trees yielded the same conclusions.

Several conclusions confirmed previous findings (Warren et al. 2008; 2009; Sahoo
etal. 2016; Sahoo et al. 2017; Zhang et al. 2017; Espeland et al. 2018; Toussaint et al.
2018; Li et al. 2019). (1) The subfamily Coeliadinae Evans, 1937 is sister to all other
Hesperiidae; (2) Euschemonidae Kirby, 1897 branches off next; (3) Eudaminae is sis-
ter to Pyrginae; (4) Heteropterinae is sister to Trapezitinae with Hesperiinae; and (5)
Groupings into tribes mostly agree with what is known about Hesperiidae. However,
several findings were new and some were unexpected. Three cases were particularly
interesting and were analyzed in detail, as follows.

The Katreus and Ortholexis clade is a new subfamily

Unexpected placement of Ortholexis holocausta (Mabille, 1891) (Fig. 1a) as a sister
of Pyrrhopygini Mabille, 1877 in a recently published phylogeny of Hesperiidae
based on several genes (Sahoo et al. 2017) peaked our interest about this taxon and
its relatives. The genome-based phylogeny we obtained (Fig. 2) confidently (>99%
bootstrap) places it (Fig. 1la—d), together with its sister genus Katreus Watson,
1893 (Fig. le), near the base of the Hesperiidae tree, dating prior to divergence
between Eudaminae and Pyrginae (Fig. 2) and suggesting a rank of subfamily for
these skippers.

Katreinae Grishin, subfam. n.
http://Zoobank.0rg/EFD73E63—A0FE—4AB3—BGF2—3 18977EF7F83

Type genus. Katreus Watson, 1893.
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Figure 2. Phylogenetic trees. The trees are constructed from protein-coding regions of a nuclear genome
b Z-chromosome, and ¢ mitochondrial genome. The trees are rooted with Prerourus glaucus (NVG-1670).
Specimen names are not shown in the Z-chromosome tree and can be deduced from the nuclear tree by cor-
responding dotted lines. Details about specimens are in Suppl. material 1: Table S1. Sections of the tree corre-
sponding to different subfamilies are highlighted in different colors. Names of new subfamilies and specimens
in them are highlighted yellow. Names of other subfamilies are shown by their clades in the nuclear tree.

Diagnosis. In appearance, most similar to Celaenorrhinus Hiibner, [1819] and its
relatives (Evans 1937), and was placed in Celaenorrhinini Swinhoe, 1912 by Warren
et al. (2008, 2009) but differs by longer apiculus of antennae and hindwing pro-
duced at vein 1A+2A. Morphologically, distinguished from all Hesperiidae by the
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combination of the following characters. Abdomen short, shorter than inner mar-
gin of hindwing. Antennal club arcuate, bent in the middle, apiculus long, pointed.
Second segment of palpi protrudes partly forward and partly upward (at an angle
between the axis of the body and the axis perpendicular to it, =sub-erect). Males with
hair pencil on hind tibiae, without stigmas or brands on wings. Forewing discal cell
long, about 2/3 of the costa; vein M, originates about midway between or closer to
M, than to M, and vein CuA, originates closer to the base of wing than to the end
of discal cell. Hindwing produced at vein 1A+2A, vein 3A much shorter than vein
CuA,. Male genitalia with a well-developed gnathos, which is not smaller than un-
cus, uncus bulging dorsad in lateral view, with small or tiny arms distant from each
other, tegumen robust, extends caudad for the length of uncus, harpe longer than
sacculus. See Larsen (2005: 469-471) for illustrations of all representative species in
this subfamily. In DNA, a combination of the following base pairs in the nuclear ge-
nome is diagnostic: aly528.10.2:G940C, aly925.27.5:A3610T, aly84.77.5:T1651G,
aly595.14.2:G184C, aly2284.22.2:G967C, and in COI barcode region: C235T,
A335T, C347T, and T349A.

Genera included. Kasreus with its invalid synonym Choristoneura Mabille, 1889
(junior homonym of Choristoneura Lederer 1859 in Lepidoptera: Tortricidae) and
subjective synonyms Loxolexis Karsch, 1895 and Daratus Lindsey, 1925 (replacement
name for Choristoneura) (Fig. 1e); and Ortholexis Karsch, 1895 with its subjective syn-
onym Acallopistes Holland, 1896 (Fig. 1a-d).

