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Foreword

The papers in this special issue of ZooKeys were presented at the 15th International 
Congress of Myriapodology (15ICM) in Brisbane, Australia in late July 2011.

Myriapodology congresses are held every three years under the auspices of the Centre 
Internationale de Myriapodologie (CIM), based at the Muséum National d'Histoire 
Naturelle in Paris. For the past 40 years, CIM has managed a database of myriapodolo-
gists and their interests and a bibliography of currently published works. It produces 
an annual bulletin and maintains a website with myriapodological news and resources 
Thanks in large part to the CIM, the global myriapodological community is remark-
ably close-knit and friendly.

15ICM was the first myriapodology congress to be held in Australia and only the sec-
ond in the Southern Hemisphere. The 46 participants came from 22 countries, making 
the 15th Congress a truly international meeting of myriapod specialists.

As organisers we are very grateful for the generous support provided by Phoenix Envi-
ronmental Services of Perth, Western Australia and two Australian Government pro-
grams: the Atlas of Living Australia and the Australian Biological Resources Study.

We also thank Lyubomir Penev and the friendly staff at Pensoft Publishers for making 
the 15ICM papers freely available to a global online audience.

Robert Mesibov
Megan Short
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Abstract
Surface structures have rarely been the subject of a comprehensive study in Polydesmida despite their 
tremendous variety within this order. A number of these peripheral structures are here studied in most 
families of the suborders Polydesmidea and Dalodesmidea (sensu Hoffman 1980), using scanning elec-
tron microscopy. An illustrated description of the surface sculpture of the prozonite, the limbus and the 
intercalary cuticular micro-scutes on the metazonite is given for the first time for the studied families, 
together with an account of some other poorly known surface structures. Taken together, these charac-
ters allow us to recognize two main groupings of families. The families Ammodesmidae, Cryptodesmi-
dae, Cyrtodesmidae, Haplodesmidae, Oniscodesmidae and Pyrgodesmidae have knobs on the posterior 
part of the prozonites, a toothed to lobed limbus, and no micro-scutes on the metazonites, wheras the 
families Fuhrmannodesmidae, Polydesmidae, Dalodesmidae, Macrosternodesmidae, Nearctodesmidae, 
Opisotretidae and Trichopolydesmidae have no knobs on the posterior part of the prozonites, a spiky 
or reduced limbus, and intercalary micro-scutes on the metazonites. The results are complemented with 
literature records and compared with current taxonomic and phylogenetic interpretations of the group.

Keywords
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Introduction

Whereas the gonopods have hitherto been acknowledged to be the most reliable source 
of characters for millipede identification, the details of external morphology have in 
most cases remained under-prospected. This is also true for the order Polydesmida 
although it is by far the most diverse millipede order in terms of non-gonopodal mor-
phology. The taxonomy of several polydesmidan families, notably Fuhrmannodesmi-
dae and Pyrgodesmidae, is in a deplorable state, and new taxonomic characters are 
badly needed. Rowe and Sierwald (2006) drew attention to the fact that the external 
morphology has been studied in only a few cases in millipedes, and gave an overview 
of the major works which dealt with this topic.

Scanning electron microscopy has, in many contemporary works, significantly 
helped to illustrate fine surface structures in millipedes. Mesibov (2009a) studied and 
described the several shapes of spiracles in species of the families Paradoxosomatidae 
and Dalodesmidae, demonstrated the great variation in the shape, location and den-
sity of the sphaerotrichomes on male legs in Dalodesmidae and noted the presence of 
different patterns in the integument sculpture of the metatergal tuberculation in two 
genera of the same family (see also Mesibov 2008). Moreover, the different arrange-
ments and structures of the spinnerets in 16 families of Polydesmida were studied by 
Shear (2008), who delineated a notable variation of these structures within the studied 
taxa (see also Mesibov 2009a). The structure of the spinnerets was furthermore studied 
by Mesibov (2008, 2009a) who suggested a possible synapomorphy for some of the 
10 studied dalodesmid genera even if recognizing that the use of spinneret structure in 
taxonomy of Polydesmida requires more sampling (see Mesibov 2009a).

The limbus, or posterior margin of the metazonites, was investigated by Schmidt 
(1962) who systematically described and compared the variation of shapes within nu-
merous families, using only light microscopy.

Some polydesmidans of the families Cryptodesmidae, Haplodesmidae, and Pyr-
godesmidae are earth-incrusted, i.e., adult specimens bear a coat of dirt. Shear (1973, 
1977) described and illustrated special “boxes” and “branched tree-like setae” (Shear 
1977) which supposedly keep the dirt on the cuticle.

During the study of a new pyrgodesmid species from Tunisia using scanning elec-
tron microscopy (Akkari and Enghoff 2011), we found a number of cuticular struc-
tures which have not hitherto been described. In order to assess their significance, 
we made a comprehensive survey of 22 species belonging to all the families of the 
suborders Polydesmidea and Dalodesmidea (see the list below and Table 1) except for 
the Dorsoporidae (Polydesmidea) and Vaalogonopodidae (Dalodesmidea) of which 
material was inaccessible for study.

Our study was mainly focused on three sets of characters: a) surface sculpture of 
the prozonite (anterior, cylindrical part of body ring); b) the limbus (posterior margin 
of body rings); c) intercalary micro-scutes on the surface of the metazonite. A few 
additional structures such as the cuticular outgrowths in earth-incrusted species and 
the ozopores are briefly presented below and compared. Moreover, recent literature ac-
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counts of 29 species from relevant families (see Table 2), including SEM illustrations 
or descriptions were checked and compared with our results.

Table 1. The studied species and the states of the three main characters examined.

Species

Knobs on 
the posterior 
surface of the 
prozonites

Limbus
Intercalary 
micro-scutes 
on metazonites

Suborder Polydesmidea 
Ammodesmidae Elassystremma sp. + lobes and 

spikes
‒

Cryptodesmidae Aporodesmus sp. ‒ jagged lobes 
and spikes

‒

Elythesmus enghoffi + jagged lobes 
and spikes

_

Cyrtodesmidae cyrtodesmid gen. sp. + lobes and 
spikes

‒

Fuhrmannodesmidae Fuhrmannodesmus lividus – reduced +
fuhrmannodesmid sp. ‒ reduced +
Gyrophallus sp. ‒ reduced +

Haplodesmidae Prosopodesmus jacobsoni + lobes ‒
Macrosternodesmidae Ophiodesmus albonanus ‒ reduced +
Nearctodesmidae nearctodesmid sp. ‒ reduced +
Oniscodesmidae Amphitomeus attemsi + lobes and 

spikes
‒

Opisotretidae Corypholophus sp. ‒ reduced ?+
Solaenaulus butteli – reduced +

Polydesmidae Brachydesmus superus ‒ ramified 
spikes

+

Propolydesmus laevidentatus – ramified 
spikes

+

Pyrgodesmidae Cryptocorypha ornata + lobes ‒
Cynedesmus sp. + lobes –
Rharodesmus tabarkensis + lobes –
Tonodesmus sp. + lobes –

Trichopolydesmidae Napocodesmus endogeus ‒ reduced +
trichopolydesmid sp. – reduced +

Suborder Dalodesmidea 
Dalodesmidae Icosidesmus sp. ‒ ramified 

spikes
+

Table 2. Literature records

Species Reference

Suborder Polydesmidea

Ammodesmidae 

Elassystremma laeve Vandespeigel and Golovatch, 2003

Elassystremma prolaeve VandenSpeigel and Golovatch, 
2003

VandenSpeigel and 
Golovatch 2003
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Materials and methods

The studied material is preserved in 70 % ethanol and deposited in the Natural His-
tory Museum of Denmark (Zoological Museum, University of Copenhagen, ZMUC). 
Earth-incrusted specimens were cleaned for scanning electron microscopy by soaking 
in a solution of commercial detergent (©Biotex) and/or by ultrasound then air dried. 
SEM pictures were made with a JEOL JSM-6335F scanning electron microscope, then 
processed and assembled with Adobe Photoshop CS5 software.

When not otherwise indicated, we have followed the classification proposed by 
Hoffman (1980) as updated by Shelley (2003).

Species Reference

Cryptodesmidae 
Aporodesmus gabonicus (Lucas, 1858)

Schmidt 1962
Tarmadesmus azucarensis Kraus, 1959

Fuhrmannodesmidae 
Fuhrmannodesmus carli Kraus, 1955

Schmidt 1962Salvadoria sagittalis Kraus, 1954
Cutervodesmus similis Kraus, 1959

Haplodesmidae 

Agathodesmus steeli Silvestri, 1910 Mesibov 2009b
Cylindrodesmus hirsutus Pocock, 1889 Golovatch et al. 2001
Eutrichodesmus armatocaudatus Golovatch et al. 2009 Golovatch et al. 2009a
E. basalis Golovatch et al. 2009
E. communicans Golovatch et al. 2009
E. inciues Golovatch et al. 2009
E. similis Golovatch et al. 2009

Oniscodesmidae Oncodesmoides rectus Kraus, 1954 Schmidt 1962
Opisotretidae Opisotretus kraepelini (Attems, 1907) Schmidt 1962
Polydesmidae Polydesmus complanatus (Linneaus, 1871) Schmidt 1962

Pyrgodesmidae 

Lobiferodesmus vanuatu Golovatch, et al., 2008 Golovatch et al. 2008
Poratia digitata (Porat, 1889) Adis et al. 2000
Muyudesmus obliteratus Kraus, 1960
Cryptocorypha hoffmani Golovatch et al. 2011 Golovatch et al. 2011
Myrmecodesmus hastatus (Schubart, 1945) Bergholz et al. 2004
Monachodesmus albus Kraus, 1958 Schmidt 1962

Suborder Dalodesmidea 
Dalodesmidae Ginglymodesmus tasmanianus Mesibov 2005 Mesibov 2009c

Not assigned to any 
family

Asphalidesmus bellendenkerensis Mesibov, 2011 Mesibov 2011
Asphalidesmus golovatchi Mesibov, 2009
Noteremus infimus Mesibov, 2009 Mesibov 2009c
N. summus Mesibov, 2009
Procophorella innupta Mesibov, 2003 Mesibov 2003
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Studied specimens

Suborder Polydesmidea Pocock, 1887

Ammodesmidae Cook, 1896
Elassystremma sp., Tanzania, Unzungwa Mts, Iringa Region, Uzungwa Scarp Forest 

Res., above Chita village, 1600–1650m, 8–13.ix.1984, pitfall Traps in Mon-
tane Rain Forest, N. Scharff leg. (ZMUC 00020487).

Cryptodesmidae Karsch, 1879
Aporodesmus sp., female, Cameroun, Northwest Province, Menchum Div. Near L. 

Oku forest, in litter, ca. 2150m, N6˚12', E10˚27', 7–13.ii.1992, C. Griswold, 
S. Larcher, N. Scharff and C. Wanzie leg. (ZMUC 00020478).

Elythesmus enghoffi Hoffman, 1978, female, Tanzania, W. Usambara Mts, Mazum-
bai Forest Reserve, 19–29.ix.1992, M. Andersen leg. (ZMUC 00020477).

Cyrtodesmidae Cook, 1896
Cyrtodesmid sp., female, Colombia, Páramo de Sumapaz, soil under grasses, 

3600m, 5.x.1978, H. Sturm leg. (ZMUC 00020494).

Fuhrmannodesmidae Brölemann, 1916
Fuhrmannodesmus lividus Carl, 1914, male, Colombia, Par de Monserrate, near 

Bogotá, 3250m, dead leaves of Espeletia grandifolia, 18.iv.1969, H. Sturm 
(ZMUC 00020483).

fuhrmannodesmid sp. (Arndt et al. 2008), female, Spain, Canary Islands, La Pal-
ma, Pared Vieja, 21.ii.-5.iii.2002, E. Arndt leg. (ZMUC 00020492).

Gyrophallus sp., female, Colombia, 1991, H. Sturm leg. (ZMUC 00020484).

Haplodesmidae Cook, 1895
Prosopodesmus jacobsoni Silvestri, 1910, female, Fiji Isl, Viti Levu Suva, in garden, 

2–3.ix.1995, A van Hart leg. (ZMUC 00020476).

Macrosternodesmidae Brölemann, 1916
Ophiodesmus albonanus (Latzel, 1895), male, Denmark, NE Zaland, Copenhagen, 

Utterslev Mose, 22.iv.1973, H. Enghoff leg. (ZMUC 00020491).

Nearctodesmidae Chamberlin and Hoffman, 1950
nearctodesmid sp., male, Calif. Humboldt Co. Jolly Giant Canyon, 300–650m, 

Arcata Comm. For 13.i.1979, A.K. Johnson, R. M. Shelley leg. (ZMUC 
00020482).
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Oniscodesmidae de Saussure, 1860
Amphitomeus attemsi (Schubart, 1934), female, Dania: Nez UB47, Copenha-

gen, Botanical garden, væksthus, 16.iv.1986, H. Enghoff and Z. Korsòs leg. 
(ZMUC 0002046).

Opisotretidae Hoffman, 1980
Corypholophus sp., female, Thailand, Chieng Mai Province, Doi Inthanon N. P., 

Mae Ya, 6–700m (ZMUC 00020479).
Solaenaulus butteli (Carl, 1922), male, Fiji Isl. Viti Levu Suva, in garden, 2–3.

ix.1995, A van Harten leg. (ZMUC 00020480).

Polydesmidae Leach, 1815
Brachydesmus superus (Latzel, 1884), female, Tunisia, NW, Jendouba Governo-

rate, 9km of Hammam Bourguiba (West of Aïn Draham), N36˚48.046, 
E08˚39.544, 379m, Pine Forest, close to river, under stones, logs and leaf lit-
ter, 22.iii.2008, P. Stoev and N. Akkari leg. (ZMUC 00020496).

Propolydesmus laevidentatus (Loksa, 1967), male, Madeira, Faja da Nogueria, N. 
Side, ca. 800m.a.s.l. Laurisilva with Ocoteas, 20.xi.1980, H. Enghoff and O. 
Martin leg. (ZMUC 00020475).

Pyrgodesmidae Cook, 1895
Cryptocorypha ornata (Attems, 1938), unsexed fragment, Hawaii Isl., Kauai, in a 

grotto, moss and Adiantum, 20.x.1962, M. Hammer leg. (ZMUC 00020493)
Cynedesmus sp., female, La Gomera, Valle Gran Rey, litter, in banana plantation, 

10m, 2.xii.1987, A. Fjellberg leg. (ZMUC 00020485).
Rharodesmus tabarkensis Akkari and Enghoff, 2011, male, Tunisia, NW, Jendouba 

Governorate, Tabarka, N36°58'10.5", E8°45'35.6", alt. < 40m, coastal slope 
below the Genoese fort, under stones, 9.iii.2009, N. Akkari and H. Enghoff 
leg. (ZMUC 00020532).

Tonodesmus sp., male, Spain, Almeria Sima terminal, T. M. Eidijo, 28.v.2000, M. 
Piquer and J.G. Pedro leg. (ZMUC-00020495).

Trichopolydesmidae Verhoeff, 1910
Napocodesmus endogeus Ceuca, 1974, female, Moldavian SSR, Tiraspol, deep in 

orchard soil, 1985, S. Golovatch leg. (ZMUC 00020481).
trichopolydesmid sp. Slovakia, Slovak Karst, Ardouská Cave A-04-47, 5.x.2004, 

A. Mock leg. (ZMUC 00020490).

Suborder Dalodesmidea Hoffman, 1980
Dalodesmidae Cook, 1896

Icosidesmus sp., male, New Zealand, South Isl, Christchurch Banks Peninsula, Hinewai 
Reserve, Big Kanuka Trail, 3 iii.2010, S43˚48'38.0", E173˚01'15.6", 508m, sift-
ed leaf litter and mosses, N. Scharff and G. Hormiga leg. (ZMUC 00020488).
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Figures 1–6. Fine sculpture of the prozonite in the families Ammodesmidae, Cryptodesmidae, Cyr-
todesmidae, Haplodesmidae, Oniscodesmidae and Pyrgodesmidae 1 Elassystremma sp. 2 Elythesmus eng-
hoffi, 3 cyrtodesmid sp. 4 Prosopodesmus jacobsoni 5 Amphitomeus attemsi 6 Rharodesmus tabarkensis. Ab-
breviations: a anterior part of the prozonite, b posterior part of the prozonite, r ridge, s spherical knobs.

Results

Fine sculpture of the prozonite 
Figs 1–9

The prozonite of the studied species is divided into two main parts separated by a 
transverse ridge. While the anterior part is rather uniform, showing a scaly aspect, the 
posterior surface displays varied patterns within the studied families.
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Figures 7–9. Fine sculpture of the prozonite in pyrgodesmid species. 7 Tonodesmus sp. 8 Cynedesmus sp. 
9 Cryptocorypha ornata. Abbreviations: a anterior part of the prozonite, b posterior part of the prozonite, 
r ridge, s spherical knobs.

In the examined species of Ammodesmidae, Cryptodesmidae, Cyrtodesmidae, 
Haplodesmidae, Oniscodesmidae and Pyrgodesmidae the anterior part of the pro-
zonite (a) displays a covering of small scaly units, juxtaposed in series of irregular 
transverse rows, becoming elongated in the posteriormost row to form a transverse 
ridge (r) marking the border of this part (Figs 1–9). In front of the ridge, the general 
aspect is quite uniform in all the above cited families, with lozenge-shaped units. These 
units could sometimes be star-like, furrowed, and marginally jagged (cyrtodesmid 
sp.) (Fig. 3). In Amphitomeus attemsi (Oniscodesmidae), the units are more elongated 
and strongly prominent, interconnected with parallel cuticular ridges (Fig. 5). On the 
other hand, the microsculpture of the anterior part of the prozonite in Prosopodesmus 
jacobsoni (Haplodesmidae) takes the shape of hollow chambers separated by walls of 
“microvilli-like” structures (Fig. 4). The posterior surface of the prozonite (b) is, in 
all examined species of these six families, characterized by a regular covering of sub-
spherical knobs (s) placed on a smooth to microgranulated background. The cover of 
knobs is regularly dense in most cases (Figs 1, 3–9) though fairly dispersed in Elythes-
mus enghoffi (Cryptodesmidae) (Fig. 2). These knobs are generally uniformly smooth 
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(Figs 1–3, 6–9) but sometimes exhibit special configurations: lobed in P. jacobsoni and 
spiky in A. attemsi (Figs 4, 5).

The examined species of the families Fuhrmannodesmidae, Polydesmidae, Dal-
odesmidae, Macrosternodesmidae, Nearctodesmidae, Opisotretidae and Trichopoly-
desmidae show an anterior surface of the prozonite with polygonal units serrated mar-
ginally. However, these units are much less conspicuous and prominent than in the 
species of the first set of families (Figs 10–17). The posterior border of the anterior part 
of the prozonite is similarly marked by a transverse ridge but its units are nevertheless 
only slightly modified. The posterior surface of the prozonite remarkably differs by the 
complete absence of the sub-spherical knobs described above; instead the surface is 
smooth to scaly (Figs 10–17).

Figures 10–13. Fine sculpture of the prozonite in 10 Fuhrmannodesmus lividus (Fuhrmannodesmidae) 
11 Gyrophallus sp (Fuhrmannodesmidae) 12 Propolydesmus laevidentatus (Polydesmidae) 13 Icosidesmus sp. 
(Dalodesmidae). Abbreviations: a anterior part of the prozonite, b posterior part of the prozonite, r ridge.
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The limbus
Figs 18–34

The limbus (L) displays three major patterns of shapes in the studied families:
1) A regular set of rounded lobes (lo) placed in one row as in P. jacobsoni (Hap-

lodesmidae), Rharodesmus tabarkensis (Pyrgodesmidae) (Figs 18, 19) or two super-
posed rows of 'palette-shaped' lobes (pa) separated by spikes (sp) as in Cynesdesmus 
sp. (Pyrgodesmidae) (Fig. 20) although in some species of the latter family (e.g. 
Tonodesmus sp. and Cryptocorypha ornata) the lobes are more tooth-like (t) (Figs 21, 
22). The lobes are also surmounted by fine spikes as in A. attemsi (Oniscodesmi-
dae), cyrtodesmid sp. (Figs 23, 24), Elassystremma sp. (Ammodesmidae) in which 
the lobes are moreover stocky or ‘palette-like’(pa) and serrated (Fig. 25) and in Ely-
thesmus enghoffi (Cryptodesmidae) where the spikes are more elongate and inserted 
between the jagged lobes (Fig. 26).

Figures 14–17. Fine sculpture of the prozonite in 14 Ophiodesmus albonanus (Macrosternodesmidae) 15 
nearctodesmid sp. (Nearctodesmidae) 16 Solaenaulus butteli (Opisotretidae) 17 Napocodesmus endogeus (Tri-
chopolydesmidae). Abbreviations: a anterior part of the prozonite, b posterior part of the prozonite, r ridge.
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Figures 18–22. The structure of the limbus in 18 Prosopodesmus jacobsoni (Haplodesmidae) 19 Rharodes-
mus tabarkensis (Pyrgodesmidae) 20 Cynedesmus sp. (Pyrgodesmidae) 21 Tonodesmus sp. (Pyrgodesmidae) 
22 Cryptocorypha ornata (Pyrgodesmidae). Abbreviations: L limbus, lo lobe, pa palette-like lobe, sp spike, 
t tooth-like lobe.

2) A series of ramified spikes (rs) in Icosidesmus sp. (Dalodesmidae) (Fig. 27) or 
“icicles” in Ophiodesmus albonanus (Macrosternodesmidae), Propolydesmus laevidenta-
tus and Brachydesmus superus (Polydesmidae) (Figs 28–30).

3) Reduced. In Solaenaulus butteli (Opisotretidae), Napocodesmus endogeus (Tri-
chopolydesmidae) and Fuhrmannodesmus lividus (Fuhrmannodesmidae) the limbus is 
hardly developed, taking the shape of a regular edge bearing a few scattered bulges (bu) 
which could be isolated or grouped, e.g. sets of three bulges in furhmannodesmid sp. 
(Figs 31–34).
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Figures 23–26. The structure of the limbus in 23 Amphitomeus attemsi (Oniscodesmidae) 24 cyrtodes-
mid sp. (Cyrtodesmidae) 25 Elassystremma sp. (Ammodesmidae) 26 Elythesmus enghoffi (Cryptodesmi-
dae). Abbreviations: L limbus, lo lobe, sp spike, pa: palette-like lobe.

