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Abstract

Proteocephalidean tapeworms form a diverse group of parasites currently known from 315 valid species.
Most of the diversity of adult proteocephalideans can be found in freshwater fishes (predominantly cat-
fishes), a large proportion infects reptiles, but only a few infect amphibians, and a single species has been
found to parasitize possums. Although they have a cosmopolitan distribution, a large proportion of taxa
are exclusively found in South America. We analyzed the largest proteocephalidean cestode molecular
dataset to date comprising more than 100 species (30 new), including representatives from 54 genera
(80%) and all subfamilies, thus significantly improving upon previous works to develop a molecular
phylogeny for the group. The Old World origin of proteocephalideans is confirmed, with their more
recent expansion in South America. The earliest diverging lineages are composed of Acanthotaeniinae and
Gangesiinae but most of the presently recognized subfamilies (and genera) appear not to be monophyletic;
a deep systematic reorganization of the order is thus needed and the present subfamilial system should be
abandoned. The main characters on which the classical systematics of the group has been built, such as
scolex morphology or relative position of genital organs in relation to the longitudinal musculature, are of
limited value, as demonstrated by the very weak support for morphologically-defined subfamilies. How-
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ever, new characters, such as the pattern of uterus development, relative ovary size, and egg structure have
been identified, which may be useful in defining phylogenetically well-supported subgroups. A strongly
supported lineage infecting various snakes from a wide geographical distribution was found. Although
several improvements over previous works regarding phylogenetic resolution and taxon coverage were
achieved in this study, the major polytomy in our tree, composed largely of siluriform parasites from the
Neotropics, remained unresolved and possibly reflects a rapid radiation. The genus Spasskyellina Freze,
1965 is resurrected for three species of Monticellia bearing spinitriches on the margins of their suckers.
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Introduction

Proteocephalideans (Platyhelminthes: Cestoda) form a morphologically homogeneous
group of tapeworms found worldwide in freshwater fishes, reptiles, and amphibians (a
single species is known from marsupial mammals). To our knowledge 315 valid spe-
cies are currently known (unpublished), a large proportion of them being parasites of
South American siluriform fishes (Freze 1965, Rego 1994).

Proteocephalideans historically formed their own order (Proteocephalidea with
only one family, Proteocephalidae), the monophyly of which is strongly supported,
but recent molecular analyses have placed them within a paraphyletic assemblage of
‘hooked’ tetraphyllidean cestodes (formerly Onchobothriidae), parasites of sharks and
rays, which has led to the erection of a new order, the Onchoproteocephalidea by Caira
etal. (2014). However, the lack of any morphological synapomorphies for this new or-
der made this a somewhat controversial decision. For the purpose of the present paper,
which is to study the internal relationships of the “terrestrial” onchoproteocephalid-
eans (= proteocephalideans), this point is marginal and the new scheme proposed by
Caira et al. (2014) is not considered further.

Previous attempts to study the interrelationships of proteocephalideans resulted in
overall poorly resolved phylogenies. At the morphological level, the difficulty of defin-
ing reliable informative characters has prevented the construction of a stable taxonomic
arrangement of the group (Rego 1994, 1995). The traditionally accepted families Proteo-
cephalidae and Monticelliidae have been abandoned, and the whole group has been split
into a number of subfamilies and genera, including the type genus Proteocephalus Wein-
land, 1858, which are sometimes obviously artificial because of their lack of synapomor-
phies and diversity of life-history traits (see de Chambrier et al. 2004c, 2009a). Molecular
studies that have tried to resolve the proteocephalidean tree topology have largely been
based on the variable domains (D1-D3) of the large nuclear ribosomal RNA subunit (285
rDNA), using increasingly larger datasets, i.e. 54 taxa analyzed by Zehnder and Mariaux
(1999), and 75 taxa by de Chambrier et al. (2004c). Hypsa et al. (2005) analyzed the
phylogenetic relationships of only 52 taxa, but used sequences of three ribosomal RNA
genes and the internal transcribed spacer 2 (ITS2). Additional molecular studies mostly
considered questions at the specific/generic level [e.g. the Proteocephalus aggregate (Scholz
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etal. 2007); African Proteocephalus (de Chambrier et al. 2011); Testudotaenia Freze, 1965
(de Chambrier et al. 2009a), Corallobothriinae (Rosas-Valdez et al. 2004, Scholz et al.
2011)] or employed only a very limited taxon sampling (e.g. Zehnder and de Chambrier
2000, Skeiikovd et al. 2001, de Chambrier et al. 2008, Scholz et al. 2013).

Although these studies have allowed for a better understanding of relationships
within and between several subgroups, the major nodes of the proteocephalidean tree
remain poorly supported, especially when considering the South American lineages. In
the present contribution, an unprecedented collection of proteocephalidean samples
have been gathered that includes the majority of all valid genera (54 out of 67), thus
significantly increasing the taxon sampling within the order and adding representa-
tives from previously unrepresented subfamilies. 285 rDNA sequences homologous
to those published in studies by Zehnder and Mariaux (1999) and de Chambrier et
al. (2004c) have been generated, and the newly generated data has been analyzed in
conjunction with those previously published. Thus, the 28S rDNA data presented here
represent the most comprehensive sampling of proteocephalideans to date.

Methods

Taxon sampling

The present study is based on the evaluation of a dataset of proteocephalideans collect-
ed during long-term studies carried out by the present authors and their co-workers,
especially as part of research activities linked to the NSF-PBI project “A Survey of the
Tapeworms (Cestoda: Platyhelminthes) from Vertebrate Bowels of the Earth” (2008
2014), which was aimed at mapping the global diversity of tapeworms. Despite signifi-
cant sampling effort covering all zoogeographical regions and the most important host
groups, the number of studied proteocephalideans that parasitize amphibians remains
relatively small due to the paucity of cestodes in these hosts. In addition, several newly
described proteocephalideans from the southern part of the Neotropical Region (Ar-
gentina) were not available for molecular studies. Among the 13 proteocephalidean
genera that are not represented in our sampling, none presently contains more than
two species (see Caira et al. 2012).