Comments. Taxonomy of these skippers has been confusing until it was resolved
by Cock and Congdon (2011). For the most part, they were all placed in the genus
Katreus, until Larsen emphasized the differences in genitalia of those species placed in
Ortholexis from true Katreus (Larsen 2005). Indeed, the two genera are quite distinct
in our genomic analysis. A recent study based on several genes placed this group (only
Ortholexis holocausta (Mabille, 1891) was included in that study) as a sister of Pyr-
rhopygini Mabille, 1877 (Sahoo et al. 2017), probably due to an insufficient number
of genes included. In their study, Euschemon Doubleday, 1846 grouped with Eudami-
nae instead of being sister to all other Hesperiidae with exclusion of Coeliadinae Evans,
1937 (Warren et al. 2009; Zhang et al. 2017; Toussaint et al. 2018); such problems
are expected from smaller datasets. We find (Fig. 2) that the Katreinae subfam. n. is an
ancient and unique Afrotropical lineage that diverged from other Hesperiidae at the
time when the family was diversifying into subfamilies.

Acallopistes dimidia Holland, 1896 is a new subjective synonym of Ortholexis
melichroptera Karsch, 1895

We sequenced a syntype of Erionota holocausta Mabille, 1891 (Fig. 1a, judging
from the original description (Mabille 1891) the type series of this species almost
certainly consisted of this single syntype), and the holotypes of Acallopistes dimidia
Holland, 1896 (Fig. 1c) and Ortholexis melichroptera Karsch, 1895 (Fig. 1d), which
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are in the Museum fiir Naturkunde, Berlin, Germany. The phylogenetic trees (Fig.
2) revealed that O. melichroptera is not a female of O. holocausta as it has been
assumed (Evans 1937), but instead a female of O. dimidia. This association of
sexes is supported by both nuclear (protein-coding genes of autosomes and of
Z-chromosome) and mitochondrial (all genes) DNA trees (Fig. 2). COI barcodes
of the O. holocausta syntype and O. melichroptera holotype differ by 8.8% (58
bp), but barcodes of O. melichroptera and O. dimidia are essentially identical (1
bp difference). Thus, we conclude that O. dimidia syn. n. is a junior subjective
synonym of O. melichroptera.

Unexpected uniqueness of Chamunda

The next find was particularly unexpected and was not likely to happen in the absence
of DNA sequences. Nearly as ancient as Katreinae subfam. n., is the lineage consist-
ing of a single genus Chamunda Evans, 1949, which is sister to the group collectively
known as “grass skippers”: subfamilies Heteropterinae Aurivillius, 1925, Trapezitinae
Waterhouse & Lyell, 1914 and Hesperiinae Latreille, 1809 (Fig. 2), whose caterpillars
feed mostly on monocots. The surprise comes due to the fact that Chamunda looks
like an ordinary skipper, quite similar to several others in wing patterns: brown with
forewing white spots forming a typical arrangement for dicot-feeding skippers (Fig.
1f). Nevertheless, its ancient origin suggests a subfamily rank, as described below.

Chamundinae Grishin, subfam. n.

http://zoobank.org/4FE1725C-4BF1-4D1A-B4A7-4BD409AA154A

Type genus. Chamunda Evans, 1949.

Diagnosis. Keys to C.10 in Evans (1949: 14). In appearance similar to Pyrginae,
such as Celaenorrhinus Hiibner, [1819] and its relatives, from which it is distinguished
by the second segment of palpi protruding forward (in line with the body, =porrect)
and not pointing dorsad (perpendicular to the body line, =erect); and Eudaminae,
such as Lobocla Moore, 1884, from which it differs by narrower hindwing without
tornal lobe (concave outer margin near tornus) and the lack of costal fold in males.
Morphologically, distinguished from all Hesperiidae by a combination of the following
characters. Body robust, abdomen stout, shorter than the inner margin of hindwing.
Palpi porrect, 3rd segment stout, pointing forward, set at the outer edge of the second
segment (not in the middle). Antennae longer than half of costa, with thin arcuate
(not hooked) club and apiculus tapered to a sharp point, nudum of about 20 seg-
ments. Males with hair pencil on hind tibiae, without stigmas or brands on wings.
Females with anal tuft of scales. Forewing discal cell long, about 2/3 of the wing; vein
M, origin slightly closer to M, than to M,. Five subapical spots in a S-shaped curve on
right forewing. Hindwing inner margin shorter than costal margin; vein M, straight


http://zoobank.org/4FE1725C-4BF1-4D1A-B4A7-4BD409AA154A

Three new subfamilies of skipper butterflies 99

and oblique: closer to M, at the outer margin, but closer to M, at its origin from the
discal cell (not curved toward M3) ; the angle formed by the median and discocellular
veins acute, discocellular vein directed at tornus and outer margin, and not at the
inner margin. In male genitalia, uncus elongated, undivided, uniquely shaped like
a narrow mushroom at the tip; valva simple, without processes, spines or elabora-
tions, lanceolate, with a small harpe only narrowly separated from the ampulla. In
DNA, a combination of the following base pairs in the nuclear genome is diagnostic:
aly528.10.2:A631C, aly3277.11.2:A1726G, aly4523.3.2:T143C, aly499.37.1:G77G
(not A), aly363.14.5:A76A (not C), aly2700.1.4:T70T (not G), and in COI barcode
region: G38A, A81C, A307G, C347T, T349A, A430T, A604C.