Figures 27–30. The structure of the limbus in 27 Icosidesmus sp. (Dalodesmidae), 28 Ophiodesmus al-
bonanus (Macrosternodesmidae) 29 Propolydesmus laevidentatus (Polydesmidae) 30 Brachydesmus superus 
(Polydesmidae). Abbreviations: L limbus, rs ramified spike.
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A peculiar structure of the metazonites: intercalary cuticular micro-scutes
Figs 35–41

The studied species of the families Fuhrmannodesmidae, Polydesmidae, Dalodes-
midae, Macrosternodesmidae, Nearctodesmidae, Opisotretidae and Trichopoly-
desmidae (cf. Table 1) present a peculiar structure on the metazonital surface: 
between the normal polygonal cuticular scutes which cover the metazonital sur-
face there are rows of small ovoid “intercalary scutes”. The placement of these 
structures is unlikely to be accidental or indicating any kind of bacterial infection 
as they seem well arranged in a regular pattern, appearing like spaced nodes or 
pearls aligned on strings crossing the surface of the metazonites (Figs 35–41). 
These structures have never been documented. However, they are visible on an 
illustration in Mesibov [2003, fig. 3, (right)], for Procophorella innupta Mesibov, 
2003 (Dalodesmidea).

Figures 31–34. The structure of the limbus 31 Solaenaulus butteli (Opisotretidae) 32 Napocodesmus en-
dogeus (Trichopolydesmidae), 33 Fuhrmannodesmus lividus (Fuhrmannodesmidae) 34 fuhrmannodesmid 
sp. (Fuhrmannodesmidae). Abbreviations: bu bulges, L limbus.
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Figures 35–41. Intercalary micro-scutes on the metazonites of 35 Fuhrmannodesmus lividus (Fuhrman-
nodesmidae) 36 Propolydesmus laevidentatus (Polydesmidae) 37 Icosidesmus sp. (Dalodesmidae) 38 Ophi-
odesmus albonanus (Macrosternodesmidae) 39 nearctodesmid sp. (Nearctodesmidae) 40 Solaenaulus but-
teli (Opisotretidae) 41 Napocodesmus endogeus (Trichopolydesmidae). Arrows point to the micro-scutes.

Some other poorly known surface structures
Figs 42–49

The surface structure of most earth-incrusted species is characterized by the presence of 
papilla-like cuticular outgrowths which are particularly abundant in Ammodesmidae, 
Cyrtodesmidae and Pyrgodesmidae. These papillae are boletiform (mushroom-shaped) 
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Figures 42–43. Cuticular outgrowths 42 Rharodesmus tabarkensis (Pyrgodesmidae) 43 Elassystremma 
sp. (Ammodesmidae).

Figures 44–49. Ozopores 44 Rharodesmus tabarkensis (Pyrgodesmidae) 45 Tonodesmus sp. (Pyrgodesmi-
dae) 46 Elassystremma sp. (Ammodesmidae) 47 Propolydesmus laevidentatus (Polydesmidae) 48 Gyrophal-
lus sp. (Fuhrmannodesmidae) 49 Corypholophus sp. (Opisotretidae).
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and are presumed to keep the cuticular secretions and adhering soil particles in place. 
Displaying variation in length, shape of the apex, and density on the surface, the papil-
lae are short, with a rounded apex in Rharodesmus tabarkensis (Fig 42) and Cynedesmus 
sp., elongate and slender in Elassystremma sp. (Fig. 43) and in cyrtodesmid sp. The 
same structures have been mentioned in previous works, generally quoted as “papillis” 
(Silvestri 1925, 1947), “Papillen” (Attems 1940), or “microvilli” in most of Golovatch’s 
works ‒ illustrations can be found in Golovatch et al. (2009a, figs 24A, B, E, F). Shear 
(1977) was the first to provide SEM illustrations of such structures and to comment 
on their possible function.

The ozopores (defense gland openings) display a notable variation within the ex-
amined families. In P. jacobsoni (Haplodesmidae), Tonodesmus sp., R. tabarkensis, Cyn-
edesmus sp. (Pyrgodesmidae) and Elassystremma sp. (Ammodesmidae), they open on 
small rounded discs, situated on the surface of the paratergites or on porosteles. The 
discs are of variable thickness and diameter, bear an apparent internal closing mecha-
nism and are externally bordered with several whorls of papillae (Figs 44–46). On 
the other hand, the ozopores appear as simple sub-circular openings on the surface of 
the paratergites in Icosidesmus sp. (Dalodesmidae), Propolydesmus laevidentatus (Poly-
desmidae), Fuhrmannodesmus lividus and Gyrophallus sp. (Fuhrmannodesmidae), and 
Corypholophus sp. (Opisotretidae) (Figs 47–49).

Discussion

Polydesmida is the most speciose millipede order, and despite the fact that it has re-
mained quite stable in terms of number of families (Shelley 2003), its taxonomy is far 
from being satisfactory. In his attempt to classify the suborders Polydesmidea and Dal-
odesmidea, Hoffman (1980: 146) expressed his dissatisfaction and pessimism: “The 
groupings set forth in the following pages are to a large extent exercises in futility, 
but may have some reference value in a bibliographic sense”. Nevertheless, Hoffman’s 
(1980) main classification scheme still stands and has been adopted by most subse-
quent authors. Simonsen (1990), studying the phylogeny of Polydesmida, made a 
number of changes and synonymies. Notably, Simonsen (1990) placed Dalodesmidae 
+ Vaalogonpodidae as sister-group of Polydesmidae, i.e., the suborder Dalodesmidea 
nested within the suborder Polydesmidea. However, most of Simonsen’s conclusions 
were soon after criticized by several authors because they were based on insufficient 
data and bold assumptions (e.g. Golovatch 1996, Shelley 2003).

Taken together, the fine sculpture of the prozonite, the structure of the limbus 
and the presence/absence of metazonital micro-scutes indicate two main groupings 
of families within the suborders Polydesmidea and Dalodesmidea. The first group (A) 
comprises the families Ammodesmidae, Cryptodesmidae, Cyrtodesmidae, Haplodes-
midae, Oniscodesmidae and Pyrgodesmidae. These six families have a cover of sub-
spherical knobs on the posterior surface of the prozonites (Figs 1–9) and a toothed 
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limbus constituted of a series of lobes which may or not be surmounted by spikes (Figs 
18–26).

The second group (B) encompasses the families Fuhrmannodesmidae, Polydes-
midae, Dalodesmidae Macrosternodesmidae, Nearctodesmidae, Opisotretidae and 
Trichopolydesmidae, and is characterized by 1) an absence of knobs on the posterior 
surface of the prozonite which is smooth to scaly (Figs 10–17), 2) an absence of lobes 
on the limbus which has instead a jagged margin or spikes with varied complexity 
(Figs 27–34), and 3) intercalary micro-scutes on the surface of the metazonites (Figs 
35–41), absent in the first set of families.

An assessment of several recent species descriptions and SEM illustrations shows 
in most cases similar structural arrangements of the prozonites. The presence of sub-
spherical knobs on the posterior surface of the prozonite has been verified in a few ad-
ditional genera and species of Pyrgodesmidae, such as Lobiferodesmus vanuatu (Golo-
vatch et al. 2008, fig. 4C), Poratia digitata (Adis et al. 2000, figs 25, 26, 27; Golovatch 
and Sierwald 2000, figs 1, 6), P. (= Muyudesmus) obliterata (Adis et al. 2000, fig. 29) 
and Cryptocorypha hoffmani (Golovatch et al. 2011, fig. 38). Moreover, comparable 
structures are seen in the ammodesmids Elassystremma proleave and E. leave (VandenS-
peigel and Golovatch 2003, figs 7, 9, 18) and for the haplodesmid Agathodesmus steeli 
(Mesibov 2009b, figs 4B, 5C, 6C). However, we noticed some differences in Eutri-
chodesmus basalis (Golovatch et al. 2009a, figs 1C, 3C), E. armatocaudatus (Golovatch 
et al 2009a fig. 6F), E. communicans (Golovatch et al. 2009a fig. 11F) and E. incisus 
(Golovatch et al 2009a, fig. 22E) although low image resolution doesn’t allow us to 
draw any conclusion about these species, neither about those cited in Golovatch et al 
(2009b).

The fine structure of the prozonite in both species of the Tasmanian dalodesmid 
genus Noteremus, N. summus and N. infimus (Mesibov 2009c, fig. 3) perfectly agrees 
with what we recorded in the dalodesmid Icosidesmus sp. (Fig. 13). The genus Aspha-
lidesmus, in contrast, exhibits a pyrgodesmid-like pattern with a conspicuous cover 
of sub-spherical knobs on the posterior surface of the prozonite. In his description of 
A. golovatchi, Mesibov (2009c) wrote “prozonites with narrow band of longitudinal 
ridges just anterior to suture, elsewhere uniformly covered with very small protuber-
ances with blunt, rounded tips directed slightly posteriorly”. Mesibov (2011) did 
later describe several new species of the same genus on which the posterior prozonite 
protuberances were visible, especially on A. bellendenkerensis Mesibov, 2011 (Mesi-
bov 2011, fig. 4A).

Although assigned to Dalodesmidea (Mesibov 2009c), the similarity of the genus 
Asphalidesmus to the first set of families (Ammodesmidae, Cryptodesmidae, Cyrtodes-
midae, Haplodesmidae, Oniscodesmidae and Pyrgodesmidae) might not be a surprise 
knowing that the taxonomic position of Asphalidesmus has been matter of contro-
versy. In fact, the genus was originally described in Dalodesmidae then subsequently 
placed in Fontariidae, Vanhoeffeniidae, and Haplodesmidae, listed in Xystodesmidae, 
and assigned to Cryptodesmidae and Oniscodesmidae (see Mesibov 2009c). Despite 
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lacking sphaerotrichomes and showing a few further peripheral structures resembling 
more Pyrgodesmidae than Dalodesmidae and Vaalogonopodidae, Asphalidesmus was 
informally placed in the suborder Dalodesmidea (see Golovatch 2003). This was sub-
sequently confirmed by Mesibov (2009c) although both authors agree in not assigning 
the genus to any family (Golovatch 2003, Mesibov 2009c).

Several literature records clearly support the patterns described above for the lim-
bus. For example, the limbus shows a series of lobes with or without additional spikes 
in the pyrgodesmid species L. vanuatu (Golovatch et al. 2008, fig. 4D) and Myrme-
codesmus hastatus (Bergholz et al. 2004, figs 5, 6), the ammodesmids Elassystremma pro-
laeve and E. laeve (VandenSpeigel and Golovatch 2003, figs 7, 18), and the haplodes-
mids Agathodesmus steeli (Mesibov 2009b, fig. 6C), Cylindrodesmus hirsutus (Golovatch 
et al. 2001, fig. 11) and Eutrichodesmus similis (Golovatch et al. 2009a, fig. 19E). The 
limbus is, on the other hand, composed of a number of ramified spikes in, for example, 
the dalodesmid Ginglymodesmus tasmanianus (Mesibov 2005, fig. 4A). Schmidt (1962, 
figs 22–29) provided detailed descriptions and drawings of the limbus for a number of 
Polydesmida species viz. Oncodesmoides rectus (Oniscodesmidae), Polydesmus compla-
natus (Polydesmidae), Opisotretus kraepelini (Opisotretidae), Aporodesmus gabonicus, 
Monachodesmus albus (Pyrgodesmidae), Tarmadesmus azucarensis (Cryptodesmidae), 
Fuhrmannodesmus carli, Salvadoria sagittalis, and Cutervodesmus similis (Fuhrman-
nodesmidae). In all these species, the limbus is strikingly similar to what we observed 
in the studied species belonging to the same families.

Though we are aware that the present data alone do not warrant a strict cladistic 
analysis, we have compared our findings (Fig 51) with the only existing phylogenetic 
work on the order Polydesmida (Simonsen 1990). The two main groups (A) and (B) 
mentioned above agree remarkably well with the basal dichotomy in Simonsen’ clad-
ogram (Fig 50), except for the families Haplodesmidae and Cryptodesmidae which 
belong to our group (A) but which according to Simonsen are in the clade which 
otherwise includes our group (B). However, the general knowledge about these two 
families and their diversity is still incomplete, and no evidence has hitherto been pro-
vided in support of their monophyly. In his revision of the Haplodesmidae, Golovatch 
(2009a) recognized two major ‘grades’, the haplodesmid and doratodesmid grades, 
according to their somatic (non-sexual) characters and capacity for “volvation” (coiling 
into a sphere). In the present study, only the haplodesmid genus Prosopodesmus was 
studied. Golovatch et al. (2009a) characterised Prosopodesmus as a “pyrgodesmid-like 
haplodesmid” and considered it as basal in the Haplodesmidae (together with Rhipi-
dopeltis Miyosi, 1958).

The Cryptodesmidae studied by us alos present a complication as Elythesmus has 
knobs on the posterior part of the prozonites (Fig. 2) and a lobed limbus (Fig. 26) as in 
families group A, whereas Aporodesmus has a posterior prozonite surface free of knobs 
(Fig. 52) and dentate leaf-shaped (le) elements and spikes (sp) on the limbus (Fig. 53).

As stated above, the second set of families (B) have no lobes on the limbus. 
Instead, ramified spikes and “icicles” (Figs 27–30) can be observed in the families 
Dalodesmidae, Macrosternodesmidae and Polydesmidae, which clearly separates 
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Figures 50–51. 50 Family-level cladogram of suborders Polydesmidea + Dalodesmidea according to 
Simonsen (1990). Haplodesmidae here corresponds to Haplodesmidae + Doratodesmidae on Simon-
sen’s original cladogram; families not studied here are marked with asterisks 51 Branching diagrams (not 
cladograms) based on Fig. 50 but modified to illustrate the distribution of the different states of the three 
studied characters: A. presence of knobs on the anterior part of the prozonite, B. shape of the limbus, C. 
presence of intercalary micro-scutes on the metazonites (see Appendix for character states).
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them from the Fuhrmannodesmidae, Trichopolydesmidae, Nearctodesmidae and 
Opisotretidae in which the limbus is hardly developed and bears but few scattered 
bulges (Figs 31–34). However, this separation fits neither with Hoffman’s (1980) 
classification in which the Macrosternodesmidae, Nearctodesmidae, Trichopolydes-
midae and Fuhrmannodesmidae form the superfamily Trichopolydesmoidea (see 
also Shelley 2003), nor with the phylogenetic analysis of Simonsen (1990) in which 
the Macrosternodesmidae and Nearctodesmidae appear in the same clade while the 
Opisotretidae, a separate clade, is grouped with a different set of families (Fig. 50). 
The simple limbus could well be a plesiomorphic character state expressed in the 
Fuhrmannodesmidae, Trichopolydesmidae, Nearctodesmidae and Opisotretidae 
(see also Simonsen 1990).

In the present work, we do not pretend to offer a new subordinal classification 
of Polydesmida, or to solve any of the taxonomic problems related to families – a 
colossal task which definitely will require a lot more sampling and character scor-
ing, including the gonopod structures which haven’t been considered here. How-
ever, documenting these remarkable surface structures and trying to compare them 
between the different families will perhaps contribute to bringing new insights, 
leading towards a better understanding of polydesmidean and dalodesmidean re-
lationships.
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Appendix

List of characters and tentative character states
(1) Knobs on posterior surface of the prozonites: (0) absent; (1) present
(2) Shape of the limbus: (0) with one or two rows lobes additionally bearing simple 
spikes; (1) with ramified spikes and icicles; (2) reduced
(3) Rows of small intercalary scutes on metazonites: (0) absent; (1): present

Character matrix
Only the species studied by us have been coded.

Char. no.→ 1 2 3
Suborder Polydesmidea Pocock, 1887
Ammodesmidae Cook, 1896 Elassystremma sp. 1 0 0
Cryptodesmidae Karsch, 1879 Elythesmus enghoffi Hoffman, 1978 1 0 0

Aporodesmus sp. 0 0 0
Cyrtodesmidae Cook, 1896 cyrtodesmid sp. 1 0 0
Fuhrmannodesmidae Brölemann, 1916 Fuhrmannodesmus lividus Carl, 1914 0 2 1

fuhrmannodesmid sp. 0 2 1
Gyrophallus sp. 0 2 1

Haplodesmidae Cook, 1895 Prosopodesmus jacobsoni Silvestri, 1910 1 0 0
Macrosternodesmidae Brölemann, 1916 Ophiodesmus albonanus (Latzel, 1895) 0 1 1
Nearctodesmidae Chamberlin and Hoff-
man, 1950 nearctodesmid sp. 0 2 1

Oniscodesmidae de Saussure, 1860 Amphitomeus attemsi (Schubart, 1934) 1 0 0
Opisotretidae Hoffman, 1980 Corypholophus sp. 0 2 ?+

Solaenaulus butteli (Carl, 1922) 0 2 +
Polydesmidae Leach, 1815 Brachydesmus superus (Latzel, 1884) 0 1 1

Propolydesmus laevidentatus (Loksa, 1967) 0 1 1

Pyrgodesmidae Cook, 1895 Rharodesmus tabarkensis Akkari and Enghoff, 
2011 1 0 0

Tonodesmus sp. 1 0 0
Cynedesmus sp. 1 0 0
Cryptocorypha ornata (Attems, 1938) 1 0 0

Trichopolydesmidae Verhoeff, 1910 trichopolydesmid. sp. 0 2 1
Napocodesmus endogeus Ceuca, 1974 0 2 1

Suborder Dalodesmidea Hoffman, 1980
Dalodesmidae Cook, 1896 Icosidesmus sp. 0 1 1

Char. no.→ 1 2 3
Ammodesmidae 1 0 0
Cryptodesmidae 1 0 0
Cyrtodesmidae 1 0 0
Fuhrmannodesmidae 0 2 1
Haplodesmidae 1 0 0
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Char. no.→ 1 2 3
Macrosternodesmidae 0 1 1
Nearctodesmidae 0 2 1
Oniscodesmidae 1 0 0
Opisotretidae 0 2 1
Polydesmidae 0 1 1
Pyrgodesmidae 1 0 0
Trichopolydesmidae 0 2 1
Dalodesmidae 0 1 1
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Abstract
The East Asian millipede genus Riukiupeltis Verhoeff, 1939 is revised, and is restricted to a single spe-
cies, R. jamashinai Verhoeff, 1939. Examination of the type specimens and freshly collected material 
from the Ryukyu Archipelago and Vietnam show that both subsequently allocated species, Riukiupeltis 
uenoi Murakami, 1975, and R. falcatus (originally Haplogonosoma falcatum Attems, 1953, reallocated 
by Jeekel 1968), do not belong to this genus; moreover, they are not even congeneric with each other. 
According to our morphological observations, including the gonopods, R. uenoi is closer to the wide-
spread Chamberlinius hualienensis Wang, 1956, hence we propose the new combination Ch. uenoi 
(Murakami, 1975), comb. n. Riukiupeltis falcatus, on the other hand, represents a separate, as yet 
monotypic, genus Simplogonomorpha gen. n., distinct both from Haplogonosoma Brölemann, 1916 
sensu Golovatch et al. (1995), and from Verhoeff’s original Riukiupeltis. Additionally, Simplogonomor-
pha falcata (Attems, 1953), comb. n is re-described here based on fresh material from Vietnam. A key 
and colour habitus-illustrations to all three species are also provided here.
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Introduction

The millipede genus Riukiupeltis was established for a single species R. jamashinai 
by Verhoeff, 1939 from the Ryukyu island Miyako, Japan (Riukiu and Mijako, in 
German). Jeekel (1968) referred to the genus in his monograph on the distribu-
tion of the family Paradoxosomatidae, and placed it in the tribe Tonkinosomatini. 
Moreover, he also tentatively allocated the species Haplogonosoma falcatum Attems, 
1953, described from Xieng Khoang, Laos, to Riukiupeltis. Murakami (1975) de-
scribed a new species Riukiupeltis uenoi from Sabichi-go Cave, Ishigaki-jima island, 
the Ryukyus. Therefore, altogether three species have been assigned to Riukiupeltis. 
The genus belongs to the tribe Chamberlinini, together with Aponedyopus Verhoeff, 
1939, Chamberlinius Wang, 1956, Geniculodesmus Chen, Golovatch and Chang, 
2008, and Haplogonosoma Brölemann, 1916 (Chen et al. 2011).

Following several discussions on the genus in the past (Jeekel 1968, Hoffman 
1973, Murakami 1975, Chen et al. 2011), its status is still dubious, so our purpose 
here is to provide a revision of the genus based on fresh material and type speci-
mens.

Material and methods

Fresh material of Riukiupeltis falcatus (Attems, 1953) and R. uenoi Murakami, 
1975 was collected from Bi Doup National Park, Lam Dong province, Vietnam, 
and Iriomote-jima and Ishigaki-jima islands, the Ryukyu Archipelago, Japan, re-
spectively. The type specimen of R. jamashinai was studied as a loan from the 
Bavarian State Collection of Zoology, Munich, Germany (BSCZ), whereas the 
holotype of R. uenoi was borrowed from the National Museum of Nature and Sci-
ence, Tokyo (NMNS). Further material is shared between the University Museum 
(Fujukan) of the University of the Ryukyus, Okinawa (RUMF), the Hungarian 
Natural History Museum, Budapest (HNHM), and the Institute of Ecology and 
Biological Resources (IEBR), Hanoi, Vietnam. In addition, new material of R. 
jamashinai was identified in the collection by M. Shimojana, acquired in 1979 on 
Miyako-jima island.

Line drawings were made by using an Olympus SZX10 (ADN), and a Leica 
M125 (ZK) stereo microscope with drawing tube attached. SEM images were made 
by using a Hitachi S4800 scanning electron microscope. Colour photographs were 
taken by ZK using a Nikon D90 digital camera with macro lens and Leica micro-
scope photo tube attached. The distribution map was generated using the software 
DIVA-GIS version 7.0.
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Taxonomic account

Riukiupeltis Verhoeff, 1939
http://species-id.net/wiki/Riukiupeltis

Riukiupeltis Verhoeff, 1939: Zoologischer Anzeiger 127 (5/6): 121–125 Type 
species: Riukiupeltis jamashinai Verhoeff, 1939, by monotypy

Riukiupeltis:– Attems 1940: Das Tierreich 70: 546–547.
Riukiupeltis:– Takakuwa 1954: [Diplopoda of Japan]: 51.
Riukiupeltis:– Jeekel 1968: On the classification and geographical distribution of the fam-

ily Paradoxosomatidae (Diplopoda, Polydesmida), Nederlandse Entomologische Ver-
einiging: 62, 76. (placed in the tribe Tonkinosomatini)

Diagnosis. Gonofemorite strongly curved, distal part somewhat swollen and membrane-
ous. Postfemoral region demarcated from femorite by obvious cingulum, and bent con-
tinuously forming almost a complete circle with femorite. Postfemoral regions consisting 
of a thick, strong and free solenomere, and an extremely short solenophore (= tibiotarsus).