All taxa considered in this study are listed in Table 1. Most taxa included in de
Chambrier et al. (2004c¢) are included in the present analysis; however, some taxo-
nomical changes and novel identifications have taken place since this paper was pub-
lished: Proteocephalus pirarara (Woodland, 1935a) is now Scholzia emarginata (Dies-
ing, 1850); Ophiotaenia cf. gallardi is now Ophiotaenia sp.; Pseudocrepidobothrium sp.
is now Pseudocrepidobothrium ludovici Ruedi & de Chambrier, 2012; Megathylacus
brooksi Rego & Pavanelli, 1985 is now Megathylacus jandia (Woodland, 1934b); Spaz-
ulifer cf. maringaensis is now Spatulifer maringaensis Pavanelli & Rego, 1989. All but
five molecular samples are vouchered, and in 86% of cases the vouchers are the holog-
enophore (sensu Astrin et al. 2013).
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Molecular phylogenetic analyses

Total genomic DNA extraction, PCR amplification, and sequencing were done as
outlined in Scholz et al. (2013). Eighty-three published and 30 newly generated 28S
rDNA sequences were combined and analysed in conjunction (see Table 1 for Gen-
Bank accession numbers and further details). Acanthobothrium sp. (‘Onchoproteo-
cephalide’), Phyllobothrium lactuca Beneden, 1850 (Phyllobothriidea) and “Tetrap-
hyllidea” gen. sp. were used as outgroup taxa. Sequences were aligned with MAFFT
(Multiple Alignment using Fast Fourier Transform, http://www.ebi.ac.uk/Tools/msa/
mafft/) using the default settings. An alignment mask excluding sites of uncertain
positional homology was generated using ZORRO (Wu et al. 2012). ZORRO uses
a pair Hidden Markov Model and a weighted sum of pairs scheme (guided by a refe-
rence tree) that sums up the probability that a given alignment column appears over
the total alignment landscape, thus providing an objective estimate of whether po-
sitions consist of correctly aligned, homologous residues. Default settings were used
except for the invocation of the — sample option; positions with confidence scores
< 0.4 were excluded from subsequent analyses. MRMODELTEST v. 2.3 (Nylander
2004) was used to select models of sequence evolution using the Akaike Information
Criterion. Bayesian inference (BI) analysis was performed using MRBAYES version
3.2 (Ronquist and Huelsenbeck 2003) using the GTR model of sequence evolution
with proportion of invariant sites and gamma-distributed rate variation amongst
sites (nst = 6, rates = invgamma). Default prior settings and heating schemes were
used. Two parallel runs were performed for 10,000,000 generations and sampled
every 1,000 generations. The burn-in was defined as the point at which the average
standard deviation of split frequencies were < 0.01. Consensus trees were construc-
ted using the 50% majority rule and nodes with < 0.95 posterior probabilities (pp)
were collapsed. Leaf-stability tests, implemented in P4 (Foster 2004), were carried
out to identify unstable taxa. Given a set of trees, for each set of four taxa, the fre-
quency of the four possible resolutions of quartets was calculated. For each taxon,
the highest percentages for quartets including that taxon were averaged and listed as
“Maximum”. Therefore, unstable taxa across the trees were considered to be those
that have lower average maximum percentages. In this study, the three taxa with the
lowest “Maximum” values were eliminated from analyses in order to increase nodal

support for the remaining groupings (Wilkinson 1996).

Morphological analysis

Taxonomic identification was performed on specimens fixed and mounted on mi-
croscope slides according to de Chambrier (2001). Uterine development was char-
acterized according to de Chambrier et al. (2004c) but a new “intermediate type”
was recognized and is described below (see Fig. 2). The relative size of the ovary, i.e.
the ovary to proglottid surface ratio, was calculated for each species according to the
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method described in de Chambrier et al. (2012). Approximate values might be due to
inaccurate drawings or fixation methods reported by the original authors. Eggs were
examined in distilled water.

Data Resources

The data underpinning the analysis reported in this paper are deposited in the Dryad
Data Repository at http://dx.doi.org/10.5061/dryad.dv44b.

Results

Molecular phylogeny

The complete 28S rDNA dataset comprised 110 ingroup taxa (from 54 genera, repre-
senting all 13 currently recognized subfamilies) and three outgroup taxa. Importantly,
46 genera were represented by their type species (see Table 1). The alignment consisted
of 1937 characters of which 420 were excluded, leaving 1517 for the analyses.

In an initial BI analysis, several nodes had posterior probabilities (pp) < 0.95,
resulting in a tree with only 60 well-supported nodes (see Suppl. material 1: Fig.1).
In order to identify unstable taxa for subsequent exclusion, a leaf stability test was
conducted. This revealed Vermaia pseudotropii (Verma, 1928), Sciadocephalus megalo-
discus Diesing, 1850 and Manaosia bracodemoca Woodland, 1935 to be the least stable
taxa (see Suppl. material 2: Table 1). Curiously, the position of the longest branch-
ing taxon, Sandonella sandoni (Lynsdale, 1960), was very stable (Fig. 1b inset; Suppl.
material 1: Fig.1, Suppl. material 2: Table 1). The positions of the excluded taxa were
as follows: Vermaia pseudotropii was in an unresolved position at the base of the tree,
Sciadocephalus megalodiscus was in an unresolved position in a clade composed of the
ingroup taxa to the exclusion of Gangesiinae Mola, 1929 and Acanthotaeniinae Freze,
1963, and Manaosia bracodemoca was in an unresolved position in the large subclade
of Clade D (Suppl. material 1: Fig.1).

In a subsequent BI analysis, in which the above-mentioned three taxa had been
excluded, three nodes had improved support (= 0.95 pp), resulting in 63 well-sup-
ported nodes in total (Fig. 1a, b). Thus, further topology descriptions are based on the
better-supported tree in which nodes of particular interests were labeled Clades A-P
(Fig. 1la, b). Specifically, those better-supported nodes concern the positions of (i)
Postgangesia inarmata de Chambrier, Al-Kallak & Mariaux, 2003, (i) Ritacestus ritaii
(Verma, 1926), and (iii) the sister-group relationship between Choanoscolex sp. and
Nomimoscolex sudobim Woodland, 1935 (Fig. 1a, b; Suppl. material 1: Fig.1). Thus,
the Gangesiinae were shown to be non-monophyletic except for a clade composed of
Electrotaenia malopteruri (Fritsch, 1886), Silurotaenia siluri (Batsch, 1786) and Gan-

gesia spp. (Fig. 1a).
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Figure . Bayesian inference of partial (domains 1-3) 28S rDNA sequences of a reduced taxon set of
proteocephalideans (unstable taxa Sciadocephalus megalodiscus, Vermaia pseudotropii and Manaosia bra-
codemoca have been removed) performed using MrBayes version 3.2 using the GTR + I + G model of
sequence evolution. Two parallel runs were performed for 10,000,000 generations; 4,000,000 generations
were discarded as burnin. Branches with posterior probability (pp) support below 95% are collapsed; pp
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are indicated below branches. Asterisks mark new sequences. Red letters A to P refer to specific nodes
discussed in the text. Red circles refer to the acquisition of “Type 2” uterus development; purple circles:
acquisition of “intermediate type” uterus development; yellow circle: uterus development unknown (see
Discussion). A mute phylogram of the same tree is inserted and the long branch leading to Sandonella

sandoni is marked with an asterisk.
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The three earliest diverging lineages were formed of Pangasiocestus romani Scholz
& de Chambrier, 2012 and the Acanthotaeniinae, where the Acanthotaeniinae were
possibly non-monophyletic, split into a monophyletic Kapsulotaenia Freze, 1965, and
a monophyletic assemblage of Acanthotaenia shipleyi + Australotaenia bunthangi + Ros-
tellotaenia spp. (posterior probability = 0.88; not shown), but where all three lineages
took an unresolved position at the base of the tree.

