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Abstract
Tibicen neomexicensis sp. n., a new species of cicada found in the Sacramento Mountains of southcentral 
New Mexico, is described. T. neomexicensis closely resembles T. chiricahua Davis morphologically, but 
males of the two species have highly distinct calling songs that differ in phrasal structure, amplitude 
burst rates, and pulse structure. Unlike T. chiricahua, male T. neomexicensis use conspicuous dorso-ventral 
abdominal movements to modulate the amplitude and frequency of their calls. T. neomexicensis is also 
smaller on average than T. chiricahua, and differences in the color patterns of the wing venation identify 
these two species morphologically. Both species are dependent on pinyon-juniper woodlands and have 
similar emergence phenologies. These species appear to be allopatric, with T. chiricahua found west of 
the Rio Grande in New Mexico, Arizona, and Mexico, and T. neomexicensis so far known only from New 
Mexico, east of the Rio Grande. T. chiricahua and T. neomexicensis males share a common genitalic struc-
ture that separates them from all other species of Tibicen, and the possible evolutionary and biogeographic 
history of these likely sister species is also discussed.
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Introduction

Cicadas, crickets, katydids, and many other insects produce airborne acoustic signals 
that play an essential role in reproduction (Alexander 1960, 1967, Capinera et al. 
2004). For cicadas, acoustic communication is the single most important factor in 
mate recognition, pair formation, and premating reproductive isolation (Alexander 
and Moore 1958, Boulard 2006). As such, the calling songs of male cicadas have be-
come an essential part of cicada taxonomy. Acoustic studies have led to the discovery 
of numerous “cryptic” cicada species that are morphologically nearly identical to other 
species but can be readily identified by their unique mating calls (e.g., Davis 1922, 
Alexander and Moore 1962, Popov 1989, Marshall and Cooley 2000, Quartau and 
Simoes 2005, Sueur and Puissant 2007, Cole 2008, Gogala et al. 2008). In some cases, 
acoustic analyses provide the only means to identify a species with certainty (e.g., 
Sueur et al. 2007, Gogala et al. 2008).

During fieldwork in New Mexico in 2012, I observed cicadas that fit the morpho-
logical description of Tibicen chiricahua Davis (Davis 1923) in both the Magdalena 
Mountains of west-central New Mexico and the Sacramento Mountains of southcen-
tral New Mexico. However, the populations from these two mountain ranges had com-
pletely different calling songs, suggesting the presence of two species and rendering the 
taxonomic identities of both populations uncertain. To help resolve this problem, I 
traveled to the type locality of T. chiricahua, Pinery Canyon in the Chiricahua Moun-
tains of southeastern Arizona (Davis 1923), to record the calls of true T. chiricahua. 
The calling songs recorded in the Chiricahua Mountains were the same as those re-
corded in the Magdalena Mountains in New Mexico, revealing that the cicadas in 
the Sacramento Mountains were a previously unrecognized species, described here as 
Tibicen neomexicensis. Upon closer inspection, it became clear that these two species 
exhibited subtle morphological differences, as well.

In this paper, I describe Tibicen neomexicensis and compare its morphology to T. 
chiricahua, describe and compare the calling songs and calling behaviors of T. neomexi-
censis and T. chiricahua, and compare the geographic distributions of the two species. 
Finally, I discuss the general ecology, phenology, and daily activity patterns of T. ne-
omexicensis and consider its possible evolutionary relationship with T. chiricahua.

Methods

Field sites and specimens examined

All field work was conducted during May and June of 2012. Cicadas identified as Tibi-
cen chiricahua were observed and audio recorded in the Magdalena Mountains west of 
Socorro, New Mexico, and at the type locality for T. chiricahua, Pinery Canyon in the 
Chiricahua Mountains of southeastern Arizona (Davis 1923). Specimens of the new 
species were observed and recorded at its type locality.
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To estimate the geographic ranges of the two species and better understand mor-
phological variation across these ranges, I examined a total of 202 specimens previously 
identified as T. chiricahua from the collections of the Arthropod Museum at New 
Mexico State University (NMSU), the C. P. Gillette Museum of Arthropod Diversity 
at Colorado State University (CSUC), the Frank M. Hasbrouck Insect Collection at 
Arizona State University (ASUT), the Snow Entomological Museum at the University 
of Kansas (SEMC), the Texas A&M University Insect Collection (TAMU), the Uni-
versity of Arizona Insect Collection (UAIC), and the University of Colorado Museum 
of Natural History (UCMC). The SEMC specimens included a male paratype of T. 
chiricahua from Davis’s original type series. I also examined high-resolution digital 
photographs of the holotype male and allotype female of T. chiricahua, which are cur-
rently housed in the collection of the Academy of Natural Sciences of Drexel Univer-
sity (ANSP).

Morphology

Morphological terminology follows Moulds (2005, 2012). Morphometric measure-
ments were made with a digital caliper. Fore wing width was measured from the node 
to the posterior edge, head width was measured between the eyes, and pronotum width 
was taken at the widest point between the lateral angles.