Type species. Riukiupeltis jamashinai Verhoeff, 1939
Remarks. This genus is relatively close to the genus Chamberlinius Wang, 1956, 

however, it definitely differs in gonopod conformation: femorite without lamina; sole-
nophore very short, thick, and without any basal processes.

Riukiupeltis jamashinai Verhoeff, 1939
http://species-id.net/wiki/Riukiupeltis_jamashinai
Figs 1–2, 6A, 7A, 8A, Map 1

Riukiupeltis jamashinai Verhoeff, 1939: Zoologischer Anzeiger, 127 (5/6): 125, fig.8–9.
Riukiupeltis jamashinai:– Attems 1940: Das Tierreich 70: 547, fig. 693.
Riukiupeltis jamashinai:– Takakuwa 1954: [Diplopoda of Japan], 52, figs 51–52.
Riukiupeltis jamashinai:– Jeekel 1968: On the classification and geographical distribution 

of the family Paradoxosomatidae (Diplopoda, Polydesmida), Nederlandse Entomolo-
gische Vereiniging: 76.

Riukiupeltis jamashinai:– Nakamura and Korsós 2010: Acta Arachnologica 59(2): 82.

Material studied. Holotype male, in fragments – only 11 segments in 5 piec-
es – with segments around gonopods missing, Reg.-Nr. ZSMA20052252, and 
two slides with gonopods, Reg.-Nr. ZSMA20035204, and legpairs 1–7, Reg.-Nr. 
ZSMA20035205 (all BSCZ).
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Figure 1. Riukiupeltis jamashinai Verhoeff, 1939, right gonopod preparation of holotype (slide Reg.-Nr. 
ZSMA20035204) (red arrow marks solenophore)
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New records: 2 males, 2 females, Japan, Ryukyu Archipelago, Miyako-jima Island, 
Rinko-abu (cave), 21 August 1979; 8 males, 2 females, Japan, Ryukyu Archipelago, Mi-
yako-jima Island, Fukumine-no-kara (cave), 25 August 1979; 1 male, 1 female, 1 juv., 
1 fragment, Japan, Ryukyu Archipelago, Miyako-jima Island, Nishibe zuzaga (cave), 
26 August 1979, all leg. M. Shimojana (in the collection of M. Shimojana, Okinawa).

Distribution. Japan, Ryukyu Archipelago, Miyako-jima island.
Remarks. Although after the description of R. jamashinai in 1939, Jeekel (1968) 

and Hoffman (1973) commented that gonopod tibiotarsus is missing in this species, 
Verhoeff’s line drawing clearly shows it as depicted from the slide preparation (Fig. 
1). Re-examining the type specimen and the slide of the gonopod, as well as studying 
newly identified specimens found in Shimojana’s collection, we are able to confirm 
that a gonopod tibiotarsus (=solenophore, sph in Fig. 2) is present, although it is small 
and closely attached to solenomere (sl in Fig. 2).

Chamberlinius uenoi (Murakami, 1975), comb. n.
http://species-id.net/wiki/Chamberlinius_uenoi
Figs 3, 6C, 7C, 8C, Map 1

Riukiupeltis uenoi Murakami, 1975: Bulletin of the National Science Museum, Tokyo, 
{A}1(2): 105–107, fig. 9

Figure 2. Riukiupeltis jamashinai Verhoeff, 1939, left gonopod of male from Fukumine-no-kara cave, 
Miyako-jima Island, 25 August 1979, leg. M. Shimojana A mesal view B dorsal view C ventro-lateral 
view (sl = solenomere, sph = solenophore or tibiotarsus). Scale bars = 0.5 mm.
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Riukiupeltis uenoi:– Nakamura and Korsós 2010: Acta Arachnologica 59(2): 82

Material studied. Holotype male, NSMT-My 358, “Japan, Okinawa Pref., Is. Ishiga-
ki-jima, Ibaruma, Sabichi-go Cave, 31 July 1973, coll. by S. Uéno” (NMNS).

New records: 2 males, 1 female, Japan, Ryukyu Archipelago, Yaeyama Island 
Group, Ishigaki-jima Island, Banna-dake, secondary forest, N24.3859°–E124.1651°, 
30 August 2009, leg. Z. Korsós & Y. Nakamura (RUMF); 1 male, 2 females, Ja-
pan, Southern Ryukyus, Yaeyama Group, Iriomote-jima Island, Funaura, around 
university research station, N24.3929°, E123.7913°, secondary forest, 18 January 
2011, leg. Z. Korsós (RUMF); 1 male, 1 female, Japan, Southern Ryukyus, Yaeyama 
Group, Iriomote-jima Island, Mihara, along Aira river, primary forest, N24.3400°, 
E123.9137°, in decaying log, 12 m a.s.l., 19 January 2011, leg. Z. Korsós (HNHM).

Distribution. Japan, Ryukyu Archipelago, Yaeyama Group, Ishigaki-jima and 
Iriomote-jima islands.

Figure 3. Chamberlinius uenoi (Murakami, 1975) comb. n., left gonopod of male Mt. Banna-dake, 
Ishigaki-jima Island A dorso-mesal view B lateral view. (l = lamina, c = cingulum, sl = solenomere, sph = 
solenophore or tibiotarsal process, lp = laminar process, pp = pointed process)). Scale bar = 0.5 mm.
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Remarks. Murakami (1975) when describing the species commented that the ter-
minal portion of the gonopod is more complicated than that of Riukiupeltis jamashinai 
Verhoeff, 1939. He also agreed with Verhoeff, 1939 in its configuration, and placed his 
species in Riukiupeltis. However, the species uenoi, in fact, differs largely from the type 
species R. jamashinai in gonopod conformation.

After studying the type and freshly collected specimens, it became clear that the spe-
cies uenoi is strongly different from Riukiupeltis jamashinai in its gonofemorite having 
a long lamina l, and a longer solenophore with basal processes pp and lp (Fig 3). We 
found that this species is more similar to Chamberlinius hualienensis Wang, 1956. Both 
Ch. hualienensis and Ch. uenoi comb. n. have well-developed paraterga (Figs 7A–B), large, 
slender and strongly concave gonofemorite, with a lamina at the mesal side (l in Fig. 3). 
Postfemoral region is demarcated from femorite by obvious cingulum (c in Fig. 3), and 
includes a long and large solenomere (sl) reaching femur, and a shorter solenophore (sph) 
with a basal lobe. However, the two species differ from each other in the length of the 
postfemoral processes, by the shape of the small basal processes on the solenophore, and by 
live colouration. The dark brown, transversal metatergal bands in Ch. uenoi comb. n. are 
not divided by a median light brown longitudinal line (Figs 7C, 8C) as in Ch. hualienensis 
(Figs 7B, 8B). Moreover, Ch. uenoi comb. n. is strictly confined to undisturbed, natural ev-
ergreen broadleaf forests, and can only be found deep in decaying dead wood, whereas Ch. 
hualienensis has a strong tendency for being synanthropic, and dispersed in large numbers 
onto many islands (especially in the southern part of Japan) by human activities.

Simplogonomorpha gen. n.
urn:lsid:zoobank.org:act:878B9422-C9BB-462E-87A5-4A2610BB5B52
http://species-id.net/wiki/Simplogonomorpha

Type species. Haplogonosoma falcatum Attems, 1953, by present designation
Diagnosis. This genus, Simplogonomorpha gen. n. can be distinguished from other 

genera within the tribe Chamberlinini Wang, 1956 (as defined by Chen et al. 2011) 
by the following characters: paraterga modestly developed, gonopod very simple, 
gonotelopodite tapering and distally curved down as much as forming U-shape or 
an almost complete circle. Solenomere very simple, thick, but slender, and strongly 
curved down. Solenophore (= gonopod tibiotarsus) absent.

Etymology. A feminine noun to emphasize the simple gonopod conformation.
Remarks. Jeekel (1968) in his classification of the family Paradoxosomatidae stat-

ed that “It appears that in Riukiupeltis the gonopod tiobiotarsus is also completely 
lost, although Verhoeff was of a different opinion when he described jamashinai”. He 
believed that the gonopod tibiotarsus (= solenophore) was lost in Riukiupeltis, so he 
transferred Attems’s species Haplogonosoma falcatum to this genus.

In fact, the solenophore of R. jamashinai still exists, although short, and somewhat 
hidden next to the solenomere, whereas solenophore of Simplogonomorpha gen. n. is to-
tally missing. A comparison of genera in the tribe Chamberlinini is provided in Table 1.
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Simplogonomorpha falcata (Attems, 1953), comb. n.
http://species-id.net/wiki/Simplogonomorpha_falcata
Figs 4–5, 7D, Map. 1

Haplogonosoma falcatum Attems, 1953: Mémoires du Muséum National d’Histoire 
Naturelle, Paris {N. S., Sér. A, Zool.}, 5(3): 177, figs 81–82.

Riukiupeltis falcatus:– Jeekel 1968: On the classification and geographical distribution of 
the family Paradoxosomatidae (Diplopoda, Polydesmida), Nederlandse Entomologis-
che Vereiniging: 62.

Material studied. 3 males, 2 females, (IEBR-166), Vietnam, Lam Dong prov., Bi 
Doup-Nui Ba National Park, corn field, 1400m a.s.l., pitfall traps, 2–9 April 2008, leg. 
Anh. D. Nguyen; 1 male, 1 female, 1 juvenile, (IEBR-167), same locality, grasslands, 
1400m a.s.l., pitfall traps, 2–9 April 2008, leg. Anh. D. Nguyen; 1 female, (IEBR-168), 
same locality, bushes near stream, 1400m a.s.l., pitfall traps, 25 April 2008, leg. Anh. D. 
Nguyen; 4 males, 2 females, (IEBR-169), same locality, evergreen forest, 1800m a.s.l., 
25 March–23 April 2008, leg. Anh. D. Nguyen;1 male (IEBR-125), Vietnam, Khanh 
Hoa Prov., Hon Ba Mts., 1300–1500m a.s.l., primary forest, 15–24 April 2006, leg. 
Anh. D. Nguyen; 1 male, 1 female, (HNHM), same data as sample IEBR-125.

Description. Head: yellowish-brown to blackish brown, a slightly paler toward 
labrum. Epicranial suture distinct, obviously deep.

Antennae: short and stout, yellowish-brown to blackish brown. Length of antenno-
mere 2 subequal to that of antennomere 3, 4 or 5. Antennomere 6 shorter and claviform.

Body: yellowish-brown to blackish brown on terga, paler on paraterga and pleura. 
Body parallel-sided on somites 5–17, thereafter gradually tapering.

Surface of metaterga general fine in posterior part, but with small oblique or lon-
gitudinal rugulose in anteriormost part. Stricture dividing pro- and metazona deep, 
obvious and beaded. Prozona surface shagreened with fine microgranulation.

Transverse sulcus on metaterga starting from somite 5 and more evident on subse-
quent somites. Metaterga with a row of 2+2 setae in pre-sulcus part. Axial line vague.

Paraterga not well-developed, small, look like small keels in poreless segments, but 
more developed in pore-bearing somites. Ozopore located on lateral side, near tip of 
angular paraterga of segments 5, 7, 9–10, 12–13 and 15–19.

Pleura shagreened with fine microgranulation. Pleurosternal carinae rather well-
developed in anteriormost segments, gradually decreasing posteriorly.

Epiproct truncated and curved down ventrad, with 4 strong setae on tip. Anal 
valves sub-semicircular with 1+1 long setae, and a deep emargination inbetween. Hy-
poproct trapeziform, with 1+1 setae.

Legs: yellow to yellowish brown, short and stout. Tarsal brushes present until leg-
pair 10, sparsely until legpair 16, and completely missing thereafter.

Sterna: normal, sparsely setose, with two large tubercles between coxae 4.
Male gonopod: very simple, hook-like in dorsal view. Coxa subcylindrical, distoven-

tral part sparsely setose. Prefemoral part usually densely setose, with evident demarca-
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tion from both femorite and coxa. Femorite slender, much longer than coxite and a lit-
tle curved down distally, separated from postfemoral part by an evident, subtransverse 
sulcus laterally and mesally. Solenomere simple, strongly curved down, slender, and 
tapering at tip. Tibiotarsus totally absent.

Prostatic groove runs mesally along femorite, distolaterad, and turns to lateral side, 
then running mesally, and ending at tip of solenomere.

Distribution. Vietnam, Lam Dong province, Bi Doup-Nui Ba National Park; 
Khanh Hoa province, Hon Ba Mountain; Laos PDR, Xieng Khoang

Remarks. New material does not much differ from Attems’s description. Only minor 
difference is the presence of two separate cones between coxae 4 instead of only one small 
conal process in Attems’s description. Recently, Chen et al. (2011) also published an illus-
tration of gonopods of Haplogonosoma falcatum collected from the same locality, BiDoup 
National Park, Vietnam. Our material here fits well with their unevaluated illustration.

Figure 4. Simplogonomorpha falcata (Attems, 1953) comb. n. from Vietnam, BiDoup National Park  
A 10th body segment, dorsal view B sternal processes between 4th coxae, posteriovenral view C leg 10, lateral 
view D telson, ventral view e–G right gonopod e mesal F lateral, and G subdorsal view. Scale bar = 1 mm.
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Figure 5. Simplogonomorpha falcata (Attems, 1953) comb. n. from Vietnam, BiDoup National Park, 
right gonopod: ventral A and mesoventral view B, C Tip of gonopod, ventral view D.

Key to representatives to all three genera (based on male characters)

1 Paraterga very weak, body looks almost cylindrical, colour uniformly light 
brown-yellowish. Gonofemorite very long and slender, without any modifi-
cations or processes. Postfemoral region consisting only a simple, strong, long 
solenomere. Solenophore totally absent (Figs 4–5) ........ Simplogonomorpha

– Paraterga well-developed with strong, triangular, posterio-lateral processes. 
Dorsal metazona colouration divided into dark brown anterior and much 
lighter posterior half, transversely separated by a deep sulcus.......................2

2 Gonofemorite large, slender and strongly concave, with a lamina on the me-
sal side. Postfemoral region with a long, large solenomere and a shorter so-
lenophore, the latter basally with two processes, a laminar mesal (lp) and a 
more pointed lateral one (pp) (Fig. 3B) .................................Chamberlinius
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Figure 6. Male gonopods in situ, ventral view: A Riukiupeltis jamashinai (Miyako-jima Island) B Cham-
berlinius hualienensis (Okinawa-jima Island) C Chamberlinius uenoi comb. n. (Ishigaki-jima Island).

Figure 7. Midbody (11th-13th) segments, dorsal view: A Riukiupeltis jamashinai (Miyako-jima Island) 
B Chamberlinius hualienensis (Okinawa-jima Island) C Chamberlinius uenoi comb. n. (Ishigaki-jima Is-
land) and D Simplogonomorpha falcata comb. n. (Vietnam, Hon Ba Mts.)
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Figure 8. Habitus of millipedes: A Riukiupeltis jamashinai (live from Miyako-jima Island) B Chamber-
linius hualienensis (live on Okinawa-jima Island) and C Chamberlinius uenoi comb. n. (live on Iriomote-
jima Island).
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– Gonofemorite only slightly curved, with a weak dorsal lamina, distal part swol-
len and membraneous. Postfemoral region consisting a thick, strong, free sole-
nomere, and a short, somewhat hidden solenophore (Fig. 2) .......Riukiupeltis

In the key above, Riukiupeltis and Simplogonomorpha are represented by only one 
species each (jamashinai and falcata, respectively). Chamberlinius, on the other hand, 
includes at present five species: Ch. hualienensis, Ch. piceofasciatus, Ch. pessior, Ch. sub-
laevus (all keyed already by Chen et al. 2011), and Ch. uenoi, as added here.

Conclusion

As a result of our character comparisons, the taxonomic status of the following three species: 
Riukiupeltis jamashinai Verhoeff, 1939, R. uenoi Murakami, 1975 and R. falcatus (Attems, 
1953) has been clarified. Based on significant morphological differences in body shape and 
gonopod structure, they all belong in three different genera. Riukiupeltis jamashinai having 
priority is maintained as such, whereas uenoi is transferred to Chamberlinius Wang, 1956, 
and a new genus, Simplogonomorpha gen. n., is erected to accommodate falcatum.

Map 1. Distribution of three species Chamberlinius uenoi (Murakami, 1975) comb. n., Riukiupeltis ja-
mashinai Verhoeff, 1939, and Simplogonomorpha falcata (Attems, 1953) comb. n.
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Abstract
The number of stadia during post-embryonic development is supposed to be fixed in most species of 
the millipede order Polydesmida. For the first time since 1928, additional moults were observed in two 
males of Polydesmus angustus Latzel, 1884 reared in the laboratory. These ‘elongatus’ males sensu Verhoeff 
reached stadium IX instead of stadium VIII, with addition of a further podous ring (32 pairs of legs). 
One male had well-developed gonopods at stadium VIII, which regressed at stadium IX; the other had 
no gonopods at stadium VIII, which developed at stadium IX. The two cases correspond to the ‘regres-
sionis’ and ‘progressionis’ forms described by Verhoeff in Polydesmus complanatus (Linnaeus, 1761), which 
confirms entirely his results. Additional moults appear to be associated with small body sizes and possible 
underlying mechanisms are discussed. Comparisons between millipede orders indicate that post-embry-
onic development is less strictly canalized in Polydesmida than in Chordeumatida. This implies that the 
adult number of body rings is of limited taxonomic value in Polydesmida and should not be viewed as a 
character of generic importance.
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Introduction

In millipedes (Diplopoda), post-embryonic development occurs basically by an-
amorphosis, i.e. the number of body rings is small at birth (e.g., four podous rings 
bearing three pairs of legs, two apodous rings, plus the telson) and increases pro-
gressively at each moult. However, the relationships between developmental stages 
(= stadia) and sexual maturity vary greatly depending on the order (Enghoff et al. 
1993). In most millipede orders, adults occur in several stadia within a species, 
either because the stadium at which maturity is reached varies among individuals, 
or because adults undergo further moults. In addition, adults in a given stadium 
often have a variable number of body rings (e.g. in Julida, Polyzoniida, Spirobolida, 
Spirostreptida). By contrast, development is much more canalized in the order 
Polydesmida, in which there is generally only one adult stadium in each species, 
with a fixed number of body rings (Mesibov 2011). In most polydesmidan species, 
adults are in stadium VIII, with the head, 18 podous rings, 1 apodous ring and the 
telson (in abbreviated form: 18+1+T); in other species, adults are in stadium VII 
(17+1+T); in a few species, the stadium and ring number of adults differ between 
the sexes, but with no intra-sex variation. In spite of obvious exceptions, e.g. in the 
genus Devillea Brölemann, 1902 (Xystodesmidae), in which adults probably occur 
in several stadia (Enghoff et al. 1993), the number of body rings in the adult is 
considered as fixed in most Polydesmida and is sometimes used in taxonomy (e.g. 
Djursvoll et al. 2000).

Surprisingly, Verhoeff (1916, 1928) reported the occurrence of an additional 
moult in a number of male and female Polydesmus complanatus (Linnaeus, 1761) 
(Polydesmidae) reared in the laboratory. Whereas adults of this species are normally 
in stadium VIII (18+1+T), some individuals were observed in stadium IX with a 
further podous ring (19+1+T). Verhoeff (1928) was convinced that the existence 
of these ‘elongatus’ specimens shed light on the evolution of ring numbers in mil-
lipedes and used it as an argument in his controversy with Brolemann (1921) over 
elongation vs. contraction. However, this additional moult in a polydesmid has 
sometimes been regarded sceptically, and Enghoff et al. (1993: p. 153) did not ex-
clude the possibility of Verhoeff’s mistakes in the counting of rings. More recently, 
intraspecific variability in the ring number of adult males was demonstrated in 
another polydesmidan millipede, the pyrgodesmid Muyudesmus obliteratus Kraus, 
1960 (Adis et al. 2000).

Herein, the reality of the phenomenon observed by Verhoeff in Polydesmus is 
confirmed for the first time since 1928. During laboratory studies on another, close-
ly related species, Polydesmus angustus Latzel, 1884, two cases of moult into stadium 
IX were observed in males. In the present paper, we first describe the conditions 
under which these moults occurred and some characteristics of the males before 
and after moulting, we briefly discuss possible underlying mechanisms, and then 
highlight implications of intraspecific variability in ring number for the taxonomy 
of Polydesmida.
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Material and methods

Study species

The flat-backed millipede P. angustus is widespread in north-western Europe, west of 
the range of P. complanatus (Kime and Enghoff 2011). Its post-embryonic develop-
ment consists of eight stadia, which can be determined by counting the number of 
body rings, and the sexes can be distinguished from stadium IV onwards (Enghoff 
et al. 1993). Towards the end of each immature stadium, millipedes build a chamber 
made of earthy faecal material, in which they coil during moulting. The last stadium is 
the adult (18+1+T), which dies after the breeding season. The life cycle is completed 
in either one or two years depending on the individuals. Under mean seasonal condi-
tions, development time from egg hatch to adult emergence lasts about 10 months 
for annual individuals, plus a further 3 months in aestivation for biennial individuals 
(David et al. 1999).

Laboratory rearing

During experimental studies on the biology and ecology of P. angustus, hundreds of 
specimens were reared throughout their life cycle in the laboratory. Broods that were 
produced by adults from a field population living at Brunoy, 20 km south-east of Paris, 
were kept in lidded, transparent plastic boxes containing 1 cm of sieved soil and moist 
leaf litter. The boxes were placed in incubators fitted with a glass door and exposed to 
natural daylight. Temperature followed the mean monthly temperatures of the region 
of origin, with a daily thermoperiod of 4°C (David et al. 1999). The young from each 
brood were reared in groups up to stadia IV–V, sexed and then kept at a low popula-
tion density to be monitored individually. Some individuals were fed on leaf litter 
alone throughout development, while others received a monthly pinch of dry yeast in 
addition to leaf litter, which greatly improves growth and female fecundity (David and 
Celerier 1997). Under those laboratory conditions, additional moults were observed in 
two males, one of which was reared with yeast and the other without.