The Gangesiinae formed three paraphyletic lineages composed of Rizacestus ritaii,
Postgangesia inarmata, and a clade composed of Electrotaenia malopteruri, Silurotaenia
siluri and Gangesia spp. (Fig. 1a), to the exclusion of the remainder of the tree (Clade A).

The remainder of the tree (Clade A) was structured as follows: The earliest diverging
group consisted of Sandonella sandoni (Lynsdale, 1960) which parasitizes an ancient os-
teoglossiform fish in Africa and which formed the sister group to Clade E. The latter was
composed of two monotypic sister taxa Glanitaenia de Chambrier, Zehnder, Vaucher &
Mariaux, 2004 (Proteocephalinae) and Paraproteocephalus Chen in Dubinina, 1962 (Cor-
allobothriinae), both of which parasitize silurid catfishes in the Palearctic Region. These,
in turn, formed the sister group to Clade F, which was composed of the Proteocephalus ag-
gregate (see de Chambrier et al. 2004c¢) from Holarctic teleosts, including two newly added
species from North America, P. fluviatilis Bangham, 1925 and P. pinguis La Rue, 1911.

The next well-supported group structured of Clade G, which was exclusively com-
posed of taxa from African siluriforms belonging to three subfamilies (Corallobothrii-
nae, Marsypocephalinae and Proteocephalinae), and which formed the sister group to
Clade H. The latter was composed of Scholzia emarginata, Proteocephalus hemioliopteri
de Chambrier & Vaucher, 1997 and Zygobothrium megacephalum Diesing, 1850, all
of which are anatomically similar parasites of the Neotropical catfish Phracrocepha-
lus hemioliopterus (Bloch & Schneider, 1801), but which are traditionally placed in
different subfamilies, and of a monophyletic group of Nearctic proteocephalideans
(Clade 1), all parasitizing channel catfish (Ictaluridae); members of Clade I are placed
in the Corallobothriinae because they possess a metascolex.

The most derived assemblage, Clade B, remained largely unresolved, with five early
diverging lineages composed of (i) Ephedrocephalus microcephalus Diesing, 1850, (ii)
Crepidobothrium gerrardii Monticelli, 1900, (iii) a clade of Pseudocrepidobothrium spp.
+ Proteocephalus macrophallus (Diesing, 1850), (iv) Clade ], composed of Rudolphiel-
la spp. + Cangatiella arandasi Pavanelli & Machado dos Santos, 1991 + Brooksiella
praeputialis (Rego, Santos & Silva, 1974), and (v) Clade K, composed of Ophiotaenia
spp., Macrobothriotaenia ficta (Meggitt, 1931), all parasites of snakes from various
zoogeographical regions, and 7haumasioscolex didelphidis Caneda-Guzmdn, de Cham-
brier & Scholz, 2001, the only proteocephalidean found in possums; (i)—(iv) were
exclusively from the Neotropics.

The large polytomy found in Clade C was, to a large degree, composed of pro-
teocephalideans parasitizing South American fishes (predominantly siluriforms of the
families Pimelodidae, Auchenopteridae and Doradidae). Clade L formed the earliest
diverging lineage of Clade C and was composed of Travassiella jandia (Woodland,
1934), Houssayela sudobim (Woodland, 1935) and Proteocephalus kuyukuyu Wood-
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land, 1935 and P. renaudi de Chambrier & Vaucher, 1994. The sister group to the
large polytomy in Clade Cwas formed of Clade M, which included Jauella glandicepha-
lus Rego & Pavanelli, 1985, Nomimoscolex suspectus Zehnder, de Chambrier, Vaucher
& Mariaux, 2000, N. dorad (Woodland, 1935) and N. piraecba Woodland, 1934.
The remainder of Clade C formed largely a comb which comprised, amongst others,
Testudotaenia testudo (Magath, 1924), a parasite of North American soft-shelled turtles
and bowfin (Amia calva), a clade of Proteocephalus sp. and Proteocephalus perlexus La
Rue, 1911, parasitizing North American catfish and bowfins respectively, two distinct
clades of Ophiotaenia La Rue, 1911, Clade N (parasites of South American snakes) and
Clade O (parasites of European and Nearctic snakes), and two unresolved Ophiotaenia
species, O. filaroides La Rue, 1909 and O. saphena Osler, 1931, parasitizing North
American salamanders and frogs, respectively.

The possible monophyly of 17 proteocephalidean genera could be examined, at
least preliminarily, because two or more species of these genera were included in our
analyses (numerous proteocephalidean genera are monotypic or species-poor). Ac-
cording to the current taxon sampling, the following genera, listed alphabetically, ap-
peared monophyletic (the numbers in parentheses indicate the total number of spe-
cies sequenced and the number of distinct lineages in which species of a given genus
appeared): Corallobothrium Fritsch, 1886 (2/1), Gangesia Woodland, 1924 (2/1),
Gibsoniela Rego, 1984 (2/1), Kapsulotaenia Freze, 1965 (3/1), Marsypocephalus Wedl,
1861 (2/1), Megathylacoides Jones, Kerley & Sneed, 1956 (3/1), Peltidocoryle Dies-
ing, 1850 (2/1), Proteocephalus aggregate (11/1), Rostellotaenia Freze, 1963 (2/1) and
Spasskyellina Freze, 1965 (2/1) (see discussion below for the latter). The monophyly
of Rudolphiella Fuhrmann, 1916 (2/1) was not rejected by these results. In contrast,
Pseudocrepidobothrium Rego & Ivanov, 2001 (2/2) is paraphyletic and the genera Am-
photeromorphus Diesing, 1850 (4/3), Choanoscolex La Rue, 1911 (2/2), Nomimoscolex
Woodland, 1934 (9/7), Ophiotaenia (12/10) and Proteocephalus (20/7) appeared to be

polyphyletic based on their current classification.

