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Abstract
Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host 
utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. 
A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing 
seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Mono-
phyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for 
Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These 
results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report 
two species of Cephus for the first time from Turkey.
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Introduction

The Cephidae is a small family of Hymenoptera with a thin integument, usually black 
or dark colored and commonly with narrow yellow bands on the abdomen. It com-
prises approximately 160 species in three subfamilies and about 24 genera and is pri-
marily Holarctic (Benson 1935, 1946; Smith and Schmidt 2009; Taeger et al. 2010). 
Two of the subfamilies, Athetocephinae and Australcephinae are represented by only 
four species and are restricted to Madagascar and the Australian Region (Benson 1935, 
1946; Smith and Shinohara 2002a; Smith and Schmidt 2009). The majority of species 
are included in the Holarctic subfamily Cephinae. Although several faunal treatments 
(Ries 1937; Middlekauff 1969; Zhelochovtsev and Zinovjev 1988; Calmasur and Oz-
bek 2010; Korkmaz et al. 2010) and a single world review (Muche 1981) have been 
published, and a number of cephid species have been described in recent years (Smith 
and Solomon 1989; Smith 1997; Smith and Shinohara 2002a,b; Smith and Schiff 
2005; Wei 2007; Smith and Schmidt 2009; Wei and Smith 2010), their phylogenetic 
relationships have not been investigated.

Cephidae can be easily identified since they are morphologically intermediate be-
tween the hymenopteran suborders Symphyta and Aculeata. Because of several apocri-
tan-like characters, such as a weak constriction between the first and second abdominal 
segments, the lack of cenchri and the rough area on fore wing, and the form of male 
genitalia, they were once considered as a likely sister group of Apocrita (Königsmann, 
1977). However, considerable evidence from both morphological and molecular data 
strongly support a sister group relationship between Orussidae and Apocrita, and the 
Cephoidea, containing the only family Cephidae, appears as to share a last common 
ancestor with a lineage leading to the Siricoidea (e.g., Rasnitsyn 1980,1988; Basibuyuk 
and Quicke 1995; Vilhelmsen 1997, 2001; Ronquist et al. 1999; Schulmeister et al. 
2002; Sharkey 2007).

Ries (1937) suggested that Janus is the most primitive genus of Cephinae based 
on its filiform and many segmented antennae and tarsal claws. Benson (1946) di-
vided the Cephinae into three tribes, Cephini, Hartigiini and Pachycephini based 
both on morphology and host utilization. The larvae of Cephini bore in the stems 
of Poaceae, those of Pachycephini live in the stems of Papaveraceae and Poaceae, 
and those of Hartigiini bore in the twigs of Rosaceae or other arborescent plant 
families (Benson 1946; Middlekauff 1969). Numerous morphological characters 
and color patterns that traditionally have been used for separation of the taxa with-
in the family are claimed to be either variable or display phenotypic plasticity (Ries 
1937; Benson 1946, 1968; Korkmaz et al. 2010). Current classification is mainly 
based on morphology and host usage and therefore necessitates a close examination 
under the phylogenetic approaches.

Phylogenetic studies of taxa that exhibit adaptive phenotypic variation provide 
valuable insights into the evolutionary forces driving the origins of diversification 
(Zhang et al. 2008). Research on phytophagous insects has confirmed that adapta-
tion and specialization to different plant species are central to generating diversifica-
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tion at all hierarchical levels (Mopper and Strauss 1998; Berlocher and Feder 2002; 
Funk et al. 2002; Nosil et al. 2002; Eubanks et al. 2003; Lozier et al. 2007). How-
ever, host specialization in the Cephinae, as observed in most phytophagous insect 
groups, might have led to evolutionary shift between higher taxonomic groups. 
Host shift probably has taken place many times at different periods, and therefore 
the classification based on host use may not reflect the true phylogenetic relation-
ship within the Cephinae.

Here, we selected the mitochondrial cytochrome oxidase subunit I (COI) gene to 
reconstruct the phylogenetic relationships of the Cephinae and identify systematic po-
sition of its tribes and genera by applying phylogenetic inference methods. The selected 
COI gene region is informative for estimating relationships at both intra- and inter-
species level due to possession of both completely conserved and variable regions and 
having a heterogeneous evolutionary rate across the gene (Lunt et al. 1996; Dowton 
and Austin 1997; Caterino et al. 2000; Roe and Sperling 2007; Bacci et al. 2009) This 
region is also utilized as DNA–based bio-identification system for animals at the global 
level (Hebert et al. 2003). Cephus parvus (Dovnar-Zapolskij, 1931) and C. runcator 
Konow, 1896, are recorded for the first time from Turkey.

Material and methods

Sixty-eight specimens representing three tribes and seven genera of the subfamily 
Cephinae were collected from localities presented in Table 1. All specimens are de-
posited in the Entomological Collection of Cumhuriyet University, Sivas (ECCUS). 
A specimen of Arge sp. (Argidae) was included as an outgroup in the phylogenetic 
analyses. Several keys were used to identify the specimens (Benson 1946, 1951, 1968; 
Muche 1981; Zhelochovtsev and Zinovjev 1988). The taxa names, the voucher speci-
mens, and GenBank accession numbers are presented in Table 1.