Audio recordings and analysis

Cicada calling songs were recorded in the field using a Sennheiser ME 66 shotgun 
microphone with an MZW 66 PRO windscreen connected to a Sony PCMM10 
digital audio recorder. All recordings were made as uncompressed, 16-bit PCM au-
dio at a sampling rate of 44.1 kHz. For each recording, the microphone was held 
between 0.5 and 2 meters away from the calling cicada. This was close enough to 
minimize background noise, but far enough away to avoid any near-field acoustic 
effects in the frequency range of the calling songs (Michelsen and Nocke 1974, 
Peterson 1980).

Cicada calls were analyzed to determine peak frequencies, amplitude burst rates, 
and the number of sound pulses per amplitude burst. In this paper, I use the term 
“pulse” in the sense of Broughton (1963) and “amplitude burst” to mean a single group 
of high-amplitude pulses in an amplitude-modulated pulse train (see Figures 4 and 5). 
I elected to use “amplitude burst” rather than “syllable,” which has been used incon-
sistently in cicada bioacoustics and usually with disregard to the precise definitions of 
Broughton (1963) and Ragge and Reynolds (1998).

Analyses were conducted using Audacity® (Audacity Team 2012) and custom-
written software. Peak frequency was estimated by identifying the highest peak in a 
power spectral density plot generated by a 512-sample Fast Fourier Transform with 
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the Hamming window function. If there were two or more peak frequencies that dif-
fered by less than 0.5 dB, their average was taken as the overall peak frequency. The 
amplitude burst rate (i.e., pulse amplitude modulation rate) was calculated by first 
estimating the call’s amplitude envelope, then using a gate function to identify the 
amplitude peaks in the signal (Beeman 1998). To estimate the number of sound pulses 
per amplitude burst, a sequence of 12 bursts was selected from the middle of each 
call, the audio data were normalized so that the maximum signal amplitude was at 0 
dBFS, and the beginning and ending pulses of each amplitude burst were determined 
by identifying the first and last pulses with absolute sample values that exceeded 50% 
of the maximum sample value (that is, -6.02 dBFS).

The calls of both T. chiricahua and T. neomexicensis can be divided into three phras-
es (see results below), but the boundaries between phrases are often indistinct. To avoid 
the non-repeatability and potential bias of estimating the phrase durations by simple 
visual or aural inspection of the call oscillograms, I used objective criteria based directly 
on the audio data. All audio data were first normalized so that the peak amplitude was 
at 0 dBFS. For both T. chiricahua and T. neomexicensis, the first phrase began at the 
start of the call, and the end of the first phrase and beginning of the second phrase was 
defined by the first amplitude burst that reached -3 dBFS. For T. chiricahua, the end of 
the second phrase was defined by the last amplitude burst to reach -3 dBFS, while for 
T. neomexicensis, the end of the second phrase was defined as the end of the modulated 
portion of the call. For both species, the third phrase consisted of all audio from the 
end of the second phrase to call termination.

I did not include ambient air temperatures in the acoustic analyses. North Ameri-
can cicadas utilize a variety of behavioral and physiological thermoregulation tactics, 
so ambient temperature is often a poor indicator of a calling cicada’s body temperature 
(Toolson 1987, Hastings 1989, Sanborn et al. 1992, Sanborn 2000, 2004).

Biogeography

The locations of field sites that I personally visited were determined using a Garmin 
nüvi 260 GPS receiver. Specimen label data lacking latitude and longitude informa-
tion were georeferenced primarily using data from the Geographic Names Information 
System of the United States Geological Survey (http://geonames.usgs.gov/), and in 
some cases using Google Earth (http://earth.google.com/). Landcover data were from 
the Southwest Regional Gap Analysis Project (USGS National Gap Analysis Program 
2004). The distribution of pinyon-juniper woodlands was estimated by mapping all 
land cover types that included both pinyon pines (Pinus edulis, P. monophylla) and juni-
pers (Juniperus spp.) as dominant tree or shrub species (codes S038, S039, S040, S052, 
and S112). Landcover types with junipers but not pinyon pines and sparsely vegetated 
types (< 10% plant cover) were excluded. QuantumGIS (Quantum GIS Development 
Team 2012) was used to produce the distribution map.

http://geonames.usgs.gov
http://earth.google.com/
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Statistical analysis

Acoustic and morphometric data were analyzed in R (R Core Team 2013) using uni-
variate multiple linear regression with categorical predictor variables (i.e., ANOVA 
models). Morphometric data were modeled with species and sex as predictors, while 
acoustic data were modeled with species as the sole predictor. For all analyses, prelimi-
nary F-tests were used to compare models with locality as a predictor (two localities 
for T. chiricahua and the type locality for T. neomexicensis) to models that grouped all 
T. chiricahua data together (i.e., used species as a predictor). In all cases, there was not 
a significant difference between the models (all p-values > 0.0788), so the data from 
the two locations for T. chiricahua were grouped together for both the morphometric 
and acoustic analyses. Plots of the standardized residuals were examined to verify that 
the data met the model assumptions. Because T. neomexicensis is most easily separated 
from T. chiricahua by its distinctive calling song, the statistical analyses only included 
specimens from localities that had been acoustically surveyed.