Genera included. Only Chamunda, a monotypic genus for Plesioneura chamunda
Moore, 1866 (Fig. 1f).

Comments. The subfamily-worthy uniqueness of this butterfly from southwestern
Asia, dubbed “Olive” or “Crescent Spotted Flat”, is perhaps the largest surprise of our
study. Chamunda is not clearly distinct in appearance, it is similar to Lobocla (Eudami-
nae) and Celaenorrhinus (Tagiadinae) in the spotting of the forewing. Uniqueness of
Chamunda was not noticed before Evans, who established a new monotypic genus for
this skipper (Evans 1949). Nevertheless, Evans placed it with Pyrginae according to its
appearance, among genera currently in the tribe Tagiadini Mabille, 1878. We take the
next step and establish a subfamily for it. It is unlikely that its subfamily status would
have become apparent without genomic sequences placing this skipper far from all
others with strong statistical support.

The Barca and Apostictopterus clade originates near Trapezitinae and Hesperiina

These two genera that are apparently each other’s closest relatives have been enigmatic
for decades (Evans 1949) (Fig. 1g, h). Their mitogenomes have recently been sequenced
(Han et al. 2018) and revealed that among species with known mitogenomes (which
did not include any Trapezitinae), they are sister to Hesperiinae and not Heteropteri-
nae. Ironically, our study suggests that Trapezitinae may be sister to the group formed
by these two genera (Fig. 2). However, no apparent morphological synapomorphies
unify the group of the two genera with Trapezitinae, and their morphology is quite
different, so we award them a subfamily rank:

Barcinae Grishin, subfam. n.

http://zoobank.org/A3512EGF-78AF-4AB5-9562-43C160BFA2D7

Type genus. Barca de Nicéville, 1902.

Diagnosis. Keys to E4a in Evans (1949: 23). The synapomorphy of the subfamily
is likely to be the bow-like shape of the forewing vein A +A.. In appearance similar to
Heteropterinae (slender body and characteristic relatively broad for monocot-feeding
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Hesperiidae but rounded wing shape), from which it is distinguished by this bowed vein
and not flattened antennal club with obtuse apiculus. Morphologically, distinguished
from all Hesperiidae, by the following combination of additional characters. Body slen-
der, abdomen not longer than inner margin of hindwing. Second segment of palpi
protruding forward (in line with the body, =porrect) and not pointing dorsad (perpen-
dicular to the body line, =erect). Apiculus of antennae blunt, with black nudum of 10
segments, more than in Heteropterinae (6-9) but fewer than Trapezitinae (12-26). Mid
tibiae without spines and hind tibiae with 2 pairs of short spurs. No secondary sexual
characters. Forewing discal cell about 2/3 of costa in length, apex rounded. Hindwing
with a rounded tornus, costal margin longer than inner margin; discal cell not shorter
than half of the wing; discocellular vein points toward tornus, not inner margin. Male
genitalia with extended, undivided uncus (Evans 1949: plate 29 F4, E5) more similar
to Heteropterinae, but valva broader and more robust and reminiscent of that in Tra-
pezitinae: expanded and modified costa-ampulla, harpe prominent, with serrated edge.
In DNA, a combination of the following base pairs in the nuclear genome is diagnostic:
aly525.83.3:A682T, aly525.83.3:G683C, aly1139.27.4:G112T, aly1139.27.4:G113C,
aly23605.15.15:G49A, and in COI barcode region: G101A, A166G, and 474C.

Genera included. Barca de Nicéville, 1902 with its invalid synonym Dejeania
Oberthiir, 1896 (junior homonym of Dejeania Robineau-Desvoidy, 1830 in Diptera)
(Fig. 1g) and Apostictopterus Leech, [1893] with its subjective synonym Zécupa Swin-
hoe, 1917 (Fig. 1h). Both valid genera are monotypic.

