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Abstract
We review technical and sociological issues facing the Life Sciences as they transform into more data-cen-
tric disciplines - the “Big New Biology”. Three major challenges are: 1) lack of comprehensive standards; 
2) lack of incentives for individual scientists to share data; 3) lack of appropriate infrastructure and sup-
port. Technological advances with standards, bandwidth, distributed computing, exemplar successes, and 
a strong presence in the emerging world of Linked Open Data are sufficient to conclude that technical is-
sues will be overcome in the foreseeable future. While motivated to have a shared open infrastructure and 
data pool, and pressured by funding agencies in move in this direction, the sociological issues determine 
progress. Major sociological issues include our lack of understanding of the heterogeneous data cultures 
within Life Sciences, and the impediments to progress include a lack of incentives to build appropriate 
infrastructures into projects and institutions or to encourage scientists to make data openly available.
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Introduction

The urgent need to understand complex, global phenomena, the data deluge arising 
from new technologies, and improved data management are driving an agenda to ex-
tend the Life Sciences with more data-driven discovery dimensions (National Academy 
of Sciences 2009). The agenda requires new attitudes, facilities and approaches to shar-
ing and querying existing data (Hey et al. 2009; Kelling et al. 2009). This document 
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addresses some of the more proximate issues that some of the Life Sciences face as they 
progress towards this “Big New Biology”.

Data-driven discovery refers to hypothesis-testing and the discovery of scientific 
insights through the novel management and analysis of pre-existing data. It relies on 
access to and reuse of data which will most likely have been generated to address other 
scientific problems. While still hypothesis-based, data-driven discovery contrasts with 
the more familiar process of scientific inquiry based on collecting new data - whether 
by experimentation or by making new observations. It introduces opportunities to ad-
dress questions that demand a “scale” of data that cannot be acquired within a single 
project. It is cost-effective (Piwowar et al. 2011). Data-driven discovery is not new to 
biology, it is already part of exploring long term trends and is an integral part of the 
molecular field, but it is not the norm in most sub-disciplines. It requires a large open 
pool of data across the full breadth of the Life Sciences and into adjacent disciplines. 
The pool will probably be virtual, with tools accessing data from many repositories. 
Such a pool will allow biology to join the other “Big” (= data-centric) sciences such 
as astronomy and high-energy particle physics (Hey et al. 2009). Access to a pool will 
invite “New” logic, strategies and tools (a “macroscope”) to discover those trends, as-
sociations, discontinuities, and exceptions that reveal aspects of the underlying biology 
which are unlikely to emerge from more reductionist approaches (De Rosnay 1975; 
Ausubel 2009; National Academy of Sciences 2009; Patterson et al. 2010; Sirovich 
et al. 2010). An additional benefit is that a pool, and the resources from which it is 
macerated, may reveal factors not intrinsic to biology which improve our acuity or 
introduce distortions into knowledge; that is, it can lead to a better understanding of 
scientific certainty (Evans and Foster 2011).

The emergence of a data-centric Big New Biology is not guaranteed. Current prac-
tices in much of the discipline are parochial, with data being generated by individuals 
or small teams, being called upon to develop insights that are communicated in a 
narrative style in scientific publications. These small sciences rarely have a formal data 
culture, data are rarely collected with reuse in mind, they may be discarded, although 
more recently some journals and some sub-disciplines retain publication-related sub-
sets of data (White et al. 2008). Data sharing requires a stable and effective cyberin-
frastructure and the enthusiastic participation of the scientific community (National 
Science Foundation 2003, 2006; Burton and Treloar 2009; European Science Foun-
dation 2006; http://www.gloriad.org). Registries and repositories must grow to meet 
the challenges of making data discoverable and accessible. The emerging “Knowledge 
Organization Systems” (Morris 2010) need to effectively aggregate disparate data sets 
in part through evolving schemas that define categories of data across the Life Sciences 
and through ontologies that will intelligently model existing knowledge. Semantic web 
technologies are needed to achieve flexibility of reuse. Enhanced user interfaces with 
organizational, analytical and visualization tools will be needed to allow scientists to 
interact with the data and associated infrastructure. Most existing environments for 
data management are limited in scope, and need to be improved. The enthusiastic 
participation of professional biologists requires a readiness to make data available for 
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reuse, and to take advantage of new opportunities in their quest for understanding. 
The resulting new mesh of biological, computer and information sciences, as well as 
changes to current cultures, is envisioned as having the capacity achieve the data-cen-
tric architecture capable of building new bridges among the sub-disciplines of the Life 
Sciences and making biology big.

This document reviews technical and sociological issues for biologists in the light 
of this futuristic vision for the Life Sciences. Many elements, such as data trust and 
data types have technological and sociological components and in such cases we have 
combined them for clarity.

What is meant by data

The term “data” is not used consistently. For some it is limited to raw data, for others 
the term widens to include any kind of information or process that leads to insights. We 
prefer to limit the term to neutral, objective, raw data that are largely independent of con-
text, analysis or observer. As data become constrained, filtered and selected, they acquire 
or are assigned a meaning in the context of what they apply to. This is part of the process 
that transforms data into information (Ackoff 1989). There is no clear point of transition.

Contextual categorization of data

The context in which biological data are acquired or generated is important to under-
standing how data can be appropriately reused. A context may be formed if observ-
ers select or interpret their records, because of the limitations of tools or instruments 
used, or because data are gathered in an unnatural setting such as an experiment or 
“in silico”. Individuals and technologies are selective and capture a limited subset of all 
available data. Data are affected by choice of instrument and analytical processes. Some 
context can be represented through the addition of appropriate metadata to data. We 
categorize the following broad types of data reflecting the context of their origins.

A. Observational data relate to an object or event actually or potentially witnessed 
by an agent. An agent may be a person, team, project, initiative; and they may call 
upon tools and instruments. Scientists need to take responsibility to add metadata 
to the observational data, ideally identifying the agent, date, location, and contexts 
such as experimental conditions if relevant or the equipment used. Within the Life 
Sciences, metadata should include taxon names, the basis for identification and/or 
pointers to reference (voucher) material.

1. Descriptive data are non-experimental data collected through ob-
servations of nature. Ideally, descriptive data can be reduced to values about 
a specified aspect of a taxon, system, or process. Each value will be unique, 
having been made at one place, at one time, by one agent. Observations 
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may be confirmed but not replicated such that it is important to preserve 
these data. Preservation often does not occur as data of this type are discard-
ed after completion of the research narrative - the publication. The OBOE 
project offers a formal framework for descriptive data (Madin et al. 2007a).

Descriptive data can be collected by instruments or by individuals. Data 
collected by individuals may not represent the world completely or accu-
rately. Mistakes can be made, such as misidentification of taxa (MacLeod et 
al. 2010). Researchers may be selective about the data they seek to gather, 
either intentionally or unintentionally, such that data sets have limited ap-
plicability. Some individuals may discard data that are not in keeping with 
their expectations. Few or no raw data may be recorded, such that the in-
formation may only be available in an interpreted form. Descriptive data 
contribute to the “long tail” of small data sets, and often are not well suited 
to reuse.

2. Experimental data are obtained when a scientist changes or con-
strains the conditions under which the expression of a phenomenon occurs. 
Experiments can be conducted across a broad range of scales - from electro-
physiological investigations of sub millisecond processes within cells (Bunin 
et al. 2005) to manipulations of oceanic ecosystems (Coale et al. 2004). The 
intent is to dissect the elements of the phenomenon by changing conditions 
to uncover causal relationships, or to identify variant and invariant elements 
of biological processes. The raw data that are produced are contextualized 
by the experimental framework, and may have limited or no value in other 
contexts. It is important for associated metadata to include information 
about source and storage of material before the experiment, experimental 
conditions, equipment, controls and treatments.

B. Processed data are obtained through a reworking, recombination, or analysis of 
raw data. There are two primary types.

1. Computed data result from a reworking of data to make them more 
meaningful or to normalize them. In ecology, productivity or the extent of the 
ecosystem are rarely measured directly. Rather they are computed using infor-
mation or data from other sources to generate measurements of the amount of 
carbon or mass that is generated per unit area per unit time. While computed 
data may be held in the same regard as raw data, choices or errors in formulae or 
algorithms may diminish or invalidate the data created. The raw data that were 
used and information on how computed data were derived (provenance) are 
important for reproducibility. The metadata should provide this information. 
As computed data will grow as the virtual data pool expands, it will be helpful 
for sub-disciplines to develop appropriate protocols and advertize best practices.