Results

The first ‘elongatus’ male hatched in late August from eggs produced by field-collect-
ed parents (first generation in the laboratory). It was fed on leaf litter without dry 
yeast and emerged as a small adult (stadium VIII) in mid-September, at the age of 
12 months. Its live weight was 15.3 mg, which is usually the weight of a stadium VII 
specimen in the field. The 8th leg-pair was transformed into apparently normal, well-
developed gonopods. The male was left unmated and received a pinch of yeast in early 
October. It coiled into a moulting chamber on October 27th and then emerged as 
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stadium IX (19+1+T) on November 18th. Its live weight was 22.4 mg. Although the 
examination of the exuvia confirmed that its gonopods were fully formed in stadium 
VIII, with all the characteristics of P. angustus, they were transformed regressively at 
stadium IX. The coxites were strongly developed, the coxal hooks clearly visible, but 
the telopodites were even more simplified and atrophied than in the figures shown by 
Verhoeff (1928: p. 691). This type of additional moult with regression of gonopods is 
similar to the ‘regressionis’ form described by Verhoeff (1916). This ‘elongatus’ male 
overwintered a second time and died in late March (Fig. 1).

The second male hatched in June from eggs produced by laboratory-reared par-
ents (second generation in the laboratory). It was fed on leaf litter supplemented 
with yeast and emerged as stadium VIII on May 3rd, at the age of 10 months. It had 
the normal number of rings (18+1+T) but was extremely small. Its live weight was 
9.2 mg, which is usually the weight of a stadium VI specimen in the field. It had no 
gonopods, the 8th leg-pair being replaced by small buds, as is usually the case in im-
mature males of stadium VII. This male coiled into a moulting chamber in mid-May. 
Although it was accidentally frozen before emergence due to an incubator failure, 
the moulting process had already reached an advanced stage. An examination of the 
specimen dead before emergence clearly showed that it was about to give a male in 
stadium IX (19+1+T) with 32 leg-pairs and developed gonopods. This type of ad-
ditional moult with appearance of gonopods is similar to the ‘progressionis’ form 
described by Verhoeff (1916).

Discussion

It is clear that the number of stadia is not completely fixed in millipede species of 
the family Polydesmidae. Additional moults described by Verhoeff (1916, 1928) 
in P. complanatus have been confirmed in adult males of P. angustus. In the latter 
species, it is a very rare phenomenon, which was observed in only two males and 
no females. Nevertheless, two modalities corresponding to Verhoeff’s ‘regressionis’ 
and ‘progressionis’ forms have been confirmed, which lends considerable credibility 
to all the results reported by Verhoeff (1928). This also suggests that the additional 
moults briefly mentioned by Stephenson (1961) in a number of males of Brachydes-
mus superus Latzel, 1884 from the field, may not necessarily be due to confusion 
of species.

Possible underlying mechanisms

In this study, the two ‘elongatus’ males with 19 podous rings were obtained under con-
trolled laboratory conditions and did not experience environmental stress in terms of 
temperature, humidity and photoperiod. However, an obvious difference between these 
males and normally developing animals was their small body size at stadium VIII. Simi-
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larly, the first ‘elongatus’ specimens obtained by Verhoeff (1916) were from a poorly-fed 
brood that yielded very small adults (the so-called ‘forma nana’), and most of those he 
obtained later were less than 20 mm long at stadium VIII (Verhoeff 1928). Body size 
may thus be critical for the appearance of ‘elongatus’ specimens. A small size can result 
from poor quality food (David and Celerier 1997), although this is not a valid explana-
tion for the smaller ‘elongatus’ male obtained in P. angustus, which was reared on leaf 
litter supplemented with yeast. In an experiment with a species of the order Spirobolida 
in which the mode of anamorphosis is very different from that of Polydesmida, Berns 
and Keeton (1968) showed that semi-starvation resulted in smaller juveniles, and these 
underwent a greater number of moults before maturity than well-fed individuals.

Hormone imbalance is undoubtedly involved in the occurrence of additional 
moults, and body size may play a role in this respect. Although little is known about 
the hormonal control of development in millipedes (Descamps et al. 1990; Hopkin 
and Read 1992), hypotheses based on knowledge from other arthropod classes can be 
put forward. In insect species with variable numbers of instars, such as the Lepidoptera 
Manduca sexta (Linnaeus, 1763) (Sphingidae) and Malacosoma disstria Hübner, 1820 
(Lasiocampidae) (Kingsolver 2007; Etile and Despland 2008), further larval moults 
occur only in small individuals, because attainment of a critical weight is the signal that 
stops juvenile hormone production (Davidowitz et al. 2003). A similar mechanism 
can be hypothesized for the additional moult in the ‘progressionis’ form of Polydesmus, 
which is typically the occurrence of a further immature stadium during development.

Figure 1. Dorsal view of a Polydesmus angustus male of stadium IX after its death at the age of 19 months. 
The trunk consists of 19 podous rings – bearing 32 pairs of legs plus regressed gonopods (8th leg-pair) – 
and one apodous ring anterior to the telson.
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The ‘regressionis’ form in males is more difficult to interpret. In this case, small 
males reach stadium VIII with the normal number of rings and well-developed gono-
pods. However, according to Verhoeff (1928), these males are unable to breed because 
other adult characters are missing, especially the male openings on the coxae of the 
second pair of legs. These characters appear in stadium IX, while the gonopods are 
transformed regressively. A mixture of development and regression of secondary sexual 
characters during the additional moult is difficult to interpret in terms of hormonal 
control.

It is clear, however, that the additional moult with regression of gonopods in Poly-
desmus is not akin to periodomorphosis (Verhoeff 1923). This phenomenon, which is 
well known in the order Julida, involves the appearance of intercalary males with re-
gressed sexual characters between two adult stadia (Enghoff et al. 1993). If Polydesmus 
males in stadium VIII are not sexually mature despite their well-developed gonopods, 
their moult to stadium IX is by no means the first stage in periodomorphosis (Verhoeff 
1928; Sahli 1968). While some secondary sexual characters regress, others develop in 
stadium IX, so that ‘regressionis’ males are quite different from true intercalary males. 
Moreover, the next stage in periodomorphis, i.e. a further moult into mature males of 
stadium X, has never been observed in Polydesmus.

Taxonomic implications

The confirmation that additional moults can occur in Polydesmida, the post-embry-
onic development of which is generally assumed to consist of a fixed number of sta-
dia, has implications for taxonomy. In Polydesmus, adults with a further body ring are 
quite capable of surviving and Verhoeff (1928) even showed that ‘elongatus’ females 
of P. complanatus were able to breed. Although such individuals have not been re-
ported so far in field populations of Polydesmus, they might be encountered besides 
normally developing adults under specific ecological conditions, especially in popula-
tions composed of small individuals. Clearly, it is biologically possible. Therefore poly-
desmidan millipedes that have very similar characteristics, particularly the male gono-
pods, but different numbers of rings in the adult, might belong to the same species. 
They should not be automatically classified as distinct genera. For example, Demange 
(1970) stressed that the polydesmids Brachydesmus proximus Latzel, 1889 (17+1+T) 
and Polydesmus geochromus Attems, 1952 (18+1+T) have virtually identical gonopods; 
the paradoxosomatids Paradoxosoma granulatum Daday, 1889 (17+1+T) and Trach-
ydesmus simonii Daday, 1889 (18+1+T) also have virtually identical gonopods. Dis-
tinctions at the generic level for such closely related organisms were criticized (Jeekel 
1968; Demange 1970), and the latter author correctly argued that these differences in 
ring number could reflect environmentally induced variation within a single species. In 
the recent scientific literature, Shelley (2000) chose the option to classify adult males 
with 17 and 18 podous rings in the same sphaeriodesmid species, Desmonus pudicus 
(Bollman, 1888). At most, such differences could reflect speciation, assuming that 
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each ring number has already been fixed in reproductively isolated populations. But 
the number of rings as such should no longer be viewed as a character of generic im-
portance in Polydesmida. Its use in phylogenetic analyses, working on the assumption 
that this character shows no intraspecific variation (Djursvoll et al. 2000), perpetuates 
divisions which may be artificial, such as the genera Brachydesmus (17+1+T) and Poly-
desmus (18+1+T).

Conclusion

Enghoff et al. (1993) coined the term teloanamorphosis to describe a mode of anamo-
rphosis in which the number of moults and the number of rings added at each moult 
are fixed within each species (or each sex of a given species). In millipedes, this type of 
post-embryonic development is characteristic of the orders Chordeumatida and Poly-
desmida, with some interspecific variation in the number of stadia to maturity. How-
ever, there appears to be a difference between the two orders. Whereas no additional 
moults have ever been mentioned in the Chordeumatida, the data available to date 
show that there are various degrees of intraspecific variability for the stadium number 
in Polydesmida, at least in Devillea, Muyudesmus and Polydesmus, and possibly in other 
genera mentioned above. The number of body rings in the adult appears therefore to 
be of more limited taxonomic value in this order.
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Abstract
To date, the forcipules have played almost no role in determining the systematics of scutigeromorph 
centipedes though in his 1974 review of taxonomic characters Markus Würmli suggested some poten-
tially informative variation might be found in these structures. Geometric morphometric analyses were 
used to evaluate Würmli’s suggestion, specifically to determine whether the shape of the forcipular coxa 
contains information useful for diagnosing species. The geometry of the coxae of eight species from the 
genera Sphendononema, Scutigera, Dendrothereua, Thereuonema, Thereuopoda, Thereuopodina, Allothereua 
and Parascutigera was characterised using a combination of landmark- and semi-landmark-based sampling 
methods to summarize group-specific morphological variation. Canonical variates analysis of shape data 
characterizing the forcipular coxae indicates that these structures differ significantly between taxa at vari-
ous systematic levels. Models calculated for the canonical variates space facilitate identification of the main 
shape differences between genera, including overall length/width, curvature of the external coxal margin, 
and the extent to which the coxofemoral condyle projects laterally. Jackknifed discriminant function 
analysis demonstrates that forcipular coxal training-set specimens were assigned to correct species in 61% 
of cases on average, the most accurate assignments being those of Parascutigera (P. guttata) and There-
uonema (T. microstoma). The geographically widespread species Thereuopoda longicornis, Sphendononema 
guildingii, Scutigera coleoptrata, and Dendrothereua linceci exhibit the least diagnostic coxae in our dataset. 
Thereuopoda longicornis populations sampled from different parts of East and Southeast Asia were signifi-
cantly discriminated from each other, suggesting that, in this case, extensive synonymy may be obscuring 
diagnosable inter-species coxal shape differences.
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Introduction

The Scutigeromorpha (Chilopoda) is the only extant representative of the centipede 
subclass Notostigmophora. These centipedes retain several primitive characters such as 
compound eyes, a domed head capsule, and deposition of the spermatophore on the 
ground rather than on a web. These characteristics, together with molecular sequence 
data, identify them as the sister group of all other centipedes (Murienne et al. 2010).

Scutigeromorph taxonomy in its present form was largely established by K. W. 
Verhoeff in a series of studies that spanned the first half of the 20th century. Ver-
hoeff (1905) was also the first investigator to present a hypothesis of phylogenetic 
relationships for the group. He named most of the genera (Verhoeff 1904, 1905, 
1925, 1944) and a large number of species, many of which have been synonymised 
subsequently (see Würmli 1973a,b, 1977, 1978, 1979, 2005). Despite the inclu-
sion of new morphological character data (e.g., from scanning electron microscopy) 
and extensive molecular sequencing (Edgecombe and Giribet 2006, 2009), the tax-
onomy and phylogenetic relationships of the ca 100 valid scutigeromorph species 
remain controversial, in part because many aspects of this group’s morphology are 
highly conserved.

Among such complex, but apparently conservative, character systems are the for-
cipules, the appendages of the first trunk segment that are a functional part of the head 
and house the poison gland. Scutigeromorph forcipular coxae are separated from a 
vestigial sternite (Manton 1965) and each coxa bears four long spine-bristles along its 
anterior margin (Fig. 1). Würmli (1974) drew attention to the importance of the shape 
– the relative lengths and widths of the coxa — and the prominences on the inner 
margin of these structures. However, the degree to which these shape characters can 
be used to identify taxa (either species or infra/supraspecific groups) reliably has never 
been subjected to systematic investigation. Indeed, the forcipules have played almost 
no role in scutigeromorph systematics to date.

Geometric morphometrics has been used for the past 25 years to quantify biologi-
cal form via the use of landmark and semi-landmark data (Rohlf and Marcus 1993, 
Adams et al. 2004, MacLeod 2002a, 2002b, 2005; see also Bolton et al. 2009 for 
an application to the female gonopods of Scutigeromorpha). Whereas a number of 
authors have suggested that morphometrics could be useful in resolving traditional 
taxonomic characters and contributing to taxonomic and phylogenetic analysis (e.g., 
MacLeod 2002a), morphometric approaches have traditionally been used to evaluate 
characters that have been recognized by taxonomists via qualitative inspection. In the 
case of the scutigeromorph forcipules, despite their morphological complexity these 
structures have defeated qualitative analysis; taxonomically and phylogenetically in-
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formative morphological characters have necessarily been sourced from other parts of 
the body.

The primary objective of this investigation was to determine the degree which the 
forcipular coxae can be used to characterise scutigeromorph taxonomic and phyloge-
netic groups accurately based on an assessment of their shape. In doing so, we also 
explored the extent to which Procrustes principal component analysis (see MacLeod 
2010) as well as canonical variates analysis (CVA) and shape models calculated for the 
CVA ordination space can help identify characters that add support for existing or 
alternative taxonomic placements.

Methods

Taxonomic sampling

Specimens fixed in ethanol were sourced from The Natural History Museum (Lon-
don). Specimens of the three Australian species were sourced from the Australian Mu-
seum (Sydney) and the Queensland Museum (Brisbane); specimens of two Domini-
can Republic species were located in the collections of the U.S. National Museum of 
Natural History.

Figure 1. Ventral view of head and forcipules of Thereuopoda longicornis placed in a standard horizontal 
position. BM 1952.9.8.574-575, Kuching, Sarawak, Malaysia.
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Landmark and outline data were collected for 108 specimens (Table 1), represent-
ing eight species and eight genera within two of the three scutigeromorph families. 
The Neotropical/Afrotropical family Pselliodidae is here represented by Sphendonon-
ema guildingii (Newport, 1844), and the family Scutigeridae, where sampling was 
densest, includes members of both recognized subfamilies, Scutigerinae and There-
uoneminae. The Scutigerinae were represented by Scutigera coleoptrata (Linnaeus, 
1758) and Dendrothereua linceci (Wood, 1867); the Thereuoneminae by Thereuonema 
microstoma (Meinert, 1886), Thereuopoda longicornis (Fabricius, 1793), Thereuopodina 
queenslandica Verhoeff, 1925, Allothereua maculata (Newport, 1844), and Parascuti-
gera guttata Verhoeff, 1904. All species were chosen on the basis of being members of 
accessible collections with sample size adequate for statistical analysis, and to repre-
sent a broad sample of generic/subfamilial diversity. The remaining scutigeromorph 
family, Scutigerinidae, was not included as too few specimens were available. Voucher 
details for all specimens used in this study are listed in the Appendix (Table 1 therein).

The species concept for Dendrothereua linceci follows Würmli (1973b), applying 
this name to populations distributed from the southern U.S. to Panamá. Analyses of 
molecular data suggest that multiple species may be represented in this aggregation 
(Edgecombe and Giribet 2009), but using the traditional concept of a widespread 
species allows exploring the variability in this taxonomic grouping. Identifications of 
other widespread species follow their most recent revisions (Thereuonema microstoma = 
T. syriaca: Würmli 1975; Stoev and Geoffroy 2004; Scutigera coleoptrata: Würmli 1977; 
Sphendononema guildingii: Würmli 1978; Thereuopoda longicornis: Würmli 1979; Paras-
cutigera guttata: Edgecombe and Giribet 2009). As in the study of Bolton et al. (2009), 
the name Allothereua maculata is applied to populations from arid parts of New South 
Wales and South Australia that belong to A. maculata (sensu Verhoeff 1925), though 
their conspecificity with the Western Australian type material is dubious.

Specimens were chosen so that at least one of the forcipular coxae and the spine 
bristles on its anterior margin were visible and complete. To minimise the effects of 

Table 1. Sample number and distribution of species employed in the present study

Species 
Sample number 

(N)
Distribution 

Sphendononema guildingii 5 Central and South America

Scutigera coleoptrata 12 Mediterranean, cosmopolitan by 
introduction

Dendrothereua linceci 13 North-Central America, Caribbean
Thereuonema microstoma 14 East Africa, Middle East
Thereuopoda longicornis 19 India, southeast Asia
Thereuopodina queenslandica 14 Northeastern Australia
Allothereua maculata 13 Southern Australia
Parascutigera guttata 18 Northeastern Australia
Total 108
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variation due to potential shape changes in ontogeny, specimens are all mature or 
nearly mature (maturus and pseudomaturus stages of Verhoeff 1904) apart from some 
of the smaller Dendrothereua linceci.

Image capture and landmarks

In order to quantify the outline of each forcipular coxa, specimens were placed ventral 
surface uppermost and pinned to a horizontal standard orientation (i.e., the forcipu-
lar coxae positioned as horizontal as possible) (Fig. 1). Each specimen was imaged 
perpendicularly using a Leica MZ16 stereomicroscope with a Zeiss Axiocam™ high-
resolution imaging system.

Imaging the specimens in the correct orientation while in alcohol proved difficult 
as many specimens were not perfectly straight and even the slightest movement dis-
turbed the alcohol and blurred the image. Additionally, the forcipular coxae are not 
completely flat, rendering some areas of the coxa out of focus. To overcome focusing 
problems, a stack of images of each specimen at different focal depths was taken and 
the set then merged to form a single, extended focus composite using HELICON 
FOCUS™ (Helicon Software Ltd.) software. All composite images were then cropped, 
placed on a black background, and contrast adjusted using Adobe PHOTOSHOP™ 
software while referring to the original images for guidance. Images were excluded if 
(1) the original image stack was insufficiently focused to accurately detect the coxal 
outline and/or the base of all the spine-bristles, and/or (2) their orientation did not 
conform to an acceptable standard.

Media Cybernetics’ IMAGE-PRO PLUS™ software was used to collect land-
marks and outline co-ordinate points from the right and the left coxae individually. 
Symmetry between the right and left coxae was established (see Results section), 
and subsequently the left coxal landmark and outline coordinate points were re-
flected across the y-axis, only one coxa being used per specimen to eliminate re-
dundancy. Ten landmarks (Fig. 2) were manually located from the interior to the 
exterior part of each coxa. The first landmark (L1) was calculated by drawing the 
longest diagonal line from the anterolateral to the posteromedial edge of the coxa, 
the second landmark (L2) was placed at the coxofemoral condyle, and landmarks 
L3-L10 were situated at the base of the projection bearing each spine-bristle. In ad-
dition, 100 equally-spaced outline semi-landmark co-ordinate points were obtained 
by automatic tracing along the mesial, posterior and lateral edges of the image from 
landmarks L10 to L3. The outline along the anterior margin (from landmarks 3 to 
10) was obtained manually as the spine-bristles were not used in the shape analysis. 
These structures are very fragile and were disarticulated in a large subset of the speci-
mens available or their length was partially obscured by other structures. Accord-
ingly the manual tracing truncated the spine-bristles across their level of insertion 
into the coxae.
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Shape

Initially, combinations of both landmark and outline data were analysed using routines 
written in Wolfram Research’s MATHEMATICA™ software using the semi-landmark 
sampling protocol described by MacLeod (1999). This protocol, part of the extended 
eigenshape analysis procedure, combines the coordinates of semi-landmark points 
along the outline and landmarks placed at comparable geometrical points which con-
strain the sequencing of the boundary coordinate points by forcing them into align-
ment, thereby reducing the degree of shape variation generated through biological 
miscorrespondence (MacLeod 1999). For this investigation a shape accuracy tolerance 
criterion of 0.975 was used to control the outline interpolation process. The analysis 
generated a series of x-y boundary outline (= semi-landmark) coordinate values that 
were used to represent the outline shape of each coxa.

No attempt was made to ‘slide’ the resulting semi-landmark points to positions of 
minimum bending energy relative to the sample mean as has been advocated for use 
in the analysis of semi-landmark data by some (e.g., Bookstein 1996, Zelditch et al. 
2004). Such a transformation would destroy the shape correspondences that are the 
point of morphometric analysis. Moreover, all current implementations of the sliding 
semi-landmark approach of which we are aware do not slide the semi-landmark along 
the boundary outline itself, but rather along straight lines tangent to the boundary 

Figure 2. Landmarks (L1-L10) used in morphometric analysis. Diagonal line to L1 is the longest line 
from anterolateral to posteromedial corners of the coxa. Spine-bristles numbered 1-4 (blue) from interior 
to exterior. Throughout text, left and right coxae refer to dorsal orientation (inverted 180° relative to this 
ventral view).
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outline (see Rohlf ’s documentation for the tpsRelw program, available as part of that 
program at the SB Morphometrics web site: http://life.bio.sunysb.edu/morph/). This 
convention has been adopted to simplify the computations required to reposition the 
semi-landmarks. However, use of this approach to semi-landmark adjustment obvious-
ly does not achieve a configuration of minimum bending energy for the curve that was 
measured because the act of sliding semi-landmarks along local tangents deforms the 
original measured curve. This wholly artificial deformation will not apply uniformly 
to the entire shape, but will be more pronounced in regions that exhibit high outline 
curvatures. Irrespective of this consideration, experiments have shown that minimal 
semi-landmark sliding results from the high-density sampling program used in ex-
tended eigenshape analysis.

The output of semilandmark interpolation procedure was aligned using Procrustes 
(GLS) superposition, which minimizes differences in position, scale, and rotation for 
sets of landmarks and semilandmark points (MacLeod 2009a). The superimposed co-
ordinates were then analysed via PCA using the covariance matrix as a basis for the 
assessment of shape similarity. This technique explores the relations between variables 
to create new independent variables, the set of principal components, which represent 
a variance-optimised and mutually independent set of shape descriptors derived from 
the information contained in the original measurement set, reducing the dimension-
ality of the data set (Dunteman 1989; MacLeod 2005). In addition, this set of vari-
ables (= eigenvectors) can be used to define an ordination space that can be used to 
graphically portray shape relations and to create models of shape deformation trends 
that graphically embody the geometric meanings of the variables (Bookstein 1991; 
MacLeod 2009b, 2010).

Subsequently, canonical variates analysis (CVA) was performed on the PCA scores 
on a shape variance-optimised subset of the PCA axes to maximize the ratio of be-
tween-group and within-group variation for the eight species, thus discriminating be-
tween the groups (Zelditch et al. 2004). CVA was also used to investigate asymmetry 
differences between the right and left coxae, sexual dimorphism, and whether these 
shapes are informative for geographical patterns at an infraspecific level.

The geometric interpretation of the CVA axes that support group separation was 
then assessed using a CVA modelling procedure that projects points from the CVA 
space into the original PCA variable space to calculate a series of shape models that 
express the major shape trends involved in inter-group separation (see MacLeod 2007; 
Bolton et al. 2009).