Comments. These two genera from southwestern China were (with disclaimers)
placed in Heteropterinae by Evans (Evans 1949) and transferred to Hesperiinae by
Warren et al. (2009), owing to different from Heteropterinae genitalia. Mitochondrial
genomes for both genera were determined recently, and they confirmed the lack of
affinity to Heteropterinae (Han et al. 2018). However, in the absence of Trapezitinae
mitogenome, the two genera remained in Hesperiinae. Our phylogenies place the two
genera as sister to Trapezitinae, thus they may not belong to Hesperiinae. This place-
ment is unexpected because there are no obvious morphological features than unify
Trapezitinae and the two genera. Therefore, we decided on the level of a subfamily for
these two unusual skippers. They form an ancient phylogenetic group, and placing
them within Trapezitinae seems unfitting due to the lack of morphological affinities.

Phylogeny and classification

While classification relies on phylogeny, it does not require phylogeny to be fully re-
solved. Good classification only requires a clade itself to be well supported and distinct
from other clades of the same rank. However, the exact position of that clade in the
tree, which reflects the order in time when these clades originated, does not need to be
fully resolved. Thus, accurate classification is a simpler task than phylogenetic infer-
ence. These considerations are relevant to our treatment of Chamundinae subfam. n.
While in the Z-chromosome tree (Fig. 2b), the node at which Chamundinae have split



Three new subfamilies of skipper butterflies 101

from its sister is well supported (97% bootstrap), both nuclear genome and mitog-
enome trees (Fig. 2a, c) reveal weaker support: 65% and 89% respectively. It is likely
that the weak support is a consequence of rapid radiation at the time of divergence
between Katreinae subfam. n., Chamundinae and the sister of these taxa (the mono-
cot feeding clade: Heteropterinae plus their sister clade). Possible incomplete lineage
sorting and introgression obscured phylogenetic signal and leave the exact position of
Chamundinae clade weakly resolved.

Nevertheless, the decision to treat Chamundinae as a subfamily is supported by the
following reasons. We consider three clades in the trees (Fig. 2): Katreinae (colored red),
Chamundinae (colored green), and the clade of monocot feeders (Heteropterinae plus
their sister clade that includes Barcinae subfam. n., Trapezitinae and Hesperiinae). The
clade of monocot feeders is well supported in all three trees (Fig. 2, bootstrap 100%),
therefore Chamundinae does not belong to this clade. The clade of Katreinae plus their
sister (Chamundinae, Heteropterinae, Barcinae, Trapezitinae, and Hesperiinae) is also
strongly supported in all three trees (bootstrap >99%), therefore Chamundinae belong
to this clade. The placement of the three subclades in this clade (Katreinae, Chamundi-
nae and the monocot feeder) is poorly resolved. L.e., it is possible that: (1) Chamundi-
nae are the sister to the clade consisting of the two others, or (2) Katreinae are the sister
to the clade consisting of the two others (as in the trees in Fig. 2), or (3) Katreinae and
Chamundinae are sister taxa. In all three scenarios, Chamundinae get the subfamily
rank. In (1) & (2), Chamundinae originated prior to the split of their sister into sub-
families, so they should be a subfamily. If the scenario (3) is true, it would be conceiv-
able to unify Katreinae and Chamundinae in a single subfamily, but the monophyly of
this putative subfamily would be poorly supported (the same 65% bootstrap in nuclear
genome tree). Therefore, because of this weak support, Chamundinae should receive
the subfamily rank. Moreover, in the scenario (3), Katreinae and Chamundinae would
have diverged from each other prior to divergence of the monocot-feeding clade into
subfamilies, so each clade is more consistent with the subfamily rank.

Conclusions

Genomics analysis has been instrumental in revealing the ancient origins of several
groups of Hesperiidae that have not been understood before. Moreover, previous
studies based on smaller DNA datasets, such as several genes (Sahoo et al. 2016; Sahoo
et al. 2017) or mitochondrial genomes (Han et al. 2018) remained inconclusive.
Whole genome shotgun reads assembled into protein-coding genes strongly support
the uniqueness of the three groups of skippers dealt with in this study and indicate that
these groups diverged from other Hesperiidae very early in the evolution of the family.
Divergence times of Katreinae subfam. n. and Chamundinae subfam. n. from other
Hesperiidae are earlier than the split of the ancestors of subfamilies Heteropterinae and
Trapezitinae. Deep divergence times argue for the subfamily status of these groups.
Subfamily Barcinae subfam. n. unexpectedly emerges as a possible sister of Trapezitinae,
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but is morphologically quite different from them. Whole genome shotgun sequencing
was instrumental for this study. Notably, our methods are equally applicable to
specimens kept in collections for more than a century. Sequencing of the primary type
specimens collected over 120 years ago establishes sex association for the species with
extreme sexual dimorphism. As a result, a new synonymy is introduced, and the species
known before as Ortholexis dimidia should be referred to as Ortholexis melichroptera.
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