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Abstract
Larval characters play a significant role in evolutionary and systematic studies of holometabolous insects. 
However, Panorpodidae, a derived family of Mecoptera, are largely unknown in their immature stages to 
date. Here, the first instar larva of the short-faced scorpionfly Panorpodes kuandianensis Zhong, Zhang & 
Hua, 2011 is described and illustrated using light and scanning electron microscopy. The larva of Panorpo-
des is remarkable for the absence of compound eyes on the head and the presence of seven small unpaired 
proleg-like processes along the midventral line on abdominal segments II–VIII. The homology of these 
unpaired appendage-like processes, their ecological adaptation, and the evolutionary implications of some 
larval characters of Panorpodidae are discussed.
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Introduction

The larva is an important developmental stage of insects in Endopterygota (= Holome-
tabola) (Grimaldi and Engel 2005; Van Emden 1957; Zacharuk and Shields 1991), 
the most successful lineage in terrestrial animals (Kristensen 1999). The larvae are dra-
matically divergent in external morphology and food habits, and frequently occupy 
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different ecological niches and habitats from their adults (Yang 2001). However, the 
evolutionary origin of insect larvae remains controversial (Hall and Wake 1999).

The Mecoptera are one of the primitive lineages in the Endopterygota, with the fossil  
record dated from lower Permian to Mesozoic (Byers and Thornhill 1983; Grimaldi 
and Engel 2005). The larvae of Panorpidae and Bittacidae are eruciform, bearing eight 
pairs of abdominal prolegs in addition to three pairs of thoracic legs. The prolegs are 
considered nonhomologous with the thoracic legs in Panorpidae, and different from 
other eruciform larvae in Lepidoptera and Hymenoptera (Du et al. 2009; Yue and Hua 
2010). However, the larvae of Panorpodidae, the sister group of Panorpidae (Willmann 
1987), have not been thoroughly investigated.

Panorpodidae consist of 13 described species distributed disjunctly in the Northern 
Hemisphere and are assigned to two genera (Zhong et al. 2011). Panorpodes MacLa-
chlan, 1875 occurs in China, Korea, Japan, and western North America (Byers 2005; 
MacLachlan 1875; Tan and Hua 2008b; Zhong et al. 2011). Brachypanorpa Carpenter, 
1931 is distributed exclusively in eastern North America (Byers 1997; Carpenter 1931b, 
1953). The phylogenetic position of Panorpodidae in Mecoptera remains controversial 
between molecular and morphological evidence (Pollmann et al. 2008). The molecular 
evidence suggests that the sister group of Panorpodidae is Bittacidae (Whiting 2002), 
while morphological studies demonstrate a sister relationship between Panorpodidae and 
Panorpidae (Friedrich et al. 2013; Willmann 1987, 1989). Based on biological and mor-
phological characters, Penny (1977) even concluded a close relationship between Pan-
orpodidae and Boreidae. Detailed studies on larval morphology may provide additional 
or even crucial evidence for the phylogenetic analysis of Mecoptera (Beutel et al. 2009).

The knowledge of Panorpodidae larvae is far from satisfactory largely owing to the 
restricted species distribution and the mysterious larval diets (Byers 1997; Byers and 
Thornhill 1983; Carpenter 1931a, 1953; Zhong et al. 2011). The larvae of the North 
American Brachypanorpa are eyeless and lack prolegs on abdominal segments, and are 
regarded as scarabaeiform (Byers 1997), although a small cylindrical structure is pre-
sent mid-ventrally on each abdominal segments III–VI of the larva. Suzuki (1985, 
1990) successfully obtained the first instar larva of Panorpodes paradoxa in his embryo-
logical study, but provided no detailed description, such that the knowledge of larval 
Panorpodes still remains largely unknown.

In this study, we investigated the larvae of the short-faced scorpionfly Panorpodes 
kuandianensis Zhong, Zhang & Hua, 2011 through rearing, and illustrated the first 
instar larvae using light and scanning electron microscopy, in an attempt to acquire 
more evidence for the larval evolutionary study of Mecoptera.