DNA extraction, amplification, and sequencing

Alcohol-preserved specimens were allowed to dry on filter paper, and DNA was ex-
tracted from left legs of the specimens using the High Pure PCR Template Prepara-
tion Kit (Roche Diagnostics, Mannheim, Germany) following the protocol for DNA 
isolation from mammalian tissue. Each DNA sample was dissolved in 200 µl elution 
buffer and stored at -20oC. The partial mitochondrial COI gene (750 bp) was ampli-
fied by using the conserved COI primers with the following sequence: COI–s1859, 
5’ – GGAACIGGATGAACWGTTTAYCCICC – 3’ and COI–a2590 5’ – GCTC-
CTATTGATARWACATARTGRAAATG – 3’ (Simon et al. 1994). PCR reactions 
were conducted with 10 µl of extracted DNA in 50 µl reaction mixture. Amplification 
conditions were as follows: denaturation for 5 min at 94°C, followed by 37 cycles of 
denaturation at 94°C for 30 s, annealing at 59°C for 45 s, extension at 72°C for 30 s 
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table 1. List of taxa and voucher specimens used for sequencing.

Genus Species Voucher no. GenBank ac-
cession no.

Location Col. date

Arge sp. ECCUS 201  JF901916    
Calameuta

filiformis (Eversmann, 1847) ECCUS 210  JF901849 İçel 12.04.2009
filiformis ECCUS 211  JF901850 Sivas 04.06.2009
haemorrhoidalis (Fabricius, 1781) ECCUS 212  JF901852 Kütahya 20.05.2009
haemorrhoidalis ECCUS 213  JF901853 Isparta 17.05.2009
haemorrhoidalis ECCUS 214  JF901855 Kocaeli 04.05.2010
haemorrhoidalis ECCUS 215  JF901856 Kocaeli 04.05.2010
haemorrhoidalis ECCUS 216  JF901857 Bayburt 05.06.2010
haemorrhoidalis ECCUS 217  JF901858 Uşak 19.05.2009
haemorrhoidalis ECCUS 218  JF901859 Isparta 17.05.2009
idolon (Rossi, 1794) ECCUS 219  JF901851 Konya 17.05.2009
pallipes(Klug, 1803) ECCUS 220  JF901854 Sivas 13.05.2010
pallipes ECCUS 221  JF901860 Hakkari 11.06.2003
pygmaea (Poda, 1761) ECCUS 222  JF901848 Hatay 09.04.2009
sp. ECCUS 223  JF901861 Sivas 17.06.2007

Cephus
brachycercus Thomson, 1871 ECCUS 230  JF901871 İstanbul 08.05.2010
brachycercus ECCUS 231  JF901872 Sivas 10.05.2010
fumipennis Eversmann, 1847 ECCUS 232  JF901873 Ardahan 07.06.2010
nigrinus Thomson, 1871 ECCUS 233  JF901874 İstanbul 08.05.2010
parvus (Dovnar-Zapolskij, 1931) ECCUS 234  JF901875 Sivas 17.05.2010
parvus ECCUS 235  JF901876 Sivas 26.05.2010
pulcher Tischbein, 1852 ECCUS 236  JF901877 Erzurum 06.06.2010
pygmeus (Linné, 1767) ECCUS 237  JF901911 Denizli 18.05.2009
pygmeus ECCUS 238  JF901912 Hatay 09.04.2009
pygmeus ECCUS 239  JF901913 Hatay 09.04.2009
pygmeus ECCUS 240  JF901914 Bayburt 07.06.2008
pygmeus ECCUS 241  JF901915 Bayburt 07.06.2008
rjabovi Dovnar-Zapolskij, 1926 ECCUS 242  JF901878 Kırıkkale 20.06.2009
rjabovi ECCUS 243  JF901879 Kırıkkale 20.06.2009
runcator Konow, 1896 ECCUS 244  JF901880 Edirne 07.05.2010
runcator ECCUS 245  JF901881 Edirne 07.05.2010
sareptanus Dovnar-Zapolskij, 1928 ECCUS 246  JF901882 Erzurum 06.06.2010
sareptanus ECCUS 247  JF901883 Erzurum 06.06.2010
sp. ECCUS 248  JF901884 Bilecik 05.05.2010
sp. ECCUS 249  JF901885 Bilecik 05.05.2010
sp. ECCUS 250  JF901886 Çanakkale 06.05.2010
sp. ECCUS 251  JF901887 Amasya 02.05.2010
sp. ECCUS 252  JF901888 Amasya 02.05.2010
sp. ECCUS 253  JF901889 Tekirdağ 08.05.2010
sp. ECCUS 254  JF901890 Sivas 18.05.2010
sp. ECCUS 255  JF901891 Erzurum 06.06.2010
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Genus Species Voucher no. GenBank ac-
cession no.