Results

Tibicen neomexicensis sp. n.
http://zoobank.org/4847B3E5-22BF-4262-868B-FA06341DB9B4
http://species-id.net/wiki/Tibicen_neomexicensis

Type locality. USA, New Mexico, Lincoln County, Lincoln National Forest, near the 
junction of Forest Road 105 and State Highway 37, 33.5287°N, 105.6939°W (datum: 
WGS84), elevation 2188 m, pinyon-juniper forest.

Holotype male. Pinned specimen (Figures 1–3). Original label: “NM: Lincoln 
Co. | Lincoln NF, FR 105 | 33.5287°N, 105.6939°W | May 31, 2012 7178 feet | Brian 
and Erin Stucky”. UCMC, specimen identifier UCMC 0046172.

Paratypes. 8 males and 3 females, same label data as holotype; 2 males and 2 fe-
males, same label data as holotype except collected on May 30, 2012. The paratypes 
are currently housed in the UCMC and the author’s collection. Upon publication, 
paratypes will also be transferred to the ANSP, the Smithsonian National Museum of 
Natural History (NMNH), NMSU, and the SEMC.

Description. Head. Slightly wider than anterior margin of pronotum. Vertex and 
frons black, marked with orange-brown on the posterior margin near the eyes and 
immediately lateral of the lateral ocelli. Supra-antennal plates black dorsally with an 
orange-brown mark adjacent to the postclypeus, orange-brown ventrally marked with 
black immediately above the antennae, and orange-brown along the anterior margin 
except for immediately adjacent to the postclypeus. Antennae mostly black with distal 
margin of scape yellowish, proximal half of pedicel dark brown in some specimens. 
Dorsal surface of head sparsely covered with short golden hairs and with longer, silvery-

http://zoobank.org/4847B3E5-22BF-4262-868B-FA06341DB9B4
http://species-id.net/wiki/Tibicen_neomexicensis
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white hairs behind the eyes. Ventral surface mostly covered with dense, silvery-white 
hairs. Postclypeus black, marked with orange-brown on the anterior-medial margin 
and with a triangular orange-brown mark adjacent to the frontoclypeal suture. Trans-
verse grooves of postclypeus lined with pruinosity and silvery-white hairs. Anteclypeus 
black, yellowish posterolaterally, with a medial brown spot at the junction with the 
postclypeus. Lora mostly black, marked with yellow along the lateral margins. Genae 
black anteriorly, yellowish posteriorly where they border the lora. Proximal two thirds 
of rostrum yellowish, labrum and distal one third of rostrum black, with the apex ex-
tending posteriorly to the hind coxae.

Figure 1. Holotype male of Tibicen neomexicensis sp. n.: a dorsal view b ventral view; and paratype 
female: c dorsal view d ventral view.
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Thorax. Pronotum black, marked faintly with dark brown between the paramedian 
and lateral fissures and between the lateral fissures and pronotal collar, brown mark-
ings often more extensive in females. Pronotal collar black, lined with orange along the 
anterior margin between the eyes and along the lateral margins, extending to the pos-
terior margin and fading to black medially. Some specimens have the entire posterior 
margin lined with orange. Pronotum sparsely covered with fine golden hairs. Mesono-
tum black marked with orange as follows: two J-shaped lines following the parapsidal 
suture, a small spot at the terminal end of each anterior arm of the cruciform eleva-
tion, two C-shaped marks starting at the origin of the anterior arms of the cruciform 

Figure 2. Terminalia of holotype male Tibicen neomexicensis sp. n.: a and b lateral view; and c and d pos-
terior view. Abbreviations: aed–aedeagus, pyg–pygofer, st–sternite, t–tergite, un–uncus.
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Figure 3. Key morphological features separating T. neomexicensis sp. n. (a) and T. chiricahua (b): 1) the 
color of the cubitus anterior vein (CuA) and its second branch (CuA2) in the hind wing, and 2) the color 
of the anterior margin of the subcostal vein (Sc) of the fore wing.
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elevation and curving medially then laterally towards the posterior arms, and a large 
mark near the base of each fore wing. Mesonotum with two small pruinose spots on 
the anterior margin just lateral of the parapsidal sutures, lateral margin also pruinose. 
Mesonotum sparsely covered with fine golden hairs, with longer silvery-white hairs in 
the depressions of the cruciform elevation and along the posterolateral margins. Visible 
portion of metanotum black, covered with silvery-white hairs laterally. Ventral surface 
of thorax often heavily pruinose and covered with silvery-white hairs, yellowish except 
for katepisternum 2, anterior portion of basisternum 2, anepimeron 2, central part of 
katepimeron 2, meron 2, anterior portions of trochantins 2 and 3, episternum 3, and 
basisternum 3, all of which are black.

Legs. Fore coxae orange marked with brown apically and with the anterolateral 
surface dark brown except along the margins. Middle and hind coxae orange marked 
with dark brown laterally. Coxae covered with silvery-white hairs and often pruinose. 
Trochanters orange, variably marked with brown. Femora orange, apex mostly yellow, 
brown ventrally, with longitudinal brown stripes that often merge apically and basally. 
Silvery-white hairs on femora mostly confined to brown markings. Femoral spines 
brown basally with dark brown apices. Tibiae orange ventrally, brown dorsally with 
brown markings expanded at the base, covered with silvery-white hairs. Tibial spurs 
and comb dark brown. Tarsi variable in color but usually dark brown dorsally and light 
brown to orange ventrally. Claws brown basally with dark brown apices.