Morphological analysis

At the morphological level, the ovary to proglottid surface ratio ranged between 2.0% in
Ophiotaenia grandis La Rue, 1911 to 20.8% in Zygobothrium megacephalum (Table 1).
Examination of new whole mounts also identified a novel form of the uterine develop-
ment in addition to those described by de Chambrier et al. (2004c). This development
is characterized as follows: in immature proglottids, the uterine stem forms an elongated
concentration of chromophilic cells; in premature proglottids the chromophilic cells
concentrate in areas where lateral uterine extensions will develop; in mature proglottids,
a tubular uterine stem appears and develops small thin-walled lateral diverticula topped
with a conspicuous concentration of numerous intensely stained cells; in pregravid and
gravid proglottids, the lateral diverticula grow and eventually occupy most of the pro-
glottid width (Fig. 2b, d). We call this development “intermediate type”.
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Figure 2. Schematic representation of proteocephalidean uterus development (a—c). The uterus ob-
served in early immature, premature, mature, pregravid and gravid proglottids is represented from left
to right. The major differences are observed in premature and mature proglottids (dotted line): a and ¢
Development of Type 1 and 2, respectively (de Chambrier et al. 2004c) b Development of an “intermedi-
ate type” as observed in Pangasiocestus and Australotaenia (this paper) d Typical “intermediate type” uterus
in a mature proglottid of Australotaenia bunthangi de Chambrier & Scholz, 2012 (holotype, MHNG-
PLAT-75447). Scale in micrometers.
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Discussion

Since the publications of de Chambrier et al. (2004¢c) and Hypsa et al. (2005), no at-
tempt has been made to unravel the phylogenetic structure of proteocephalideans. Two
immediate observations can be made when comparing our results to the de Chambrier
et al. (2004c) tree: (1) an overall better resolution is achieved with the increased taxon
sampling; and (2) all clades that were supported in de Chambrier et al. (2004c) remain so
in these results. However, a number of differences can also be noted as discussed below.

Early diverging lineages — Acanthotaeniinae and Gangesiinae

In both de Chambrier et al. (2004c) and the present study, the Gangesiinae from Si-
luriformes, mostly in Indomalaya and Palearctic (but with one species in Afrotropics),
and Acanthotaeniinae from reptiles in Australasia, Afrotropic and Indomalaya are early
diverging lineages. However, their order is now reversed with the Acanthotaeniinae, to-
gether with Pangasiocestus romani (Gangesiinae), taking the earliest diverging position.
Thus, the present results suggest either the paraphyly of the subfamily or the necessity
to handle Pangasiocestus Scholz & de Chambrier, 2012 as an independent lineage. This
monotypic genus was initially placed in the Gangesiinae based on its scolex morpho-
logy, which is characterized by a large rostellum-like apical organ. However, it differs
from all gangesiine in a number of morphological characteristics. These include the
peculiar, rosette-like scolex with a large, discoidal apical organ devoid of hooks; a very
weakly-developed inner longitudinal musculature, which does not form bundles (unli-
ke those of other gangesiine genera, which form numerous bundles of muscle fibers;
see Scholz et al. 1999, de Chambrier et al. 2003, de Chambrier et al. 2004b, Ash et al.
2012 for more details); and the variable size of testes, which are considerably smaller
and denser in the lateral than in the median field. These morphological features support
the separation of Pangasiocestus from the Gangesiinae, as shown by our genetic analysis,
despite the superficial resemblance of its scolex with that of other gangesiine cestodes.

It should also be noted that, together with Australotaenia de Chambrier & de
Chambrier, 2010, Pangasiocestus has a particular, intermediate development of the
uterus (see below), that contrasts that of all other Gangesiinae and Acanthotaeniinae,
which have a Type 1 development of the uterus. P. romani was found in a catfish in
Cambodia, and species of Australotaenia are distributed in Australia and Indomalaya,
which would suggest an Old World origin for proteocephalideans. This scenario is
consistent with the results of de Chambrier et al. (2004c) and contradicts the hypoth-
esis of Brooks (1978), who favored a South American origin of the group.

The Proteocephalus aggregate and the enigmatic Sandonella and Sciadocephalus

The position of Sandonella Khalil, 1960 as a separate long-branching lineage, as already
observed by de Chambrier et al. (2008), was confirmed in the present study. Sandonella
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formed the sister group to the strongly supported Clade E, which is composed of spe-
cies of the Proteocephalus aggregate (Clade F) that are parasites of teleosts in the Hol-
arctic Region, and monotypic genera Glanitaenia and Paraproteocephalus, which are
parasites of silurid catfish in the Palearctic Region. The members of the Proteocephalus
aggregate (= Proteocephalus sensu stricto) will retain the generic name since this clade
undoubtedly includes 2 ambiguus (Dujardin, 1845), the type species of Proteocepha-
lus, as shown by Scholz et al. (2007). The addition of two Proteocephalus species of
Nearctic origin [P fluviatilis from centrarchids (Perciformes) and P pinguis from pikes
(Esociformes)] to the dataset revealed their affinity with the Proteocephalus aggregate.
This close phylogenetic relationship of the Palearctic and Nearctic taxa analyzed is in
accordance with their similar morphology (Freze 1965, Scholz and Hanzelovd 1998).
The diversity of hosts in Clade E is surprising when compared to other subgroups of
proteocephalideans that generally diversify in discrete groups of catfish. In this case a
Holactic radiation of these cestodes in multiple groups of fishes has occurred.

Sandonella sandoni was placed in a new genus and subfamily, Sandonellinae, most-
ly because of the characteristic posterior position of its vitellarium, which is unique
among proteocephalideans and somewhat resembles that of the Cyclophyllidea in be-
ing formed by two compact, yet deeply lobulated postovarian masses near the posterior
margin of the proglottids (Khalil 1960, see also fig. 6 in de Chambrier et al. 2008). B4
and Marchand (1994) observed the unique structure of S. sandoni spermatozoa (with
a single axoneme) and de Chambrier et al. (2008) reported its widespread presence in
Heterotis niloticus (Cuvier, 1829) throughout Africa and described additional origi-
nal morphological characters such as a scolex with a highly modified apical structure
formed by 4 muscular retractile lappets, a dilated, vesicle-like proximal part of the ex-
ternal sperm duct, a unique morphology of the uterus, and a complex proglottization
with mixed smaller and larger (wider) proglottids. Despite these peculiarities, as well
as its derived 28S sequence, the position of S. sandoni as a sister group of Holarctic
Proteocephalinae was established by de Chambrier et al. (2008) and is not questioned
by these results. The presence of this relatively derived parasite in a basal fish lineage
(Osteoglossiformes) is further evidence that the evolution of proteocephalideans does
not closely match that of their hosts. It should be noted though that the phylogenetic
position of this taxon has not yet been tested in more global cestode phylogenies (i.e.
Waeschenbach et al. 2012, Caira et al. 2014).

Sciadocephalus megalodiscus parasitizing Cichla monoculus Agassiz, 1831 (Perci-
formes) in the Neotropical region and described by Diesing (1850) is another enig-
matic taxon. In its redescription Rego et al. (1999) noted several peculiar morpho-
logical features, such as an umbrella-shaped metascolex, a uterus rapidly resolving into
capsules, and a musculature with numerous isolated longitudinal fibers, and placed the
species in the Corallobothriinae based on the presence of a metascolex [which is, how-
ever, a homoplastic character (Scholz et al. 2013)] and the medullary position of the
genital organs. In our initial evaluation, this taxon appeared as the earliest diverging
lineage of Clade A (see Suppl. material 1: Fig.1) but it has also been identified as one
of the three least stable taxa in the analysis and had therefore been excluded from fur-
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ther analyses. Nevertheless, this possible distinct position of the species among proteo-
cephalideans, supported by its combination of peculiar morphological characteristics,
might justify its future placement in a separate, higher taxonomic group.