Results

In order to determine whether left and right coxae exhibit shape differences, data 
collected from both sides of specimens were subjected to CVA after coordinate data 
from the right coxae were reflected across the y-axis. No obvious differences in the 
scatter of left and right coxa along the first discriminant axes were evident. This re-
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sult was then confirmed statistically using a likelihood ratio test (see Manley 1994; 
ф = 9.66, df = 12, p > 0.001). This same procedure was used to test for significant 
male-female shape differences (ф = 41.11, df = 24, p > 0.001). In both cases the 
null hypotheses of no between group shape differences could not be rejected. Addi-
tionally, a measurement error analysis was carried out using two randomly selected 
replicates of 12 specimens to estimate the level of data-collection accuracy that was 
achieved for the data set as a whole. This analysis also identified no significant sta-
tistical coxal shape differences (ф = 0.385, df = 9, p > 0.001) between replicate data 
collection sessions.

Ordinations of coxal outline shape projected along the first few Procrustes PCA 
axes for each species analysed independently did not reflect any obvious infraspecific 
clusters. The structure of infraspecific coxal shape was further investigated by group-
ing the data within Thereuopoda longicornis and Dendrothereua linceci by geographic 
locality. These geographically widespread species were selected because sufficient 
specimens were available from enough localities to allow a more rigorous compari-
son. Results of a CVA of the Procrustes PCA score data rejected the null hypothesis 
of no significant infraspecific differences in coxal shape between geographic groups 
in Thereuopoda longicornis (likelihood ratio: ф = 71.14, df = 22, p < 0.001). This 
result was supported by unexpectedly impressive discriminations by the CVA results. 
The set of CVA discriminant function axes revealed that specimens of T. longicornis 
were assigned to their correct geographic group with 89% accuracy (Table 2), in-
dicating marked and consistent infraspecific coxal shape differences. Furthermore, 
the inspection of CVA scatterplots (Fig. 3) shows that specimens from each of six 
pre-defined geographic regions within the species’ ordinations plot close to each 
other in the discriminant space. Results for Dendrothereua linceci are shown in the 
Appendix (Fig. 1).

When the sample of all eight species was pooled, Procrustes PCA identified a 
total of 12 axes that were required to account for 95% of the observed coxal shape 
variation (Fig. 4). Subsequent CVA analysis of the Procrustes PCA scores for these 

Table 2. CV discriminant function analysis of Thereuopoda longicornis geographic data.

Groups Sumatra N. Borneo Peninsular 
Malaysia Thailand Burma China Total 

Correct % Correct

Sumatra 1 0 0 0 0 0 1 100
N. Borneo 
(Sarawak) 0 2 0 0 1 0 2 67

Peninsular 
Malaysia 0 1 5 0 0 0 5 83

Thailand 0 0 0 2 0 0 2 100
Burma 0 0 0 0 6 0 6 100
China 0 0 0 0 0 1 1 100

Total 
Correct 17 89
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12 latent shape variables revealed a clear tendency to group separation that is more 
pronounced for some species (Thereuopodina queenslandica, Parascutigera guttata, 
Thereuonema microstoma and Allothereua maculata) than for others (Thereuopoda lon-
gicornis and Sphendononema guildingii; see Fig. 5). There is a high degree of overlap 
evident in plots of species scatter in low-dimensional CVA subspaces. However, the 
degree of this true overlap among species point clouds is exaggerated in such plots as 
only two or three (out of the seven) discriminant axes were used in constructing the 
figure. Using the complete set of CV discrimination function axes, the overall pro-
portion of correct specimen assignments (77%) was unexpectedly high for a charac-
ter complex previously regarded as being of little taxonomic value. This, along with 
the likelihood ratio test results (ф = 308.5, df = 84, p < 0.001), indicates the pres-
ence of substantial and consistent between-species coxal shape differences for these 
data. Parascutigera guttata, Allothereua maculata and Thereuonema microstoma exhibit 
the most distinct coxal shape with 94%, 85%, and 79%, respectively, of specimens 
correctly assigned based on discriminant function analysis, whereas the least dis-
tinct were Sphendononema guildingii (60%) and Thereuopoda longicornis (68%). A 
jackknifed identification test to assess the stability of the discriminant axes (Table 
4) indicates that, across the dataset as a whole, the individual training set outlines 
were assigned to the correct species with 61% accuracy. The most stable results, with 
reference to generalized group identification, are those for Parascutigera guttata and 
Thereuonema microstoma (89% and 71% correct identifications, respectively).

Figure 6 illustrates the forcipular coxal models that project three of seven CVA axes 
back into the space of the original Procrustes PCA axes. These three axes express more 
than 75% of between-species shape differences. The major shape trends illustrated in 

Figure 3. Thereuopoda longicornis scatterplot of coxal shape data along the discriminant subspace formed 
by the first two CV axes, which together account for 74.17% of observed between-group shape variation.
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Figure 4. Scatterplots of Procrustes PCA scores for coxal shape data. The first two shape variation axes 
(top) together account for 62.63% of the observed shape variation; PC-2 and PC-3 axes (bottom) to-
gether account for 27.58% of the observed shape variation.



Detecting taxonomic signal in an under-utilised character system... 59

Figure 5. Results of the CVA of coxal shape data for all eight species, showing the subspaces formed by 
the first three discriminant axes, which together account for more than 79% of observed between-group 
shape variation. Within each subspace plot the black circles represent the coordinate locations for each of 
the five along-axis shape models depicted in Fig. 6.
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the first three CV axes were repeated along the four remaining axes. Models calculated 
for CV-1 show clear and pronounced variation from the coxofemoral condyle to the 
fourth spine-bristle (i.e., the course of the lateral margin of the coxa), which trends 
from distinctly concave to slightly convex, corresponding to a relative increase in coxal 
width. In addition, the posteromedial coxal edge also indicates a slight variation, fur-
ther increasing the coxal width in its posterior part. In contrast, a small variation in the 
anterior medial margin of the coxa involves a reduction in the width of the coxa in its 
anterior part.

The CV-2 models also exhibited variation in the exterior/lateral margin of the 
coxa. However, variation here is (expectedly) more subtle than in CV-1 and the shift 
oriented in the opposite direction. The anterior margin of the coxa of CV-2 illustrates 
some variation anteriorly, particularly between the second and the fourth spine bristles, 
reducing the coxal length. In contrast, there is a slight variation in the posteromedial 
edge of the coxa that increases the coxal width in its posterior part.

The CV-3 model series identifies changes in three different areas of the coxa: (1) 
extension towards the coxofemoral condyle becomes more prominent; (2) the anterior 
edge exhibits a variation similar to CV-2 but in reverse, slightly increasing the coxal 
length; (3) the coxal interior margin exhibits a shift that reduces the coxal width. The 

Figure 6. Strobe models of five positions along the canonical variates indicated in Fig. 5. CV-1, CV-2, 
and CV-3 axes account for 79.5% of the observed between-species shape variation. Landmarks and semi-
landmarks are superimposed in the figure to the right of each sequence to express the magnitudes and 
directions (arrows) of shape trends. In all models, the mesial margin of the coxa is depicted to the left, the 
lateral margin to the right.
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overall coxal shape displays a slight increase in relative length and a reduction in width 
along the CV-3 axis.

Using the CV models from Figure 6 and the canonical variates space (Fig. 5) to 
interpret these results taxonomically, it can be seen that Parascutigera guttata has a 
relatively narrower forcipular coxa than the other sampled taxa, exhibiting a concave 
exterior margin with a very pronounced extension to the coxofemoral condyle. Al-
ternatively, Thereuopodina queenslandica and Dendrothereua linceci display relatively 
wider coxae. Thereuopodina, however, exhibits a convex exterior margin, whereas 
Dendrothereua has a slightly shorter coxa with a concave exterior margin. In contrast, 
most specimens of Thereuonema microstoma and Scutigera coleoptrata exhibit a long 
and narrow coxa; Thereuonema exhibits a slight concave exterior margin and more 
pronounced coxofemoral condyle, while Scutigera has a straight exterior coxal mar-
gin. Allothereua maculata specimens are characterized by intermediate shapes along 
the axes. As reflected by their discriminant function results (Tables 3, 4), Thereuopoda 
longicornis and Sphendononema guildingii each display substantial variability in for-
cipular coxal shape.

Table 4. CV discriminant function of jackknife analysis showing the percentage of specimens that were 
correctly assigned to their original species.

Taxa A. maculata D. linceci P. guttata S. coleoptrata S. guildingii T. longicornis T. microstoma T. queenslandica Total Correct % Correct

A. maculata 9 0 0 1 0 1 2 0 9 69

D. linceci 4 6 2 0 1 0 0 0 6 46

P. guttata 0 0 16 1 0 0 1 0 16 89

S. coleoptrata 1 0 0 5 1 1 3 1 5 42

S. guildingii 0 0 1 0 2 0 0 2 2 40

T. longicornis 1 2 1 1 1 11 1 1 11 58

T. microstoma 2 0 1 0 0 0 10 1 10 71

T. queenslandica 0 1 0 0 2 2 2 6 6 46

Total Correct 65 61

Table 3. CV discriminant function analysis showing the percentage of specimens that were correctly as-
signed to their original species.

Taxa A. maculata D. linceci P. guttata S. coleoptrata S. guildingii T. longicornis T. microstoma T. queenslandica Total Correct % Correct

A. maculata 11 0 0 0 0 1 1 0 11 85

D. linceci 2 9 2 0 0 0 0 0 9 69

P. guttata 0 0 17 0 0 1 0 0 17 94

S. coleoptrata 1 0 0 9 0 0 2 0 9 75

S. guildingii 0 1 0 0 3 0 0 1 3 60

T. longicornis 0 2 1 1 1 13 0 1 13 68

T. microstoma 1 0 1 0 0 0 11 1 11 79

T. queenslandica 0 1 0 0 1 2 0 10 10 71

Total Correct 83 77
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Discussion

The morphometric results obtained from the Procrustes PCA of these landmark-reg-
istered semi-landmark outline data and the CVA models back-projected in the PC 
space suggest that forcipular coxal shape differs significantly between taxa at various 
taxonomic levels. This character complex is clearly valuable in the assessment of scuti-
geromorph systematics because the group has historically been classified on the basis of 
a small number of taxonomically informative characters (principally exoskeletal promi-
nences on the tergal plates and female gonopod shape). Our finding that specimens 
can for the most part be assigned to species with a high degree of accuracy (Table 
3) substantiates a prediction by Würmli (1974) that coxal shape contains taxonomic 
information. Until now, however, this variation had not been quantified or harnessed 
taxonomically or phylogenetically. The outlines and landmarks illustrated in Figure 2 
may possibly form the bases for future analysis of coxal differences.

Controversies over the status of particular species, and indeed the species concept 
applied across the group as a whole, are informed by the results of this study. For exam-
ple, the geographically widespread Thereuopoda longicornis shows a variable coxal shape 
and, as a result, a relatively poor capacity for assigning specimens accurately, with 68% 
correct discrimination of the training set (Table 3). Furthermore, coxal shape vari-
ability in T. longicornis has a discernible geographical pattern (Fig. 3), with specimens 
from each sampled southeast Asian region plotting near each other. Verhoeff (1905, 
1937, and elsewhere) distinguished an array of nominal species of Thereuopoda that 
were later synonymised into T. longicornis by Würmli (1979). This difference in the 
number of valid species (as extreme as 26 species versus one) reflects, at least in part, 
the observation that some characters employed at the species level by Verhoeff were 
subsequently found to have overlapping variation as sample sizes were increased, and in 
part reflects a historical shift towards species being seen as polymorphic, geographically 
widespread entities by later 20th century taxonomists. The coxal shape differences ob-
served between geographic groups of T. longicornis (specimens assigned to their correct 
geographic group with 89% accuracy; see Table 2) suggest that some of the subjective 
synonyms of T. longicornis may actually include valid species.

Another species with a comparably wide geographic range and complex taxonomic 
history, Sphendononema guildingii, likewise has a comparatively poor capacity to be 
discriminated (Tables 3, 4). The family Pselliodidae has long been identified as a high-
ranking clade (Verhoeff 1904; Würmli 1978, 2005; Edgecombe and Giribet 2006). 
Our CVA models (Fig. 6) show that although Sphendononema has a relative short and 
wide forcipular coxa with a convex exterior margin, it is not readily distinguished from 
some members of Scutigeridae on coxal shape alone. Current taxonomic practice (in-
cluding species identifications in this study) follows Würmli (1978) in placing many 
(22) nominal species in synonymy with S. guildingii, though some aspects of variation 
(e.g., female gonopod variability explored by Bolton et al. 2009) suggest the presence 
of multiple species. The low discriminant function scores for S. guildingii, in spite of a 
small sample size, would be consistent with a mixed-species sample.
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Würmli (1973b) and Würmli and Negrea (1977) united Scutigera linceci as a single 
geographically widespread species which was later recognised as multiple species of 
Dendrothereua by Edgecombe and Giribet (2009). The latter regarded it as ‘exceedingly 
doubtful’ that D. linceci constitutes a single species because specimens from the limits 
of the geographic range (Costa Rica versus the southern U.S.) had molecular sequence 
divergences that greatly exceeded those in uncontroversial morphospecies. Although 
no significant infraspecific coxal differences can be related to geography, pooling speci-
mens from each of Mexico (Guerrero), Guatemala and Hispaniola (Appendix, Fig. 1 
therein), both the raw and jackknifed discriminant function scores (69% and 46%, re-
spectively) indicate that a relatively low percentage of specimens are correctly assigned 
to this species (Tables 3, 4). Coxal shape does not provide strong corroboration for D. 
linceci being a single species. 

The small sample size for some of the geographic groups within Scutigera coleop-
trata prohibits statistical testing of whether infraspecific coxal shape differences can 
be related to geography. Würmli (1973a, 1977) revised the species-level taxonomy 
of Scutigera, proposing the synonymy of several species with S. coleoptrata, consistent 
with the view that S. coleoptrata is a synanthropic species throughout large extents of 
its geographic range, as well as with short molecular branch lengths between specimens 
from populations in different parts of that range (Edgecombe and Giribet 2009). The 
specimens studied here include native parts of the species’ distribution (Italy, Greece, 
Madeira, Algeria) as well as introduced parts (St. Helena, Bermuda). The assignment 
of specimens to this species with 75% accuracy for raw CVA scores (Table 3) does not 
appear to be a stable result based on the poor capacity for identification in CVA jack-
knife tests (Table 4).

In contrast to the variability discerned in the species discussed above, some species, 
notably Parascutigera guttata and Thereuonema microstoma, display consistently distinct 
coxal shapes (Table 3) and these results are stable when subjected to a jackknife test 
(Table 4). The diagnosability of these species with respect to coxal shape is in agreement 
with recent classifications that have established P. guttata (Edgecombe and Giribet 2009) 
and T. microstoma (Stoev and Geoffroy 2004) as valid species. Both species have narrow 
forcipular coxae, but Parascutigera guttata has a pronounced concave exterior margin 
with a distinct projection of the coxofemoral condyle whereas Thereuonema microstoma 
exhibits a longer coxa with a straighter exterior margin. It should be noted that the high 
discriminant function score for T. microstoma might be expected to decrease were more 
specimens from distant parts of its geographic range included; nearly all specimens used 
in this study were from a small part of its total distribution, in the Sudan.

Conclusion

Geometric morphometrics of forcipular coxal shape indicates that these structures 
contain taxonomic information at the species level. Discriminant function analysis 
indicates that a majority of specimens of all eight species sampled in this study were 
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assigned correctly according to their established taxonomy, in several cases with a high 
degree of accuracy. This investigation also demonstrates that morphometric approach-
es and CVA modelling procedures can be of considerable use in the analysis of subtle 
morphological features, and can support a wide variety of comparisons between groups 
at different taxonomical levels even in character systems that had been opaque to quali-
tative analysis, such as the forcipular coxae of Scutigeromorpha.
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Appendix 1

Voucher data for specimens use din morphometric analyses and supplementary figures 
of Canonical Variates scatterplots. File format: Adobe Acrobat (pdf ) file.

Explanation note: Information on voucher specimens used in this investigation and 
infraspecific coxal shape data for Dendrothereua linceci.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited.

Citation: Lopez Gutierrez B, MacLeod N, Edgecombe GD (2011) Detecting taxonomic signal in an under-utilised 
character system: geometric morphometrics of the forcipular coxae of Scutigeromorpha (Chilopoda). In: Mesibov R, 
Short M (Eds) Proceedings of the 15th International Congress of Myriapodology, 18-22 July 2011, Brisbane, Australia. 
ZooKeys 156: 49–66. doi: 10.3897/zookeys.156.1997.app1



Memories of Cas Jeekel, friend, colleague, and role model 67

Memories of Cas Jeekel, friend,  
colleague, and role model

Richard L. Hoffman

Virginia Museum of Natural History, Martinsville, Virginia 24112, USA

Corresponding author: Richard L. Hoffman (richard.hoffman@vmnh.virginia.gov)

Received 7 October 2011  |  Accepted 7 October 2011  |  Published 20 December 2011

Citation: Hoffman RL (2011) Memories of Cas Jeekel, friend, colleague, and role model. In: Mesibov R, Short M (Eds) 
Proceedings of the 15th International Congress of Myriapodology, 18-22 July 2011, Brisbane, Australia. ZooKeys 156: 
67–70. doi: 10.3897/zookeys.156.2215

Nearly everyone has experienced an event that exerted a profound influence on some 
aspect of their life; often the full impact of that milestone is not fully appreciated until 
much later through the filter of retrospection. The first such event that established the 
course of my own scientific career occurred in November of 1946, when, searching 
for some group of animals to investigate, I attempted to identify some julid millipeds 
and discovered that the only comprehensive resource on North American species was 
published in 1893. The second came in the form of a letter dated 20 August 1949 from 
a certain C. A.W. Jeekel at the Amsterdam Zoological Museum, introducing himself as 
a beginning student of myriapods, and inquiring about the availability of certain type 
specimens in the U.S. National Museum. Thus began an exchange of ideas and infor-
mation that evolved into a personal friendship that endured for more than 60 years, 
and resulted in reshaping my approach to taxonomy.

Up to that point in time, much of the published work on Diplopoda consisted of 
opportunistic descriptions of new taxa with scant attention to any form of synthesis. 
I was still under the malign influence of R.V. Chamberlin, an exemplar of minimal 
taxonomy, and my new friend in Holland was still publishing isolated descriptions, 
albeit with substantial amplification of his actions. However, my conversion to a differ-
ent approach was catalyzed by his two 1951 papers about Tectoporus and Sphaeropoeus 
which showed that useful progress could be made by combining descriptions of new 
taxa with analysis of relevant published information. Maybe a piecemeal measure, but 
certainly an improvement and guide for the future work which I determined to adopt.
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In 1960 I began the first of my sequence of visits to European museums searching 
for the types of enigmatic ancient species. After London and Tervuren, my next stop 
was Amsterdam, and since the KLM intown terminal was only a few minutes from the 
address which I had been given, I was soon looking up a steep narrow flight of stairs 
to the welcoming greeting and broad smile of a tall slender young man: after 11 years 
a Jeekel in the flesh. What ensued thereafter we later defined as a “marathon dialogue” 
that lasted three days and nights, fueled by many cups of coffee and punctuated by 
long ambulatory conversations around the city. Starved for such an exchange we ex-
changed views on research interests, and discussed the work of our predecessors and 
few contemporaries, finding that our views coincided closely on all points (admira-
tion for Brolemann, Cook, and Pocock, for instance, despair over certain others). Cas 
showed me his accumulation of elegantly illustrated research projects, many of which 
only appeared as parts of his great Myriapod Memoranda series 40 years later.

He lived at the time in an archetypical bachelor two-room flat crowded with his 
already extensive collection of separata and books, and to my surprise, the evidence of 
his interest in music, particularly of New Orleans jazz: instruments: a large collection 
of 78 rpm recordings, and many books about prominent jazz musicians. He was an 
active member of a student ensemble, but even at that time music was being gradu-
ally preempted by myriapods. Regrettably we devoted little time to exchanges about 
personal backgrounds. I only learned that he had been born in Medan, Sumatra, and 
his family moved back to Holland when he was still young. But during that first visit 
the initiative for the Nomenclator was developed, and that mythical estimate of 80 000 
extant species was contrived.

At the time he held a position in the Zoological Museum and was librarian for 
the Dutch Entomological Society. I was interested to learn to that although he passed 
the Rijksmuseum every day on the way to work, he had never entered that celebrated 
institution until he thought that his foreign visitor should be exposed to the “Night 
Watch” and arranged a detour to see it on one of our excursions.

Subsequent visits to Europe always included a stop-over in Amsterdam to discuss 
(de-brief!) the more interesting results of my delving in neglected collections and espe-
cially to follow the progress of the Nomenclator Generum et Familiarum. During this 
time, and even earlier, he had made his own pilgrimages to the museums in London, 
Genova, Tervuren and Geneva basically to examine material of paradoxosomatids. Cu-
riously he never visited the great historically important collections in Munich, Berlin, 
and Vienna, nor endeavored to borrow material from them.

Out of a sense of filial obligation, Cas remained unmarried for many years in 
order to look after his aging mother. Eventually relieved of this responsibility, he 
encountered two major events that changed his life substantially. In early 1969 he 
became director of the Zoological Museum, a position assumed with much reluc-
tance, and only because the only other likely candidate would have been “disas-
trous”. This new status greatly improved his standard of living, but at the expense of 
his research and health: the stresses of administration resulted in chronic headaches 
and later a painful disorder of the nerves in his face. Nonetheless he produced 
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several papers every year during this period and completed the manuscript of the 
Nomenclator.

The second event was in every way a far happier one. In March of 1970, to use 
his words “I took the big step and married a lovely widow...” A. M. (Jeanne) Rijvers 
(known to attendees at CIM meetings as “Sjan”) was the catalyst that brought about a 
virtual metamorphosis in Cas’ life. I know he would not object to my sharing details of 
this milestone event, a remarkable and improbable story in itself, abstracted from his 
own account. On the bus ride to work one morning, he picked up a newspaper left be-
hind by another passenger, and for what was surely the first time in his memory, looked 
at the section devoted to the promotion of new social interactions. From this unlikely 
departure, he selected a “woman looking for a man” entry that looked interesting and 
to his own astonishment, initiated the contact that proved to be the major milestone 
in his life. The word “destiny” might occur to the romantically inclined.

