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Abstract

In this study, mitochondrial genomes (mitogenomes) of seven cichlid species (Lamprolo-
gus kungweensis, L. meleagris, L. ornatipinnis, Neolamprologus brevis, N. caudopunctatus,
N. leleupi, and N. similis) are characterized for the first time. The newly sequenced mi-
togenomes contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal
RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. The mitogenomes were 16,562
~ 16,587 bp in length with an A + T composition of 52.1~58.8%. The cichlid mitogenomes
had a comparable nucleotide composition, A + T content was higher than the G + C con-
tent. The AT-skews of most mitogenomes were inconspicuously positive and the GC-skews
were negative, indicating higher occurrences of C than G. Most PCGs started with the con-
ventional start codon, ATN. There was no essential difference in the codon usage patterns
of these seven species. Using Ka/Ks, we found the fastest-evolving gene were atp8. But
the results of p-distance indicated that the fastest-evolving gene was nadé. Phylogenetic
analysis revealed that L. meleagris did not cluster with Lamprologus species, but with spe-
cies from the genus Neolamprologus. The novel information obtained about these mitog-
enomes will contribute to elucidating the complex relationships among cichlid species.

Key words: Cichlidae, Lamprologus, mitogenome, Neolamprologus, phylogenetic analyses

Introduction

Cichlids (Teleostei: Perciformes: Cichlidae) are widely distributed across the
Neotropics, Africa, the Middle East, Madagascar, as well as southern India and
Sri Lanka (Smith et al. 2008; Lépez-Fernandez et al. 2010). They stand out as
one of the most species-diverse groups of acanthomorphs. Kullander (1998)
divided the family Cichlidae into eight subfamilies: Astronotinae, Cichlasomati-
nae, Cichlinae, Etroplinae, Geophaginae, Heterochromidinae, Pseudocrenilab-
rinae, and Retroculinae. The ninth subfamily, the Ptychochrominae, was later
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recognized by Sparks and Smith (2004). Cichlids gained recognition as a prom-
inent model species for the study of evolutionary biology due to the numerous
species, diverse genetics, distinct evolutionary lineages, and significant ecolog-
ical and morphological divergences (Kocher 2004; Schwarzer et al. 2015; Reis
et al. 2016; Nam et al. 2021).

African cichlids (subfamily Pseudocrenilabrinae) boasted an abundant va-
riety of more than 2000 species (Brawand et al. 2014; Astudillo-Clavijo et al.
2022). Biologists have long been fascinated by the diversity of cichlids in the
East African cichlid radiation (EAR), which has promoted high levels of en-
demism in the Lakes Tanganyika, Malawi, and Victoria (Kornfield and Smith
2000). Lake Tanganyika is a deep tropical and large Rift Valley lake with an
age of 9-12 million years (Irisarri et al. 2018). It has the most diverse species
of cichlid fish in terms of morphology, ecology, and behavior, including several
mouth-brooding and substrate-spawning lineages (Takahashi 2003; Salzburg-
er 2009). The cichlid fauna of Lake Tanganyika is dominated by lamprologine
cichlids, which colonized most lacustrine habitats, but most often inhabits
the littoral zone (Sturmbauer et al. 2010). Although classified as a single tribe,
lamprologine cichlids exhibit significant diversity in morphology, ecology, and
behavior. Lamprologus kungweensis, Lamprologus meleagris, Lamprologus or-
natipinnis, Neolamprologus brevis, Neolamprologus caudopunctatus, Neolam-
prologus leleupi, and Neolamprologus similis are among the smallest species
within the lamprologine cichlids, small enough to live inside the empty shells of
gastropod mollusks (Sturmbauer et al. 2010). These species are regarded as
a highly valuable ornamental species in the aquatic trade industry due to their
ease of maintenance and handling in aquariums (Nam et al. 2021).

The genera Lamprologus and Neolamprologus can be difficult to distinguish
due to their similar morphology, ecology, and behavior. As discussed by Sti-
assny (1991), meristic and morphometric measurements, osteology, and den-
tition were insufficient to differentiate between the species, as many of these
traits were homoplastic. Furthermore, there might be instances of ancient
ancestral polymorphism, introgressive hybridization, or lack of diagnostic syn-
apomorphic characters among certain species within these two genera, further
complicating their classification (Sturmbauer et al. 2010; Gante et al. 2016).
Therefore, additional method, like molecular analysis might be required for
more accurate classification.