Wings. Fore wings hyaline with 8 apical cells, crossveins r and r-m usually strongly 
infuscated. Costal margin yellow, C vein black, R+Sc vein black with posterior margin 
pale along the radial cell. Sc vein black beyond the node, subcostal margin brown to 
dark yellow. Basal cell mostly black, anterior and posterior borders yellow. M vein 
yellowish-black from its base to the junction with M1+2, black beyond. M3+4 yellowish-
black. M1+2 yellowish-black becoming black apically. CuA vein yellow from its base to 
the junction with CuA2, yellowish-black beyond. CuA2 yellowish-black. CuP+1A and 
2A+3A veins mostly yellow, ambient vein dark yellowish-black, remaining venation 
black. Hind wings hyaline with 6 apical cells. Sc+RA, RA, CuA between base and 
CuA2, and CuA2 veins mostly yellow to yellowish-orange. CuA between CuA2 and 
m-cu, and CuA1 veins yellow to yellowish-black. Ambient vein black marked with yel-
low along 1st cubital cell and 6th apical cell. Remaining venation mostly black or dark 
brown. 3rd anal cell gray marked with reddish-orange basally.

Opercula. Male opercula yellowish marked with black on the anterolateral and 
anteromedial margins, overlapping medially. Posterior margins smoothly rounded, not 
quite reaching the posterior margin of sternite II. Female opercula yellowish, becoming 
black anterolaterally. Posterior margin sinuate, reaching the anterior margin of sternite 
II. Meracanthus black basally with a yellow apex.

Abdomen. Dorsal surface of abdomen almost entirely black, sparsely covered with 
short golden and silvery hairs. Tergite 8 orange-brown laterally. Tergites 3-7 often marked 
with orange-brown laterally, markings usually strongest on tergite 3. Timbal covers black, 
sometimes dark brown centrally, completely concealing timbal. Timbal with 3 long ribs, 
4 intercalary ribs, and an incomplete 4th long rib. Dorsal abdomen pruinose at the fol-
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lowing locations: along the anteromedial margins of the timbal covers in males; along 
the anterolateral margins of tergite 2 in females; the lateral margins of tergites 3-7, most 
prominently on tergite 3; the lateral margins of tergite 8, often extending medially to 
cover most of the tergite. Sternites orange to yellowish, usually dark brown laterally and 
anterolaterally. Epipleurites orange to yellowish, indistinctly marked with dark brown or 
black. Ventroposterior portion of male sternite VIII dark brown.

Male terminalia. Pygofer black, becoming brown or yellowish laterally along the 
lobes, and with a small brown spot dorsally at the base of the dorsal beak. Dorsal beak 
not quite as long as anal styles. Anal styles black. Median lobe of uncus slender, black, 
strongly bent ventrally and terminating in a rounded point. Aedeagus reddish-brown.

Female terminalia. Abdominal segment 9 yellowish-orange ventrally, black dorsal-
ly starting at about the lateral mid-line. Dorsal beak about as long as anal styles. Ster-
nite VII yellowish-orange, usually brown laterally, deeply notched at the middle of 
the posterior margin. Visible portion of gonocoxite IX yellowish-orange, indistinctly 
marked with brown near the posterior end. Ovipositor sheath black, ventromedial 
margins partially lined with orange. Ovipositor sheath extends posteriorly about as 
far as anal styles.

Measurements. All measurements are reported in mm as mean (range, standard de-
viation). Males (n = 11): head width: 8.3 (8.1–8.5, 0.13); pronotum width: 8.9 (8.5–
9.3, 0.25); fore wing length: 28.1 (26.8–29.6, 0.76); fore wing width: 9.8 (9.3–10.5, 
0.41); body length: 24.9 (23.1–26.3, 1.05). Females (n = 5): head width: 7.8 (7.7–7.9, 
0.07); pronotum width: 8.4 (8.2–8.5, 0.14); fore wing length: 26.7 (26.2–27.4, 0.48); 
fore wing width: 9.1 (8.9–9.3, 0.20); body length: 20.0 (19.3–20.9, 0.64).

Etymology. The specific epithet refers to the U.S. state of New Mexico. As far as is 
currently known, Tibicen neomexicensis is endemic to this state.

Morphometric comparison of T. neomexicensis and T. chiricahua

Five morphometric measurements were taken for both T. chiricahua and T. neomexi-
censis: fore wing length, fore wing width, head width, pronotum width, and total body 
length. The correlation coefficient matrix for these five variables revealed that all five 
measurements were very strongly correlated with one another. All pairwise correlation 
coefficients excluding body length were > 0.91, and all pairwise correlation coefficients 
including body length were > 0.80. Body length in adult cicadas is not constant and 
instead varies according to a cicada’s abdominal posture, so the lower correlation coef-
ficients for body length were not surprising. Given the high correlation among the five 
variables, analyzing each separately would have been largely redundant, so comparative 
analysis focused on fore wing length (Table 1). Fore wing length is invariant in adult 
cicadas and easily measured for either live or preserved specimens.