Location Col. date

sp. ECCUS 256  JF901892 Kars 07.06.2010
sp. ECCUS 257  JF901893 Kars 07.06.2010
sp. ECCUS 258  JF901894 Bolu 04.05.2010

Trachelus
iudaicus (Konow, 1907) ECCUS 260  JF901865 Bayburt 05.06.2010
iudaicus ECCUS 261  JF901866 Bayburt 05.06.2010
libanensis (André, 1881) ECCUS 262  JF901867 İçel 13.04.2009
libanensis ECCUS 263  JF901868 İçel 13.04.2009
sp. ECCUS 264  JF901862 Sivas 12.06.2010
sp. ECCUS 265  JF901863 Sivas 30.05.2010
tabidus (Fabricius, 1775) ECCUS 266  JF901869 İçel 12.04.2009
tabidus ECCUS 267  JF901870 Çanakkale 06.05.2010
troglodyta (Fabricius, 1787) ECCUS 268  JF901864 Zonguldak 03.05.2010

Hartigia
linearis (Schrank, 1781) ECCUS 270  JF901896 Ardahan 07.06.2010
linearis ECCUS 271  JF901897 Kırşehir 03.06.2003
linearis ECCUS 272  JF901898 Kırşehir 03.06.2003
nigra (M. Harris, 1779) ECCUS 273  JF901899 Konya 17.05.2009
sp. ECCUS 274  JF901900 Sivas 17.05.2010
sp. ECCUS 275  JF901901 Sivas 13.05.2010
xanthostoma (Eversmann, 1847) ECCUS 276  JF901902 Zonguldak 03.05.2010
xanthostoma ECCUS 277  JF901903 Zonguldak 03.05.2010

Syrista
parreyssii (Spinola, 1843) ECUUS 280  JF901906 Sivas 26.05.2007
parreyssii ECUUS 281  JF901907 Adana 05.06.2003

Characopygus
sp. ECCUS 290  JF901895 İçel 13.04.2009

Pachycephus 
cruentatus (Eversmann, 1847) ECCUS 300  JF901904 Sivas 06.06.2009
smyrnensis J.P.E.F. Stein, 1876 ECCUS 301  JF901908 Edirne 07.05.2010
smyrnensis ECCUS 302  JF901909 Edirne 07.05.2010
smyrnensis ECCUS 303  JF901910 Sivas 11.06.2010
sp. ECCUS 304  JF901905 Sivas 12.06.2010

and a 5 min final extension at 72°C. The purification and sequencing of amplification 
products were performed using a commercial sequencing company (Macrogen Ltd., 
Seoul, Korea.). Sequencing reactions were carried out in both directions using the 
same primers as in PCR reactions. The forward and reverse nucleotide sequences were 
assembled and edited by eye using the CodonCode Aligner v 3.5.6 (CodonCode Cor-
poration) and aligned by using CLUSTAL W version 1.83 (Thompson et al. 1994), 
using the default parameters of the program. Finally, all the sequences obtained are 
deposited in GenBank (Table 1).
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Data analysis

Estimates of evolutionary divergence analyses were conducted in MEGA5 (Tamura et 
al. 2007) using the Kimura 2-parameter model (Kimura 1980) over sequence pairs be-
tween genera. The rate variation among sites was modeled with a gamma distribution 
(shape parameter = 0.87). The presence of substitution saturation was determined with 
DAMBE version 4.5.18 (Xia and Xie 2001). The genetic distance versus the number 
of transitions and transversions at first, second and third codon position in all taxa was 
plotted to examine the saturation at a partial COI gene sequences.

In order to investigate the phylogenetic relationship of Cephinae, phylogenetic 
trees were constructed using maximum parsimony (MP), maximum likelihood (ML) 
and Bayesian inference (BI) methods. Nucleotides were used as discrete and unor-
dered characters. The best-fit model of DNA substitution and the parameter estimates 
used for tree constructions were chosen according to the Akaike Information Crite-
rion (AIC) as implemented in Modeltest version 3.7 (Posada and Crandall 1998). 
The phylogenetic signal in the data partitions was estimated by maximum likelihood 
mapping method (Strimmer and von Haeseler 1997) using TREE-PUZZLE version 
5.2 program (Schmidt et al. 2002). MP phylogenies were estimated, with characters 
unordered and equally weighted, under the heuristic search algorithms ‘simple’ and 
‘TBR’ using PAUP version 4.0b10 (Swofford 2002). Bootstrap estimates were cal-
culated from 100 replicates under the above search options. This whole procedure 
was also applied to the data after removal of the third codon position. ML analy-
ses (Felsenstein 1981) were conducted using RAxML-VI-HPC v. 4.0.0 (Stamatakis 
2006)f. The AIC results from Modeltest provided the GTR + I + G model as the 
best-fit for substitution model. BI analysis was performed with the software BEAST 
v. 1.5.2 (Drummond and Rambaut 2007). The analysis was run with four chains for 
5 × 107 generations, sampling from the chain every 5.000 generations. This generated 
an output of 104 trees. All analyses were performed assuming a Yule process of diver-
sification. In order to confirm that the chains had achieved stationary, we evaluated 
‘‘burn-in” plots by plotting log-likelihood scores and tree lengths against generation 
number using the software Tracer v. 1.5 (Drummond and Rambaut 2007). After 
determining convergence, we discarded all samples obtained during the first five mil-
lions generations as ‘‘burn-in”. The percentage of samples recovering any particular 
clade in a BI analysis represents that posterior probability of a clade (Huelsenbeck and 
Ronquist 2001). A majority rule consensus tree (Bayesian tree) was then calculated 
from the posterior distribution of trees, and the posterior probabilities calculated 
as the percentage of samples recovering any particular clade. The BI tree built with 
TREEANNOTATOR, discarding the initial 10% of samples as burn-in [Fig-TREE 
v. 1.3.1] (Rambaut 2008) was used to visualize the results. For the sake of a better 
presentation, branches representing individuals belonging to same species were col-
lapsed if the species is recovered as monophyletic (Fig. 4).
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Results