African fish proteocephalideans

Our considerably enlarged dataset of fish proteocephalideans from Africa covers most
of their diversity and includes all genera reported from the Afrotropical Region. It
revealed that all but one species (the gangesiine Electrotaenia malopteruri — see above)
from African siluriform fish form a well-supported, relatively basal Clade G. This is one
of the most important novelties of the present study: species placed in three subfamilies
are phylogenetically closely related despite important morphological differences. These
are: i) the Corallobothriinae (two species of Corallobothrium including its type species
from malapterurid electric catfish) characterized mainly by a well-developed metas-
colex and medullary testes; ii) the Marsypocephalinae (tow species from clariids) with
a simple scolex and cortical testes; and iii) the Proteocephalinae (three Proteocephalus
species from clariid, claroteid and mochokid catfish, and Barsonella lafoni de Chambri-
er, Scholz, Beletew & Mariaux, 2009 from Clarias spp.), with a relatively simple scolex
and medullary testes (de Chambrier et al. 2009b). This grouping of taxa with markedly
different scoleces as well as conspicuously distinct position of the testes (medullary
versus cortical) is further evidence that morphological characteristics related to the
scolex and internal topology of genital organs are homoplastic and should be inter-
preted with great caution. A similar situation was demonstrated in Macrobothriotaenia
ficta, a snake parasite from Indomalaya, which possesses a tetraphyllidean-like scolex:
it is closely related to species of Ophiotaenia with a simple scolex (Scholz et al. 2013;
see also Clade K), but less so with Thaumasioscolex didephidis despite having a very
similar scolex morphology. The new results also indicate that zoogeography and host
associations may have played a much more important role in the evolutionary history
of proteocephalidean cestodes than previously thought (Freze 1965, Rego et al. 1998).

Parasites of the Neotropical pimelodid catfish Phractocephalus hemioliopterus

Neotropical catfish, in particular pimelodids, harbour the highest number of species
(and genera) of proteocephalidean cestodes. However, these parasites do not form
a monophyletic assemblage, even though most of them belong to our most derived
clade with unresolved internal relationships (see also Zehnder and Mariaux 1999, de
Chambrier et al. 2004c¢). The current study confirmed the polyphyly of these ces-
todes, including the markedly distant position of three species from the pimelodid
catfish Phractocephalus hemioliopterus (Clade H) from the remaining cestodes para-
sitizing other siluriforms from South America, as first observed in a much smaller
dataset by Hypsa et al. (2005).



42 Alain de Chambrier et al. / ZooKeys 500: 25-59 (2015)

As many as six species reported from P. hemioliopterus were included in our anal-
yses. Three of them, namely Proteocephalus hemioliopteri, Scholzia emarginata (both
Proteocephalinae) and Zygobothrium megacephalum (Zygobothriinae), differ markedly
from each other in their scolex morphology (see de Chambrier et al. 2005), yet form a
well-supported lineage (Clade H) together with Nearctic “corallobothriines” (Clade I).
Their phylogenetic position is, thus, more basal and distant from that of other proteo-
cephalideans parasitizing Neotropical teleosts.

The remaining three taxa that parasitize P. hemioliopterus, i.e. two species of Pseudo-
crepidobothrium (Proteocephalinae) and Ephedrocephalus microcephalus Diesing, 1850
(Ephedrocephalinae) group in an unresolved position towards the base of the South
American radiation. This suggests possible independent colonizations of this host. The
basal position of these parasites is in accordance with the fact that P. hemioliopterus is
one of the most ancient pimelodids, as suggested by fossil records dating from Middle
to Late Miocene (Lundberg and Littmann 2003).

Our data do not enable any reliable assessment regarding a possible host-parasite
coevolution, especially in the case of pimelodid catfishes and their Neotropical pro-
teocephalideans. A comparison of the interrelationships of the Pimelodidae based on
robust morphological and molecular evidence (Lundberg et al. 2011 and references
therein) with the present data does not reveal any obvious pattern of possible co-
evolutionary history. In fact, cestodes from closely related pimelodids such as species
of Pseudoplatystoma Bleeker, 1862 and Sorubimichthys planiceps (Spix & Agassiz, 1829)
are unrelated and belong to distant lineages (Table 1 and Fig. 1a, b).

Nearctic “corallobothriines” from channel catfishes (Ictaluridae)

Nearctic species from channel catfish form a well-supported, monophyletic lineage
(Clade I) composed of species of three genera, Essexiella Scholz, de Chambrier, Mar-
iaux & Kuchta, 2011, Megathylacoides and Corallotaenia Freze, 1965. However, the
Nearctic genera, conventionally placed in the Corallobothriinae because they possess
a metascolex, are not closely related to the monotypic Corallobothrium from the elec-
tric catfish, Malapterurus electricus Gmelin, 1789, in Africa and their morphological
resemblance is probably a result of convergent evolution (Scholz et al. 2011). In fact,
the subfamily Corallobothriinae groups species of unrelated genera (African Coral-
lobothrium in Clade G, three Nearctic genera in Clade I, Japanese Paraproteocephalus
in Clade E and Neotropical Megathylacus Woodland, 1934 in Clade D — Fig. 1a, b)
that share apparently homoplasious morphological characteristics, i.e. a well-developed
metascolex and a medullary position of genital organs as described above (Freze 1965,
Rego 1994, Rosas-Valdez et al. 2004).

As a consequence, a new taxon should be proposed to accommodate Nearctic
channel catfish proteocephalideans, which are apparently unrelated either to the true
corallobothriines (in fact now represented by C. solidum and a species to be described,
both from Africa) or to the various other proteocephalideans from freshwater teleosts
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in North America that are distributed throughout the phylogenetic tree (Clades F and
D — see Fig. 1a, b). Similarly, the position of Paraproteocephalus within the Corallo-
bothriinae will need to be reconsidered. This placement is likely to be due to conver-
gences in scolex shape, and the genus should be placed in the Proteocephaliinae.