Mitochondria are organelles found in most eukaryotic cells that play a critical
role in energy production (Hebert et al. 2010). The mitochondrial genome (mi-
togenome) of acanthomorph fishes is usually a circular, double-stranded mole-
cule that ranges from 16 to 23 kbp in size. It typically contains 13 protein-cod-
ing genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes
(tRNAs), and one control region (CR) (Iwasaki et al. 2013). Mitogenomes have
the characteristics of high evolutionary rate, matrilineal inheritance, low molec-
ular weight, simple structure, and ease of amplification, which makes them a
reliable marker for studying phylogenetics (Ye et al. 2022; Wang et al. 2023).
Mitogenome components, such as nad2 or rrnL, are widely used for phyloge-
netic analyses (Sturmbauer et al. 2010; Schwarzer et al. 2015). Although partial
mitochondrial sequences can offer some insights into evolutionary relation-
ships, they are limited in their ability to provide a comprehensive understand-
ing due to the absence of information such as gene rearrangement, genetic

ZooKeys 1184: 115-132 (2023), DOI: 10.3897/z00keys.1184.107091 116



Jiachen Wang et al.: Comparison and phylogenetic insights of mitogenomes of cichlids

code changes, replication, and transcriptional regulation patterns. Therefore,
complete mitogenome sequences can be more beneficial as they can provide
improved resolution and sensitivity for investigating evolutionary relationships
(Li et al. 2019; Fiteha et al. 2023; Wang et al. 2023).

In this study, we report the complete mitogenome organizations and charac-
teristics of seven species (L. kungweensis, L. meleagris, L. ornatipinnis, N. brevis,
N. caudopunctatus, N. leleupi, and N. similis). We also performed a phylogenetic
analysis of the seven complete mitogenomes obtained in this study with the
published complete cichlid mitogenomes. We hope that our study can enable
better comprehension of cichlid biodiversity and expand genetic resources for
future cichlid comparisons.

Materials and methods
Sample collection and DNA extraction

The seven species are commonly sold as ornamental fish and can be found in
many pet markets. Specimens were obtained from the Qigiaoweng pet market
in Nanjing, Jiangsu province, China. The specimens were identified using mor-
phological characteristics described in FishBase (https://www.fishbase.de/).
No fish were sacrificed during this study. The fish were reared at the Laboratory
of Animal Molecular Evolution, Nanjing Forestry University. Total genomic DNA
was extracted from each fin using a FastPure Cell/Tissue DNA Isolation Mini
Kit (Vazyme, Nanjing, China), and stored at —80 °C for future use.

Genome sequencing, assembly, and annotation

Seven complete mitogenomes were sequenced on an Illumina platform (Per-
sonalbio Nanjin, China) using total genomic DNA. The genomic DNA was used
to generate an lllumina library with an insert size of 400 bp. The clean data were
then assembled in Geneious Prime 2022 software, using Lamprologus signatus
(MZ427900.1) as a template. The mitogenomes were assembled and manually
revised using DNAstar v. 7.1 (Madison, WI, USA).

Conservative domains were detected using BLAST (https:/www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi) and MITOS WebServer (http:/mitos.bioinf.
uni-leipzig.de/index.py) (Bernt et al. 2013). Maps of the mitogenomes were
constructed using CGView (https://cgview.ca/) (Stothard and Wishart 2005).
MEGA X was used for base composition analysis, relative synonymous co-
don usage (RSCU) analysis, pairwise relative genetic distance (p-distance)
calculation, as well as non-synonymous (Ka) and synonymous substitutions
(Ks) analysis (Fay and Wu 2003; Kumar et al. 2016). Composition skew values
were calculated using the following formulas: “AT-skew = (A - T) / (A + T) GC-
skew = (G - C) / (G + C)" (Perna and Kocher 1995).

Phylogenetic analysis

Phylogenetic analysis was conducted using the sequences of 13 PCGs and
two rRNA genes from the complete mitogenomes of 105 species, includ-
ing seven species from this study (Suppl. material 1). Channa andrao and
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Hyphessobrycon sweglesi were selected as outgroups, while the remaining
specimens belonged to the Cichlidae family. Phylogenetic analysis was con-
ducted using maximum likelihood (ML) and Bayesian inference (Bl) methods
with PhyloSuite v. 1.2.3 software package (Zhang et al. 2020; Xiang et al. 2023).
All genes were aligned using MAFFT v. 7.313, and the best-fit substitution mod-
el and partitioning scheme were determined using ModelFinder. ML phyloge-
nies were inferred using IQ-TREE with the Edge-linked partition model for 5000
ultrafast bootstraps (Minh et al. 2013; Nguyen et al. 2015). Bl phylogenies were
inferred using MrBayes v. 3.2.7a with a partition model (Ronquist et al. 2012).
The analysis consisted of two parallel runs with 2,000,000 generations each,
and the initial 25% of sampled data was discarded as burn-in. The trees were
visualized and edited using iTOL v. 6 (Letunic and Bork 2021).