Materials and methods

Adults of P. kuandianensis were captured from Huaboshan (41°06'N, 125°02'E, elev. 
650–1100 m), Kuandian County, Liaoning Province of northeastern China from late 
June to July in 2011 and 2012. The adults were reared in pairs in plastic jars covered 
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with a piece of gauze. Humid soil (5 cm in depth) covered with moss was placed at the 
bottom of the jar for adults resting and oviposition. Fresh leaves, flowers and honey 
drops were daily provided as potential food items.

First instar larvae were fixed in Carnoy’s fixative solution (95% ethanol: glacial 
acetic acid = 3:1, v/v) for 12 h before being preserved in 75% ethanol. After dehydra-
tion in a graded ethanol series (75%, 85%, 95%, 100%), the samples were transferred 
to isoamyl acetate twice for 30 min, critical-point dried with liquid carbon dioxide, 
sputter-coated with gold, and examined in a Hitachi S-3400N scanning electron mi-
croscope (Hitachi, Tokyo, Japan) at 15 kV.

To illustrate chaetotaxy, SEM photographs were taken for each segment of the first 
instar larva on dorsal, lateral and ventral surfaces, respectively. Draft drawings were 
improved with Adobe Illustrator CS4.

Results

General morphology of the larva

The first instar larva is white and 2.9 ± 0.31 mm in length (n = 10) (Fig. 1). The head 
is hypognathous and eyeless, with mandibulate mouthparts directed downward and a 
pair of three-segmented antennae lateroventrally. The trunk is cylindrical and furnished 
with numerous cuticular spinules and setiform setae. The thorax possesses three pairs 
of legs. The abdomen has eleven segments and possesses seven unpaired appendage-
like processes mid-ventrally on each of abdominal segments II–VIII. The respiratory 
system is peripneustic, with one pair of spiracles on the prothorax and eight pairs of 
spiracles on the first eight abdominal segments. The telson bears a protrusile sucker.

Head capsule

The head is slightly flattened, 450 ± 15 µm in length and 315 ± 17 µm in width (n = 
10) (Fig. 2A–C), lacking compound eyes, ocelli, or stemmata (Fig. 2C). The frons is 
subtriangular and is confined by two ecdysial cleavage lines and a frontoclypeal sulcus 
(Fig. 2B), bearing centrally a sharp egg burster, which aids in hatching of the larva 
(Fig. 2B, C). A pair of anterior tentorial pits is situated at the lateral corners of the frons 
(Fig. 2B). Thirteen pairs of setiform setae are present on the head capsule symmetrically 
(Fig. 2A–C). Additionally, four pairs of minute setae occur on the occiput (Fig. 2C).

Antennae

The antennae are three-segmented, each consisting of a basal scape, a pedicel, and a 
slender flagellum (Fig. 2D). The scape is very short and inserted into a prominent 
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antennal socket. The pedicel is stout and slightly conical, five times longer than the 
scape, with ten sensilla placodea on the ventral surface. The distal flagellum is slender, 
inserted on the lateral apex of the pedicel, and bears apically one short and two long 
sensilla basiconica (Fig. 2E).

Figure 1. First instar larva of Panorpodes kuandianensis. Scale bar = 200 µm.

Figure 2. Larval head of Panorpodes kuandianensis. A Ventral view B Dorsal view C Lateral view D An-
tenna (ventral view) E Sensilla on flagellum (dorsal view). Abbreviations: An = antenna, AT = anterior 
tentorial pit, Cl = clypeus, EB = egg burster, EC = ecdysial cleavage, Fl = flagellum, Lb = labium, Lm = la-
brum, Md = mandible, Mx = maxilla, Oc = occiput, Pe = pedicel, SB = sensillum basiconicum, Sc = scape, 
SP = sensillum placodeum. Scale bars: (A)−(C) = 50 μm, (D) = 20 μm, (E) = 5 μm.
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Mouthparts

The mouthparts are of the mandibulate type (Fig. 2A), consisting of a labrum, a pair 
of mandibles, a pair of maxillae, and a labium.