Sjan was the wife of a young school teacher in the Indies, who had moved to Hol-
land with her two daughters following his untimely death. The axiom that “opposites 
attract” was never more true: it would be difficult to imagine two people so different 

C.A.W. Jeekel at home, 1979. Image courtesy L.A. Pereira.
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in personalities, yet in practice so compatible. Younger, outgoing, and vivacious, she 
complemented and ameliorated Cas’ sedate decorum. She became a skilled collector, 
and accompanied him to congresses as well as excursions to Malta, North Africa, Unit-
ed States, and Australia. They occupied a progression of homes in Heiloo, Bergen an 
Zee, and Oisterwijk, each more elegant than the last, each beautifully landscaped and 
planted (on field trips they collected stones for the gardens as well as myriapods). Each 
of my European circuits during the 1970s and 1980s typically ended with a few days 
at the Jeekels’ home, the technical discussions conducted in such a gracious and relax-
ing ambience that I coined the term “The Lotus Garden” with reference to a similar 
experience enjoyed by Ulysses on his long return from Troy to Ithaca. That their final 
residence had to be in such different and constrained quarters was certainly a hardship 
for both. I was never able to visit during that time, perhaps as well that my last images 
of them would be in context of their Oisterwijk residence.

The extent to which we agreed on points of classification and nomenclature was 
remarkable. From the earliest days we knew that the era of random descriptive naming 
was over, and the direction of the future had to emphasis both janitorial work in clean-
ing up the inherited mess of bad taxonomy and nomenclatorial anarchy, and whatever 
synthesis could be accomplished with the available materials. I think the only things 
we disagreed on were pretty trivial (he preferred the spelling Pollyxenus, we parted 
company in several cases of generic typification, and he felt that the paradoxosomatid 
gonopod was generalized rather than derived). At no time was there ever an instance 
of verbal disharmony. We stated our opinions and ideas, to be accepted or not after 
reflection on their possible merits. Mentioning a visiting colleague who had brought 
some drawings of dubious quality, Cas reported “I did not criticize his drawings but 
merely put mine next to his, while explaining my ideas. . .” with the hope that such 
comparison might have a desired influence. He fully understood the fact that so much 
of taxonomy represents simply subjective evaluation of qualitative information, and 
was not readily amenable to being objectified. Needless to say, data matrices and clad-
ograms were not part of his working protocols.

For me Cas Jeekel was an admired colleague with an overtone of role model and 
the only person who I conceded to be my master in our field of interest. His extensive 
research and publication, above all the monumental Nomenclator, set the standard for 
milliped systematics in the era that is now ending, and will continue to be consulted in 
the next one. Ave atque vale, Magister et amicus!

Richard L. Hoffman 
Martinsville, Virginia
28 June 2011
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Abstract
The parapatric boundary between Tasmaniosoma compitale Mesibov, 2010 and T. hickmanorum Mesibov, 
2010 (Polydesmida: Dalodesmidae) in northwest Tasmania was mapped in preparation for field studies of 
parapatry and speciation. Both millipede species can be collected as adults throughout the year, are often 
abundant in eucalypt forest and tolerate major habitat disturbance. The parapatric boundary between the 
two species is ca 100 m wide in well-sampled sections and ca 230 km long. It runs from sea level to 600-
700 m elevation, crosses most of the river catchments in northwest Tasmania and several major geological 
boundaries, and one portion of the boundary runs along a steep rainfall gradient. The location of the 
boundary is estimated here from scattered sample points using a method based on Delaunay triangulation.

Keywords
Diplopoda, Polydesmida, Dalodesmidae, millipede, Australia, Tasmania, parapatry, boundary estimation, 
Delaunay triangulation

Introduction

Millipedes commonly form lineage mosaics (Mesibov 2003c), in which each species 
has a discrete range that overlaps very little or not at all with the ranges of other spe-
cies in the same genus (Shelley 1990a, 1990b). Tasmanian examples in the dalodesmid 
Polydesmida are found in the genera Atrophotergum Mesibov, 2004 (Mesibov 2004), 
Dasystigma Mesibov, 2003 (Mesibov 2003a), Gasterogramma Jeekel, 1982 (Mesibov 
2003b), Lissodesmus Chamberlin, 1920 (Mesibov 2006) and Tasmaniosoma Verhoeff, 
1936 (Mesibov 2010).
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It is not yet known how the tight parapatry seen in these mosaics originates and 
is maintained (Mesibov 2003c). What is apparent is that parapatric boundaries be-
tween millipede species are not necessarily congruent with environmental boundaries. 
In Tasmania the boundaries cross rivers and traverse different underlying geologies, soil 
types, local climates and vegetation types.

I document below a remarkable parapatric boundary of the ‘environmentally in-
congruent’ kind between two congeneric millipedes in northwest Tasmania. I also 
demonstrate a simple analytical method for estimating and visualising the location of 
a parapatric boundary from point localities.

Materials and methods

Millipede species

The endemic Tasmanian species Tasmaniosoma compitale Mesibov, 2010 and T. hick-
manorum Mesibov, 2010 were named, described and provisionally mapped in Mesibov 
(2010). Both are ca 15 mm long as adults. The two species are very similar in appear-
ance, but live and freshly preserved males and females can usually be identified by a dif-
ference in colour: T. hickmanorum are red-brown, while T. compitale are yellow-brown 
with a distinct light patch just under the lateral margin of each paranotum (Fig. 1 in 
Mesibov 2010). Unfortunately, live colouring in both species is somewhat variable, 
and some females cannot be confidently assigned to species. For this reason, locations 
for females not associated with males are marked separately in the map Figures, below, 
and parapatric boundary estimation is based on males only.

Colour in the two species fades quickly in alcohol. Preserved females cannot be 
identified by colour after a few months, and long-preserved museum specimens can 
only be identified by examining the gonopods of mature males.

Millipede sampling

For the present study I collected T. compitale and T. hickmanorum by hand during 
the daytime at 351 sites in northwest Tasmania between July 2009 and August 2011. 
Adults are night-wandering and can be found sheltering during the day under loose 
fragments of bark on dead tree stems and branches, under flat pieces of bark and 
woody litter on the ground, and within narrow, curled lengths of fallen bark from 
eucalypt crown branches. At most sites adults were collected within 30 minutes, but 
at sites where Tasmaniosoma spp. were uncommon I extended the search to ca 1 hour. 
Several sites were searched on more than one field day before Tasmaniosoma spp. were 
found, and a number of specimens were kindly provided by other collectors during 
the study period. All specimens were preserved in 80% ethanol and deposited as reg-
istered lots in the Queen Victoria Museum and Art Gallery, Launceston, Tasmania.
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Sites were located in the field with a handheld GPS unit, or later the same day by 
reference to Google Earth. Because I collected specimens over an area up to ca 1 ha at 
each site, the uncertainty associated with each locality was recorded as ±25 m or ±50 
m as appropriate.

Note: All known specimen records for T. compitale and T. hickmanorum are listed 
in the Appendix. The reader should refer to this Appendix for locations of placenames 
and other geographic features mentioned in the Results and Discussion sections. Site 
locations can be plotted from Appendix data either as UTM grid references or as lati-
tude/longitude in GIS, or in Google Earth or other spatial data browsers using the 
included KML files.

Boundary estimation

A parapatric boundary can be marked on a map by drawing a line equidistant from 
localities for each of the two species near the boundary. A ‘halfway between’ line of 

Figure 1. Localities for male Tasmaniosoma hickmanorum. Scale bar = 100 km. Rectangle indicates map 
extent in Figs 2–6.
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this kind is an appropriate estimator of the true location of the boundary if sampling 
localities are few and the map scale is coarse.

The present study generated hundreds of species localities and I was interested to 
trace the path of the main parapatric boundary (see below) at a scale appropriate to 
the spatial intensity of the sampling. I first generated a Delaunay network for male 
localities in the area of interest using the Delaunay triangulation tool in Quantum 
GIS version 1.4.0 (http://qgis.org/); see Fig. 4 and its caption for more details. I then 
deleted from the Delaunay polygon shapefile all triangles which had the same species 
at all three vertices. For clarity, I also deleted triangles running seawards from the two 
coastal ends of the boundary. The remaining set of 163 polygons (Fig. 5; see also its 
caption) consisted of triangles with one species at two of the vertices and the other 
species at the third. Finally, I generated centroids for the 163 triangles (Fig. 6) using 
the freeware Center of Mass extension (Jenness Enterprises, Flagstaff AZ, USA, http://
www.jennessent.com/) for ArcView 3.2 GIS (ESRI, Redlands CA, USA).

Each of the 163 centroids is a point estimate for the location of the parapatric 
boundary. Where sampling localities are close together, the centroids approximate a line; 
see the eastern section of the boundary in Fig. 6. Where sampling localities are far apart, 
the centroids are diffusely distributed. The method used here is similar to triangulation 
wombling for scattered point data (Fortin and Drapeau 1995), but tentative ‘boundary 
elements’ have not been generated by joining centroids. The ‘cloud of centroids’ in Fig. 
6 shows the relative uncertainty in estimating the location of the boundary from place 
to place, something which a hand-drawn or computed line cannot easily do.

Spatial data sources

The GIS layers used in Fig. 7 for elevation contours, major streams, generalised geology 
and rainfall isohyets were sourced from the spatial data library of the Tasmanian state 
government (http://www.thelist.tas.gov.au) through the Queen Victoria Museum and 
Art Gallery.

Results

Millipede sampling overview

Adult Tasmaniosoma spp. were collected in every month of the year during the study 
period, but were much harder to find in the Tasmanian summer, December to March.

In northwest Tasmania, T. compitale and T. hickmanorum appear to be most abun-
dant in natural forest and woodland of the regional Eucalyptus species, namely E. 
brookeriana, E. delegatensis, E. nitida, E. obliqua, E. ovata and E. viminalis. Both species 
can also be found in riparian or fire-sere stands of Acacia dealbata and A. melanoxylon. 
Both millipede species occur in eucalypt communities ranging from open forest with 
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an iris ground layer (Diplarrena sp.), to regrowth forest with a dense understorey of 
small trees (Pomaderris apetala or Leptospermum spp.), to old-growth forest with an 
understorey of mature rainforest tree species (Nothofagus cunninghamii, Phyllocladus 
aspleniifolius, Atherospermum moschatum). Neither species is easy to find in old-growth 
N. cunninghamii rainforest or in heathland.

Populations of both T. compitale and T. hickmanorum appear to be tolerant of major 
habitat disturbance, including intense wildfire and clearfelling followed by burning and 
reafforestation. Both species are abundant in some plantations of Eucalyptus globulus, 
E. nitens and Pinus radiata, especially first-rotation plantations established on former 
native forest sites and plantations closely bordering native forest, including narrow rem-
nant strips close to watercourses. Both species are also occasionally found in small (<0.1 
ha) vegetation remnants on cleared farmland, e.g. an isolated eucalypt copse or a ripar-
ian strip of A. melanoxylon over blackberry (Rubus fruticosus) and other weed species.

I was unable to find either species in certain apparently suitable habitat patches, 
despite repeated searches during the two-year study period. These distribution gaps 
were mainly clustered in the southeast of the study area near Waratah and Guildford, 
but were also close to former Poa grassland/woodland sites near Oonah. Populations of 
T. compitale or T. hickmanorum were found at sites within a few kilometres of the gaps.

Main parapatric boundary

T. hickmanorum is widespread in western Tasmania but there is a ca 4000 km2 gap in 
its distribution in the northwest (Figs 1, 2). The gap is filled by the distribution of T. 
compitale (Fig. 3). The main parapatric boundary between the two species is ca 230 km 
long (Fig. 6) and has been closely mapped along Jefferson Road southeast of Preolenna 
and Rebecca Spur 3 southeast of Temma. At these two locations the boundary is ca 
100 m wide (Fig. 8). The boundary appears to be just as narrow along Leonards Road 
south of Henrietta, Lyons Road south of Lapoinya, the Murchison Highway southeast 
of Waratah and at the north end of Hellyer Gorge, Oonah Road west of Oonah and 
Robbins Island Road north of West Montagu. At these locations I was unable to collect 
enough males during the study period for reliable fine-scale mapping.

Boundary mapping is no longer possible near Wynyard, Redpa and other farming 
localities in northwest Tasmania. T. compitale and T. hickmanorum populations persist in 
native vegetation remnants in these areas, but are separated by intensively managed pas-
ture and cropland. Mapping is also difficult along the southern and southwestern sec-
tions of the main parapatric boundary, which traverses unroaded, largely wild country.

Arthur-Hellyer ‘island’

A ca 40 km2 ‘island’ of T. hickmanorum localities occurs in the upper reaches of the Ar-
thur and Hellyer Rivers near Hellyer Gorge (Fig. 2), apparently enclosed by T. compi-
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tale localities. The parapatric boundary of this ‘island’ has not yet been closely mapped 
on its eastern and northern sides, and the western and southern sections of the bound-
ary (not yet located) are in unroaded, steeply dissected and thickly vegetated terrain.

Possible translocations

Males of T. compitale were found ca 20 km within the T. hickmanorum range at the Vale 
of Belvoir (Fig. 3). It is not yet known whether this is a naturally isolated occurrence or 
the result of translocation. The ca 500 ha of open grassland at the Vale has been grazed 
by cattle during the summer months for more than 100 years, and T. compitale may 
have been unintentionally introduced into the area by cattle-carrying trucks.

Translocations of T. compitale over shorter distances may also have occurred in 
intensively managed forest close to the main parapatric boundary. For example, I col-

Figure 2. Localities for Tasmaniosoma hickmanorum males (filled squares) and females identified by col-
our (open squares). Ellipse encloses Arthur-Hellyer ‘island’ (see text for explanation). Scale bar = 25 km.
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lected females of this species at three neighbouring sites along Ten Foot Track off Preo-
lenna Road. The three sites are surrounded by T. hickmanorum occurrences and are 
close to a logging road used by log-carting trucks in recent years.

Co-occurrence

At two sites along the main parapatric boundary (Figs 4-6) I found males of T. 
compitale and T. hickmanorum within a few metres of each other, on Leonards 
Road south of Henrietta and on Talunah Road west of Hampshire. At another 11 
sites close to the main parapatric boundary I found possible co-occurrences, but 
at least one species was represented only by females identified by colour. At two of 
the latter sites, both species were found sheltering under loose bark on the same 
fallen tree.

Figure 3. Localities for Tasmaniosoma compitale males (filled squares) and females identified by colour 
(open squares). Outliers (circled) are at the Vale of Belvoir. Scale bar = 25 km.
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No evidence of hybrids

None of the males collected near the main parapatric boundary or the boundary of 
the Arthur-Hellyer ‘island’ had gonopods intermediate between T. compitale and T. 
hickmanorum, or were intermediate in live colouring.

Environmental incongruence

As shown in Fig. 7A, the main parapatric boundary rises from the north coast near 
Robbins Island (western section of the boundary) to 600-700 m at its southeast corner, 
then returns to the coast near Table Cape, ca 75 km from its starting point. It crosses 
most of the west coastal rivers north of Sandy Cape and the headstreams of both the 
major inland river systems in the region (Arthur and Pieman) before descending to the 
north coast; the northeast section of the boundary more or less follows the Flowerdale 
River (Fig. 7B). The parapatric boundary crosses numerous geological boundaries (Fig. 
7C) and its eastern section runs along a fairly steep rainfall gradient (Fig. 7D), i.e. at 
right angles to isohyets.

Figure 4. Delaunay triangulation of localities for male Tasmaniosoma compitale (filled circles), T. hick-
manorum (open circles) and co-occurrences (stars). The set of localities used has been trimmed to the 
vicinity of the parapatric boundary, and T. hickmanorum localities in the Arthur-Hellyer ‘island’ and T. 
compitale localities at the Vale of Belvoir have been excluded. Scale bar = 25 km.
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Figure 5. Edited Delaunay triangulation of localities for male Tasmaniosoma compitale (filled circles), T. 
hickmanorum (open circles) and co-occurrences (stars); see text for explanation. Scale bar = 25 km.

Figure 6. Centroids of triangles in Figure 5. Co-occurrences of Tasmaniosoma compitale and T. hickmano-
rum males are circled. Arrow points to area shown in Figure 8. Scale bar = 25 km.
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Figure 7A, B. Centroids from Fig. 6 superimposed on 100 m elevation contours A and principal rivers 
B. Scale bars = 25 km.
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Figure 7C, D. Centroids from Fig. 6 superimposed on simplified bedrock geology C and mean annual 
rainfall isohyets, in mm D. In C, colours crossed by main parapatric boundary represent (anticlockwise 
from top left) Quaternary coastal sand and gravel (gray-blue), Precambrian siltstone and mudstone (or-
ange), Precambrian metamorphics (green), Cambrian conglomerate and siltstone (gray-green), Tertiary 
basalt (light brown) and Permian glaciomarine sedimentary rocks (red-brown). Scale bars = 25 km.
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Both T. compitale and T. hickmanorum occur in a wide range of vegetation types 
close to the parapatric boundary. If there are major environmental boundaries which 
are spatially congruent with the biogeographical one separating the two species, they 
are not obviously related to topography, geology, climate or vegetation.

Discussion

The aim of this study was to map the boundary between the T. compitale and T. hick-
manorum distributions as a knowledge base for future studies of parapatry and specia-
tion. The parapatric boundary between these two species is the longest and narrowest 
I am aware of in the Australian millipede fauna. It is particularly well-suited to field 
study because much of it is easily accessed by all-weather roads, and because sections of 
the boundary run through little-disturbed tracts of native vegetation, including prima-

Figure 8. Rebecca Spur 3 area (marked with arrow in Fig. 6) in Google Earth image dated 11 October 
2010. Markers: Tasmaniosoma compitale males (darker green) and females identified by colour (lighter 
green), T. hickmanorum males (darker red) and females identified by colour (lighter red), and possible 
co-occurrence of females identified by colour (yellow).
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ry forest. The two millipede species are ecologically resilient and can be very abundant 
in eucalypt forest at lower elevations.

Several of the the largest and least disturbed patches of forest along the boundary are 
on public land managed by Forestry Tasmania, a government-owned forestry business. 
One such patch covers ca 12 km2 on the upper Flowerdale River between Lapoinya and 
Preolenna Roads, on the eastern arm of the boundary. The forest is a mosaic of formal 
and informal reserves, production forest and plantation, with privately owned forest on 
the periphery. A similar but smaller mosaic is found along Rebecca Spur 3 and south of 
the Rebecca Road – Rebecca Spur 3 junction (Fig. 8) on the western arm of the boundary.

The parapatric boundary also crosses private land. Because the future of privately 
owned forest is less certain in Tasmania than that of formally reserved forest on public 
land, future field studies on suitable private blocks might be given a high priority. I 
was allowed access during the study period to a large private block near Henrietta, just 
north of the Takone Road. The Henrietta block carries even-aged eucalypt regrowth 
and populations of both T. compitale and T. hickmanorum.

An unanswered question is whether the two millipede species are well-distributed 
across heathland near the west coast. T. hickmanorum is abundant in shrubby coastal 
vegetation, and to the east T. compitale has been found close to scattered, small euca-
lypts in heath. As currently estimated (Fig. 6), the main parapatric boundary crosses ca 
50 km of heathland in the formally reserved Arthur-Pieman Conservation Area.
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Specimen records as of 8 August 2011 for Tasmaniosoma compitale, T. hickmanorum 
and unassigned females of these species.

Description. The compressed file contains complete records in the annotated CSV file 
‘Parapatry_records.csv’ and separate KML files for males of the two species, females 
and juveniles of the two species (identified by colour), co-occurrences, and females not 
assignable to either species. Each KML record has an associated museum registration 
number and users should refer to ‘Parapatry_records.csv’ for more information on that 
record.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited.
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Abstract
Two new species of the families Polyxenidae and Synxenidae, are described from Table Mountain Na-
tional Park, South Africa. Propolyxenus squamatus sp. n. (Polyxenidae) has tergites I–X mostly covered by 
scale–shaped trichomes directed caudally, a character previously known only in Synxenidae. The structure 
of scale–shaped dorsal trichomes is different to that of the scales in Phryssonotus and Condexenus species. 
Phryssonotus brevicapensis sp. n. (Synxenidae) is the only known species of the genus Phryssonotus having 
11 tergites, (including collum and telson) and 15 pairs of legs, as in Condexenus biramipalpus Nguyen 
Duy–Jacquemin, 2006. These two species therefore appear to occupy an intermediate position between 
Phryssonotus (12 tergites) and Polyxenoidea (maximum of 11 tergites).

Keywords
Diplopoda, Polyxenidae, Synxenidae, Propolyxenus, Phryssonotus, new species, scales, barbate trichomes, 
postembryonic development, South Africa
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Introduction

Two new species of Penicillata from Table Mountain National Park (near Cape Town), 
South Africa, belonging to two different families, were collected in the same biotope: 
leaf litter of felled pine and fynbos.

The first species, represented by five specimens, belongs to the family Polyxenidae 
and the genus Propolyxenus Silvestri, 1948, created for P. aegeus Silvestri, 1948 from 
Rhodes (Pelecano) (Silvestri 1948). Silvestri distinguished Propolyxenus, with three 
transversal rows of trichomes per tergite, from the genus Polyxenus Latreille, 1803 
which has only two rows. Condé and Nguyen Duy–Jacquemin (2008) united Propoly-
xenus, Polyxenus and Typhloxenus Condé, 1954 in the subfamily Polyxeninae Lucas, 
1840, based on the structure of the telson. Silvestri’s brief description was revised after 
an examination of diagnostic features of two adult syntypes of each sex by Short and 
Huynh (2010), who also gave a key to the species for the first time.

The second species, represented by 20 specimens, belongs to the family Synxenidae 
and the genus Phryssonotus Scudder, 1885 (a replacement for the preoccupied name 
Lophonotus Menge, 1854), whose type species is L. hystrix, a fossil found in Eocene Bal-
tic amber (Menge in Koch and Berendt 1854, Scudder 1885, Condé 1954). Silvestri 
(1900) created the genus Synxenus Silvestri, 1900 for S. orientalis Silvestri, 1900 from 
Uruguay. Later on, Silvestri (1923) transferred to this genus Polyxenus platycephalus 
Lucas, 1846, from North Africa, Spain and Italy (Rasnitsyn and Golovatch 2004), and 
described Synxenus capensis Silvestri, 1923 from southern Africa (Stellenbosch) and 
Synxenus novaehollandiae Silvestri, 1923 from Australia (Mt Lofty, South Australia). 
The genus Synxenus was synonymized with Phryssonotus by Condé (1954). Silvestri’s 
(1923) identification key included four of the six extant species now known; the main 
distinguishing characters in the key were the number of ocelli and barbate trichomes 
(2–6) arranged in a row near the anterior trichobothrium with a short funicule. Short 
and Huynh (2006) redescribed P. novaehollandiae and observed 11 ocelli from larva VI 
to adults. This was an improvement to Silvestri’s key which nevertheless still concerned 
only four species. The two new species described in the present work show some ad-
ditional and easily identifiable characters.