Results and discussion
Genome organization and composition

Seven complete mitogenomes covering two genera were obtained. L. kungweensis
(16,587 bp), L. meleagris (16,582 bp), L. ornatipinnis (16,585 bp), N. brevis (16,586
bp), N. caudopunctatus (16,586 bp), and N. similis (16,580 bp) had similar lengths,
while N. leleupi had the shortest length at 16,562 bp (Fig. 1) (accession numbers:
OP805601.1, OP805600.1, 0Q076695.1, 0P930818.1, OP930816.1, 0P930817.1,
and 0P930815.1). The seven mitogenomes possessed the typical gene compo-
sition found in most bony fish, including 13 PCGs, 22 tRNAs, two rRNAs, and a
CR. Among these genes, 12 PCGs, 14 tRNA genes, and two rRNA genes, were
located on the major strand (H-strand), while the remaining eight tRNA genes
and a PCG were encoded on the minor strand (L-strand). The gene order of these
mitogenomes was identical to that of previously published species L. signatus
(MZ427900.1) and Neolamprologus brichardi (AP006014.1) (Nam et al. 2021).
Seventeen intergenic regions of the same length were observed between the mito-
chondrial regions of species L. kungweensis, L. meleagris, L. ornatipinnis, N. brevis,
with lengths ranging from 10 bp (between atp8 and atp6) to 35 bp (between trnN
and trnC). However, N. caudopunctatus exhibited a 24 bp intergenic region be-
tween trnV and rrnL, and N. similis displayed a 38 bp intergenic region at the same
location. The trnC and trnY of N. similis overlapped by 1 bp, whereas there was no
overlap in this region in the other six species. In addition, N. leleupi had one more
intergenic region (24 bp between cox7 and trnS2) than other species (Table 1).

Nucleotide composition

The nucleotide composition of the seven newly sequenced Lamprologus and
Neolamprologus mitogenomes were biased toward A and T (Table 2). The AT-
skews exhibited inconspicuously positive values, while all GC-skews were mark-
edly negative. The analysis revealed a clear preference for the utilization of C,
along with a minor inclination towards A, across the entire genome (Table 2).
To determine the nucleotide composition of Cichlidae, the A + T content, AT-
skew, G + C content, and GC-skew of 103 complete mitogenomes (including 8
subfamilies Astronotinae, Cichlasomatinae, Cichlinae, Etroplinae, Geophaginae,
Pseudocrenilabrinae, Ptychochrominae, and Retroculinae of the family Cichlidae)
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Figure 1. The gene maps of the seven newly sequenced mitogenomes. Different gene types are shown in different colors.

were calculated. The H-strand in the mitogenomes of 103 cichlid species showed
a similar preference for A and T nucleotides. The 103 Cichlidae mitogenomes
had a comparable nucleotide composition, A + T content (52.1 ~ 58.8%) were
higher than the G + C content (41.1 ~ 47.8%) (Fig. 2). The GC-skew were neg-
ative (-0.351 ~ —0.221), indicating a higher occurrence of C than G except for
Andinoacara rivulatus (=0.019), Pelvicachromis pulcher (-0.005), and Etroplus
canarensis (—0.002). The AT-skew were inconspicuously positive (0.002 ~ 0.076),
indicating a small difference in the content of A and T in the mitogenomes. This
phenomenon is also observed in other published Teleostei genomes (Liu et al.
2020; Ruan et al. 2020; Xu et al. 20214, 2021b; Wang et al. 2023). The A nucle-
otide composition is commonly used to indicate gene direction and replication
orientation during transcription and replication (Wei et al. 20103, 2010b).

Protein-coding genes

In the seven newly sequenced mitogenomes, PCG nad6 was on the L-strand,
while other PCGs were on the H-strand. The average A + T content of the PCGs
ranged from 53.0% (N. leleupi and N. brevis) to 54.7% (L. meleagris). Six of
them had the same 13 PCGs length of 11,466 bp, while the remaining species,
N. leleupi, had a slightly shorter length of 11,421bp. The reason for this differ-
ence was that the cox7 gene in N. leleupi had a mutation causing a premature
stop codon compared to other species, resulting in a reduction of 45 base pairs
in length (Tables 1, 2).