The labrum is roughly trapezoid, articulated proximally with the anterior region 
of the clypeus (Fig. 2B). The labrum bears two pairs of apical setae, with the inner pair 
nearly half length of the outer pair (Fig. 2B).

The epipharynx is situated on the inner surface of the labrum (Fig. 3A), with three 
pairs of sensilla basiconica along the apical margin, a pair of short sensilla basiconica 
and two pairs of inconspicuous sensilla basiconica on the central part. The epipharynx 
is also furnished with sparse short microtrichia pointed inward at the lateral part, but 
lacks microtrichia along the middle axis.

The mandible is highly sclerotized, with the sharp incisor incurved apically; the 
mandibles cross each other apically. Each mandible possesses three sensilla chaetica on 
the outer surface (Fig. 2A–C).

Figure 3. Larval mouthparts of Panorpodes kuandianensis. A Epipharyx, arrows show the inconspicuous 
sensilla basiconica B Maxilla (ventral view) C Maxilla (frontal view) D Labium. Abbreviations: Cas = 
cardo-stipes, Ep = epipharynx, Ga = galea, La = lacinia, Lb = labium, LP = labial palpus, Md = mandible, 
MP = maxillary palpus, Pf = palpifer, Pm = postmentum, Prm = prementum, SB = sensillum basiconi-
cum, SC = sensillum campaniformium. Scale bars: (A), (C) and (D) = 10 μm, (B) = 20 μm.
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The maxilla consists of a cardo-stipes, a galea, a lacinia, and a three-segmented palp 
(Fig. 3B). The original cardo and stipes are fused into a cardo-stipes, which bears two 
sensilla chaetica. The galea possesses three sensilla basiconica ventrally and numerous 
microtrichia distally (Fig. 3B, C). The lacinia is greatly reduced and bears a cluster of 
microtrichia distally. The palpifer carries a long sensillum chaeticum on the ventral 
surface. The maxillary palp is three-segmented and bears two short sensilla chaetica on 
the lateral surface of the second joint and 12 sensilla basiconica on the apical surface 
of the third joint (Fig. 3C).

The labium is highly vestigial, with the ligula absent (Fig. 3D). The postmentum 
is merged with the head capsule, bearing a pair of short sensilla chaetica and a pair of 
sensilla campaniformia. The prementum is mesally separated and bears distally a pair 
of two-segmented labial palps. The distal segment of the labial palp bears two large 
papillary and eight conical sensilla basiconica on the apex. These sensilla are slightly 
varied from specimen to specimen, even asymmetrical bilaterally between the left and 
the right palp.

Thoracic legs

The thoracic legs are four-segmented, each consisting of a coxa, a femur, a tibia, and a 
tarsus (Fig. 4A). The coxa and femur are sclerotized on the anterior surface but mem-
branous on the posterior surface. The femur and tibia bear several microsetae. The 
tarsus is slender and curved cephalad, with a hirsute anterior surface and a wrinkled 
posterior surface (Fig. 4A).

Spiracles

Nine pairs of spiracles are located on the pleura of the larval trunk. The prothoracic 
spiracle is on the posterior corner of the prothoracic shield, with nine apertures sur-
rounding the atrial orifice (Fig. 4C). Eight pairs of abdominal spiracles each are present 
on the pleura of the first eight abdominal segments, with 4–5 apertures (Fig. 4D).

Abdomen

The abdomen consists of 11 segments and is furnished with numerous setiform se-
tae and prominent cuticular spinules (Fig 1). The larval abdomen bears seven in-
conspicuous unpaired mid-ventral processes on each A2–A8, with these smooth and 
unsegmented processes varying in length, greatly reduced on A2 (Fig. 4B, E, and F). 
The larval abdomen terminally bears a protrusile sucker, providing adhesive attachment 
during locomotion (Fig 4F).