Abbreviations used:

MNHN Muséum National d’Histoire Naturelle, Paris, France
SEM Scanning Electron Microscopy
pl pairs of legs

Material and methods

The material serving as the basis for the present work was obtained by hand collect-
ing, pitfall trapping and litter sampling in pine and fynbos areas in Table Mountain 
National Park, South Africa (by Charmaine Uys). The material is preserved in 70% 



Two remarkable new species of Penicillata (Diplopoda, Polyxenida)... 87

ethanol. The bulk of this material, including the holotypes and several paratypes, has 
been deposited in MNHN.

For light microscopy, the specimens are mounted on slides in “Baume de Marc 
André”. SEM micrographs were taken using a scanning electron microscope at the 
Zoology Department, University of Cape Town.

Systematics

Class Diplopoda de Blainville in Gervais, 1844
Subclass Penicillata Latreille, 1831
Order Polyxenida Verhoeff, 1934
Superfamily Polyxenoidea Lucas, 1840
Family Polyxenidae Lucas, 1840
Subfamily Polyxeninae Lucas, 1840

Genus Propolyxenus Silvestri, 1948

Propolyxenus Silvestri, 1948
Propolyxenus Silvestri, 1948: Nguyen Duy–Jacquemin and Geoffroy 2003: 100.
Propolyxenus Silvestri, 1948: Short and Huynh 2010: 13.

The genus is typical of the subfamily Polyxeninae, due to the structure of the telson, 
but shows more than 2 transverse rows of barbate trichomes on each tergite.

Propolyxenus squamatus Nguyen Duy–Jacquemin, Uys & Geoffroy, sp. n.
urn:lsid:zoobank.org:act:B4809CFA-3D81-413E-8F07-ADEEE3398883
http://species-id.net/wiki/Propolyxenus_squamatus
Figs 1–5

Type material. South Africa, Cape Town, Table Mountain National Park. Cecilia, 
Rooikat, site 12, felled pine, altitude 300 m, 33°59'43S, 18°25'22E, 4/X/2008, holo-
type adult female (no. 4); Cecilia, Rooikat, site 9, Afrotemperate forest, altitude 400 
m, 33°59'34S, 18°25'12E, 4/X/2008, paratype adult female (no. 3); other paratypes: 
Kirstenbosch, Afrotemperate forest, site 5, altitude 400 m, 33°58'55S, 18°25'25E, 12/
IX/2008, subadult female (12 pl) (no. 2); Cecilia, Spilhaus, Afrotemperate forest, site 
13, altitude 400 m, 33°59'43S, 18°25'05E, 18/X/2008, larva with 8 pl (no. 5), all col-
lected from leaf litter by Charmaine Uys and mounted on slides (MNHN).

Other material examined (non–type). Cecilia, Spilhaus, Fynbos, leaf litter, site 
14, 33°59'53"S, 18°24'52"E, altitude 520 m, 18/X/2008, subadult male (12 pl) (no. 
6), used for SEM.
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Etymology. The specific name refers to the scale–shaped tergal trichomes.
Diagnosis. Differs from all other congeners by the position and structure of the 

tergal trichomes: these flat scale–shaped trichomes cover the tergites and are different 
from the barbate trichomes of the lateral tufts, pleurites and head. They are observed 
for the first time in the family Polyxenidae. As in the family Synxenidae, they lie close 
to the tergites and are all directed caudally, but differ from those of Synxenidae in their 
shape and structure.

Description of two adult females. Measurements. Body length (without caudal 
penicil): 2.50 mm (holotype). Tarsus II length of 13th leg: 100 µm (holotype) and 105 
µm (paratype).

Head (Fig. 2C). 6 ocelli on each side of which 1 antero–sternal (Figs 2D, 3F). Ver-
tex with 1 pair of posterior tufts of 27+27 (holotype) and 24+25 trichomes (paratype), 
consisting of 3 rows, middle row with 12–13 trichomes (Fig. 3F); the distance between 
each tuft is about half their length.

Proportions of antennal articles as in Fig. 3A. Antennal article VI with 4 basiconic 
sensilla (Figs 2E, F, 3A): 2 anterior (a) shorter and thinner than the 2 posterior ones; 
the more posterior (p2) slightly thinner than the (p1) (Fig. 3B); 1 setiform sensillum 
(s) between anterior and posterior ones and 1 posterior coeloconic sensillum (c); an-
tennal article VII with 3 basiconic sensilla, the anterior (a) slightly thinner than the 
others (Fig. 3C), 1 setifom sensillum (s) between the 2 posterior basiconic sensilla and 
1 posterior coeloconic sensillum (c). The right antennal article VII of the holotype has 
4 basiconic sensilla and 2 coeloconic sensilla, but this is recognizable as a regenerated 
antenna (as shown by Nguyen Duy–Jacquemin 1972) with 2 coeloconic sensilla on 
article VII and none on article VI (Fig. 3A).

3 trichobothria, arranged in a triangle, with the most internal (near posterior tufts 
of vertex) smaller than the 2 others (Figs 2C, D, 3F). Surface of labrum (Fig. 3G) with 

Figure 1. Propolyxenus squamatus sp. n. subadult male, habitus, dorsal view, body length: 2.50 mm. 
(Photograph by M. Judson).
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Figure 2. Propolyxenus squamatus sp. n. subadult male. A habitus, dorsal view B collum and tergites 
II–V, latero–dorsal view C right part of head with 2 trichobothria and antenna D ocelli and trichobothria 
e 4 last articles of right antenna F antennal sensilla on articles VI and VII, apical cones on article VIII. 
Scale bars: A 500 µm B 200 µm C 100 µm D 40 µm E 50 µm F 20 µm.
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numerous small short cuspidate papillae; papillae of anterior 2 to 3 rows larger; 7+8 
lamellate teeth on anterior margin (holotype: Fig. 3G), 8+8 (paratype); clypeo–labrum 
with 9 setae along posterior margin (Fig. 3G). Outer palp of gnathochilarium with 11 
or 12 sensilla; middle palp with 19 or 20 sensilla (Fig. 3H).

Trunk (Fig. 2A): On each tergite (except collum, tergite X and telson) the tri-
chomes are arranged in 3 rows and 2 lateral tufts (Figs 2B, 4A, B); each paired tuft 

Figure 3. Propolyxenus squamatus sp. n. A right antenna of holotype female B, C sensilla of right anten-
nal articles VI and VII of female paratype (no. 3) D, e sensilla of articles VI and VII right antenna of larva 
with 8 pl (no. 5) F vertex of holotype female G labrum of holotype female, papillae only represented on 
right part h left palp of gnathochilarium female paratype (no. 3). Abbreviations: a anterior basiconic 
sensillum c coeloconic sensillum p, p1, p2 posterior basiconic sensillum s setiform sensillum. Scale bars: 
A, F 50 µm; others, 25 µm.
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connected by posterior and anterior rows of trichomes; middle row with more spaced 
trichomes (Fig. 4A). There are 2 types of trichomes. The flat trichomes, referred to as 
scales (sc) of the 3 rows are wider than barbate trichomes of lateral tufts (bt) and their 
shape and structure are different (Figs 2B, 4B, 5A–C); they look like the scales of Syn-
xenidae by their position: all are directed caudally and cover the tergites I (with only a 
posterior row) to X (Figs 4A, B). Their structure is different from scales of Synxenidae 
(Figs 5A–E). The trichomes of the lateral tufts are longer and arranged in a bunch (Figs 
2B, 4A, B (bt), C). Lateral protuberance of tergite I with 3 barbate trichomes (Fig. 4A).

Legs (Figs 4D–H): Naming of leg segments is after Brolemann (1935). Coxae I 
with 1 seta and coxae II with 2 setae; all other coxae without seta. All trochanters and 
prefemora with 1 seta; these setae having an oval base furnished with acute process 
at apex (Fig. 4F). All tibias (except 13) have 1 small seta tapered apically as shown in 
Figs 4D, E; other articles without seta. Tarsus II spine (Fig. 4H) longer than telotarsus 
(Fig. 4G): length of spine to claw ratio about 1.80. Telotarsus bearing an anterior pro-
cess (ap) with a spinous projection longer than claw, 2 latero–anterior and posterior 
spiniform processes (t), posterior larger than anterior; posterior lamellar process (plp) 
thickened and basally pleated (Fig. 4G).

Telson (Figs 1, 2A): typical of genera Propolyxenus, Polyxenus, Typhloxenus (subfa-
mily Polyxeninae). 21 (holotype) and 25 (paratype) dorsomedian barbate trichomes on 
caudal penicil. Hooked trichomes with 3 or 4 hooks.

Description of subadult female, 12 pl (no. 2). Measurements. Body length 
(without caudal penicil): 2.40 mm. Caudal penicil length: 0.60 mm. Tarsus II length 
of 12th leg: 112 µm.

Head: 6 ocelli on each side. Antennal article VI with 3 basiconic sensilla (Fig. 3D); 
antennal article VII with 3 basiconic sensilla (Fig. 3E). Surface of labrum with numerous 
small short cuspidate papillae; papillae of anterior 2 rows larger; 9+9 lamellate teeth at ante-
rior margin. Outer palp of gnathochilarium with 11 sensilla; middle palp with 19 sensilla.

Trunk: Scales on tergites I-IX. Lateral protuberances of tergite I with 3 barbate 
trichomes.

Legs: Coxae I with 1 seta and coxae II with 3 setae; all other coxae without setae. 
All trochanters and prefemora with 1 seta. All tibias (except 11 and 12) have 1 small 
seta tapered apically; other articles without seta. Telotarsus bearing an anterior process 
with a spinous projection longer than claw, 2 latero–anterior and posterior spiniform 
processes; posterior lamellar process thickened and basally pleated.

Telson: 22 dorsomedian barbate trichomes of caudal penicil. Hooked trichomes 
with 3 or 4 hooks.

Description of a larva 8 pl (no. 5). Measurements. Body length (without caudal 
penicil): 1.80 mm. Tarsus II length of 8th leg: 110 µm.

Head: 6 ocelli on each side. Vertex with 1 pair of posterior tufts of 20+19 tri-
chomes consisting of 3 rows, the middle row with 10 trichomes. Antennal article VI 
with 3 basiconic sensilla: 1 anterior shorter and thinner than the 2 posterior ones; the 
more posterior slightly thinner than the other; 1 setiform sensillum between anterior 
and posterior basiconic sensilla and 1 posterior coeloconic sensillum; antennal article 
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Figure 4. Propolyxenus squamatus sp. n. A Collum and tergite II of holotype female B tergite X of holo-
type female C barbate trichome of the right lateral tuft of tergite VII of holotype female D left leg 12 of 
holotype female e, F details of tibial and prefemora setae of the left leg 12 G, h telotarsus and tarsal II 
spine of right leg 13 of female paratype (no. 3). Abbreviations: ap anterior process bt barbate trichomes 
plp posterior lamellate process sc scale t latero–anterior and posterior teeth. Scale bars: C, E–H 25 µm; 
others, 50 µm.
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VII with 3 basiconic sensilla, the anterior slightly thinner than the others, 1 setiform 
sensillum between the 2 posterior basiconic sensilla and 1 posterior coeloconic sensil-
lum. 3 trichobothria, arranged in a triangle, with the most internal smaller than the 
2 others. Surface of labrum as in adult females; clypeo–labrum with 10 setae along 
posterior margin. Outer palp of gnathochilarium with 12 sensilla.

Trunk: Trichomes arranged in 2 lateral tufts with 19 to 25 barbate trichomes con-
nected by 3 rows of scales on tergites III–V and only 2 on other tergites. The tergites 
II–V have 22 to 31 scales, the collum 12 and the tergite VII 18. Lateral protuberance 
of tergite I with 3 (left) and 2 (right) barbate trichomes.

Telson: 18 dorsomedian barbate trichomes of caudal penicil. Hooked trichomes 
with 3 hooks (rarely 2 and 4).

Discussion. P. squamatus sp. n. is strongly distinguished from other species of the 
genus by the shape of the trichomes covering the tergites. Compared with the most 
closely related species Propolyxenus lawrencei Condé, 1949, from Natal (Champagne 
Castle, Drakensberg Mountains, alt. 6000 ft.), P. squamatus sp. n. shares the follow-
ing characters: 6 ocelli; internal trichobothrium shorter than the other 2; number and 
shape of sensilla on antennal articles VI and VII (Condé 1949, p. 125–126, 1959); 
surface of the labrum with numerous papillae, the 2 or 3 anterior rows larger.

The new species shows the following important differences from P. lawrencei:
Position and structure of trichomes on tergites: on each tergite (except collum and 

telson) the trichomes are arranged in 3 rows and 2 lateral tufts; each paired tuft be-
ing connected by posterior and anterior rows of trichomes; the middle row has more 
spaced trichomes. In P. lawrencei, the trichomes are arranged in 3 or 4 irregular rows, 
forming 2 elongated lateral areas, slightly separated by a narrow medial space.

There are two types of trichomes: the trichomes of the three rows are wider and flat-
ter than the trichomes of the lateral tufts, pleurites and head, and their shape and struc-
ture are different, being observed in the family Polyxenidae for the first time. They can 
be compared to the scale–shaped trichomes of Synxenidae: the trichomes of the rows 
are all directed caudally and cover the posterior half of tergites II–X and their internal 
structure is reinforced by differently distributed chitinous elements (Figs 5C–E). The 
lateral trichomes are longer and arranged in lateral tufts. It is remarkable that the bar-
bate trichomes of P. squamatus sp. n. show a progressive transformation into scale–sha-
ped trichomes in the posterior row of the tergite, representing a transition between the 
two types of trichomes as if, during the course of evolution, the former trichomes had 
changed into scale–shaped trichomes. These scale–shaped trichomes are thought to pro-
tect the animals from desiccation, abundant rain or other environmental disturbances.

In a key of the genus Propolyxenus, P. squamatus sp. n. would be easily distinguished 
from all other congeners as is only species with scale-like trichomes. The other species 
of Propolyxenus are more difficult to identify using morphological characters such as 
the number of ornamental trichomes or coxal glands of the males. For instance, both 
P. patagonicus (Silvestri, 1903) and P. australis Short and Huynh, 2010, bear four pairs 
of coxal glands (cf. Condé et Massoud 1974, p. 227 for P. patagonicus) contrary to the 
first tentative key proposed by Short and Huynh (2010 p. 15). There is a difficulty in 
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Figure 5. Propolyxenus squamatus sp. n. A tergal scales B, C scale of tergite VII of paratype female. ex-
ternal and internal views respectively D scale of tergite VIII of Phryssonotus capensis male with 12 pl from 
Mtuzini, Natal e scale of posterior row of tergite VIII of the holotype Condexenus biramipalpus. D and E 
modified after Nguyen Duy–Jacquemin 2006. Scales bars: A 50 µm B–E 25 µm.
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the limited nature of keys based (even partly) on characters such as coxal glands, re-
quiring collection of adult males. More appropriate characters need to be determined 
for a more robust key for the genus.

Superfamily Synxenoidea Silvestri, 1923
Family Synxenidae Silvestri, 1923

Genus Phryssonotus Scudder, 1885

Synxenus Silvestri, 1900
Kubanus Attems, 1926
Koubanus Attems, 1928
Schindalmonotus Attems, 1926
Lophonotus Menge, 1854, preoccupied, non Stephens, 1829
Kaubanus (sic) Attems, 1929, misprint by Jones 1937
Schindelmonatus (sic) Attems, 1929, misprint by Jones 1937

The genus Phryssonotus is characterised by the tergites having dark striated, scale-
shaped trichomes directed caudally, all the others being long, dark barbate trichomes; 
trichomes A and B on head close to trichobothria, one of them being shorter and dif-
ferent from the two others.

Phryssonotus brevicapensis Nguyen Duy–Jacquemin, Uys & Geoffroy, sp. n.
urn:lsid:zoobank.org:act:DADD9CDA-BB36-491F-85BB-FE609759F2E9
http://species-id.net/wiki/Phryssonotus_brevicapensis
Figs 6–9

Type material. South Africa, Cape Town,Table Mountain National Park. Tokai S, site 30, 
Fynbos, altitude 310 m, 34°04'01S, 18°24'03E, leaf litter, 24/XI/2008, holotype adult 
male (no. 16a) and 1 paratype adult male (no. 16b) (MNHN). Other paratypes: adult 
male (no. 1) (MNHN), Newlands, site 4, pine plantation, altitude 260 m, 33°58'24S, 
18°26'27E, sugar–baited ant trap, 15/I/2009; adult female (no. 20) (MNHN), Tokai S, 
site 31, pine plantation, altitude 300 m, 34°03'54S, 18°24'10E, decaying log, 19/I/2009; 
adult female (no. 11) (MNHN), Constantia Nek, site 19, felled pine, altitude 330 m, 
34°00'20S, 18°24'45E, pitfall trap, 02/II/2009; male with 14 pl (subadult) (no. 8) 
(MNHN), Cecilia, Spilhaus, site 16, felled pine, altitude 470 m, 34°00'04S, 18°24'46E, 
pitfall trap, 23/0I/2009; female with 14 pl (subadult) (no. 13) (MNHN) and female with 
12 pl (no. 15) (MNHN), Tokai N, site 27, pine plantation, altitude 330 m, 34°02'23S, 
18°23'53E, leaf litter, 21/XI/2008; 2 larvae with 10 pl and 8 pl (no. 12) (MNHN), Or-
ange Kloof, site 22, pine plantation, altitude 240 m, 34°00'23S, 18°24'02E, leaf litter, 
18/XI/2008. All specimens collected by Charmaine Uys.
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1 male with 14 pl (no. 6b) was collected at the same site as a male with 12 pl of 
Propolyxenus squamatus sp. n. (no. 6, used for SEM).

Etymology. Refers to the shorter body length and development compared to the 
most closely related species, P. capensis.

Diagnosis. 10 ocelli; 5 trichomes B close to the smallest trichobothrium (tc) as 
in P. capensis. Differing from P. capensis with 10 rings in adults instead of 11 (without 
telson), 15 leg pairs instead of 17, and the attendant shorter post–embryonic develop-
ment. Males with 3 pairs of coxal glands on legs 7–9.

Description of adults, males and females. Measurements. Body length (without 
caudal penicil): 4.00–4.50 mm; caudal penicil length: 0.90–1.00 mm (Figs 6, 7A).

Head with 10 ocelli on each side (Fig. 8A); 3 trichobothria with the anterior 1 (tc) 
possessing a much shorter sensory hair than the other 2 (ta and tb). 5 short frontal 
trichomes B1–B5 and 1 long, curving trichome A (Fig. 8B).

Proportions of antennal articles as in Fig. 8C. Antennal article VI with 3 basiconic 
sensilla (Fig. 8C, E): 2 anterior (a), which are shorter and slightly thinner than the pos-
terior one (p); 1 anterior setiform sensillum (s) and 1 posterior coeloconic sensillum 
(c); antennal article VII (Fig. 8D) with 2 basiconic sensilla, the anterior (a) slightly 
shorter than the posterior one (p), 1 setifom sensillum (s) between the 2 basiconic 
sensilla and 1 posterior coeloconic sensillum (c).

Surface of labrum with numerous, small, short cuspidate papillae; papillae of ante-
rior 3 or 4 rows larger, the size of the following papillae decreasing progressively, the 
smaller ones in the posterior third; about 30 lamellate teeth at anterior margin. Cly-
peo–labrum with ca. 10 setae, about 3/4 maximum width of labrum. Lateral expan-

Figure 6. Phryssonotus brevicapensis sp. n, habitus, dorsal view, body length: 5 mm. (Photograph by M. 
Judson).
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Figure 7. Phryssonotus brevicapensis sp. n. A habitus, adult male, ventral view showing 15 pl B detail of a 
palette of left leg 15 C postero–ventral view showing leg pairs 14 and 15 terminating in palettes D detail 
of scales arranged along posterior margin of tergite. Scale bars: A 1 mm B 10 µm C, D 100 µm.

sions of gnathochilarium about twice as long as diameter of middle palp, with 21–25 
sensilla, middle palp with 26–29 sensilla, of which antero–medial sensilla shorter than 
the others (Fig. 8F).

Trunk of adults with 11 tergites (including collum and telson) and 15 pairs of 
legs (Fig. 7A). Collum with 2 medial, separate oval clusters comprising 80–90 barbate 
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Figure 8. Phryssonotus brevicapensis sp. n. A right ventral part of head of female adult (no. 20) showing 
the 10 ocelli, dorsal ones shown with dotted lines B right part of the head of holotype showing position of 
trichobothria ta, tb and tc, long frontal trichome A and short trichomes B1–B5 (only some ocelli drawn) 
C left antenna of holotype; the posterior sensillum is abnormally bifurcated on article VI D, e antennal 
sensilla on articles VII and VI of right antenna of holotype F right palp of gnathochilarium of holotype. 
Abbreviations: a anterior basiconic sensillum c coeloconic sensillum p posterior basiconic sensillum s 
setiform sensillum; T, Tömösvary’s organ. Scale bars: A, B, C 50 µm; others, 25 µm.
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trichomes and a lateral group of 8–14 barbate trichomes. Tergites II–X with submedial 
and posterior rows of scale–shaped trichomes directed caudally (Fig. 7D), the posterior 
row arranged along the posterior margin of the tergite; 1 area of aligned barbate trichomes 
at end of each row, except on tergite II where are 35–40 barbate trichomes arranged, on 
each side, in 2 diagonal lines above the first scale–row; 2 short rows of barbate trichomes at 
end of submedial scale–row and 4 (sometimes 5 on tergite II and X) short rows of barbate 
trichomes at end of posterior scale–row. The number of scales by row ranges from 29–62 
on tergites II–X.

Legs short (Fig. 9A), with 8 articles except on legs 1, 14 and 15; last 2 pairs 
(14–15) without telotarsus, tarsus II terminated in palettes (Figs 7B, C; 9E, F); 
palettes covered by numerous cuticular setae of different types (Figs 7B; 9F); ap-
odeme of palettes (pa) and claws (ca) extending into distal part of trochanter and 
linked to the flexor unguiculi muscle, which allows a great flexibility of the palette 
of the leg pairs 14 and 15, as well as to the claws of legs 1–13, in accordance with 
the description given by Manton (1956) for Polyxenus lagurus. Legs 1–13 with each 
trochanter, prefemur (Fig. 9B), femur, tibia and tarsus I bearing a single long and 
very fine seta; seta of second tarsus longer than claw (Fig. 9C). Legs 14 and 15 with 
only 2 setae on prefemur (Fig. 9E). Telotarsus bearing an anterior process (ap) with 
spinous projection longer than claw; lamellate process (plp) thickened and basally 
pleated; claw with 2 subequal, strongly pointed latero–anterior and posterior teeth 
(Fig. 9C, D).