Cosmopolitan reptilian proteocephalideans

The distribution of proteocephalideans in snakes is particularly interesting. Multiple
colonizations of reptiles, as already suggested by de Chambrier et al. (2004c), are confir-
med here and at least three main events (see Clades K, N and O) are shown in this study
(besides the case of Australotaenia). In each case, cestodes of snakes appear to be related
to various proteocephalideans of Neotropical catfishes and other teleosts (Fig. 1a, b).
The most interesting novel insight from our study in this context is the strong support
found for Clade K, composed almost exclusively of parasites from snakes (Viperidae,
Elapidae, Lamprophiidae and Xenopeltidae) throughout the world (with the exception
of Palearctic) and the unique switch to a mammalian host (Didelphidis marsupialis L.,
1758) in the northernmost Neotropical Region in the case of 7haumasioscolex didelphi-
dis. Colubridae are notably absent from this host list. This grouping of rather derived
snake parasites cannot be unambiguously explained by our data and may either be the
sign of a relatively recent colonization of unrelated groups in all continents or a trace
of a very ancient colonization of snakes. Even though all these species belong to the
Proteocephalinae because of the medullary position of their genital organs and the ab-
sence of a metascolex, they actually differ markedly from each other, especially in their
scolex morphology, and were placed in three separate genera (Freze 1965, de Cham-
brier 1989a, de Chambrier 1989b, Rego 1994, Caneda-Guzmadn et al. 2001, Scholz
et al. 2013). Two of these (Macrobothriotaenia Freze, 1965 and Thaumasioscolex) are
essentially characterized by peculiar scoleces. The position of Crepidobothrium gerrardii
(Monticelli, 1900), a parasite of Boidae that is also characterized by a distinctive scolex,
is not fully resolved but is possibly unrelated to this radiation.

Species of Ophiotaenia in colubrids from Holarctic (2 species — Clade O), Neotro-
pical dipsadids (2 species — Clade N), and Nearctic amphibians are possibly unrelated
and appear within a polytomy composed of numerous lineages of Neotropical fish
proteocephalideans. They are morphologically uniform and do not differ significantly
from the other species of Ophiotaenia in Clade K, as all of them have a similar scolex
and strobilar morphology, including relative ovary size (see de Chambrier et al. 2012
and Table 1). However, members of the larger radiation (Clade K) have a Type 1
uterus whereas those in the other clades have a Type 2 uterus. Consequently, and as
suspected (Ammann and de Chambrier 2008), it is clear that Ophiotaenia is a com-
posite genus and this name should be restricted to species of Clade O, which includes
the type species Ophiotaenia perspicua La Rue, 1911 from Neartic colubrids. Species
in Clade O have proportionally larger ovaries than those in the remaining species of
“Ophiotaenia’ (Clades K, N), which will need to be allocated to other (new) genera.
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“Neotropical fish” superclade

In addition to the above-mentioned “reptilian” lineages, our derived Clade B is com-
posed of a number of Neotropical parasites of catfishes and a few other teleosts, where
the highest species richness can be found in the Pimelodidae (Siluriformes) (de Cham-
brier and Vaucher 1999, Rego et al. 1999). A few parasites from amphibians and turt-
les, as well as Proteocephalus perplexus La Rue, 1911 from bowfin (Amia calva L., 1766),
also belong to this large polytomy. de Chambrier et al. (2009a) showed that Zestudo-
taenia Freze, 1965 of the monotypic subfamily Testudotaeniinae was part of a North
American clade of proteocephalid parasites of fishes despite its distinctive morphology.
These results do not contradict this hypothesis although Zestudotaenia’s closest relatives
cannot be inferred from the present tree.

Despite our enlarged sample size, the present study did not resolve the relation-
ships of most Neotropical proteocephalideans from teleosts, and in this respect does not
significantly improve the results of Zehnder and Mariaux (1999), de Chambrier et al.
(2004c¢) or Hypsa et al. (2005). Still, some nodes are now well supported, e.g., species
of Brooksiella Rego, Chubb & Pavanelli, 1999, Rudolphiella and Cangatiella Pavanelli
& Machado dos Santos, 1991 (Clade ]), species of Travassiella Rego & Pavanelli, 1987,
Houssayela Rego, 1987 and two species of “Proteocephalus” (Clade L), and three species
of the largely polyphyletic Nomimoscolex, including V. piraeeba (type species), together
with Jauella glandicephalus (Clade M). However, these well-supported lineages are com-
posed of species with dissimilar morphologies and often belong to different subfamilies
(as many as three in Clade /). In addition, they parasitize fish of different genera, fami-
lies or even orders, which makes it impossible to define them logically for now.

Other molecular markers, possibly large mtDNA fragments, as used by Waeschen-
bach et al. (2012), are obviously needed if the internal phylogenetic structure of the
derived Clade B is to be unravelled, although the possibility that this node represents
a hard-polytomy should also be considered. A similar situation, i.e. support for some
of the internal nodes but a lack of support for the major lineages, was observed for the
Caryophyllidea, another order of fish tapeworms, despite the use of several nuclear and
mitochondrial markers. These commonly employed molecular markers did not contain
sufficient phylogenetic signal due to substitution saturation (Brabec et al. 2012).

Catfishes (order Siluriformes) represent one of the key host groups for proteocephal-
idean cestodes, but there is no obvious coevolutionary pattern between them. This lack of
closer host-associations at a higher taxonomic level is not surprising because catfishes form
an extraordinarily diverse group of teleosts with over 3,000 valid recognized species (Es-
chmeyer et al. 2004). The interrelationships of large groups in the Siluroidei, which com-
prises almost all catfish hosts of proteocephalideans, including the Neotropical pimelodids
and heptapterids (Pimelodoidea) and African taxa (“Big Africa” clade with cestode-hosting
families Mochokidae, Malapteruridae, and Auchenoglanidae and phylogenetically distant
Clariidae) are poorly resolved (Sullivan et al. 2006). Molecular data suggest an ancient si-
luriform presence, if not origin, in South America, but phylogenies inferred from rag gene
sequences did not identify any African-South American catfish clade (Sullivan et al. 2000).
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Monophyly/polyphyly of proteocephalidean genera

Even though 10 genera (see above) appeared to form monophyletic assemblages, all
but one (Proteocephalus aggregate) were represented by a very low number of species
(2-3), and the validity of some of them may still have to be reconsidered when a denser
sampling is available. In contrast, all species-rich genera with at least nine species ana-
lyzed (Nomimoscolex, Ophiotaenia and Proteocephalus sensu lato), as well as Amphotero-
morphus (4 species), appeared to be polyphyletic and are distributed across numerous
lineages, even though their morphology and host-associations are quite similar.

A situation comparable to that of Proteocephalus (species of this genus belong to
at least 7 distinct lineages — Fig. 1a, b) starts to emerge in Nomimoscolex. As previ-
ously noted by Zehnder et al. (2000), our Nomimoscolex samples are distributed across
several distinct lineages in Clade D. The type species N. piraeeba, belonging to the
well-supported Clade M, and all Nomimoscolex loosely grouped across other lineages
in Clade D will ultimately have to be placed in other genera. At this point, however,
objective morphological characters are still lacking to recognize these worms.