Evaluation of the material collected after publication of Korkmaz et al. (2010) and 
Calmasur and Ozbek (2010) revealed that there are two additional species of Cephus 
occur in Turkey. The examined material is presented below.

Cephus parvus (Dovnar-Zapolskij, 1931)

Material examined. Turkey: Sivas [39°42.71'N, 37°01.30'E] 1300 m, 26.05.2010, 
1♀, 17.05.2010, 1♂.

Distribution. Palearctic region.

Cephus runcator Konow, 1896

Material examined. Turkey: Edirne [40°39.32'N, 26°17.82'E] 50 m, 07.05.2010, 
6♀, 1♂.

Distribution. Turkey, S. E. Europe.

The complete alignment of the partial mitochondrial COI gene sequences from 
68 cephid specimens, including representatives of these two new records, resulted in 
a fragment containing 658 base pairs, among which 287 nucleotide positions were 
variable and 223 sites of which were parsimony-informative. The analyzed sequences 
correspond to a functional mitochondrial gene region because of the presence of sin-
gular peaks in each chromatograph and absence of in–del and premature stop codons, 
and presence of the highest nucleotide substitutions at the third codon position (Avise 
1994). The percentages of nucleotide composition at each codon position are vari-
able (Fig. 1). The mean frequency of COI sequences used in the analyses showed a 
bias of A + T (T 37.0%, C 15.2%, A 33.9% and G 16.0%), which is similar to other 
reported members of Hymenoptera (Jermiin and Crozier 1994, Dowton and Austin 
1995,1997, Leys et al. 2000, Danforth et al. 2003). The A + T content at the third, 
second and first codon positions are 90.7%, 59.8%, and 61.9%, respectively. The nu-
cleotide G has lowest (1.0%) and the A highest content (52.8%) at the third codon 
positions. The distribution of polymorphic sites for all cephid species shows that the 
majority of substitutions are at synonymous sites. The vast majority of synonymous 
substitutions are also found at third codon positions with a rate of 87.88% for the 
Cephinae. The first and the second positions are relatively more conserved in compari-
son with the third position.

The numbers of base substitutions per site from averaging over all sequence pairs 
between genera are shown in Table 2. The least diverged genera appears to be Chara-
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copygus and Pachycephus (p= 0.062) and, the most are Hartigia and Syristra (p= 0.161) 
also with highest standard error value of 0.017.

All three codon positions in the partial COI gene were analyzed for saturation, 
achieved by plotting the number of observed substitutions against the model TN93 
genetic distance estimates. The scattergrams (Fig. 2a–c) showed that transitions and 
transversions for the first, second and third codons of the partial COI gene increased 
with the genetic distance, but considerable scattering was also observed. In addition, 
a similar plot of the third codon transition of the COI gene (Fig. 2d) suggested that 
saturation of transition occurred between certain pairs of the taxa, which may lead to 
higher levels of homoplasy (Kumar et al. 2001; Zhang et al. 2008).

Figure 1. Percentage of nucleotide composition at each codon position.

table 2. Estimates of evolutionary divergence over sequence pairs between genera. The number of base 
substitutions per site from averaging over all sequence pairs between groups are shown. Standard error 
estimates are shown above the diagonal.

Genera 1 2 3 4 5 6 7 8
1. Calameuta 0.010 0.011 0.010 0.013 0.012 0.015 0.025
2. Trachelus 0.110 0.010 0.009 0.013 0.012 0.014 0.025
3. Cephus 0.108 0.119 0.007 0.013 0.010 0.016 0.026
4. Characopygus 0.078 0.094 0.069 0.012 0.007 0.012 0.028
5. Hartigia 0.136 0.146 0.143 0.114 0.013 0.017 0.029
6. Pachycephus 0.116 0.125 0.113 0.062 0.137 0.013 0.029
7. Syrista 0.124 0.145 0.156 0.102 0.161 0.125 0.030
8. Outgrup 0.248 0.263 0.256 0.249 0.292 0.278 0.279  
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Figure 2. Saturation plots of transversion and transition rates against JC69 distance at a first codon posi-
tion b second codon position c third codon position, and d sum of data.