Analysis of the linear model including both species and sex as predictors of fore 
wing length revealed that this simple model explained much of the variation in size 
among the cicadas, and that the effects of both predictors were highly significant (R2 
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= 0.805, p < 0.000001 for both variables). After adjusting for the size differences be-
tween males and females, the fore wings of T. neomexicensis are, on average, about 
2.9 mm shorter than those of T. chiricahua (95% CI: 2.3–3.5). An F-test comparing 
this simple two-factor model to a model that included a (species∙sex) interaction term 
revealed that the two models were not significantly different (F = 1.202, p = 0.282). 
Therefore, the data show that for the morphometric measurements used in this study, 
T. neomexicensis is significantly smaller than T. chiricahua, and that for both species, 
females are significantly smaller than males. It must be noted, though, that this analysis 
was limited to localities for which acoustic data were available, and it is possible that 
these species exhibit greater variation in size across their full ranges.

Description and comparison of the calling songs of T. neomexicensis and T. chiricahua

Calling song of T. neomexicensis. The calling song of T. neomexicensis can be di-
vided into three phrases, each of which consists of a continuous train of pulses 
(Figure 4). The first phrase represents the initial increase in amplitude as the cicada 
begins calling and lasts an average of 2.04 seconds (95% CI: 1.66–2.42; full descrip-
tive statistics for all acoustic parameters are given in Table 1). The second phrase is 
the main phrase of the call and is produced at or near maximum amplitude. This 
phrase lasts an average of 6.68 seconds (95% CI: 5.77–7.59) and has a mean peak 
frequency of 7.27 kHz (95% CI: 7.02–7.52). The first two phrases are characterized 
by distinctive amplitude and frequency modulations that group pulses into regular 

Table 1. Summary statistics for fore wing length and six acoustic variables for T. neomexicensis sp. n. and 
T. chiricahua (M = male, F = female).

variable species mean 95% CI range std. dev. n

fore wing length (mm)

T. chiricahua, M 31.3 30.6–32.0 29.4–33.1 1.06 11
T. neomexicanus, M 28.1 27.6–28.6 26.8–29.6 0.76 11
T. chiricahua, F 29.1 28.0–30.2 28.0–30.1 0.88 5
T. neomexicanus, F 26.7 26.1–27.3 26.2–27.4 0.48 5

peak frequency (kHz)
T. chiricahua 7.12 6.56–7.67 5.73–8.47 0.82 11
T. neomexicanus 7.27 7.02–7.52 6.07–7.81 0.45 15

amp. burst rate (bursts/s)
T. chiricahua 54 52.4–55.6 50.5–59.3 2.32 11
T. neomexicanus 27.8 27.4–28.3 26.5–29.5 0.86 15

pulses per amplitude burst
T. chiricahua 5.02 4.54–5.51 3.92–6.42 0.723 11
T. neomexicanus 8.34 7.70–8.98 7.25–11.33 1.066 13

phrase 1 length (s)
T. chiricahua 1.72 1.21–2.23 0.49–2.80 0.758 11
T. neomexicanus 2.04 1.66–2.42 1.25–3.24 0.6 12

phrase 2 length (s)
T. chiricahua 7.82 6.95–8.68 6.02–10.83 1.286 11
T. neomexicanus 6.68 5.77–7.59 4.86–10.96 1.575 14

phrase 3 length (s)
T. chiricahua 3.75 3.10–4.39 2.37–5.82 0.963 11
T. neomexicanus 1.65 1.36–1.94 0.75–2.33 0.479 13
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Figure 4. Spectrograms and oscillograms of the calling song of Tibicen neomexicensis sp. n.: a complete 
call b 0.5 seconds from the middle of phrase 2, illustrating 14 amplitude bursts c a single amplitude burst 
from b, illustrating the pulse structure. Spectrograms were generated using a 256-sample Fast Fourier 
Transform with the Hamming window function.

“bursts” of high amplitude. During the main phrase, these amplitude bursts are 
delivered at a mean rate of 27.8 bursts/s (95% CI: 27.4–28.3) and each amplitude 
burst consists of 8.34 pulses on average (95% CI: 7.70–8.98). The amplitude and 
frequency modulations are accompanied by rapid dorso-ventral movements of the 
cicada’s abdomen. These movements modulate frequency and amplitude by chang-
ing the acoustic properties of the sound-producing system (Pringle 1954). The third 
and final phrase of the call lasts an average of 1.65 seconds (95% CI: 1.36–1.94) and 
begins with a rapid initial drop in overall amplitude followed by a gradual decrease 
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in amplitude until the calling song ends. During this final phrase, the amplitude 
and frequency modulations disappear, although the modulations sometimes briefly 
return as the call terminates.