2. Simulation data are generated by combining mathematical or compu-
tational models with raw data. Often models seek to make predictions of pro-
cesses, such as the future distribution of cane toads in Australia under various 
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climatic projections. The proximity of predictions to subsequent observations 
is used to test the concepts on which the model is based and to improve the 
model and our associated understanding of biology. Metadata differ dramati-
cally from other data types in that date of the run, initial conditions of the 
model, resolution of the model output, time step, etc. are important. Rerun-
ning the model may require preservation of initial conditions, model software, 
and even the operating system (Shirky 2005). Simulation data become less 
useful as they age and can become a storage burden.

Sociological issues

As the study of human social behavior, sociology includes the study of the behavior 
and practices of scientists. If we are to promote a shift to a Big New Biology, we need to 
understand current data cultures to determine which elements favor a transformation, 
and which will hinder it.

1. Data cultures

The phrase “data culture” refers to the explicit and implicit data practices and ex-
pectations that determine the destiny of data. It relates to the social conventions of 
acquisition, curation, preservation, sharing, and reuse of data. If the goal is to make 
data digital, standardized and openly accessible in a reusable format, then current data 
cultures provide starting points to determine the changes that will be needed before 
that vision can be realized. While a comprehensive survey has yet to be undertaken, 
it is clear that there is no single data culture for the Life Sciences (Norris et al. 2008; 
Gargouri et al. 2010; Key Perspectives Ltd 2010; Feijen 2011). This is unsurprising 
given that Life Sciences range in scope and scale from the field biologist whose data are 
captured in short-lived notebooks as a prelude to a narrative explanation of observa-
tions to the molecular biologist whose data are born digital in near terabyte quantities 
and are widely shared through global data repositories.

2. Readying data for reuse

The preparation of data for reuse in a shared pool often involves a series of steps or 
stages that relate to the capture, digitization, structure, storage, curation, discoverabil-
ity, access, and mobility of data. The situation with molecular data achieved by the In-
ternational Nucleotide Sequence Database Collaboration comprising the DNA Data 
Bank of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and 
the NCBI GenBank in the USA is exemplary (http://www.insdc.org/). Molecular data 
tend to be born digital, and are submitted in standard formats to centralized reposito-

http://www.insdc.org
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ries in which they are freely available for reuse in a standard form. A rich diversity of 
tools, services and applications has evolved to analyze and visualize the data.

Yet, set in the context of Rogers adoption curve (Rogers 1983; Fig. 1), and as sug-
gested by Harnad (2010), Life Sciences, generally, are closer to the early adopters stage 
of transition to data sharing than other sciences. It is still unusual for data created in 
most sub-disciplines to be made ready and openly available for sharing (Davis 2009). 
For these sub-disciplines to join Big New Biology, data practices must change to im-
prove retention of data, their conversion to digital form and placement within schemes 
of widely agreed standards, and visibility and accessibility with few or no restrictions. 
The technical aspects of these practices are described in the technical issues section.

3. Agents

The term “agent” refers to individuals, groups or organizations - each influencing data 
cultures.

Scientists. As major producers and consumers of Life Sciences data, scientists 
are important participants in Big New Biology. Within the US there are almost 
100,000 biologists (excluding agriculture and health sciences) working outside 
of academia (United States Department of Labor). The number within academia 
can be estimated from data on the approximately 2,500 colleges and universities 
(http://www.globalcomputing.com/american-universities.htm) that employ almost 
300,000 academics in science and engineering, 40% of whom work in the Life Sci-
ences (National Science Board 2010a). US research and development endeavors 
account for approximately one-third of the global effort (National Science Board 
2010b). Consequently, changing data practices will directly or indirectly affect as 
many as 200,000 life scientists in the US and about half a million professionals 
worldwide (PARSE 2009).

Figure 1. Rogers adoption curve describes the acceptance of a new technology. Life Sciences is still in the 
Early Adopters phase for accepting principles of data readiness.

http://www.globalcomputing.com/american-universities.htm
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As personal computers and Internet access have become integral components of 
biological research (Stein 2008), scientists’ views and practices of data sharing have 
changed. Biologists are increasingly publishing data through repositories like Gen-
Bank (http://www.ncbi.nlm.nih.gov/genbank/), their own web sites, or are partici-
pating in collaborative environments such as those that allow data to be annotated 
(e.g. EcoliWiki, http://ecoliwiki.net/colipedia/index.php/Welcome_to_EcoliWiki or 
DNA Subway for genome annotation, http://dnasubway.iplantcollaborative.org/) or 
to capture field data using services such as provided by Artportalen (http://www.art-
portalen.se/default.asp) or eBird (www://ebird.org). An increasing number of data-
bases are providing web services to mobilize data and new tools for visualizing data 
(e.g. GeoPhyloBuilder, https://www.nescent.org/sites/evoviz/GeoPhyloBuilder, Kidd 
and Liu 2008). Data processing and management pipelines such as Kepler (https://
kepler-project.org/) and VisTrails (http://www.vistrails.org/index.php/Main_Page) 
are emerging. Yet, for these changes to dominate across the breadth of the discipline 
and influence the full life cycle of the data, researchers must feel comfortable with 
design and performance of software systems (Stein 2008). There must be good dialog 
between the biologists and computer programmers for new tools to be adopted (Lee et 
al. 2006). Increasingly, biologists will need to be trained in computer and information 
science (Stein 2008) and include archiving machine-readable data and appropriate 
metadata as part of their normal workflow (Whitlock 2011). Computer scientists, 
software engineers, and others who produce code need to develop sensitivity to biology 
and biological thinking if they are to provide tools that delight life scientists.

Scientists, especially those associated with small science, will need to be more en-
gaged in mobilization of data than at present (Froese et al. 2003, Heidorn 2008, Cos-
tello 2009, Smith 2009). Many scientists do share specific data sets with close colleagues 
(Science staff editorial 2011), yet are insufficiently incentivized to share their data open-
ly. In part, they perceive the risks of making data available as outweighing the rewards 
(Porter and Callahan 1994, Key Perspectives Ltd 2010). This is despite the fact that 
papers with openly available data gain more citations (Piwowar et al. 2007). While there 
are communal repositories for sub-disciplines other than molecular, such as Global Bio-
diversity Information Facility and Ocean Biogeographic Information System for oc-
currences data, the majority of sub-disciplines lack appropriate communal repositories.

Publishers. Publishers of scientific journals are increasingly involved in data man-
agement (Whitlock et al. 2010). Publishers may provide the same services for data 
that they provide for manuscripts (i.e. peer review, citability, etc. Vision 2010). Some 
journals require deposition of data as a condition of publication. An example is the 
joint data archiving policy (JDAP, http://datadryad.org/jdap). JDAP has grown from 
its original consortium of evolution and ecology journals to include more than a dozen 
journals (Vision 2010). Dryad (http://datadryad.org/; White et al. 2008), GenBank 
(http://www.ncbi.nlm.nih.gov/genbank/; Bilofsky and Christian 1988), Protein Data 
Bank (http://www.wwpdb.org; Berman et al. 2006) and TAIR (http://www.arabidop-
sis.org/; Rhee et al. 2003) are examples of repositories that benefit from deposition re-
quirements from publishers. Publishers historically controlled the dissemination of the 
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narrative. Some limit access to articles while others, such as PLoS (http://www.plosbi-
ology.org/static/help.action#xmlContent) and Pensoft (http://www.pensoft.net/jour-
nals.php) have moved to an open-access model. Although some publishers (http://
www.articleofthefuture.com/, Ziegler et al. 2011) are experimenting with enhanced 
publication to allow researchers to share data sets, illustrations and audio files, we may 
presume that a publisher-driven model for data sharing is likely to incur charges for 
access to or submission of data. Many scientists feel this is inappropriate (Key Perspec-
tives Ltd 2010). A model is offered by Thomson Reuters BIOSIS that indexes more 
than half a million Life Sciences abstracts yearly (http://thomsonreuters.com/content/
science/pdf/BIOSIS_Factsheet.pdf). They are compiling metadata such as organism 
names and Enzyme Commission numbers that can be used to discover sources, and 
the publisher charges for its discovery services.

Funding agencies. Funding agencies worldwide have been called upon to finance 
informatics research and to promote tools and digital libraries that will underpin the 
shift towards a Big New Biology paradigm (Hey et al. 2009; National Academy of Sci-
ences 2009). Funding agencies are accountable to the public and to the government 
(e.g. Coburn 2011). Data cost money and the reuse of data represents a better return 
for each research dollar invested (Piwowar et al. 2011). In recognition of the impor-
tance of data sharing to their investment, funding agencies are increasingly imposing 
data-sharing requirements on their researchers (Table 1). Yet, many funding agencies, 
especially outside the US and Europe, do not have data policies or plans to make 
data available. Of those that do, many require scientists to submit data management 
plans as a part of their proposals. The plans are designed to explain where data will be 
deposited, under what terms data may be accessed, and what standards will be used. 
Many agencies believe in open access to data at the end of a project and have specific 
timelines for data release. They often acknowledge that the data provider will have a 
period of exclusive “right of first use” of data.