Most of the PCGs in the seven newly sequenced mitogenomes began with the
start codon ATG, except for cox7, which started with GTG. Most PCGs terminated
with the codon TAA or incomplete codon (TA- / T--), with the exception of nad1,
which ended with TAG (Table 2). The cichlid species are relatively conservative
in their use of start codons, and their preferences are generally consistent with
those of the seven newly sequenced species with the only exception of the oc-
currence of a rare start codon ATC in the coxT and nad3. All the Cichlids share
the stop codons with TAA, TAG, AGA, and incomplete codons (TA- / T--) (Fig. 3).
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Figure 2. A + T content vs AT-skew and G + C content vs GC-skew in the 103 mitogenomes of family Cichlidae. Values are
calculated on H-strands for full-length mitogenomes.

Table 2. Base compositions of the complete genomes, PCGs, rRNAs, tRNAs, and CRs of the seven newly sequenced
mitogenomes.

Whole genome PCGs tRNAs rRNAs CR
Species Size AT AT- Gc- Size AT Size AT Size AT Size AT
skew skew

(bp) (%) (bp) (%) (bp) (%) (bp) (%) (bp) (%)
Lamprologus 16,587 54.1 0.002 -0.300 11,466 53.5 1,554 54.7 2,613 54.1 891 62.9
kungweensis
Lamprologus 16,582 55.1 0.002 -0.300 11,466 54.7 1,553 55.8 2,613 54.1 887 63.6
meleagris
Lamprologus 16,585 53.9 0.006 -0.304 11,466 53.2 1,554 55.4 2,613 53.5 889 62.7
ornatipinnis
Neolamprologus 16,586 53.6 0.011 -0.311 11,466 53.0 1,554 54.9 2,614 53.0 889 63.8
brevis
Neolamprologus 16,586 53.9 0.002 -0.299 11,466 53.2 1,552 55.4 2,613 53.2 890 63.0
caudopunctatus
Neolamprologus 16,562 53.7 0.017 -0.318 11,421 53.0 1,553 54.7 2,612 53.0 889 62.5
leleupi
Neolamprologus 16,580 54.1 0.010 -0.311 11,466 53.5 1,554 54.9 2,598 53.9 884 63.0
similis
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Figure 3. Start codon and stop codon usage for the mitochondrial genome protein-cod-
ing genes of 103 cichlid species.

RSCU was calculated to identify the predominant synonymous codon
(Grantham et al. 1980). The comparative analysis based on RSCU of all PCG
codons showed that the codon usage patterns of these seven species were
similar (Fig. 4). Genes encoding lle and Leu2 had high frequency, while those
encoding Cys, Met, and Ser1 were infrequent.
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Figure 4. The codon distribution and RSCU of the mitogenomes of the seven newly sequenced mitogenomes.

Evolutionary analyses

The selection pressure was analyzed by calculating the ratio of Ka/Ks across
Lamprologus and Neolamprologus for each aligned PCG (Fig. 5) (Yang and Niel-
sen 2002). It was found that atp8 showed the largest Ka/Ks value among the
13 PCGs, which suggested more amino acid variety in the biomolecule. This
suggests that the atp8 gene might have evolved faster than other PCGs due
to slight selection pressure (Hassanin et al. 2005). The faster evolution of the
atp8 gene could result in greater amino acid diversity, indicating its potential as
an effective marker for population classification. The Ka/Ks values for all PCGs
were lower than 1, suggesting that purifying selection was likely the main driver
of mitochondrial PCG evolution (Hurst et al. 2002).
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Figure 5. Ka/Ks values for the 13 PCGs. Pale pink box plots, five species of gnus Neolamprologus; orange box plots, four
species of Lamprologus; blue box plots, nine species of Lamprologus and Neolamprologus. The band inside the box rep-
resents the median; upper and lower hinges correspond to the 25" and 75" percentiles; circles, to outliers.

Besides the Ka/Ks analysis, an assessment of the degree of divergence
in Lamprologus and Neolamprologus was conducted by analyzing the overall
p-distance between nucleotides of 13 PCGs + two rRNA genes (Fig. 6). The
results of p-distance indicated that the fastest-evolving gene was nad6, which
was inconsistent with the results of Ka/Ks value. However, the difference in this
gene might be not comparable with the selection since this force is acting in a
contemporary period.