This work also confirms the polyphyly of Monticellia La Rue, 1911 in its present
form with M. spinulifera Woodland, 1935 and M. lenha Woodland, 1933 found in
siluriforms forming well-supported Clade P, which is distantly related to the type spe-
cies of the genus, M. coryphicephala (Monticelli, 1891) from characids. The two former
species belong to Monticellia since de Chambrier and Vaucher (1999) synonymised
Spasskyellina Freze, 1965 with Monticellia. Spasskyellina was later considered as valid
by de Chambrier et al. (2006), without considering the 1999 work, thus generating
confusion about the status of the genus. Given the obvious morphological support that
confirms our molecular results, we propose splitting Monticellia in order to reflect this
situation and to formally resurrect here the genus Spasskyellina, that was erected in 1965
by Freze (Freze 1965) for those taxa possessing gladiate spinitriches (de Chambrier and
Scholz 2008, Chervy 2009) on margins of their suckers, i.e. Spasskyellina lenha (Wood-
land, 1933) Freze, 1965 (type species) and Spasskyellina spinulifera (Woodland, 1935a)
Freze, 1965. They are presented under this name in Fig. 1b. Additionally, Spasskyellina
mandi Pavanelli & Takemoto, 1996 is confirmed in this revalidated genus because of its
obviously similar morphology, contrary to previous observations (Pavanelli and Take-
moto 1996, de Chambrier and Vaucher 1999). Since molecular data for other species
of Monticellia are not available, they are provisionally kept in that genus.

Evolution of morphological characters

Regarding the evolution of morphological characters, the most obvious and evolution-
arily important observation derived from Fig.1a, b is the presence of a rostellar appara-
tus with retractor muscles in all the basal taxa. Such structures (Fig. 3A—C), although
with some variation, are characteristic of all Acanthotaeniinae and Gangesiinae and are
lost in all more derived Proteocephalidae (Clade A) without exception. Although apical
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Figure 3. A-C Scoleces with rostellum-like organs and retractor muscles. A Without hooks. Rizacestus
ritaii (Verma, 1926) (modified from de Chambrier et al. 2011) B With hooks. Gangesia bengalensis
(Southwell, 1913) (modified from Ash et al. 2012) € Partly-invaginated. Sagittal section, ho: hooks; rm:
retractor muscles; lm; longitudinal muscles. Vermaia pseudotropii (Verma, 1928) (modified from Ash et
al. 2010) D-F Egg modifications D Egg cluster in a capsule. Vandiermenia beveridgei (de Chambrier
& de Chambrier, 2010) (modified from de Chambrier and de Chambrier 2010) E Egg with two polar
projections. Brooksiella praeputialis (Rego, Santos & Silva, 1974) (modified from de Chambrier et al.
2004a) F Eggs with two polar projections. Rudolphiella spp. from Calophysus macropterus (two eggs above)
and Megalonema platanum, respectively (modified from Gil de Pertierra and de Chambrier 2000) G-H
Ovary size G Relatively large ovary (16.4% proglottid surface) in Gangesia agraensis Verma, 1928 (modi-
fied from Ash et al. 2012) H Relatively small ovary in Ophiotaenia lapata Rambeloson, Ranaivoson &
de Chambrier (2012) (2.8% of proglottid surface) (modified from Rambeloson et al. 2012). Scale-bars:
A, B, C =100 pm; D, E = 20 pm; F = 50 pm; G = 200 pm; H = 500 pm.
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structures are present in some other members of the order such as in the Proteocephalus
aggregate from the Holarctic (see Scholz et al. 1998), P sophiae de Chambrier & Rego,
1994 from South America, P glanduligerus (Janicki, 1928) from Africa, Jauella Rego
& Pavanelli, 1985 or Nomimoscolex sensu stricto as defined by Zehnder et al. (2000)
(Clade M), these are very different, especially because they lack a supporting muscu-
lar apparatus (retractors) (de Chambrier and Rego 1994, de Chambrier and Vaucher
1999, Scholz et al. 2009). This kind of functional simplification, in this case due to
the loss of apical attachment structures, is known from other cestode groups and has
appeared repeatedly, for example in a number of derived cyclophyllidean genera (Jones
etal. 1994), even though these structures are unlikely to be homologous.

The development of the uterus seems to represent one of the key features that re-
flects the evolution of proteocephalideans and characterizes their major lineages. The
evolution of uterine structure as described in de Chambrier et al. (2004c¢) is essentially
supported in the present analysis although with some added complexity. Both putative
acquisitions of Type 2 uterine development observed by these authors are observed in
our extended analysis (see red circles in Clade E and D) but the inclusion of new taxa
revealed a third instance of transition of this character in Clade I in a well-supported
group of Nearctic Corallobothriinae. Furthermore, the situation for taxa belonging to
Clade L is unclear with two of them harbouring a Type 2 uterus, one a Type 1 uterus
(Travassiella jandia) and one with missing information (gravid proglottids of Prozeo-
cephalus kuyukuyu have never been found).

Two basal taxa belonging to Acanthotaeniinae and Gangesiinae show a different,
as yet undescribed, form of uterus development that we call “intermediate type” (see
purple circles on Fig. 1a). This development differs from Type 1 development by the
presence of chromopbhilic cells at points of origin of the lateral extensions of the uterus
before the lateral stems are visible. It differs from Type 2 development in an early
appearance of the main tubular uterus axis (Fig. 2). Assuming that the “intermediate
type” might be a transitional stage between both uterus development types, a possible
interpretation of this observation would be that a general trend toward the acquisition
of Type 2 uterus development exists throughout the proteocephalidean diversity.

New morphological characters that are potentially useful for proteocephalidean
taxonomy are notoriously difficult to define. However, Ammann and de Chambrier
(2008) observed differences in the relative surface area of the ovary in relation to the
total surface of the proglottids (see Fig. 3G—H). In their study, this ratio was on average
five times lower in 27 species of Ophiotaenia from snakes in the New World compared
to Palearctic members of the Proteocephalus aggregate from teleosts. More recently,
de Chambrier et al. (2012) compared 66 of the nominal species of Ophiotaenia from
Old and New World reptilian hosts with 69 species of Proteocephalus from freshwater
teleosts. They noted that the ovaries of species parasitic in non-Palearctic snakes are
proportionally smaller than those in species of Proteocephalus parasitic in teleost fishes
from all over the world and also considerably smaller than that of congeneric species
from European hosts.
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In the present study, data on the relative size of the ovary are provided for all taxa
analyzed (see Table 1). Results from two former studies (Ammann and de Chambrier
2008, de Chambrier et al. 2012) are verified here in the context of a larger dataset
covering more genera and subfamilies. We can conclude that the ratio of the ovary
surface to the proglottid surface in mature proglottids largely corresponds to major
host groups and thus represents a promising character of possible phylogenetic im-
portance that should be routinely reported in future descriptions or redescriptions of
proteocephalidean taxa (for methodology of taking this ratio — see de Chambrier et al.
2012). However, patterns in the relative size of the ovary of species from different host
groups discussed above are not universal and notable exceptions exist. For example, the
smallest known ovary is found in Margaritaella gracilis Arredondo & Gil de Pertierra,
2012 from the catfish Callichthys callichthys (L., 1758) (ratio of 0.6—1.8%; Arredondo
and Gil de Pertierra 2012) and not in a species from snakes.