Governments. The realization of a Big New Biology will require significant in-
vestment in and reorganization of technical and human infrastructure, the creation of 
new agencies, new policies and implementation frameworks, as well as national and 
transnational coordination. The scale of these developments will require governmental 
and intergovernmental participation. Issues that require high-level attention are il-
lustrated by the OECD report that established GBIF (OECD 1999). GBIF has now 
about 60 national participants and influences national agendas. Especially relevant is 
the commitment to data sharing with its Suwon declaration (http://www2.gbif.org/
SignedSUWONdeclaration_small.pdf). This underscores the importance of data shar-
ing to science, conservation and sustainability. INSDC, which collates the sharing 
of molecular data via the US-based NCBI Genbank, the European EMBL, and the 
Japanese DDBJ, is another example of international informatics initiatives in the Life 
Sciences (http://www.insdc.org/policy.html).

Several countries have established governmental digital data environments inclu-
sive of the data.gov environments (http://www.data.gov/, http://data.australia.gov.
au/, data.gov.uk), or more specialist agencies such as Conabio in Mexico (http://www.
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conabio.gob.mx/), ABRS, ERIN and ALA in Australia (http://www.environment.
gov.au/biodiversity/abrs/, http://www.environment.gov.au/erin/, http://www.ala.org.
au/), ITIS in US (http://www.itis.gov/) or the European Environment Agency (http://
www.eea.europa.eu/data-and-maps).

In respect to the economics at this level, OECD, when establishing GBIF, com-
pared the cost of the molecular informatics infrastructure (millions of dollars) against 
the benefits to pharmaceutical, health and agricultural businesses worth billions of dol-
lars (OECD 1999). The costs of international cooperation on biodiversity informatics 
must be set against the estimated economic value of the world’s natural capital of tens 
of trillions (millions of millions) of dollars (Costanza et al. 1997; TEEB 2010). The 
OECD estimates costs of sustaining infrastructure to be 25% of the costs of generating 
raw data. Yet, an allocation of as little as 5% of research funding could provide billions 
of dollars for data preservation (Schofield et al. 2010).

Universities. With in excess of 20,000 universities (and institutions modeled on 
Universities) worldwide (Webometrics Ranking of World Universities; http://www.
webometrics.info/methodology.html), employing an estimated 5–10 million academ-
ics and associated researchers, universities form the largest research and development 
initiative. Collectively, Universities are a significant source of new data and given their 
international communal character, will be important as consumers of the data pool. 
The support, infrastructure and services that Universities provide will be a major de-
terminant of the flow and fate of data. Some environments, such as the SURF foun-
dation (http://www.surffoundation.nl/en/actueel/Pages/Researchersenhancetheirpub-
lications.aspx) seek to unite research institutes through the application of new tech-
nologies. SURF serves the Dutch context and currently emphasizes 5 disciplines; Life 
Sciences are not included.

Universities may or may not regard themselves as owners (having IP rights) of data 
and so may regulate access to data generated in-house or as part of collaborative projects. 
Universities may or may not have policies that require the retention of research data 
for a limited period usually in the range of 3 to 7 years. The University of Melbourne 
policy is based on guidelines from the National Health and Medical Research Council/
Australian Vice Chancellors’ Committee and specifies that “Data must be recorded in a 
durable and appropriately referenced form” for a minimum of 5 years (http://www.un-
imelb.edu.au/records/research.html). The Chinese University of Hong Kong encour-
ages researchers to deposit their data in the University Service Center upon completion 
of their research (http://www.usc.cuhk.edu.hk/Eng/SharingPolicy.aspx). US universi-
ties are bound to comply with the requirements of OMB Circular A-110 (Uniform 
Administrative Requirements for grants and agreements with Institutions of Higher 
Education, Hospitals, and Other Non-Profit Organizations – http://www.whitehouse.
gov/omb/circulars_a110). This specifies that financial records, supporting documents, 
statistics, and all other records produced in connection with a financial award, includ-
ing laboratory data and primary data are to be retained by the institution for a specified 
period. OMB A-110 also states “The Federal awarding agency(ies) reserve a royalty-
free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the 
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work for Federal purposes, and to authorize others to do so.” Many universities have 
data policies that target administrative data and administrative agenda rather than on 
promoting the use of data for academic purposes (e.g. “(This) University must retain 
research data in sufficient detail and for an adequate period of time to enable appropri-
ate responses to questions about accuracy, authenticity, primacy and compliance with 
laws and regulations governing the conduct of the research” – http://ora.ra.cwru.edu/
University_Policy_On_Custody_Of_Research_Data.pdf ). As their policies improve, 
Universities will need to play a significant role in educating staff and students as to the 
value of data. They will be the focus of reshaping the skill base on which the Big New 
Biology will rely (Doom et al. 2002). New trans-discipline curricula will ensure that 
biologists gain informatics skills and that computer scientists develop sensitivity to the 
challenges and needs in Biology.

Museums and herbaria. Museums and herbaria play special roles within the Life 
Sciences. Along with libraries, they have a mandate for the long-term preservation of 
materials. Those materials include several billion specimens of plants, animals and fos-
sils collected by biologists over 3 centuries (Chapman 2005a; OECD 1999; Vollmar 
et al. 2010). Those collections provide invaluable information as to changing distribu-
tions of species, provide access to extinct species, and inform research into defining 
species. They have special value in some phenomena that motivate the agenda for Big 
New Biology, such as distribution of invasive species, consequences of deforestation, 
and so on. Chapman (2005a) provides an exhaustive treatment of potential and actual 
value of primary biodiversity records.

Citizen scientists. Citizen scientists are non-professionals who participate in sci-
entific activities. The appealing richness of nature, its accessibility, and our reliance 
on natural resources ensures that biology attracts an especially high participation by 
the citizenry (Silvertown 2009). The academic skills of citizen scientists cover a mas-
sive spectrum, from those with casual interests in nature or science to individuals who 
publish in the scientific literature. The tens of millions of birders in the US (Kerlinger 
1993) translates to more than 100 million worldwide. The number of recreational fish-
ermen in marine waters approaches that of birdwatchers (Arlinghaus and Cooke 2009; 
Cisneros-Montemayor and Sumaila 2010), and an estimated 500 million people have 
livelihoods attached to fishing (ftp://ftp.fao.org/FI/brochure/climate_change/policy_
brief.pdf). That suggests that the potential citizen scientist community exceeds 1 bil-
lion people. This remarkable pool can be called upon to add the “sightings” (occur-
rence of a given species at a particular location at a particular time) which can be used 
to monitor the changing distributions and abundances of endemic and invasive spe-
cies. The Swedish ArtPortalen (http://www.artportalen.se/default.asp) has in 10 years 
compiled more than 26 million sightings at a rate of about 10,000 per day, illustrating 
the irreplaceable role of the citizen scientist. Several mobile phone apps exist that allow 
naturalists to record species occurrences in the field (BirdsEye from eBird, http://www.
getbirdseye.com/ and Observer from WildObs, http://wildobs.com/about/observer). 

http://ora.ra.cwru.edu/University_Policy_On_Custody_Of_Research_Data.pdf
http://ora.ra.cwru.edu/University_Policy_On_Custody_Of_Research_Data.pdf
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ftp://ftp.fao.org/FI/brochure/climate_change/policy_brief.pdf
http://www.artportalen.se/default.asp
http://www.getbirdseye.com
http://www.getbirdseye.com
http://wildobs.com/about/observer
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Data on occurrences, or of the first occurrences of flowering or appearance of migra-
tory species, can be called on to test scientific hypotheses as to the impact of climate 
change on the biosphere. Citizen scientists are significant monitors of endangered spe-
cies – providing the first evidence that some presumed-extinct species, such as the coe-
locanth (http://www.extinctanimal.com/the_coelacanth.htm), Wollemi pine (http://
www.wolganvalley.com/pdf/wolgan-valley/en/media-centre/fact-sheets/Wolgan%20
Valley%20Wollemi%20Pine%20Fact%20Sheet.pdf?1=6), ivory-billed woodpecker 
(http://www.cryptomundo.com/cryptozoo-news/ibw-rainsong/), Lord Howe Island 
stick insect (http://www.kidcyber.com.au/topics/Lordhowestick.htm) and mountain 
pygmy possum (http://animaldiversity.ummz.umich.edu/site/accounts/information/
Burramys_parvus.html) are still with us.