Calling song of T. chiricahua. The calling song of T. chiricahua is also naturally 
divided into three phrases (Figure 5). The first phrase is the initial crescendo as the 
call begins and lasts an average of 1.72 seconds (95% CI: 1.21–2.23). The second, 
main phrase of the call has a mean duration of 7.82 seconds (95% CI: 6.95–8.68) 
with a peak frequency of 7.12 kHz (95% CI: 6.56–7.67). The third phrase is a gradual 

Figure 5. Spectrograms and oscillograms of the calling song of Tibicen chiricahua: a complete call b 0.5 
seconds from the middle of phrase 2, illustrating 27 amplitude bursts c a single amplitude burst from b, 
illustrating the pulse structure. Spectrograms were generated using a 256-sample Fast Fourier Transform 
with the Hamming window function.
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decrescendo as the calling song terminates and lasts an average of 3.75 seconds (95% 
CI: 3.10–4.39). The entire call consists of an amplitude-modulated train of pulses. 
Pulses are grouped into high-amplitude bursts that, during the main phrase of the call, 
contain an average of 5.02 pulses per burst (95% CI: 4.54–5.51) and are delivered at 
a mean rate of 54.0 bursts/s (95% CI: 52.4–55.6).

Comparison of calling songs. Comparison of acoustic parameters, song structure, 
and physical behavior during call production verified that the calls of these two species 
are distinct. First, the underlying structures of the amplitude modulations of the calls 
differ. The mean amplitude burst rate of the call of T. chiricahua is nearly twice that of 
T. neomexicensis (54.0 and 27.8 bursts/s, respectively, t = 37.4, p < 0.000001), and the 
amplitude bursts of T. chiricahua contain about 3.3 fewer pulses per burst, on average, 
than those of T. neomexicensis (5.02 and 8.34 pulses/burst, respectively, t = 18.0, p < 
0.000001). There was no overlap in the ranges of observed values for either of these vari-
ables. Second, the phrasal structures of the calls also differ. The phrases in the call of T. 
chiricahua are defined merely by the overall pattern of amplitude changes in the call and 
have a relatively uniform sound quality throughout, while the third phrase of the call of 
T. neomexicensis is markedly different in quality from the other two phrases, lacking the 
characteristic modulations of phrases one and two. Furthermore, the beginning of the 
third phrase in T. neomexicensis is usually marked by an abrupt drop in amplitude, but 
the amplitude decreases gradually and smoothly from the second to the third phrases of 
T. chiricahua. Finally, the amplitude and frequency modulations in the call of T. neomexi-
censis are a result of rapid dorso-ventral movements of the abdomen during the calling 
song, but no such movements were apparent in the calling behavior of T. chiricahua.

The observed mean peak frequency of the main phrase of the call of T. neomexi-
censis was slightly higher than that of T. chiricahua, although the difference was not 
significant (7.27 and 7.12 kHz, respectively, t = 0.623, p = 0.539). Peak calling song 
frequency is constrained by body size for most cicadas, with larger cicadas having low-
er-frequency calls (Bennet-Clark and Young 1994). Thus, given that T. neomexicensis is 
smaller than T. chiricahua but the two cicadas are not grossly dissimilar in size, it is not 
surprising that their peak call frequencies are similar, and even though the difference 
was not significant, the observed higher pitch of the call of T. neomexicensis is consist-
ent with the morphometric analysis.

Geographic distribution

T. chiricahua is more widely distributed than T. neomexicensis, ranging from central and 
southeastern Arizona to southwestern New Mexico (Figure 6). Although not depicted 
in Figure 6, T. chiricahua is also known from Chihuahua, Mexico (Sanborn 2007). T. 
neomexicensis is so far known only from the Sacramento Mountains in south-central 
New Mexico. All known localities for T. chiricahua are west of the Rio Grande, while 
T. neomexicensis has only been found east of the Rio Grande.
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Four museum specimens, representing two unique collecting localities, could not 
be conclusively identified. One, a female collected June 15, 1937 in “Big Bend Park,” 
Brewster Co, TX (TAMU), appeared to be T. neomexicensis. However, Phillips and 
Sanborn (2007) did not report any cicadas resembling T. chiricahua in their intensive 
surveys of Big Bend National Park, so this record is doubtful. The other three speci-
mens were two males and one female collected June, 1966 “near” Ciudad Cuauhté-
moc, Chihuahua, Mexico (UCMC). These specimens are similar to T. neomexicensis 
and T. chiricahua, but differ in that all three have abdomens strongly marked with 
orange dorsolaterally. More information is needed regarding cicadas from this locality 
to properly determine their taxonomic status.

Discussion

Tibicen is the second most diverse cicada genus in North America north of Mexico 
(Sanborn and Heath 2012), and recognition of T. neomexicensis increases the number 
of described species in this region to 32. T. neomexicensis belongs to the “southwestern 
Tibicen species,” an informal subgroup of Tibicen species that differ morphologically 
from the Tibicen cicadas common in the eastern U.S (Davis 1930). These species are 
only found in the western United States and Mexico.

Figure 6. Geographic distribution of T. chiricahua (orange circles) and T. neomexicensis sp. n. (yellow tri-
angles), estimated from field observations and museum specimens. Green regions indicate pinyon-juniper 
habitats. The gray region represents the Albuquerque Basin and Chihuahuan Desert. T. chiricahua is also 
found in Mexico (Sanborn 2007).
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Diagnosis

Tibicen neomexicensis can be separated from all other North American species of Tibi-
cen except for T. chiricahua by the combination of its size, almost entirely black dorsal 
color pattern (Figure 1), and the male’s genitalia, particularly the shape of the uncus 
(Figure 2). Within Tibicen, this uncal structure is unique to T. neomexicensis and T. 
chiricahua (see Davis 1923 for a figure of the uncus of T. chiricahua).