Figure 3. Likelihood mapping analysis of the sequence alignments of COI gene present in the Cephinae. 
The regions at the corners of the triangles correspond to the three possible tree topologies for a quartet; 
the lateral regions to partly resolved trees and the central region to unresolved trees. The numbers indicate 
the percentage of quartets falling in each region.
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Result of likelihood mapping is presented in Fig. 3. High dichotomic phyloge-
netic signal was detected in the dataset. The percentage of the quartets suggesting a 
star- or network- like phylogeny is 9.9%, indicating that data are reliable for a di-
chotomic phylogenetic analysis (Schmidt 2009). For ML analysis GTR+I+G models 
showed a significantly better fit than the other less complicated models for the COI 
dataset. Maximum likelihood analyses under the same model of evolution resulted in 
topologies with lnL = – 5570.6831 in RAxML, which were very close to the BI tree. 
Bayesian inference under the GTR+I+G model resulted in a topology with mean lnL 
= – 5347.963. Posterior probability values from the BI were congruent with ML boot-
strap support. ML and BI analyses generated a tree with almost the same overall topol-
ogy (Fig. 4). Equally weighted parsimony analysis of the 287 parsimony-informative 
characters produced 12 most parsimonious trees with a length of 1065 steps (Homo-
plasy Index = 0.608, Retention Index = 0.392 and Consistency Index = 0.392). These 
equally parsimonious solutions were due to differences in terminal branches. However, 
the branching pattern of bootstrap tree was comb-like and recovered almost no origi-
nal branches. Considering that this may be due to many synonymous changes in the 
third codon position, we run an analysis excluding the third codon position from the 
data. The analysis produced 60 equally parsimonious trees with a length of 200 and 
the bootstrap application was also resulted with no support to branching pattern of 
original trees. This may be partly attributed to the nature of data and relatively a short 
sequence not sufficient to detect phylogenetic signal under parsimony interference. 
Therefore, we do not present any MP trees here.

Discussion

Currently, the Cephinae is divided into three tribes based on morphology and feeding 
habits of larvae. The recovered mitochondrial gene trees substantially conflict with the 
current taxonomic arrangement, particularly the tribe level. Trees constructed under 
ML and BI methods supported monophyly of each genus except Pachycephus but failed 
to recover monophyly of any tribes. However, it should be noted that monophyly of 
most genera were supported by low posterior values (Fig. 4). This is probably due to 
the strongly biased nucleotide composition and the saturation at the third codon posi-
tion (Fig. 2). The BI tree suggests that the most basal clade of Cephinae is the genus 
Cephus making the Cephini paraphyletic with respect to rest of Cephini and other 
tribes. Occurrence of Syrista within Pachycephini rather than Hartigiini makes both 
tribes polyphyletic and paraphyletic respectively (Fig. 4). Otherwise, Pachycephini and 
Hartigiini appear as sister groups. However, we do not propose a new classification as 
the present phylogeny is generated from a single gene fragment.

Evolution of phytophagy has occurred many times in insects, and is often accom-
panied by a significant increase in rates of speciation (Mitter et al. 1988). Phytopha-
gous insects are also notable for their high degree of host-plant specialization; probably 
over 75% of species feed only on members of one plant family (Bernays and Chap-
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Figure 4. Bayesian interface tree based on the mitochondrial COI gene sequences of the Cephinae. Host 
plants are indicated in parentheses. Numbers at nodes indicate the posterior values.
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man 1994), and many insect species feed only on a single plant species (Scheffer and 
Wiegmann 2000). Syrista which is considered in the tribe Hartigiini, occurred within 
Pachycephini clade (see Fig. 4) and this placement is questionable as larvae of Syristra 
feed on Rosa. However, if this placement is considered to be true than it suggests a host 
shift event from Papaveraceae to Rosaceae. Occurrence of Cephus at most basal clades 
also suggests two later shifts from Poaceae to Rosaceae and Papaveraceae (Fig. 4). Con-
sidering relationships among genera and species of Cephini inferred from the present 
phylogenetic hypothesis, several host shift events are also evident. However, we are re-
luctant for further discussion until a more robust phylogeny become available derived 
from analyses of several gene sequences of both nuclear and mitochondrial genomes.

Acknowledgements

We thank Mahir Yildirim and Burcu Temel for accompanying us on some of our field 
trips and collecting specimens. This research was funded by Cumhuriyet University via 
research grants provided to the project CÜBAP F-224. We are grateful to Dr. Donald 
L.J. Quicke (Imperial College, London) and the other anonymous reviewer for their 
valuable comments on the early version of the manuscript.