Repositories. A repository provides services for management and dissemination 
of data inclusive of, ideally, making data discoverable, providing access, protecting 
the integrity of the data, ensuring long term preservation and migrating to new tech-
nologies (Lynch 2003). Most repositories typically handle a specific data type at a 
particular granularity. Thousands of repositories already exist for managing Life Sci-
ences data and hold tens of millions of items (Table 2; see Jones et al. 2006, reposi-
tory66.org and http://datacite.org/repolist for more). However, it is estimated that 
less than 1% of ecology data is captured in this way (Reichman et al. 2011). Some 
sub-disciplines do not have repositories and the volume of data in some fields has led 
even exemplar repositories such as GenBank to question their capacity to host all data 
(http://www.ncbi.nlm.nih.gov/About/news/16feb2011; http://phylogenomics.blogs-
pot.com/2011/06/sequenceshort-read-archive-sra-back.html).

Repositories range in functionality from basic data stores to collaborative databases 
that incorporate analysis functions (WRAM, Wireless Remote Animal Monitoring, 
www-wram.slu.se). Some repositories host heterogeneous data sets (such as oceano-
graphic databases – http://woce.nodc.noaa.gov/wdiu/, http://www.nodc.noaa.gov/, 
http://www.ices.dk/ocean/), but those that provide normalization, standardization, at-
omization and quality control services (see below) will facilitate the reuse of data and will 
play a stronger role in data-intensive science. That many older repositories are difficult 
to access or are not maintained (Wren and Bateman 2008) reveals the need for appro-
priate funding and persistence strategies. Repositories can fail as a result of policy shifts, 
funding instability, management issues, or technical failures (Lynch 2003). Such failures 
can undermine acceptance of digital scholarly work by the community at large. As data 
repositories become more important over time, they must be trusted to provide high 
quality services reliably (Schofield et al. 2010). The trustworthiness of archives can be as-
sessed using criteria catalogues (Klump 2011) available from organizations like the Digi-
tal Curation Center (Innocenti et al. 2007) and the International Standards Organiza-
tion (ISO 2000). The Center for Research Libraries has assembled a list of ten principles 
for data repositories that addresses administrative and technical concerns (http://www.
crl.edu/archiving-preservation/digital-archives/metrics-assessing-and-certifying/core-re).

http://www.extinctanimal.com/the_coelacanth.htm
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Table 2. Examples of repositories for Life Sciences data.

Repository Type of Life Sciences 
Data

location

AlgaeBase algae names and refer-
ences

http://www.algaebase.org/

ArrayExpress microarray http://www.ebi.ac.uk/arrayexpress/
Australia National Data 
Service

general research data http://www.ands.org.au/

ConceptWiki concepts http://conceptwiki.org/index.php/Main%20Page
CSIRO fisheries catch http://www.marine.csiro.au/datacentre/
Data.gov natural resources data http://www.data.gov/
Diptera database Dipteran information http://www.sel.barc.usda.gov/diptera/biosys.htm
EMAGE gene expression http://www.emouseatlas.org/emage/
ENA gene sequences http://www.ebi.ac.uk/ena/
Ensembl genomes http://uswest.ensembl.org/index.html
Euregene renal genome http://www.euregene.org/
Eurexpress transcriptome http://www.eurexpress.org/ee/
EURODEER movement of roe deer http://sites.google.com/site/eurodeerproject/home
FishBase fish information http://www.fishbase.org/
GBIF occurrences http://www.gbif.org/
GenBank gene sequences http://www.ncbi.nlm.nih.gov/genbank/
GEO microarray http://www.ncbi.nlm.nih.gov/geo/
GNI names http://gni.globalnames.org/
INBIO Costa Rican biodiversity http://www.inbio.ac.cr/es/default.html
INSPIRE spatial http://inspire.jrc.ec.europa.eu/index.cfm
KEGG genes http://www.genome.jp/kegg/
Life Sciences Data 
Archive NASA

effects of space on 
humans

http://lsda.jsc.nasa.gov/

MassBank mass spectra http://www.massbank.jp/index.html?lang=en
MGI mouse http://www.informatics.jax.org/
MorphBank images http://www.morphbank.net/
OBIS occurrences http://www.iobis.org/
OMIM human genes and phe-

notypes
http://www.ncbi.nlm.nih.gov/omim

PDB molecule structure http://www.pdb.org/pdb/home/home.do
PRIDE proteomics http://www.ebi.ac.uk/pride/
PubMed citations http://www.ncbi.nlm.nih.gov/pubmed/
Stanford Microarray 
Database

microarray http://smd.stanford.edu/

tair Arabidopsis molecular 
biology

http://www.arabidopsis.org/

TOPP animal tagging http://www.topp.org/topp_census
TreeBase phylogenetic trees http://www.treebase.org/
TROPICOS plant specimens http://www.tropicos.org/
UniProt protein sequence and 

function
http://www.uniprot.org/

WILDSPACE life history information http://wildspace.ec.gc.ca/more-e.html
WRAM wireless remote animal 

monitoring
http://www-wram.slu.se/
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Technological issues

The second array of challenges that need to be addressed as we move towards Big New 
Biology are technical issues that affect the distribution, preservation, accessibility and 
reuse of data.

Making data accessible

The effective reuse of data requires that an array of conditions (Fig. 2) is optimized.
Data need to be retained. Relatively few data acquired historically have been re-

tained in an accessible form by scientists, projects or institutions (Pullin and Salafsky 
2010). The culture of disposing of data following publication, termination of a grant, 
relocation or retirement of a scientist is clearly incompatible with the vision of a data-
centric biology. While work practices in some areas, such as those in which data are 
born digital, or institutions with a strong tradition of preserving records, include data 
retention or their submission to a repository, much of the small biology lacks such a 
culture (Key Perspectives Ltd 2010). There is as yet an unresolved debate as to whether 
all data should be retained, or if subsets of data should be selected for retention, or if 
retained data should be subject to periodic review for deaccessioning.

Data need to be digital. Digitization is a prerequisite for data mobility. Consider-
able amounts of relevant data are not yet in a digital format (Chavan and Krishnan 

Figure 2. A Big New Biology can only emerge with a framework that optimizes reuse. Ideally, data 
should be in forms that can flow from source into a common pool and can flow back out to consumers, 
be subject to quality control, or be enhanced through analysis to rejoin the pool as processed data.
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2001; Vollmar et al. 2010; Schofield et al. 2010; Heidorn 2008). Non-digital for-
mats include notes, books, photographs and micrographs, papers, and specimens. The 
Biodiversity Heritage Library and similar projects are now in the process of digitizing 
some half billion pages of biology text (Gwinn and Rinaldo 2009). Digital metadata 
about non-digital materials have value as they make the data discoverable and increase 
incentives for digitization.

Data need to be structured. Digital data may be unstructured (e.g. in the form 
of free text or an image) or they may be structured into categories that are represented 
consecutively or periodically through the use of a template, spreadsheet or database. 
The simple structure of a spreadsheet allows records to be represented as rows. Data 
occur within the cells formed by the intersection of rows and columns defined by 
metadata (headers). A source may mix both structured and unstructured data such as 
when fields include free-form text, images, or atomic data. Unstructured data, such as 
the legacy data to be found in an estimated 500 million pages of text, can be improved 
through annotation with metadata provided by curators or through tools such as natu-
ral language processing tools.

Data should be normalized. Normalization brings information contained 
within different structures to the same format (or structure). Normalization may be 
as simple as consistently using one type of unit. Placing data within a template is a 
common first step to normalization. Normalization is a prerequisite for aggregating 
data. When data are structured and normalized, they can be mobilized in simple 
formats (tab delimited or comma delimited text files) or can be transformed into 
other structures to meet agreed upon standards. DiGIR is an early example of a data 
transformation tool (http://digir.sourceforge.net/). More contemporary tools, such 
as TAPIR or IPT from GBIF (http://ipt.gbif.org/) can output data in an array of 
normalized forms.

Data should be standardized. Standardization indicates compliance with a wide-
ly accepted mode of normalizing. Standards provide terms that define data and rela-
tionships among categories of data. Two basic types of standards that are indispensable 
for management of biological data are metadata and ontologies. Organizations such as 
TDWG develop new standards, and catalogs of standards and ontologies are available 
on the web (http://otter.oerc.ox.ac.uk/biosharing/?q=standards, http://wg.sti2.org/
semtech-onto/index.php/The_Ontology_Yellow_Pages).