In the field, T. neomexicensis and T. chiricahua are most easily distinguished by the 
unique calling songs of the males. Audio recordings of both species are available as 
online supplementary data for this paper. To human ears, the first and second phrases 
of the call of T. neomexicensis sound like a high-pitched, whiny buzz with easily dis-
cernible pulsations that correspond to the amplitude and frequency modulations. At 
the beginning of the third phrase, the abrupt transition to an unmodulated, uniform 
whine is perhaps the most aurally distinctive feature of the calling song.

In contrast, the call of T. chiricahua sounds like a monotonous, coarse buzz that 
rapidly increases in amplitude during the first phrase and then slowly fades away dur-
ing the final phrase. Apart from the amplitude changes in the first and third phrases, 
there are no obvious changes in sound quality during the course of the call.

Both male and female specimens of T. neomexicensis and T. chiricahua can usually 
also be separated by the coloration of the wing venation. In T. neomexicensis, the an-
terior margin of the subcostal vein (Sc) of the fore wing is usually yellowish or at least 
noticeably lighter in color than the main part of the vein, which is dark black (Figure 
3). In T. chiricahua, both the vein and its anterior margin are black (Figure 3). In ad-
dition, the cubitus anterior vein (CuA) in the hind wing of T. neomexicensis is yellow 
from its base to the junction with its second branch (CuA2), and the basal two-thirds 
or more of CuA2 is usually also yellow (Figure 3). In T. chiricahua, these two veins tend 
to be mostly or entirely black (Figure 3).

Although none of these morphological characters are 100% reliable, when used 
in combination, they identify nearly all specimens. The color of the margin of the Sc 
vein is the most reliable single morphological diagnostic character. Out of nearly 200 
specimens examined, only 7 might have been misidentified by the color of the Sc vein 
alone. The color of CuA and CuA2 is more variable, with some overlap between the 
two species, and the utility of this character seems to vary among populations of T. 
chiricahua. Unfortunately, in very old specimens, the colors of the wing veins some-
times fade, making identification difficult. Fore wing length can also be used to help 
confirm an identification, especially when the wing vein colors are ambiguous.

Ecology and behavior

Both T. neomexicensis and T. chiricahua are associated with pinyon-juniper woodlands, 
and neither species seems to occur in habitats where both pinyon pines (Pinus edulis, 
primarily) and junipers (Juniperus sp.) are absent (B. Stucky, pers. observation; Hast-
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ings and Toolson 1991). Although Davis (1925), citing a correspondence from Doug-
las K. Duncan, reported specimens of T. chiricahua collected “on a high mountain 
plateau … devoid of any vegetation except many clumps of a large heavy grass,” he 
also noted that, “There is much timber around the edges of this plateau, pine, cedar, 
and juniper.” Overall, records of these cicadas from Arizona and New Mexico closely 
overlap with the distribution of pinyon-juniper forests in those states (Figure 6).

Specimen label data and field observations indicate that adults of T. neomexicensis 
and T. chiricahua emerge in early summer and are mostly gone by the end of July. The 
earliest record for T. chiricahua is May 25 (in 1997) (specimen, CSUC). Although 
the UAIC has a specimen of T. chiricahua from Arizona with the date recorded as 
“September,” the next latest collecting date is July 22 (in 1975) (UAIC), so the Sep-
tember date is either very unusual or in error. The majority of collecting events for T. 
chiricahua were in June, and Hastings and Toolson (1991) reported that June 1–8 was 
approximately the middle of the adult active season of T. chiricahua in the San Mateo 
Mountains of New Mexico in 1989.

Phenological data for T. neomexicensis are much more limited, but consistent with 
an annual pattern similar to T. chiricahua. The earliest record for T. neomexicensis is 
for May 30 (in 2012), at the type locality (B. Stucky, pers. observation), but at this 
time, there were already large numbers of females ovipositing, so the cicadas must 
have emerged some number of days earlier. The latest record is from June 7 (in 2005) 
(specimen, NMSU).

The daily activity patterns of these two cicada species are also similar. Once the sun 
warms them sufficiently, males of both species will sing throughout much of the day, 
with peak calling activity occurring from about mid-day through early afternoon (B. 
Stucky, pers. observation; Hastings and Toolson 1991). Calling activity greatly dimin-
ishes during the late afternoon and evening.

Although the nymphal host plants of T. chiricahua and T. neomexicensis are not 
known with certainty, there is anecdotal evidence that females of these species have 
different oviposition preferences. Hastings and Toolson (1991) reported T. chiricahua 
females ovipositing in dead pinyon pine and juniper branches. In contrast, numerous 
ovipositing females of T. neomexicensis were observed at the type locality, most of which 
were placing their eggs in the dead, dried stems of grasses and forbs, often quite near 
to the ground.