Larvae of Panorpodes kuandianensis 75

Chaetotaxy of the larval trunk

The meso- and metathorax are similar in chaetotaxy. Abdominal segments I–VII are 
similar in chaetotaxy (Fig. 5).

Figure 4. Thoracic leg, abdominal processes, spiracles and telson of the larva of Panorpodes kuandianensis. 
A Thoracic leg, inset shows magnification of the tarsus of thoracic leg B Proleg-like abdominal process 
C Prothoracic spiracle D Abdominal spiracle E Ventral view of abdominal segments II and III F Telson 
(ventral view). Abbreviations: AO = atrial orifice, Ap = aperture, Cx = coxa, Fm = femur, PP = proleg-like 
process, Tb = tibia, Ts = tarsus. Scale bars: (A) = 20 μm, (B) = 5 μm, (C) and (D) = 3 μm, (E) = 40 μm, 
(F) = 50 μm.
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Prothorax (T1). The prothorax bears a prominent prothoracic shield, along the 
anterior margin of which are three long setae (XD1, XD2, and SD2) and one short seta 
(MSD2). Along the posterior edge of the shield are two long setae (D1 and SD1) and 

Figure 5. Chaetotaxy of the larval trunk of Panorpodes kuandianensis. Abbreviations: CS = cervical scle-
rite, D = dorsal seta, L = lateral seta, M = mid-dorsal seta, MD = minute dorsal seta, MSD = minute 
subdorsal seta, MSV = minute subventral seta, MV = minute ventral seta, PP = proleg-like process, SD = 
subdorsal seta, Sp = spiracle, SV = subventral seta, V = ventral seta, XD = prothoracic seta.
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one short seta (MSD1). Below the shield is a long lateral seta (L1) alone on the lateral 
pinaculum. Two long setae (SV1 and SV2) and two short setae (MSV1 and MSV2) 
are on the subventral pinaculum. Mesal to the coxal cavity are one short ventral seta 
(V1) on a small pinaculum and a pair of minute setae (MV1 and MV2) on a midven-
tral pinaculum.

Meso- and metathorax (T2 and T3). On the dorsal pinaculum are one long seta 
(SD1), three short setae (D1, D2, and MSD1), and one minute seta (MD2). On the 
subdorsal pinaculum are one long seta (SD2) and one short seta (MSD2). Two lateral 
pinacula each bear a long and a short seta (L1 and ML1, L2 and ML2). Two subventral 
pinacula each bear a long seta and a short seta (SV1 and MSV1, SV2 and MSV2). The 
ventral setae (V1, MV1, and MV2) exhibit a similar pattern to prothorax.

Abdominal segments II–VII (A2–A7). On the dorsal pinaculum are three long 
setae (D1, D2, and SD1) and three short setae (MD1, MD2, and MSD2). On the 
subdorsal pinaculum are one long and one short seta (SD2 and MSD2). On the lateral 
pinaculum posterior to the spiracle are one long (L1) and two short setae (ML1 and 
ML3). Another small lateral pinaculum below the spiracle bears a long (L2) and a 
short seta (ML2). One long (SV1) and two short setae (MV1 and MV2) are arranged 
on a subventral pinaculum. A short seta (SV2) is situated alone on another subventral 
pinaculum. The midventral pinaculum bears a short ventral seta (V1).

Abdominal segment VIII (A8). The dorsal pinaculum bears three long setae (D2, 
SD1, and SD2), one short seta (D1), and one minute seta (MD1). One long (L1) and 
two short setae (ML1 and ML3) are situated on the lateral pinaculum posterior to the 
spiracle. Another lateral pinaculum below the spiracle bears two setae (L2 and ML2). 
Two long setae (SV1 and SV2) and one minute seta (MSV1) are arranged on a sub-
ventral pinaculum, whereas a long seta (SV3) alone is located on another pinaculum. 
One short seta (V1) is situated on the midventral pinaculum lateral to the mid-ventral 
abdominal process (AP).