Metadata are terms that define data in ways that may serve different purposes, 
such as helping people to find data of relevance (that is they aid the discovery of data 
- Michener 2006), or allow data to be drawn together (federated). Metadata standards 
define how data should be named and structured, thus reducing the heterogeneity of 
terms. Standards may mandate the types of metadata that are appropriate for differ-
ent types of data. Sets of metadata terms agreed upon by a community are referred to 
as controlled vocabularies, one of the most extensive bearing on the Life Sciences is 
the Ecological Metadata Language (EML; Fergraus et al. 2005). Scientific names are 
argued by some as having the potential to act as an extensive system of metadata (Pat-
terson et al. 2010; See discussion below).
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By articulating what metadata should be applied and how they should be for-
matted, standards introduce the consistency that is needed for interoperability and 
machine reasoning. For example, a marine bacterial RNA sequence collected from the 
environment ideally might be accompanied by metadata on location (latitude, longi-
tude, depth), environmental parameters, collection metadata (collection event, date of 
collection, sampling device), and an identifier for the bacterium. Without such meta-
data, the scope of possible queries is much reduced. Examples of minimum reporting 
requirements have been established by the MIBBI project (Taylor et al. 2008). Nu-
merous metadata guides are available within Life Sciences (Table 3). There are software 
programs available to assist in the collection and organization of metadata (such as 
Morpho, http://knb.ecoinformatics.org/morphoportal.jsp Higgins et al. 2002; Meta-
cat, http://knb.ecoinformatics.org/software/metacat/, Jones et al. 2002; MERMAid, 
http://www.ncddc.noaa.gov/metadataresource/metadata-tools).

An ontology is a formal statement of relationships among concepts represented by 
metadata terms. Ontologies enable discovery of and reasoning on data through those re-
lationships. Ontologies may use formal descriptive languages to define the relationships. 
Ontologies are regarded as having great promise (Madin et al. 2007b): “An ontology 
makes explicit knowledge that is usually diffusely embedded in notebooks, textbooks 
and journals or just held in academic memories, and therefore represents a formalization 
of the current state of a field. If ontologies are properly curated over the longer term, 
they will come to be seen as modern day (albeit terse) textbooks providing online and 
up-to-date biological expertise for their area. In another sense, they will provide the 
common standards needed for producing a strong biological framework for integrating 
data sets. Ontologies therefore provide the formal basis for an integrative approach to bi-
ology that complements the traditional deductive methodology” (Bard and Rhee 2004).

Ontologies are part of “Knowledge Organization Systems”. Those relating to bio-
diversity have been discussed by Morris (Morris 2010). Ontologies contribute to the 
semantic annotation of data and the artificial intelligence it enables. As an example, 
a simple search for information about the bird - robin, seeks to match some or all of 
character string r-o-b-i-n or to character strings in text within a data object or annotat-
ing the data object. The system cannot discriminate among data on American robins, 
European robins, Robin Reliant cars, Robin Wright Penn, or Robin the boy-superhe-
ro. However, if the query for “robin” is placed in the context of an ontology, such as 
one that declares that a context is the Turdidae, an informed system is able to return 
only relevant results from appropriately annotated data. In addition to more precise 
searching, ontological structures allow the computer to perform inference, a form of 
artificial intelligence. For example, an ontology that establishes that turdidae is_a bird 
and wing is part_of a bird, allows the inference that an American robin has wings and 
that data on wings, flight, or migrations may be discoverable. Larger interconnected 
ontologies allow more complex inferences.

Many ontological structures are available for use in Life Sciences (Table 3). 
Some, such as the observational (http://marinemetadata.org/references/oboeontol-
ogy, http://www.nceas.ucsb.edu/ecoinfo, https://sonet.ecoinformatics.org/) and 
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Table 3. Examples of standards and their location.

Standard Location Type
ABCD http://www.bgbm.org/TDWG/CODATA/Schema/default.htm Schema
Bioontology http://www.bioontology.org/ Ontology 

Repository
BIRN http://www.birncommunity.org/
Cardiac Electrophysi-
ology Ontology

http://bioportal.bioontology.org/ontologies/39038 Ontology

CMECS Coastal and marine ecological classification standard http://www.
csc.noaa.gov/benthic/cmecs/cmecs_doc.pdf

Vocabulary

Comparative Data 
Analysis ontology

http://sourceforge.net/apps/mediawiki/cdao/index.
php?title=Main_Page

Ontology

Darwin Core http://wiki.tdwg.org/twiki/bin/view/DarwinCore/ Metadata
Dublin Core http://dublincore.org/ Metadata
Ecological Metdata 
Language

http://knb.ecoinformatics.org/software/eml/ Metadata

Environment Ontol-
ogy

http://www.environmentontology.org/ Ontology

Evolution Ontology http://code.google.com/p/evolution-ontology/ Ontology
Experimental Factor 
Ontology

http://www.ebi.ac.uk/efo/ Ontology

Federal Geospatial 
Data Committee

http://www.fgdc.gov/ Metadata

Fungal Anatomy http://www.yeastgenome.org/fungi/fungal_anatomy_ontology/ Ontology
Gene Ontology http://www.geneontology.org/ Ontology
Homology Ontology http://bioportal.bioontology.org/ontologies/42117 Ontology
HUPO http://www.psidev.info/index.php?q=node/159 Vocabulary
Infectious Disease 
ontology

http://www.infectiousdiseaseontology.org/Home.html Ontology

International Stand-
ards Organization

http://www.iso.org Metadata

Marine Metadata 
Interoperability 

http://marinemetadata.org/ Metadata

Miriam http://www.ebi.ac.uk/miriam/main/datatypes/ Vocabulary
National Biodiversity 
Information Infra-
structure

http://www.nbii.gov/portal/community/Communities/NBII_
Home/

Metadata

Ontology of Micro-
bial Phenotypes

http://sourceforge.net/projects/microphenotypes/ Ontology

Open Biological and 
Biomedical Ontolo-
gies

http://www.obofoundry.org/ Ontology 
Repository

Phenotype Quality 
Ontology

http://obofoundry.org/wiki/index.php/PATO:Main_Page Ontology

Plant Ontology http://www.plantontology.org/ Ontology
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Standard Location Type
SDD http://wiki.tdwg.org/twiki/bin/view/SDD/Version1dot1 Schema
Species Profile Model http://wiki.tdwg.org/SPM Schema
Taxonomic Concept 
Schema

http://www.tdwg.org/activities/tnc/tcs-schema-repository/ Schema

TDWG http://www.bgbm.org/TDWG/acc/Referenc.htm Metadata
Teleost Anatomy 
Ontology

https://www.phenoscape.org/wiki/Teleost_Anatomy_Ontology Ontology

taxonomic ontologies (below), have broad applicability - the first within the field of 
ecoinformatics and the second to biodiversity informatics. Users can adopt existing 
structures or create their own using an ontology editor such as Protégé (http://pro-
tege.stanford.edu/) or OBOEdit (http://oboedit.org/). The search engines, Swoogle 
(http://swoogle.umbc.edu/) and Sindice (http://sindice.com/), search over 10,000 
ontologies and can return a list of those that contain a term of interest. Services such 
as these help users to determine if an existing ontology will meet his/her needs. Of-
ten, a user may need to use parts of existing ontologies or merge several ontologies 
into a single new one. Defining relationships between terms in different ontologies 
can be accomplished through the use of automated alignment tools such as SAMBO 
and KitAMO (Lambrix and Tan 2008). The development and integration of ontolo-
gies is best carried out using formal languages (such as OWL, http://www.w3.org/
TR/owl-ref/) and by individuals versed in their logical foundations. The Biodiversity 
Information Standards (TDWG) organization (http://www.nhm.ac.uk/hosted_sites/
tdwg/first_minutes.pdf) and GBIF have been prime movers in developing organiza-
tional frameworks for biodiversity information. Unfortunately, there are competing 
systems of standards and not all aspects of biology have established standards. Various 
efforts are under way to create broad scope ontologies (http://www.loa-cnr.it/index.
html, http://www.tonesproject.org/, http://www.geneontology.org/). The promise of 
ontologies is as yet not fully realized as “The semantic web is littered with ontologies 
lacking ... data” (Joel Sachs, pers. comm.).

The system of latinized binomial names (such as Homo sapiens) introduced for 
species in the mid-18th century by Linnaeus is an extensive system of potential 
metadata for data management in the Life Sciences. They have been used to annotate 
virtually every statement about any of our current catalog of 2.2 million living and 
extinct forms of life (Raup 1991, Chapman 2009) until quite recently. Now they are 
being supplemented with molecular identifiers, but at this time they are well suited 
to form the basis of a names-based cyberinfrastructure for Biology (Patterson et al. 
2008, 2010). This approach has been used for life-wide, data organization projects 
such as the Encyclopedia of Life (http://www.eol.org/). Placement of names within 
hierarchical classifications offers ontological frameworks that enable data aggrega-
tion, drilling down through data sets, and browsing through data. The conversion of 
names into a formal ontology has been explored through projects such as ETHAN 
(http://spire.umbc.edu/ont/ethan.php). Our current understanding of biodiversity 
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and the system of names is maintained by a specialist group of 5,000–10,000 profes-
sional taxonomists worldwide (Hopkins and Freckleton 2002), who generally are 
unaware of the informatics potential of names as a near universal indexing system for 
biological data. The Global Names Architecture is a new global initiative that links 
names databases and associated services to deliver names-based services to end users 
(Patterson et al. 2010).