Both T. chiricahua and T. neomexicensis are commonly found with T. duryi Davis, 
another species that is specialized on pinyon-juniper habitats (Hastings et al. 1991, 
Kondratieff et al. 2002). At the type locality, T. neomexicensis was also syntopic with 
Okanagana bella Davis.

Relationship with T. chiricahua

T. neomexicensis and T. chiricahua are not only extremely similar morphologically, but 
the shared structure of the male genitalia separates them from all other species of Tibi-
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cen. It therefore seems probable that T. neomexicensis and T. chiricahua are sister spe-
cies, although a broader phylogenetic analysis of Tibicen is needed to confirm this.

Today, these species are apparently entirely allopatric, separated from one another 
by the uninhabitable Albuquerque Basin and Chihuahuan Desert. This might be a rel-
atively recent phenomenon, though. At the time of the last glacial maximum, pinyons 
and junipers were widespread across much of what is today the Chihuahuan Desert 
(Betancourt et al. 1993, Lanner and Van Devender 1998, Thompson and Anderson 
2001). As the climate changed at the end of the Pleistocene and beginning of the 
Holocene, pinyons and junipers retreated to higher elevations and became extirpated 
from modern desert regions (Betancourt et al. 1993). Moreover, climatological data 
and models suggest that this pattern probably repeated multiple times during the Pleis-
tocene (Paillard 1997, Petit et al. 1999, Smith and Farrell 2005).

These habitat changes must have certainly affected the distributions of and interac-
tions among the ancestors of modern T. neomexicensis and T. chiricahua. What impact, 
if any, this had on population divergence and speciation is unknown. However, theory 
predicts that secondary sexual traits can diverge rapidly in allopatry (Pomiankowski and 
Iwasa 1998), and if T. neomexicensis and T. chiricahua are sister species, it seems likely that 
geographic isolation caused by habitat shifts played at least some role in their evolution.

Conclusions

Acoustic, morphometric, and behavioral data all indicate that the cicadas resembling Tibi-
cen chiricahua from New Mexico’s Sacramento Mountains should be recognized as a dis-
tinct species, described here as T. neomexicensis. In particular, analysis of audio recordings 
confirms that the calls of these two species have significant, consistent structural and tem-
poral differences, which provide the simplest means for identifying these cicadas in the field.

With the discovery of T. neomexicensis, the North American Tibicen are now 
known to encompass at least three complexes of morphologically cryptic species with 
distinct male calling songs: the chiricahua group [T. chiricahua and T. neomexicensis], 
the dorsatus group [T. dorsatus (Say) and T. tremulus Cole], and the pruinosus group [T. 
linnei (Smith & Grossbeck), T. pruinosus (Say), and T. robinsonianus Davis]. A phylo-
geographic and divergence-time analysis of the North American Tibicen species based 
on molecular data could not only help clarify the relationship between T. neomexicensis 
and T. chiricahua, but also shed light on the broader patterns of diversification for one 
of the most species-rich cicada genera in North America.

The geographic ranges of these species are still rather poorly documented, espe-
cially in Mexico, where T. chiricahua is currently known only from a single specimen 
(Sanborn 2007). Furthermore, compared to T. chiricahua, few localities are known for 
T. neomexicensis. Thus, additional field work is needed to clarify the distributions of 
these species. For T. neomexicensis, mountain ranges near the Sacramento Mountains 
that also have pinyon-juniper habitats, such as the Capitan Mountains to the northeast 
and Guadalupe Mountains to the southeast, are obvious targets for further exploration.
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Appendix I

Calling song of Tibicen neomexicensis sp. n. (doi: 10.3897/zookeys.337.5950.app1) 
File format: Waveform Audio File Format (wav).

Explanation note: Recorded on May 31, 2012, at the type locality for T. neomexicensis. 
Details of the recording methods are provided in the main text.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and use 
this Dataset while maintaining this same freedom for others, provided that the original 
source and author(s) are credited.

Citation: Stucky BJ (2013) Morphology, bioacoustics, and ecology of Tibicen neomexicensis sp. n., a new species of cicada 

from the Sacramento Mountains in New Mexico, U.S.A. (Hemiptera, Cicadidae, Tibicen). ZooKeys 337: 65–87. doi: 

10.3897/zookeys.337.5950 Calling song of Tibicen neomexicensis sp. n. doi: 10.3897/zookeys.337.5950.app1

Appendix II

Calling song of Tibicen chiricahua Davis. (doi: 10.3897/zookeys.337.5950.app2) File 
format: Waveform Audio File Format (wav).

Explanation note: Recorded on June 1, 2012, at the type locality for T. chiricahua.  
Details of the recording methods are provided in the main text.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and use 
this Dataset while maintaining this same freedom for others, provided that the original 
source and author(s) are credited.

Citation: Stucky BJ (2013) Morphology, bioacoustics, and ecology of Tibicen neomexicensis sp. n., a new species of cicada 

from the Sacramento Mountains in New Mexico, U.S.A. (Hemiptera, Cicadidae, Tibicen). ZooKeys 337: 65–87. doi: 

10.3897/zookeys.337.5950 Calling song of Tibicen chiricahua Davis. doi: 10.3897/zookeys.337.5950.app2
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