Characters related to eggs and their morphology have been shown to be impor-
tant in the systematics of proteocephalidean cestodes (Gil de Pertierra and de Cham-
brier 2000, Scholz and de Chambrier 2003, de Chambrier et al. 2005, de Chambrier
2006, de Chambrier and de Chambrier 2010, Scholz et al. 2011) but have generally
been underexploited and remain poorly known for many species. Here, they allow the
characterization of a well-supported node grouping species of Rudolphiella, Brooksiella
and Cangatiella (Clade ]), because all these taxa possess very typical eggs with polar
extensions (Fig. 3E, F). To our knowledge, no other proteocephalidean shows such
egg characteristics and thus the presence of polar extensions can be considered as a
synapomorphy that defines this group. Furthermore, species in these genera all present
a ventral vitellarium and Brooksiella and all species of Rudolphiella (but not Canga-
tiella) have a folliculate ovary and a metascolex (Gil de Pertierra and Viozzi 1999, de
Chambrier et al. 2004b). These morphological characteristics seem to strongly support
this clade.

Another kind of egg (in capsules) (Fig. 3D) is found in the basal Australasian Ka-
psulotaenia parasites of varanids and is also known in Vandiermenia de Chambrier &
de Chambrier, 2010 and some “Ophiotaenia’ of Australian snakes. In the Neotropics
a similar evolution of eggs (in groups of 4-6) is known in Zhaumasioscolex, the sin-
gle known proteocephalidean of marsupials. The phylogenetic value of this character
remains presently doubtful as some of these worms belong to isolated clades (Scholz
et al. 2013). It may however represent an interesting convergent adaption in proteo-
cephalidean with terrestrial life cycle, although it curiously did not seem to have ap-
peared outside of the Autralasian (and maybe Neotropical) region despite the presence
of terrestrial proteocephalideans in other areas.

Unfortunately, most lineages revealed in the present study lack such obvious syna-
pomorphies due to a high degree of homoplasy across numerous morphological char-
acters previously used for distinguishing individual genera and subfamilies, such as
scolex morphology and the position of reproductive organs in relation to the inner
longitudinal musculature (Rego 1994, 1999). Thus, the delineation of many taxono-
mic groups using morphological features remains currently impossible.
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Conclusions

This study is based on the most representative molecular dataset of proteocephalid-
ean taxa ever sampled (33% of all valid species, almost 80% of genera and all extant
subfamilies). However, some groups are still under-represented, mainly because of the
difficulties in obtaining fresh samples, either due to their low prevalence and the pro-
tection or rare occurrence of their hosts. Probably the most serious gap in our dataset
is the small number (two species) of proteocephalideans parasitizing amphibians (frogs
and salamanders). These are usually extremely rare, with less than 1% of host infected
(de Chambrier et al. 2006, Marsella and de Chambrier 2008). Similarly, none of the
four species of Ophiotaenia from lizards (excluding Varanus spp.) were available for this
analysis. In contrast, our geographical coverage was rather comprehensive thanks to the
intensive sampling effort during the last decades. This considerably enlarged dataset
has helped to better characterize several lineages, but the relationships of many taxa,
especially those in the most derived Clade B, largely comprising parasites of catfishes in
the Neotropical Region, remain largely unresolved.

The evolutionary history of the order has been apparently much more complicated
than one would expect, considering a relatively small number (about 315) of extant
species. Although we did not formally examine the host-parasite coevolution of pro-
teocephalideans here, our tree strongly suggests the occurrence of several colonization
events of poikilothermic vertebrates as well as repeated colonization of the principal
zoogeographical regions with the most recent, and probably explosive, radiation in
Neotropical teleosts, especially pimelodid catfishes.

Based on 28S rDNA sequences, these results support several new insights into the
evolution of proteocephalideans. Unfortunately, they also cast a number of doubts on
our present understanding of the classifications within this group: most recognized
subfamily-level taxa are, at best, only partially supported. A notable consequence is that
scolex morphology and the position of internal organs (testes, uterus and vitelline fol-
licles in relation to the inner longitudinal musculature) should be considered with cau-
tion when used for higher-level taxonomy, i.e. to distinguish genera and subfamilies.
Clearly a complete taxonomical reorganization of the order is needed. This will likely
include the designation of a number of well-supported families and the removal of the
subfamilial terminology. Any formal reorganization of the order, however, would be
premature as long as a more complete multigene analysis remains to be performed. At
lower taxonomical levels, we nevertheless propose resurrecting the genus Spasskyellina
for three species of Monticellia (see above) but, for now, we consider that further no-
menclatural adaptations should be delayed until clearly supported groups, reinforced
by well-defined morphological characters, can be named and adequately characterized.

Results reported herein make it obvious that a new classification should not be
based on the characters traditionally used for circumscribing genera and families (Rego
1994). Instead, new synapomorphies should be found to distinguish morphologically
similar, but genetically distinct lineages, and to propose a more natural classification
that would better reflect the evolutionary history of proteocephalideans. If applied, this
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would represent a clear change of strategy in our attempts to understand the evolution
of the group. In practice, this could lead to the erection of numerous small genera con-
sisting of a few species each and sharing only a few morphological, possibly discrete,
synapomorphies but with good molecular support. A careful move in that direction
might be the future of the systematics and taxonomy of proteocephalideans.
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Figure 1

Authors: Alain de Chambrier, Andrea Waeschenbach, Makda Fisseha, Tom4s$ Scholz,

Jean Mariaux

Data type: Phylogenetic tree

Explanation note: Bayesian inference of partial (domains 1-3) 28S rDNA sequences
of the complete taxon set of proteocephalideans performed using MrBayes version
3.1 using the GTR + I + G model of sequence evolution. Two parallel runs were
performed for 10,000,000 generations; 8,000,000 generations were discarded as
burnin. Branches with posterior probability (pp) support below 95% are collapsed;
pp are indicated below branches.

Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODDL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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Table 1

Authors: Alain de Chambrier, Andrea Waeschenbach, Makda Fisseha, Tom4s$ Scholz,

Jean Mariaux

Data type: Leaf stability test results

Explanation note: Leaf stability test results from the post-burnin posterior tree distri-
bution from two MrBayes runs that included the full complement of taxa. Taxa are
ranked based on their positional stability estimated from the Maximum, which is
an average of all the highest percentages from all possible quartet sets for a particu-
lar taxon, Difference, which is the difference between the highest and the second
highest percentages from all possible quartet sets for a particular taxon, and Entro-
py, which is calculated as the normalized sum of logs for each quartet percentages
(except the unresolved polygamy).

Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODDL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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