References

Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New 
York, NY, 511 pp. doi: 10.1007/978-1-4615-2381-9

Bacci M, Solomon SE, Mueller UG, Martins VG, Carvalho AOR, Vieira LGE, Silva-Pinhati 
ACO (2009) Phylogeny of leafcutter ants in the genus Atta Fabricius (Formicidae: Attini) 
based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolu-
tion 51: 427–437. doi: 10.1016/j.ympev.2008.11.005

Basibuyuk HH, Quicke DLJ (1995) Morphology of the antenna cleaner in the Hymenoptera 
with particular reference to non-aculeate families (Insecta). Zoologica Scripta 24: 157–
177. doi: 10.1111/j.1463-6409.1995.tb00397.x

Benson RB (1935) On the genera of the Cephidae, and the erection of a new family Syntexidae 
(Hymenoptera, Symphyta). The Annals and Magazine of Natural History, including Zool-
ogy, Botany, and Geology 16(10): 535–553. doi: 10.1111/j.1365-2311.1946.tb00445.x

Benson RB (1946) Classification of the Cephidae (Hymenoptera Symphyta). Transactions of 
the Royal Entomological Society of London 96: 89–108. doi: 10.1111/j.1365-2311.1946.
tb00445.x

Benson RB (1951) Hymenoptera, Symphyta. Handbooks for the Identification of British In-
sects 6(2a), 49 pp.

Benson RB (1968) Hymenoptera from Turkey, Symphyta. Bulletin of the British Museum 
(Natural History) Entomology 22: 111–207.

http://dx.doi.org/10.1007/978-1-4615-2381-9
http://dx.doi.org/10.1016/j.ympev.2008.11.005
http://dx.doi.org/10.1111/j.1463-6409.1995.tb00397.x
http://dx.doi.org/10.1111/j.1365-2311.1946.tb00445.x
http://dx.doi.org/10.1111/j.1365-2311.1946.tb00445.x


A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) ... 375

Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving be-
yond controversy? Annual Review of Entomology 47: 773–815. doi: 10.1146/annurev.
ento.47.091201.145312

Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & 
Hall, New York, 312 pp.

Calmasur O, Ozbek H (2010) Distribution data on the Cephidae (Hymenoptera: Symphyta) 
fauna of Turkey. Zoology in the Middle East 50: 144–146.

Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: A 
thriving Tower of Babel. Annual Review of Entomology 45: 1–54. doi: 10.1146/annurev.
ento.45.1.1

Danforth BN, Conway L, Ji S (2003) Phylogeny of eusocial Lasioglossum reveals multiple losses 
of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Sys-
tematic Biology 52: 23–36. doi: 10.1080/10635150390132687

Dowton M, Austin AD (1995) Increased genetic diversity in mitochondrial genes is correlated 
with the evolution of parasitism in the Hymenoptera. Journal of Molecular Evolution 41: 
958–965. doi: 10.1007/BF00173176

Dowton M, Austin AD (1997) Evidence for AT-transversion bias in wasp (Hymenoptera: Sym-
phyta) mitochondrial genes and its implications for the origin of parasitism. Journal of 
Molecular Evolution 44: 398–405. doi: 10.1007/PL00006159

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. 
Bmc Evolutionary Biology 7: 214. doi: 10.1186/1471-2148-7-214

Eubanks MD, Blair CP, Abrahamson WG (2003) One host shift leads to another? Evidence of 
host-race formation in a predaceous gall-boring beetle. Evolution 57: 168–172.

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. 
Journal of Molecular Evolution 17: 368–376. doi: 10.1007/BF01734359

Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the compara-
tive study of speciation ecology. Genetica 116: 251–267. doi: 10.1023/A:1021236510453

Hebert PD, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase 
subunit 1 divergences among closely related species. Proceedings of the Royal Society B 
270(Suppl 1): S96-S99. doi: 10.1098/rsbl.2003.0025

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bio-
informatics 17: 754–755. doi: 10.1093/bioinformatics/17.8.754

Jermiin LS, Crozier RH (1994) The cytochrome b region in the mitochondrial DNA of the ant 
Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nu-
cleotide content. Journal of Molecular Evolution 38: 282–294. doi: 10.1007/BF00176090

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions 
through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 
111–120. doi: 10.1007/BF01731581

Korkmaz EM, Budak M, Orgen SH, Bagda E, Gencer L, Ulgenturk S, Basibuyuk HH (2010) 
New records and a checklist of Cephidae (Hymenoptera: Insecta) of Turkey with a short 
biogeographical consideration. Turkish Journal of Zoology 34: 203–211.