Data will need to be atomized. Atomization refers to the reduction of data to 
minimal semantic units and stands in contrast to complex data such as images or 
bodies of text. In atomized forms, data may exist as numerical values of variables 
(e.g. “length of tail: 5.3 cm”), binary statements (e.g. “chloroplasts: absent”), or 
as the association with metadata terms from agreed upon vocabularies (e.g. “part 
of lodicules of lower floret of pedicellate spikelet of tassel”; Zea mays ontology ID 
ZEA:0015118, http://bioportal.bioontology.org/visualize/3294). Atomized data 
on the same subject can be brought together if the data are classified in a standard 
way. Atomization is necessary for machine-based analysis of data from one or more 
datasets. Many older data centers capture data as files (or packages of files) and 
the responsibility for extraction of data atoms falls to the user. This can be time 
consuming suggesting that, in the future, atomization needs to occur at or near the 
source of raw data, becoming part of the responsibilities of the author of the data, 
the software in which data are logged, or data centers that can provide services to 
transform data sets.

Data need to be published. Projects participating in a Big New Biology will in-
creasingly make data visible and accessible (i.e. published). Scientists may publish data 
by displaying them in unstructured or structured formats on local, project, or insti-
tutional web sites; or they may seek to place data in central repositories. In science 
generally, over three-quarters of the published data are in local repositories (Science 
staff editorial 2011) which can provide few guarantees of persistence (see “Data are 
Archived” below). In such environments, the responsibilities for discovery of data, 
negotiations with copyright holders and acquisition of data lie with the consumer. 
This is time consuming and unlikely to be done on a large scale. Publication is better 
served through the use of central, domain-specific repositories because they are more 
likely to persist, provide better services, and offer the framework around which third-
parties develop value-adding services. The molecular data environment consortium of 
ISNDC is a good example of this model. Only a small fraction of data are deposited in 
such environments (less than 10% of the science community generally - Science staff 
editorial 2011), with costs and absence of an organizational framework (metadata and 
archiving environments) being cited as reasons.

Publication of atomized data is essential for large scale data reuse. Data must be 
able to move from one computer to another in an intelligent way. As illustrated by the 
Global Biodiversity Information Facility (http://www.gbif.org/informatics/standards-
and-tools/using-data/web-services/), scientific initiatives can add RSS feeds, web ser-
vices, and APIs (Application Programming Interfaces) to their web sites to broadcast 
new data or to respond to requests for data. An API facilitates interaction between 
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computers in the same way that a user interface facilitates interactions between hu-
mans and computers. Without such services, data may need to be screen scraped from 
the web site, a process that is usually costly (because the solution for each site will dif-
fer) and, at worst, may require manual re-entry of data. A service-oriented approach 
is scalable but incurs overhead. They are probably best served through community 
repositories that can call on appropriate domain-specific knowledge.

Data must be archived. It is preferable that data, once published, are persistent 
(Feijen 2011). Projects, initiatives and host institutions have little incentive to pre-
serve data for the long term as the process incurs a cost, and repositories that emerge 
within projects may have limited life spans (e.g. OBIS, http://www.iobis.org/). How-
ever, data archiving can be viewed as a good investment by funding agencies (Piwowar 
et al. 2011). Central repositories that are not dependent on short-term funding are 
better positioned to archive data making them persistent. The three global molecular 
databases that make up the International Nucleotide Sequence Database Collabora-
tion provide an excellent example of how domain-specific repositories may operate. 
Because they are not funded through short-term projects, and because they mirror 
each other, such repositories guarantee the persistence of data, and empower scientists 
to develop projects that involve substantial analyses of shared data (Tittensor et al. 
2010). Persistence can be assisted by institutions such as libraries and museums that 
specialize in the preservation of artifacts or by governmental intervention (the US-
based National Institutes of Health support GenBank). An alternative solution to 
persistence is an effective business model that allows a data center to be sustained by 
income from services that it sells; or by providing essential services that ensure support 
from the community of users. Examples of commercial models include the Chemi-
cal Abstracts Service of the American Chemical Society (www.cas.org/) or Thomson 
Reuters’ Zoological Record (http://thomsonreuters.com/products_services/science/
science_products/a-z/zoological_record/).

Data will ideally be free and open. Open Access, the principle of providing un-
constrained access to information on the web, improves the uptake, usage, application 
and impact of research output (Harnad 2008). Open Access has been applied widely 
to the process of publication, where it is seen as an alternative to the model in which 
publishers act as gatekeepers. Open Access has been applied less to data, and while this 
extension is natural, it is not straightforward (Vision 2010). Attitudes about sharing 
data freely within Life Sciences vary broadly. In sub-disciplines like genomics, data 
sharing is the norm with some researchers sharing their data immediately via blogs or 
wikis (http://www.carlboettiger.info/research/lab-notebook and http://pathogenom-
ics.bham.ac.uk/blog/). Communities that value data sharing may have no formal rec-
ognition for such activities nor supportive technical infrastructure. Other communi-
ties have a strong sense of data ownership and are antagonistic to open data sharing. 
Researchers in these communities expect to be directly involved in any further analyses 
of their data. Databanks for these communities often require registration and/or a fee 
to gain access. Some data may be regarded as too sensitive to be made fully accessible 
(Key Perspectives Ltd 2010).
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Data can be trusted. Once data are accessed, consumers may reveal errors and/or 
omissions. Biological data can be very dirty, especially if they were acquired without ex-
pectation that they would be shared later. Any data cleaning procedures should be docu-
mented to aid the consumer in assessing whether the source is “suitable for their purpose” 
(Chapman 2005b). The creation of “quality loops” allow comments to flow back to the 
source where data can be annotated or modified, and returned to users for renewed vet-
ting. Webhooks (http://iphylo.blogspot.com/2011/02/web-hooks-and-openurl-making-
databases.html) offer a mechanism to exploit APIs to have comments returned to source. 
Any editing of data can lead to the undesirable outcome that variant forms of the same data 
may coexist. To some extent, versioning of data sets can be used to discriminate between 
modified datasets, but users need to cite the version used in analyses (Zhang et al. 2007).

Data must be attributed. Scientists gain credit in part through attribution. The 
permanent association of identifiers with open data offers a means of linking attribu-
tion to the data and of tracking reuse (Cryer et al. 2009). The association of authors’ 
names with data motivates contributions (or lack of credit demotivates them). Attribu-
tion favors the development of quality loops to correct errors or otherwise comment on 
the data. Special care is needed when attributing data resulting from the combination 
of one or more existing sets so that all intellectual investment is properly credited. 
Dryad, a JDAP partner, provides data citations through the use of DataCite DOIs 
with an unrestrictive Creative Commons Zero license, thus promoting clear citation 
and reuse of data (Vision 2010). Community norms can ensure proper attribution of 
CC0-licensed data (Fauchart and von Hippel 2008). The Panton Principles provide 
guidelines for licensing data (http://pantonprinciples.org/).

Data can be manipulated. A value of having large amounts of appropriately an-
notated data available on the web is that users can explore, in addition to search for, 
data. Data exploration may result from a desire to test a hypothesis. It is therefore 
desirable to have tools that draw data together, analyze or visualize them. Exploratory 
systems include: Humboldt (Kobilarov and Dickinson 2008) which operates like a 
faceted filter for Linked Data; Parallax which accesses data in Freebase and has the 
ability to interact with data on multiple web pages at once (Huynh and Karger 2009); 
and Microsoft Pivot (http://www.getpivot.com/) allows a user to interact with large 
amounts of data from multiple Internet sources.

Visualizations have the capacity to reveal patterns, discontinuities and exceptions 
that can inform us as to underlying biological processes, appropriateness of data sets, 
or consistency of experimental protocols. Visualizations can be used to display results 
with analyses of large data sets. Through visualizations we may help address the chal-
lenge stated by Fox and Hendler (2011) that “... many of the major scientific problems 
facing our world are becoming critically linked to the interdependence and interrelat-
edness of data from multiple instruments, fields and sources”. The absence of effective 
visualization is creating a bottleneck within data-intensive sciences (Fox and Hendler 
2011). Solutions need to be found in relatively simple low end visualizations (as won-
derfully catalogued in http://www.visual-literacy.org/periodic_table/periodic_table.
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html) to high end tools designed for the data deluge that themselves may call on graph-
ics and visualization standards to be pipelined into rich, complex, and flexible aids. 
Many Life Sciences data sets can be drawn together and visualized using the geospatial 
element such as with LifeMapper (http://www.lifemapper.org/) or by OBIS and GBIF 
(inter alia; Webb et al. 2010). Geospatial metadata, along with temporal, publication, 
and names metadata are especially valuable as integrators of diverse data sets.