Ribosomal RNA genes, transfer RNA genes, and control regions

The size of the rrnS genes were between 943 bp (L. meleagris, N. brevis, and
N. caudopunctatus) and 946 bp (N. similis), while the size of the rrnL genes
in seven species ranged between 1,652 bp (N. similis) to 1,671 bp (N. brevis)
(Table 1). The two rRNA genes located between trnF and trnL2, with trnV sepa-
rating them. The A + T content of rRNAs ranged from 53.0% ~ 54.1% (Table 2).

The sizes of the tRNA genes ranged from 66 bp (trnY of N. caudopunctatus)
to 74 bp (trnK). The combined length of the 22 tRNA genes varied between
1,552 bp (N. caudopunctatus) and 1,554 bp (L. kungweensis, L. ornatipinnis, and
N. similis). The A + T contents of tRNA genes ranged from 54.7% to 55.8%
among the seven species analyzed in this study (Table 2).

As with other fish mitogenomes, the CRs were discovered to exist between
trnF and trnP in all seven species. The sizes of the CRs ranged from 884 bp
(N. similis) to 891 bp (L. kungweensis). The A + T contents of PCGs, tRNAs, and
rRNAs sequences were found to be similar to that of the entire mitogenomes,
whereas CR sequences had a higher A + T content (62.5% ~ 63.8%) (Table 2).

Phylogenetic analysis

To elucidate the phylogenetic inter-relationships within the family Cichlidae and
genera Lamprologus and Neolamprologus, concatenated nucleotide sequences
of 13 PCGs + two rRNAs from 103 cichlid species were obtained. Additionally,
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Figure 6. Genetic p-distances for nucleotide sequences for 13 PCGs and 2 rRNAs. Pale pink box plots, five species
of Neolamprologus; orange box plots, four species of Lamprologus; blue box plots, 9 species of genera Lamprologus
and Neolamprologus.

Channa andrao, and Hyphessobrycon sweglesi from two other families were
used as outgroups. It was found that Bl and ML analysis generated the same
topology structure on most nodes (Fig. 7).

Specifically, the seven complete mitogenomes covered two genera in this
study have good clustering in phylogenetic trees, and within the family Cichli-
dae, the subfamily Etroplinae and Ptychochrominae were monophyletic across
analyses. They diverged with species in other subfamilies early in the evolution-
ary history of cichlid fishes. This result was similar to a previous molecular phy-
logenetic study (Astudillo-Clavijo et al. 2022). Thirty-one species from subfam-
ily Astronotinae, Cichlasomatinae, Cichlinae, Geophaginae, and Retroculinae
were clustered into one branch, indicating these five subfamilies were closely
related. Moreover, 67 Pseudocrenilabrinae species also formed a monophylet-
ic clade. Pseudocrenilabrinae tribes and their interrelationships were for the
most part well supported as reported by Astudillo-Clavijo et al. (2022). Due to
the addition of seven newly sequenced mitogenomes, three pairs of sisters
(N. brichardi + N. leleupi, N. caudopunctatus + L. meleagris, and L. signatus +
L. kungweensis) were newly identified, as shown in Fig. 7. Lamprologus melea-
gris did not cluster with Lamprologus species, but with species from the genus
Neolamprologus. Previous studies have identified such taxonomic issues in the
genera Lamprologus and Neolamprologus (Schelly et al. 2006; Sturmbauer et
al. 2010). Sturmbauer et al. (2010) think a viable way might be to re-assign the
genus name Lamprologus to most Neolamprologus species. Our results also
support this scenario. However, the species from the genera Lamprologus and
Neolamprologus used in this study were limited, making it impossible to per-
form a more detailed analysis. Therefore, to better understand the relationships
between members of these two genera, it will be beneficial to include more
species in future studies.

In conclusion, our study increased the database of mitogenome in Cichlidae,
and showed that mitogenome sequences are efficient molecular markers for
studying the phylogenetic relationships within Cichlidae. However, there is a
lack of analyses in nuclear genes. In the future study, we will further improve
these deficiencies.
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Figure 7. 13 PCGs-based phylogenetic tree of 103 cichlid species and two outgroups. Numbers at nodes represent the
posterior probability and bootstrap values for Bl and ML analysis, respectively. “-" indicates this clade not supported by
Bl or ML analysis.
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