Abdominal segment IX (A9). On the dorsal pinaculum are three long setae (D2, 
SD1, and SD2) and one short seta (D1). On the lateral pinaculum are one long (L1) 
and one short seta (ML1). One long seta (SV1) is located on one subventral pinacu-
lum. One short seta (SV2) is on another subventral pinaculum. A ventral seta (V1) is 
situated alone on the ventral pinaculum.

Abdominal segment X (A10). The epiproct bears one mid-dorsal seta (M1). Four 
long setae (D1, D2, SD1, and SD2) and one short seta (MSD1) are situated on the 
dorsal part of the tergum. Five long (L1–L5) and one short setae (ML2) are inserted 
on the pleuron. On the subventral pinaculum is one short seta (SV1). Three short setae 
(V1, V2, and V3) are arranged on the elongated narrow ventral pinaculum.

Discussion

The larvae of Panorpodidae represented by Panorpodes are unique in Mecoptera for 
the absence of compound eyes on the head, presence of several unpaired midventral 
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processes on A2−A8, and absence of erect subdorsal annulated processes on stout basal 
protuberances as in Panorpidae and Bittacidae (Chen and Hua 2011; Jiang and Hua 
2013; Ma et al. 2014; Tan and Hua 2008a).

In Mecoptera the larvae are eruciform in Panorpidae, Choristidae, Apteropanorpidae, 
and Bittacidae (Byers 1991; Jiang and Hua 2013; Tan and Hua 2008a); campodei-
form in Nannochoristidae (Pilgrim 1972); and scarabaeiform in Boreidae (Cooper 
1974; Penny 1977; Russell 1982). The larvae of Brachypanorpa in Panorpodidae were 
also described as scarabaeiform (Byers 1997). Considering the presence of the un-
paired midventral abdominal processes on the larvae of Panorpodes and Brachypanorpa, 
however, it is difficult to regard them as true scarabaeiform larvae.

In general, the larvae of Mecoptera are remarkable for the presence of a pair of 
compound eyes (Chen et al. 2012; Gilbert 1994; Melzer et al. 1994; Pilgrim 1972; 
Tan and Hua 2008a). The larval compound eye is composed of ten or more omma-
tidia in Nannochoristidae (Melzer et al. 1994; Pilgrim 1972), three “stemmata” in 
Boreus (Cooper 1974) and seven in Caurinus of Boreidae (Russell 1982), seven om-
matidia (or "stemmata") in Bittacidae (Gilbert 1994; Tan and Hua 2008a), and ap-
proximately 20–40 ommatidia in Panorpidae (Boese 1973; Chen et al. 2012; Melzer 
1994; Paulus 1979), representing a true plesiomorphy of Mecoptera in Endopterygota 
(Beutel et al. 2009). A dorsal ocellus is also present on the larval head of Bittacidae 
(Tan and Hua 2008a, 2009). The larvae of Panorpodes, however, are completely eye-
less, congruent with the larvae of Brachypanorpa (Byers 1997). In fact, the visual or-
gans (optic lobe) of Panorpodes paradoxa are present in the early embryonic stage, but 
are degenerate in later stages, and finally disappear by the end of embryonic revolution 
(Suzuki 1985), indicating this eyelessness is a secondary degeneration and represents 
an autapomorphy of Panorpodidae.

The larval prolegs of Panorpidae are formed by an inner pair of proleg primordia 
near the midventral line mesal to the true appendage primordia, and are not homolo-
gous with the thoracic legs (Yue and Hua 2010), confirming the hypothesis that prolegs 
are secondary adaptive structures (Hinton 1955). The presence of unpaired midventral 
processes in Panorpodidae larvae is difficult to explain by a recent hypothesis of coxal 
endite on the evolutionary origin of larval prolegs (Bitsch 2012). Because of the shared 
similarities (each process is delimited by the paired ventral setae, and these processes 
are varied in length with anterior one great reduced but posterior one longest) of Pan-
orpodidae and Panorpidae, the unpaired midventral processes are likely homologous 
with and degenerated from the prolegs of the eruciform larvae in Panorpidae. The de-
generation of larval prolegs as a rule was considered an evolutionary tendency in most 
Diptera, leaf-mining Lepidoptera, Coleoptera, and parasite Hymenoptera and Strep-
siptera (Chapman 2013). In this case, the unpaired midventral processes may represent 
an advanced evolutionary stage of larval abdominal prolegs, and Panorpodidae may 
occupy a derived position in the phylogeny of Mecoptera.