Data need to be registered and discoverable. Registries index data resources to 
alert potential users to their availability. Search engines, the normal indexers of web-
accessible materials, are not good at revealing database contents - only about half of 
the open data in repositories are indexed by search engines (McCown et al. 2006). 
Discovery is made possible by the addition of coarse grained discovery metadata. Reg-
istry functions need to expose discovery metadata to make data sets more visible. As an 
example, GBIF provides registry level service for biodiversity data (http://www.gbif.
org/informatics/standards-and-tools/integrating-data/resource-discovery/). Registries 
that cover software (http://en.bio-soft.net/geshi.html, http://www.equisetites.de/pal-
bot/software/software.html) or web services (www.biocatalogue.org) are valuable in 
promoting awareness of tools for data capture, conversion and processing. Successful 
domain repositories, such as GenBank, have well-structured and detailed metadata that 
enable detailed search and enhanced discoverability. In the absence of such registries, 
researchers turn to peers, publications or the thousands of minor data sets available via 
the Internet. Under these circumstances, it is hard to know when, or if, all relevant 
data are found. There is a need for a broad-spectrum registry and indexing service (like 
a Google for data) where researchers can post pointers to their own data, search for 
desired data and have a means to quickly preview the results. Examples of this exist in 
Europe with OpenDOAR (http://www.opendoar.org/) and in India with Database of 
Biological Database (http://www.biodbs.info/), each with thousands of listings. Seman-
tic annotation of data greatly increases discoverability, and is discussed below.

The semantic web and Big New Biology

The “semantic web” has many definitions, but here we think of it as a technical framework 
that promotes automated sharing and reuse of data across disciplines (Campbell and Mac-
Neill 2010). The semantic approach has advantages of being flexible, evolvable, and ad-
ditive. A semantic infrastructure will lead to machine-mediated answers to more complex 
queries than previously possible (Stein 2008). The foundations for automated reasoning 
lie in the annotation of data with agreed metadata, linked through a network of ontolo-
gies, and queried using conventions (languages) such as RDF, OWL, SKOS and SPARQL 
(Campbell and MacNeill 2010). The mass of appropriately annotated data that can be 
accessed through the Internet is referred to as LOD (Linked Open Data). Through com-
mon metadata, the data can be linked to form a Linked Open Data cloud. At this time, 
Life Sciences makes up 9% of the triples in LOD and 51% of the links (Bizer et al. 2011).
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Berners-Lee has promoted four guidelines for linked data (Berners-Lee et al. 2006):
1.	 The use of a standard system of Uniform Resource Identifiers (URIs) as “names” 

for things
2.	 The use of HTTP URIs so that the names can be looked up on the internet and 

the data accessed
3.	 When a URI is looked up, it should return useful information using standards 

(RDF, SPARQL)
4.	 Links to other URIs so that users can discover more things.

A URI is a type of persistent identifier made up of a string of characters that un-
ambiguously (at least in an ideal world, see Booth 2010 for discussion) represents data 
or metadata and can be used by machines to access the data. Different data sets can be 
linked when they refer to the same URIs. For example, several marine data sets could 
be linked because they identify the same investigator, sampling event, or location. The 
most useful classes of terms that are likely to serve the needs of the Life Sciences are geo-
references (which can link data from the same location held in different repositories), 
names of taxa (the common denominator to the majority of statements about biodiver-
sity), publications and identities of people that can be interconnected through devices 
such as FOAF (friend-of-a-friend) to find collaborators, relevant data, as well as to dig 
into the world of scientific literature, the latter being linkable through devices such as 
DOIs to show citation trends, influential publications, etc. (Patterson et al. 2010).

RDF is a language that defines relationships between things. Relationships in RDF 
are usually made in three parts (often called triples), Entity:Attribute:Value. A ma-
chine-readable form in RDF may be a statement that “American robin:has_color:red”. 
Each term is ideally defined stringently by controlled vocabularies and ontologies, and 
each part represented within the triple as a URI. The “Value” can be a URI or a literal 
- the actual value. An advantage of RDF is that it allows datasets to be merged, for 
example TaxonConcept and Wikipedia (http://www.slideshare.net/pjdwi/biodiversi-
ty-informatics-on-the-semantic-web). A goal of the Linking Open Data project is to 
promote a data commons by registering sets in RDF. As of March 2011, the project 
had grown to 28 billion triples and 395 million RDF links (Bizer et al. 2011). The EU 
project, Linking Open Data 2, received €6.5 million to expand Linked Data by build-
ing tools and developing standards (http://lod2.eu/Welcome.html).

Transformation of data from printed narrative or spreadsheet to semantic-web for-
mats is a significant challenge. Based on existing ontologies, there is enough information 
to create 1014 triples in biomedicine alone (Mons and Velterop 2009). At the time of 
writing, this quantity far exceeds the capacity of any system to process the information.

Life Sciences stand to benefit greatly from the advantages of linked data (Reich-
man et al. 2011), but need additional investment in mechanisms that ensure quality, 
provenance and attribution. Provenance identifies sources and, among other things, 
can ensure attribution and be part of quality control processes. Several software pack-
ages currently exist for tracking provenance (such as Kepler, https://kepler-project.
org/; Taverna, http://www.taverna.org.uk/; VisTrails, http://www.vistrails.org/index.

http://www.slideshare.net/pjdwi/biodiversity-informatics-on-the-semantic-web
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php/Main_Page). Bechhofer et al. (2010) advocate the use of Research Objects (ROs) 
as a mechanism to capture additional value necessary to make the semantic web work 
for science. Provenance of ROs would satisfy recent calls for “open science” that argue 
that not only data should be open, but so should be associated methods and analyses 
(Reichman et al. 2011).

Semanticization enables nanopublication, a form of publication that extends tradi-
tional narrative publication (Groth et al. 2010) and allows attribution to be associated 
with the semantic web (Mons and Veltrop 2009). Nanopublications relate to publica-
tion of triples. A uniquely identifiable triple is a statement. A triple with a statement 
for a subject is called an annotation and a set of annotations that refer to the same 
statement is called a nanopublication. The annotations add attribution and context to 
the statement. The concept is not widely accepted.

Discussion

A Big New Biology holds much promise as a means to address some large proximate 
scientific challenges. Macroscopic tools will enable discovery of hidden features and 
better descriptions of relationships within the complexity of the biosphere. Yet, to date, 
progress towards the vision varies enormously from the successes with high-throughput 
biology to virtual stasis in some small science biology. Considerable effort is needed 
to catalog current practices, and to define the sociological transformations that will be 
required to improve the likelihood of success. If the transformation is to be purposeful, 
then it will need general oversight, discipline-specific reviews, and a description of the 
actual and desirable components of the Knowledge Organizational System for Biology 
and their relationships. Some obvious challenges relate to standards and associated 
ontologies, incentivizing participation, and assembling an appropriate infrastructure 
and skill base.

Standards and Ontologies. Data standards bring order to the virtual data pool 
on which a Big New Biology will rely. While complex and finely grained metadata are 
needed for analyses and for the world of Linked Open Data, the first challenge is to 
improve the discoverability of data. This process has traditionally been supported by 
word-of-mouth at conferences or in publications. With standards, registries can enable 
users to find data sets containing information about taxa, parameters, times, processes, 
or places of interest. If metadata are absent or incomplete, then the data sets cannot be 
discovered or reused and cannot contribute to Big New Biology.

Automated data discovery, aggregation and analysis require more comprehensive 
standards than those currently available for many of the Life Sciences. Instead of a 
comprehensive system of standards, there is a piecemeal system of metadata, vocabu-
laries, thesauri, ontologies, and data transfer schemas that overlap, compete, and have 
gaps. Greatest progress is being made outside the Life Sciences (such as georeferenc-
ing), or in high-investment areas where data are born digital (such as in genomics, Tay-
lor et al. 2008). Given the richness of biodiversity and interactions, a comprehensive 
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system of standards will necessarily be extremely complex, and be costly to implement. 
This creates a tension: whether to promote the comprehensive annotation of data with 
a significant overhead that deters participation versus pursuing a more minimalistic 
annotation that can set a grander process in motion. As the commitment to stand-
ards is not widespread, the minimalistic approach is more likely to gain traction. The 
perspective that “The semantic web is littered with ontologies lacking ... data” noted 
above warns us against starting with complex structures. Metadata and their inter-
relationships will need a framework that is designed to allow initial discipline-specific 
standards to become more finely grained and for the parts to merge into a dynamic 
grand schema. The world of Linked Open Data provides a good model for this, but 
given that few data are appropriately annotated, it has yet to realize its potential.