Königsmann E (1977) Das phylogenetische System der Hymenoptera Teil. 2: Symphyta. 
Deutsche Entomologische Zeitschrift 24: 1–40. doi: 10.1002/mmnd.19770240102

http://dx.doi.org/10.1146/annurev.ento.47.091201.145312
http://dx.doi.org/10.1146/annurev.ento.45.1.1
http://dx.doi.org/10.1080/10635150390132687
http://dx.doi.org/10.1007/BF00173176
http://dx.doi.org/10.1007/PL00006159
http://dx.doi.org/10.1186/1471-2148-7-214
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1023/A:1021236510453
http://dx.doi.org/10.1098/rsbl.2003.0025
http://dx.doi.org/10.1093/bioinformatics/17.8.754
http://dx.doi.org/10.1007/BF00176090
http://dx.doi.org/10.1007/BF01731581
http://dx.doi.org/10.1002/mmnd.19770240102


Mahir Budak et al.  /  ZooKeys 130: 363–378 (2011)376

Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics 
analysis software. Bioinformatics 17: 1244–1245. doi: 10.1093/bioinformatics/17.12.1244

Leys R, Cooper SJ, Schwarz MP (2000) Molecular phylogeny of the large carpenter bees, ge-
nus Xylocopa (Hymenoptera: apidae), based on mitochondrial DNA sequences. Molecular 
Phylogenetics and Evolution 17: 407–418. doi: 10.1006/mpev.2000.0851

Lozier JD, Roderick GK, Mills NJ (2007) Genetic evidence from mitochondrial, nuclear, and 
endosymbiont markers for the evolution of host plant associated species in the aphid ge-
nus Hyalopterus (Hemiptera: Aphididae). Evolution 61: 1353–1367. doi: 10.1111/j.1558-
5646.2007.00110.x

Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: 
Evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular 
Biology 5: 153–165. doi: 10.1111/j.1365-2583.1996.tb00049.x

Middlekauff WW (1969) The Cephid stem borers of California (Hymenoptera: Cephidae). 
Bulletin of the California Insect Survey 11: 1–19.

Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones - has 
phytophagy promoted insect diversification. American Naturalist 132: 107–128. doi: 
10.1086/284840

Mopper S, Strauss SY (1998) Genetic structure and local adaptation in natural insect popula-
tions: effects of ecology, life history, and behavior. Chapman & Hall, New York, London, 
xix, 449 pp.

Muche H (1981) Die Cephidae der Erde (Hymenoptera: Cephidae). Deutsche Entomologis-
che Zeitschrift 28: 239–295. doi: 10.1002/mmnd.19810280405

Nosil P, Crespi BJ, Sandoval CP (2002) Host-plant adaptation drives the parallel evolution of 
reproductive isolation. Nature 417: 440–443. doi: 10.1038/417440a

Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioin-
formatics 14: 817–818. doi: 10.1093/bioinformatics/14.9.817

Rambaut A. (2008) FigTree v1.2. Available from: http://tree.bio.ed.ac.uk/software/ FigTree/
Rasnitsyn AP (1980) Origin and evolution of Hymenoptera. Transactions of the Paleontologi-

cal Institute of the Academy of Sciences of the USSR 174: 1–192.
Rasnitsyn AP (1988) An outline of evolution of hymenopterous insects (order Vespida). Ori-

ental Insects 22: 115–145.
Ries DT (1937) Revision of the Nearctic Cephidae. Transactions of the American Entomologi-

cal Society 63: 259–324.
Roe AD, Sperling FAH (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I 

and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution 
44: 325–345. doi: 10.1016/j.ympev.2006.12.005

Ronquist F, Rasnitsyn AP, Roy A, Eriksoon K, Lindgren M (1999) Phylogeny of the Hyme-
noptera: a cladistic reanalysis of Rasnitsyn’s (1988) data. Zoologica Scripta 28: 13–50. doi: 
10.1046/j.1463-6409.1999.00023.x

Scheffer SJ, Wiegmann BM (2000) Molecular phylogenetics of the holly leaf miners (Diptera: 
Agromyzidae: Phytomyza): Species limits, speciation, and dietary specialization. Molecular 
Phylogenetics and Evolution 17: 244–255. doi: 10.1006/mpev.2000.0830

http://dx.doi.org/10.1093/bioinformatics/17.12.1244
http://dx.doi.org/10.1006/mpev.2000.0851
http://dx.doi.org/10.1111/j.1558-5646.2007.00110.x
http://dx.doi.org/10.1111/j.1365-2583.1996.tb00049.x
http://dx.doi.org/10.1086/284840
http://dx.doi.org/10.1002/mmnd.19810280405
http://dx.doi.org/10.1038/417440a
http://dx.doi.org/10.1093/bioinformatics/14.9.817
http://tree.bio.ed.ac.uk/software/FigTree/
http://dx.doi.org/10.1016/j.ympev.2006.12.005
http://dx.doi.org/10.1046/j.1463-6409.1999.00023.x
http://dx.doi.org/10.1006/mpev.2000.0830


A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) ... 377

Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum 
likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 
502–504. doi: 10.1093/bioinformatics/18.3.502

Schmidt HA (2009) Testing tree topologies. In: Lemey P, Salemi M, Vandamme AM (Eds) The 
Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis 
Testing. Cambridge University Press, Cambridge, 381–404.

Schulmeister S, Wheeler WC, Carpenter JM (2002) Simultaneous analysis of the basal lineages 
of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18: 455–484.

Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668: 521–548.
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and 

phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved 
polymerase chain-reaction primers. Annals of the Entomological Society of America 87: 
651–701.

Smith DR (1997) A new species of Janus (Hymenoptera: Cephidae) from Indonesia. Entomo-
logical News 108: 24–28.

Smith DR, Schiff NM (2005) A new western Nearctic species of Calameuta Konow (Hymenop-
tera: Cephidae). Proceedings of the Entomological Society of Washington 107: 864–868.

Smith DR, Schmidt S (2009) A new subfamily, genus, and species of Cephidae (Hymenoptera) 
from Australia. Zootaxa 2034: 56–60.

Smith DR, Shinohara A (2002a) A new genus and new species of Cephidae (Hymenoptera) 
from Sulawesi Utara, Indonesia. Proceedings of the Entomological Society of Washington 
104: 624–628.

Smith DR, Shinohara A (2002b) The stem-boring sawfly genus Cephus Latreille (Hymenop-
tera: Cephidae) in Japan. Proceedings of the Entomological Society of Washington 104: 
479–484.

Smith DR, Solomon JD (1989) A new Janus (Hymenoptera, Cephidae) from Quercus, and key 
to North American species. Entomological News 100: 1–5.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 
thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioin-
formatics/btl446

Strimmer K, von Haeseler A (1997) Likelihood-mapping: A simple method to visualize phylo-
genetic content of a sequence alignment. Proceedings of the National Academy of Sciences 
of the United States of America 94: 6815–6819. doi: 10.1073/pnas.94.13.6815

Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods). Ver-
sion 4.0b10 ed. Sinauer Associates, Sunderland, Massachusetts.

Taeger A, Blank SM, Liston AD (2010) World Catalog of Symphyta (Hymenoptera). Zootaxa 
2580: 1–1064.

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analy-
sis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599. doi: 
10.1093/molbev/msm092

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap 

http://dx.doi.org/10.1093/bioinformatics/18.3.502
http://dx.doi.org/10.1093/bioinformatics/btl446
http://dx.doi.org/10.1073/pnas.94.13.6815
http://dx.doi.org/10.1093/molbev/msm092


Mahir Budak et al.  /  ZooKeys 130: 363–378 (2011)378

penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. doi: 10.1093/
nar/22.22.4673

Vilhelmsen L (1997) The phylogeny of lower Hymenoptera (Insecta), with a summary of the 
early evolutionary history of the order. Journal of Zoological Systematics and Evolutionary 
Research 35: 49–70. doi: 10.1111/j.1439-0469.1997.tb00404.x

Vilhelmsen L (2001) Phylogeny and classification of the extant basal lineages of the Hyme-
noptera (Insecta). Zoological Journal of the Linnean Society 131: 393–442. doi: 10.1111/
j.1096-3642.2001.tb01320.x

Wei MC (2007) On the genus Syrista Konow, with the description of a new species from China 
(Hymenoptera: Cephidae). Entomological News 118: 450–458. doi: 10.3157/0013-872X(
2007)118[450:OTGSKW]2.0.CO;2

Wei MC, Smith DR (2010) Review of Syrista Konow (Hymenoptera: Cephidae). Proceedings 
of the Entomological Society of Washington 112: 302–316. doi: 10.4289/0013-8797-
112.2.302

Xia X, Xie Z (2001) DAMBE: Software package for data analysis in molecular biology and 
evolution. Journal of Heredity 92: 371–373. doi: 10.1093/jhered/92.4.371

Zhang M, Zhong Y, Cao TW, Geng YP, Zhang Y, Jin K, Ren ZM, Zhang R, Guo YP, Ma EB 
(2008) Phylogenetic relationship and morphological evolution in the subfamily Limeni-
tidinae (Lepidoptera: Nymphalidae). Progress in Natural Science 18: 1357–1364. doi: 
10.1016/j.pnsc.2008.03.025

Zhelochovtsev AN, Zinovjev AG (1988) [Suborder Symphyta (Chalastogastra) –Sawflies and 
Horntails]. In: Zhelochovtsev AN, Tobias VI, Kozlov MA (Eds) [Keys to the Insects of the 
European Part of the USSR. Volume 3, Hymenoptera. Part 6.] Nauka, Leningrad, 7–234. 
[English translation: Medvedev GS (1994) Keys to the Insects of the European Part of the 
USSR. Vol 3. Part 6 Symphyta, E.J. Brill, Leiden. xviii, 432 pp.]

http://dx.doi.org/10.1093/nar/22.22.4673
http://dx.doi.org/10.1111/j.1439-0469.1997.tb00404.x
http://dx.doi.org/10.1111/j.1096-3642.2001.tb01320.x
http://dx.doi.org/10.3157/0013-872X(2007)118[450:OTGSKW]2.0.CO;2
http://dx.doi.org/10.4289/0013-8797-112.2.302
http://dx.doi.org/10.1093/jhered/92.4.371
http://dx.doi.org/10.1016/j.pnsc.2008.03.025