The larvae of Panorpodidae lack dorsal protuberances on the first ten abdominal 
segments, distinctly divergent from those of Bittacidae and Panorpidae. In Bittacidae, 
the furcated protuberances borne on the dorsal surface of the larval trunk may assist 
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adhering to soil particles as a camouflage (Tan and Hua 2008a). In Panorpidae, annu-
lated protuberances are present on the larval trunk and are considered to keep the larval 
trunk from being injured in a subterresial life style (Ma et al. 2014). In Panorpodidae, 
the larvae of Panorpodes kuandianensis stay sedentary subterraneally with limited range 
of locomotion (L Jiang, unpublished data). We speculate that the absence of dorsal 
protuberances on the abdomen likely resulted from its inactive living habit in the soil, 
as in the soil-dwelling larvae in Scarabaeidae (Eilers et al. 2012).

The peculiar morphological characters of panorpodid larvae are likely related to 
their cryptic lifestyle. In the underground habitat, the larvae of Panorpodidae may 
reasonably use olfaction or gustation rather than vision as their sense organs. This 
situation is similar to the eyeless soil-dwelling larvae in Scarabaeidae (Eilers et al. 2012). 
Likewise, the larvae of Panorpodidae no longer need paired abdominal prolegs to sup-
port the abdomen and serve the locomotory function as in the larvae of Panorpidae 
(Yue and Hua 2010), thus their prolegs are reduced to vestigial unpaired mindventral 
processes. This reduction of prolegs may reduce the friction of the abdomen with the 
substrate, and facilitate the locomotion of the larvae in the soil.

During their evolution from the Mesozoic (Byers and Thornhill 1983; Grimaldi and 
Engel 2005), the Mecoptera have evolved diverse larvae to adapt to various living habits. 
In most primitive Nannochoristidae the larvae stay in the substrate of streams and prey 
on the larvae of Chironomidae (Fraulob et al. 2012). In Boreidae the larvae of Boreus 
creep over plants and feed on fresh leaves (Cooper 1974), whereas the larvae of Caurinus 
feed in stem-mines or galleries of leafy liverworts (Russell 1982) or perhaps on other ma-
terials in recently deforested clear cuts (Sikes and Stockbridge 2013). In Bittacidae and 
Choristidae the larvae live on the surface of soil and feed on dead arthropods (Byers 1991; 
Tan and Hua 2008a). In Panorpidae the larvae live mostly in the soil, burrowing and 
concealing themselves while feeding on dead arthropods (Mampe and Neunzig 1965). 
In Panorpodidae, however, the larvae of Panorpodes are peculiar for their sedentary living 
habits and potentially live a root-feeding lifestyle. This is similar to the soil-dwelling and 
root-feeding larvae in Scarabaeidae, which are mostly eyeless and lack abdominal prolegs 
(Lawrence 1991). The consistency may indicate that the eyeless and proleg-reduced larval 
morphology are secondary adaptive traits to the soil-dwelling lifestyle.

In our rearing trial, the first instar larvae of Panorpodes fed on neither dead arthropods 
nor fresh leaves, although a darkened line in the alimentary canal was observed through 
the translucent trunk (L Jiang, unpublished data). The larvae we reared died eventually 
without molting, resulting in a failure to obtain the following instar larvae and pupae. 
This situation is similar to the observation of the confamilial Brachypanorpa (Byers 
1997). The larval morphology and biology of later instars remain unknown.
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