Two organizational frameworks for Life Sciences data are as yet under-exploited. 
The first is the system of georeferencing that is in use in rich applications in earth sci-
ences, cartography, and so on. Information on occurrences of species is compiled in 
central databases such as GBIF and OBIS, has been and is being collected in vast quan-
tities by a myriad of citizen scientists. Its potential is well illustrated by some large-
scale applications such as the impressive charting of bird migrations (Marris 2010), 
meta-analyses of oceanic biota (Webb et al. 2010), or web sites that emphasize locally 
relevant biota (http://zipcodezoo.com/). Less well developed, but arguably with more 
potential for many sub-disciplines of the Life Sciences, is the transformation of taxo-
nomic and phylogenetic knowledge into an information management system that uses 
Latin names and molecular identifiers as metadata and classifications and phylogenies 
as ontological frameworks for the metadata (Patterson et al. 2010).

Incentives. Despite widespread calls for scientists to make data more widely avail-
able, this has yet to happen for many sub-disciplines (Dittert et al. 2001, Harnad 2008, 
Mandavilli 2011, Piwowar 2011). Only about 10% of data make their way to open 
repositories (Savage and Vickers 2009, Science staff editorial 2011). A current impedi-
ment to data sharing is that the benefits derived are often greater for the consumer 
than the producer (Porter and Callahan 1994). Other reasons are the lack of resources, 
infrastructure, and incentives for sharing. Sociological, financial, legal and technical 
barriers must be surpassed for communities to become directly involved in populating 
and maintaining data pools, a requisite for success and scalability (Feijen 2011).

In surveys, (Froese et al. 2003, Kohnke et al. 2005, RIN 2008, Costello 2009), 
scientists give the following five reasons not to share data. The first relates to intel-
lectual property: A scientist’s funding and professional recognition relies on receipt of 
credit for work done. Until scientists receive credit for data publication, there will be 
little motivation to redirect efforts from more rewarding activities (such as exploring 
nature or writing papers) towards data mobilization. This problem can be solved with 
an infrastructure capable of creating citations for data and tracking data use (Froese 
et al. 2003). The second relates to legal and confidentiality issues as some data can-
not be shared, such as data concerning people (Guttmacher et al. 2009) or location of 
endangered species (Froese et al. 2003), proprietary information, or because employ-
ers or funders claim that they have copyright over data. The infrastructure must have 
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mechanisms to protect necessary confidentiality. Some data can be anonymised, and 
in the case of endangered taxa, protection can be accomplished by fuzzing data, so that 
exact locations or identities are obscured (Froese et al. 2003). Thirdly, there is concern 
over misuse or misinterpretation of data, which, once in the literature, cannot be un-
published. This is not a new problem, but it will increase as data producers lose control 
and can no longer act as “gate-keepers”. Part of the solution lies in developing stringent 
metadata and format standards such that data are released only when there are sufficient 
metadata to ensure that all users understand the context and limitations of the data. 
Until such time, disclaimers can alert consumers about inappropriate reuse (Froese et 
al. 2003, Smithsonian 2011). Fourthly, scientists are concerned that publication can 
expose errors in their data or weaknesses of analysis. Errors may include insufficient, 
inaccurate or inappropriate data encoding, metadata, or analysis. Third parties may re-
veal the selective or inappropriate use of data to emphasize particular arguments. Given 
the noisy and rich nature of biology, there can be no such thing as a perfect data set; all 
are incomplete. Errors or gaps uncovered by subsequent users can be dealt with openly 
and honestly, thereby enhancing the body of scientific data. Finally, there is the issue 
of sustainability. Project-based data repositories run a risk of being abandoned at the 
end of the funding cycle. This increases doubts that data curation activities are a good 
use of resources. It is cheaper to curate data properly than it is to gather it again (Hei-
dorn 2008, Piwowar et al. 2011), and some data, such as data on past distributions of 
species, are irreplaceable and thus priceless. From an economic perspective, persistent 
discipline-specific repositories are attractive. There are considerable academic benefits 
from engaging with repositories. Scientists who share data often report increased book 
and/or photograph sales, increased web site hits and higher visibility for their projects 
(Froese et al. 2003). There is greater citation impact for open-access articles (Gargouri 
et al. 2010). In larger consortia, scientists (such as those studying phylogenetic relation-
ships) who pool data are able to answer questions they could not answer if they were 
limited to the data that they themselves generated. Some publishers are incentivizing 
early data-sharing by granting an embargo to the data producers (Kaye et al. 2009) to 
alleviate fears of being “scooped” (Reichman et al. 2011). An emphasis on “carrots” 
such as these may be much more effective means of promoting data-sharing than the 
“sticks” (in the form of funding agency requirements, Kaye et al. 2009; Table 1).

Infrastructure. In addition to challenges to incentivize scientists in the direction 
of data-sharing, the infrastructure for a Big New Biology is incomplete. Funding agen-
cies, like the National Science Foundation in the US, require projects to have plans for 
data management - a requirement that presumes data persistence. The infrastructure 
needed to guarantee persistence will require an investment well beyond the usual 3–5 
year funding cycle into multi-decadal periods and coordination that has international 
dimensions. The infrastructure must include tools to capture data, policies, data stand-
ards, data identifiers, registration of discovery-level metadata, and APIs to share data 
(Fig. 3). There is as yet no index of data-sharing services (for some initial steps see data-
catalogs.org and DataCite http://www.datacite.org/repolist) nor a framework in which 
such elements could be integrated. There is little assessment of which elements of data 
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plans will lead to persistence of data or their reuse. In the absence of these elements, 
principle investigators are left to make their own policies, use their own systems, and to 
finance the processes. As long as the response is piecemeal, there can be no assurances 
of interoperability, efficiency or persistence. At this time, research scientists need to be 
supported by data managers and data archivists. Institutional libraries and museums 
are well placed to shift their agendas to include data management and the preserva-
tion of digital artifacts and so may fill this gap, providing institutional, regional or 
discipline-based services. It is hoped that the ongoing NSF Data Net projects can 
contribute significantly to the infrastructure.

A new technical challenge is the lack of bandwidth to distribute data from mod-
ern data-intense technologies. The problem is illustrated by high throughput molecular 
biology with tera and petabyte scale data sets (Cochrane et al. 2009). Proposed solu-
tions include Bio-Mirror (http://www.bio-mirror.net/) which consists of several serv-
ers holding the same data, or the Tranche Project (https://trancheproject.org/), which 
shares repository functions across servers. The latter has a high administrative overhead. 
Peer-to-peer sharing systems such as BitTorrent (Langille and Eisen 2010) overcome 
potential bandwidth problems by sharing data sets without a central repository. Users of 
BioTorrents benefit from lower bandwidth use, faster transfer times and data publica-
tion. Although terabit per second line rates are on the horizon (Hillerkuss et al. 2011), 
bandwidth problems are likely to persist as part of the interplay between the evolution 
of new data-generating instruments and the limitations of the infrastructure to make 
data freely available to all. We may expect to see a growth of specialist centers that will 
offer analysis, visualization, and data transformation services on behalf of the users.

Figure 3. Technical infrastructure needed for Big New Biology to fully emerge (based on Sinha et al. 
2010).
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Conclusion

There is growing pressure from scientists, funding agencies and governments to use 
new information technologies to effectively manage the increasingly vast amounts of 
data emerging from new technologies, to integrate these with smaller data sets, and to 
enhance the communal nature of science. If successful, biology will be enriched with 
data-intensive dimensions better suited to address large scale and trans-discipline prob-
lems. The transition requires many technical advances and cultural changes. Progress 
on the technical front to date clearly demonstrates that technical issues can be resolved. 
The process of sociological adaptation is less convincing. Some sub-disciplines (mo-
lecular domains) have embraced data-intensive dimensions, some (environmental ecol-
ogy) are in transition, and others (such as taxonomy) are just beginning. A much better 
understanding of the existing cultures is needed before we can promote solutions that 
will realign the traditions of each community with the common goal of shared data 
use. Training environments such as Universities need to create a new cadre of scientists 
trained in computer sciences and biology. Other pressing challenges to data integration 
relate to the development of comprehensive and agreed metadata and ontologies, and 
to the semanticization of data so that the discipline can take advantage of the Linked 
Open Data cloud. The long tail of small data sets presents a special challenge - that of 
bringing heterogeneous data sets together. At this time, the common denominators 
that are likely to be effective are georeferencing, citations, and names. All require fur-
ther investment. None of the elements of the transition will come quickly or cheaply, 
but these transformations are needed if we are to make the Life Sciences less parochial 
and more capable of responding to major research challenges.
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