Female: large vulval sacs elongated, reaching as far as fourth pair of legs and bear-
ing numerous small setae inserted in parallel circles and sparse longer setae.

Male: all areas of penis with usual thin cuticular setae and about 15 longer setae 
(holotype). Coxal glands on legs 7–9.

Conical telson with a transverse row of 15 (male no. 1), 10 (male no. 16b) or 14 
(female no. 20) scale–shaped trichomes with each lateral end prolonged by barbate 
trichomes; long barbate trichomes on distal part.

Subadults. 1 male, 1 female: Measurements: Body length (without caudal peni-
cil): 3.20 mm (male no. 8) and 3.90 mm (female no. 13); caudal penicil length: 
0.90 mm. 14 pairs of legs, the 14th terminating in a palette; 1 pair of appendage–
buds on lateral side of anal valves, from which 15th pair of legs will develop, the 
future adult stadia having the leg pair 15 terminating in palettes. Other characters 
as in adults, except no scale–row on telson.

Male: Coxal glands on legs 7–9.
Female: large vulval sacs elongated, reaching as far as fourth pair of legs.
Stadium VII. 1 female (no. 15) with 12 pl; body length (without caudal penicil): 

3.80 mm; caudal penicil length: 0.80 mm; 10 ocelli, vulval sacs elongated, reaching as 
far as third pair of legs. 2 pairs of external buds.

Stadium VI. 1 juvenile male with 10 pl; body length (without caudal penicil): 
3.30 mm; 10 ocelli; rudimentary coxal glands on legs 7 and 8. 2 pairs of external buds.

Stadium V. 1 larva with 8 pl; body length (without caudal penicil): 2.70 mm; 9 
ocelli. 2 pairs of external buds.
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Figure 9. Phryssonotus brevicapensis sp. n., adult male (no. 1). A right leg 12 B seta of prefemur of right 
leg 12 C distal part of tarsus II of the right leg 12 D telotarsus of left leg 12 e right leg 15 F distal part of 
tarsus II and palette of right leg 15. Abbreviations: ap anterior process ca apodeme of claw pa apodeme 
of palette plp posterior lamellate process t latero–anterior and posterior teeth z smooth area. Scale bars: 
A, E 50 µm; others, 25 µm.
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Discussion. Phryssonotus brevicapensis sp. n. exhibits all the general characters 
usually present in the family Synxenidae: long and thin dark barbate trichomes all 
along the body, tergites covered by tergal scale–shaped trichomes that are striated and 
arranged in 2 transverse rows along all the tergites except the collum; telson subconical; 
elongated vulvae; and last 2 leg pairs terminating in palettes instead of claws. It also 
shows the typical structure of the scale–shaped trichomes found in the genus Phrysso-
notus. Phryssonotus brevicapensis sp. n. differs from other members of the genus in ha-
ving 11 tergites and 15 pl; the last 2 pairs (14th and 15th) terminating in palettes; and 
males with 3 pairs of coxal glands on legs 7–9. These differences are strongly related to 
biology and development, and justify the creation of a new species. All other species of 
Phryssonotus have 12 tergites and 17 pairs of legs with the last 2 pairs (16th and 17th) 
terminating in palettes, and males with 3 pairs of coxal glands on legs 9–11. Due to its 
shorter length and the position of the coxal glands on legs 7–9, it is similar to Condexe-
nus biramipalpus. The elongated vulvae (ovipositors) of the females also resemble those 

Figure 10. Comparison of segmentation in Polyxenida, corrected and improved after Nguyen Duy–Jac-
quemin (2006).
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of Condexenus species in reaching as far as the fourth pair of legs, as opposed to sixth at 
most in other Phryssonotus species.

P. brevicapensis sp. n. is most closely related to P. capensis, in having 10 ocelli and 
5 short frontal trichomes B1 to B5, P. capensis has 5–6 trichomes B (Silvestri 1923).

Following the discovery of Condexenus biramipalpus from Namibia, it is of great 
interest to add Phryssonotus brevicapensis sp. n. as the second example of reduction of 
ring and leg number in the family Synxenidae, whose representatives bear the largest 
number of segments among the Penicillata. This supports the hypothesis of a trend 
towards a shortened postembryonic development during the course of evolution of 
Polyxenida (Condé 1969, Nguyen Duy–Jacquemin 2006). The comparison of the pat-
tern of development is emphasised in the improved scheme (Fig. 10), in which the 
shortest development pattern is seen in Lophoturus madecassus (Marquet et Condé, 
1950). The two new species described in the present work strongly support this evolu-
tionary trend among penicillate families.
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Abstract
The penicillate genus Unixenus Jones, 1944 is widespread, with species found in Africa, Madagascar, India 
and Australia. Each of the two Australian species was originally described from single samples from West-
ern Australia. In this study, collections of Penicillata from museums in all states of Australia were examined 
to provide further details of the two described species, to revise the diagnoses for both the genus and the 
species, and to better understand the distribution of the two species in Australia. In addition, two new 
species Unixenus karajinensis sp. n. and Unixenus corticolus sp. n. are described.

Keywords
Diplopoda, Penicillata, Polyxenidae, new species, Australia, distribution, taxonomy

Introduction

Jones (1937) created the genus Monoxenus for his type species Monoxenus padmanabhii 
collected from the Trivandrum region in Southern India, later renaming it Unixenus 
Jones, 1944, because Monoxenus had been preoccupied by a genus in Cerambycidae 
(Coleoptera). Jones distinguished Unixenus from the genus Monographis Attems, 1907 
on the grounds that the new genus had shorter tergal setae and caudal trichomes with 
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one to five hooks rather than two hooks. However, these characters can vary within 
a genus, for example Propolyxenus Silvestri, 1948 (Short and Huynh 2010). Silvestri 
(1948) separated Monographis from Unixenus on the basis of the absence of the tar-
sal spine and this absence was then used (Nguyen Duy-Jacquemin and Condé 1967) 
to create the two Australian species Unixenus attemsi Nguyen Duy-Jacquemin and 
Condé, 1967, based on specimens originally identified by Attems (1911) as the Af-
rican Monographis schultzei Attems, 1909, and Unixenus mjoebergi (Verhoeff, 1924) 
originally placed in Monographis. Nguyen Duy-Jacquemin and Condé (1967) also re-
assigned two species formerly placed in the genus Saroxenus Cook, 1896 to the genus 
Unixenus, namely Saroxenus broelemanni Condé & Jacquemin, 1962 from Madagascar 
and Saroxenus vuillaumei Condé & Terver, 1963 from the Ivory Coast. In this paper, 
additional characteristics of the two species Unixenus mjoebergi and U. attemsi are de-
scribed based on examination of numerous museum specimens and fresh material col-
lected by the authors. Two new species from Australia are also described.

Materials and methods

Some specimens for this study were obtained by sieving samples of bark and decom-
posing leaf litter into a white tray and hand-picking into 70% ethanol. The majority 
of specimens in this study, however, came from Australian museum collections. Speci-
mens were examined using light and scanning electron microscopy. For light micros-
copy, specimens were cleared in 15% potassium hydroxide, heated in a water-bath for 
2 minutes at 80°C, neutralised in 20% acetic acid for 2 minutes, rinsed in distilled 
water and dehydrated in a series of ethanol baths prior to staining with 1% Fast Green 
solution to increase contrast. The head and body were separated, the body cut open 
with a single latero-longitudinal incision and contents removed. After rinsing in 100% 
ethanol, stained specimens were transferred to 100% isopropanol, then to xylene and 
mounted on slides with DPX synthetic resin. Scanning electron micrographs were ob-
tained for adults of U. corticolus sp. n., and adults and one subadult stadium VII of U. 
karajinensis sp. n. The specimens were preserved in 70% ethanol prior to being gently 
mounted on stubs using adhesive tabs, then air-dried, sputter-coated with gold and 
examined with a Philips XL20 scanning electron microscope.

Specimen lengths were measured from head to telson with caudal bundle of trichomes 
excluded. Adults were sexed when possible. Measurements are an indication only of size 
as length varies with state of activity in life and state of preservation in death. Naming 
of the leg segments follows Manton (1956). Unless otherwise indicated, all millipedes 
referred to are adults (stadium VIII). Stadium VII specimens are referred to as subadult, 
and “immature” refers to any non-adult stadium. The trichomes in a transverse row on 
the telson dorsal to the caudal bundle are referred to as ornamental trichomes.

Abbreviations: AM = Australian Museum, Sydney, New South Wales; ANIC = 
Australian National Insect Collection, Canberra, Australian Capital Territory; MV = 
Museum Victoria, Melbourne, Victoria; NSW = New South Wales; Qld = Queens-
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land; QM = Queensland Museum, Brisbane, Qld; SA = South Australia; Tas = Tasma-
nia; Vic = Victoria; WA = Western Australia; WAM = Western Australian Museum; L 
= left; R = right.

Results

Subclass Penicillata Latreille, 1831
Order Polyxenida Verhoeff, 1934
Superfamily Polyxenoidea Lucas, 1840
Family Polyxenidae Lucas, 1840
Genus Unixenus Jones, 1944

Unixenus Jones, 1944
http://species-id.net/wiki/Unixenus

Monoxenus Jones, 1937: 138; Silvestri 1948: 216.
Unixenus Jones, 1944: 94; Nguyen Duy-Jacquemin and Condé, 1967: 68.

Diagnosis. The genus is typical of the family Polyxenidae with 10 tergites plus telson, 
13 pairs of legs and 8 ocelli in each eye. Antennal article VII has 2 thick basiconic 
sensilla with 1 setiform sensillum between, and 1 coeloconic sensillum posteriorly. 
Gnathochilarium has long lateral palps at least 1.5 X diameter of medial palp, 20–22 
simple sensilla on medial palp and 13 on lateral palp. Spine on tarsus 2 absent, replaced 
with small setiform sensillum. 2 or more rows of barbate trichomes posteriorly on each 
tergite with trichomes arranged in 2 broad clusters either side of the midline, with a 
small gap between clusters. Posterior row of trichomes continuous or with medial gap, 
anterior row often uneven, intermediate trichomes rarely in defined rows. Telson with 
single caudal bundle containing trichomes with 1–11 hooks, ornamental trichomes 
with distinct dark long trichomes c either side midline.

Type species. Unixenus padmanabhii (Jones, 1937).

Unixenus attemsi Nguyen Duy-Jacquemin & Condé, 1967
http://species-id.net/wiki/Unixenus_attemsi
Figs 1A, 2, 3C, 3D

Unixenus attemsi Nguyen Duy-Jacquemin and Condé, 1967: 68, figs 9, 10.

Material examined. Slide preparations were made of adults from the following locali-
ties: Marangaroo Conservation Area in Perth, WA, 31°49’48"S, 115° 50’12"E, 9 Feb-
ruary 2006, M. Short and C. Huynh, in Eucalyptus bark; Scott Creek, SA, 35°04'37"S, 
138°42'29"E, 15 February 2005, M. Short and C. Huynh, litter under Eucalyptus; 



Megan Short & Cuong Huynh  /  ZooKeys 156: 105–122 (2011)108

Robinvale, Vic, 34°35'S, 142°46'E, 28 October –3 November 1968, T. Weir, J. Law-
rence and E. Hansen, litter under Eucalyptus camaldulensis, ANIC berlesate 1085. Col-
lections made by the authors will be deposited in WAM and MV.

Diagnosis. This species can be distinguished from other species in the genus by the 
presence of 2 transverse rows only of short barbate trichomes on collum and tergites, 3 
basiconic sensilla on antennal article VI, long lateral palps on gnathochilarium (2.5 X 
diameter of medial palp), 1 seta on femur and no setae on tibia, funicle of leg setae with 
no projecting spines, telotarsus with 4–6 processes on claw, thin anterior spinous projec-
tion same length as claw, 3 ornamental trichomes c each side, caudal hooked trichomes 
with 3–11 hooks with double pointed barbs on stem of trichomes with 4 or more hooks.

Remarks. The original description by Attems (1911) was very brief. A redescrip-
tion of the species by Nguyen Duy-Jacquemin and Condé (1967) was based on exami-
nation of two female specimens from Torbay in southern Western Australia (the type 
locality) held in the Zoology Museum, Hamburg, Germany (coll. by Hamburg S.W. 
Australia Expedition 1905). This description is detailed and clearly illustrated, but in 
light of recent collection of the species from eastern Australia and examination of large 
numbers of the species from a range of locations in WA, the species description can 
now be expanded and variation in some characters recorded.

Additional description. Body unpigmented with exception of darkly pigmented 
medial longitudinal band on dorsal surface and darkly pigmented lateral projections. 
Trichomes including caudal bundle colourless (Fig. 1A). Body length from Robinvale 
and Scott Creek specimens 1.2–1.7 mm (n = 6), Perth 1.4–1.8 mm (n = 5), Walpole-
Nornalup National Park, WA, WAM T71144, 2.3 mm; caudal bundle 0.3–0.4 mm. 
Variation noted in number of trichomes in rows on posterior vertex of head, between 
specimens and between left and right (as determined by examination of trichome inser-

Figure 1. A Unixenus attemsi Nguyen Duy-Jacquemin & Condé, 1967, Scott Creek, live adult B U. 
mjoebergi (Verhoeff, 1924), Barrow Island, WAM T71082 C U. karajinensis sp. n., Wittenoom, WAM 
T71106 D U. corticolus, sp. n., Tidal River, live adult. Scale bars = 0.5 mm.



The genus Unixenus Jones, 1944 (Diplopoda, Penicillata, Polyxenida) in Australia 109

tion points). Specimens examined varied with numbers each side: Perth 16–19 (n = 5), 
Scott Creek 12–13 (n = 4), Robinvale 9–14 (n = 7), no difference between males and 
females, individual maximum difference between left and right sides of vertex = 2. Cl-
ypeo-labrum as previously described, with 8 setae most commonly observed along pos-
terior margin, in contrast to 9 described by Nguyen Duy-Jacquemin and Condé (1967).

Collum shows variation in trichome number: Perth 19–25 each side (n = 4), Scott 
Creek 16–19 (n = 2), Robinvale 15–16 (n = 1). Maximum variation between right 
and left sides on a single individual = 2. On tergite 2, trichome numbers varied (each 
side of midline): Perth 23–32 (n = 4), Scott Creek 19–23 (n = 4), Robinvale 20 (n = 
1). Males with 2 pairs of coxal glands, leg pairs 8 and 9. Variation observed in number 
of ornamental trichomes a: Perth 7–10a (each side) (n = 5), Scott Creek 6–7a (n = 
5), Robinvale males 4–5a (n = 2), females 6–9a (n = 2). Adult females described by 
Nguyen Duy-Jacquemin and Condé (1967) had 10 and 12 trichomes a each side. Cir-
cular indentation (labelled d) observed adjacent and external to each cluster trichomes 
c (Fig. 3C). This structure, also illustrated in Figure 3G in Condé and Jacquemin 
(1962) labelled ‘x’, is present in all adult specimens of the genus examined but func-
tion unknown. Telotarsus with 4 processes on claw rather than 6 processes previously 
observed (Nguyen Duy-Jacquemin and Condé 1967) (Fig. 2).

Single caudal bundle of hooked trichomes, 2–11 hooks with barbed stems, size 
of hook and nature of barbed stem dependent on number of hooks: trichomes with 
2–4 hooks, hooks large, all barbs on stem distal-facing similar to those in U. mjoebergi 

Figure 2. Unixenus attemsi Nguyen Duy-Jacquemin & Condé, 1967, adult male, Perth. Telotarsus 
showing 4 processes attached to the base of the claw. p = process, c = claw, sp = anterior spinous projection, 
l = lamella process. Scale bar = 5 µm.
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(Fig. 3E), trichomes with 4–11 hooks, hooks smaller and with double barbs along 
stem proximally, with both proximal- and distal-facing points (Fig. 3D). Specimens 
examined by Nguyen Duy-Jacquemin and Condé (1967) had 5–7 hooks, with no 
description given of barbs along stem.

Distribution. This species is widespread in Australia (Fig. 8) but appears to be 
most common in a range of habitats in southern WA. The most northerly collection 
is Bush Bay, WA, 25°07’03"S, 113°48’22"E, where it was collected together with U. 
mjoebergi (WAM T71125). In eastern Australia the species appears to be restricted 
to dry woodlands. It is found under bark of Eucalyptus in small aggregations, often 
with many exuviae, as well as in dry leaf litter and under stones in treed areas on well-
drained sandy or sandy loam soil.

Remarks. The two Torbay specimens described by Nguyen Duy-Jacquemin and 
Condé (1967) are longer than almost all measured in this study, at 2.25 and 2.65 
mm. Torbay is on the south coast of WA (Fig. 8) and a single specimen in the WAM 
collection (T71144) from Walpole-Nornalup National Park on the south coast of WA 
is also large (2.3 mm). All adults from eastern Australia are smaller. Smaller adults have 
fewer trichomes on head and vertex.

Figure 3. A Pattern of trichome insertions in collum and tergite 2 of U. mjoebergi (Verhoeff, 1924) from 
Eil Eil Spring, WAM T71082 B Pattern of trichome insertions on collum and tergite 2 of U. mjoebergi 
from Hann Tableland, QM S17167 C Pattern of ornamental trichome insertions a, b, c and circular 
indentations d, U. attemsi Nguyen Duy-Jacquemin & Condé, 1967, adult female, Robinvale, ANIC 
berlesate 1085 D Hooked trichome with double barbs on stem, U. attemsi, adult female, Robinvale, 
ANIC berlesate 1085 e Hooked trichome with single barbs on stem, U. mjoebergi, Barrow Island, WAM 
T71112. Scale bars: A & B (shared) = 200 µm; C = 30 µm, D & E = 40 µm.
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Unixenus mjoebergi (Verhoeff, 1924)
http://species-id.net/wiki/Unixenus_mjoebergi
Figs 1B, 3A, 3B, 3E

Monographis mjoebergi Verhoeff, 1924: 38.
Unixenus mjoebergi Nguyen Duy-Jacquemin and Condé, 1967: 73, figs 11, 12.

Material examined. Slide preparations were made of adults from the following collec-
tions: Barrow Island, WA, 20°47'38"S, 115°27'24"E, sites 17 (2 suction samples) and 
105 (2 samples: suction and Winkler), 24 April 2005, K. Edward and S. Callan, WAM 
T71111–4; Eil Eil Spring, WA, 19 °47'S, 121°26'E, 20 September 2002, K. Edward, in 
litter, WAM T71082; Hann Tableland, Qld, 16°49'S, 145°11'E, 950 m, 12 December 
1995, G. Monteith, pyrethrum spray on bark, open forest, QM S38765; islands in 
Capricornia Cays National Park, Qld, pitfall trapping by QM and Queensland Parks 
and Wildlife Service: Masthead Island site 1, 23°32'24"S, 151°43'44"E, 0–5 m, 5–7 
October 2008, grassed areas on beach, QM S17167; Erskine Island site 2, 23°30'07"S, 
151°46'23"E, 2 m, 6–8 October 2008, open grassland, QM S17561; Lady Elliot 
Island site 7, 24°06'50"S, 152°42'58"E, 0–5 m, 29–31 March 2008, beach bean vine 
thicket, QM S16031; West Hoskyn Island site 1, 23°48'32"S, 152°17'20"E, 0–5 m, 
13–15 May 2008, Casuarina stand, QM S17052; One Tree Island site 1, 23°30'25"S, 
152°05'31"E, 0–5 m, 23–25 September 2008, Casuarina stand, QM S17144; North 
West Island site 8, 23°17'31"S, 151°42'29"E, 0–5 m, 9–11 October 2008, Casuarina 
stand, QM S17609; and Eungella, 21°12'S, 148°26'E, 600 m, 18 November 1981, 
Gillison, ANIC berlesate 984.

Diagnosis. This species can be distinguished from other species in the genus by the 
presence of 3 or more transverse rows of barbate trichomes on collum and tergites 2 and 
3, with 2 or more rows in remaining tergites, 3 basiconic sensilla on antennal article 
VI, long lateral palps on gnathochilarium (2.5 X diameter of medial palp). 2 setae on 
femur and 1 seta on tibia, funicle of setae of coxa, prefemur and femur ridged, ridges 
extending as projections surrounding flagellum, telotarsus with 2 processes (anterior 
and posterior) on claw, anterior spinous projection longer than claw, 3 ornamental 
trichomes c each side, caudal hooked trichomes with 1–4 hooks, absence of double 
pointed barbs on stem.

Remarks. The original description by Verhoeff (1924) was very brief and no 
illustrations were given. A redescription of this species by Nguyen Duy-Jacquemin and 
Condé (1967) was based on a single paratype adult female preserved in ethanol from 
the Museum of Comparative Zoology, Harvard University. This description is detailed 
and clearly illustrated, but in light of recent collection of the species from eastern 
Australia and examination of large numbers of the museum specimens from a range 
of locations in Western Australia and Queensland, the species distribution can now be 
extended and variation in some characters recorded.

Additional description. No freshly collected specimens available. All specimens 
had been preserved in 70% ethanol for at least 18 months prior to examination, with 



Megan Short & Cuong Huynh  /  ZooKeys 156: 105–122 (2011)112

most in ethanol for decades. Body yellow brown in colour with trichomes including 
caudal bundle pigmented dark brown. Average length adult (mm): Barrow Island 
2.1–2.5 (n = 3), Hann Tableland 3.0–3.4 (n = 5), Capricornia Cays 2.0–2.8 (n = 
15); caudal bundle 0.4–0.5 mm. No differences observed between sexes. Variation 
in both pattern and number of trichomes on posterior vertex of head in specimens 
from different populations and variation within a population between specimens, 
and between left and right on a single individual. Pattern of 3 oblique rows each side 
separated medially by broad gap as described for paratype by Nguyen Duy-Jacquemin 
and Condé (1967) most common, but occasionally 2 rows, and 1 specimen with 5 
rows each side. Trichomes barbate and longer than those of U. attemsi. Variation in 
trichome number each side as follows: Barrow Island females 22–26 (n = 2), males 
20–22 (n = 2); Eil Eil Spring subadult male 18–19; Eungella subadult male 19–21; 
Hann Tableland subadult males 19–25 (less in posterior row) (n = 3), adult females 
23–32 (n = 5); Capricornia Cays, both males and females 17–23 (n = 12), plus 1 
male with 5 rows, 34 each side. Clypeo-labrum as described for paratype by Nguyen 
Duy-Jacquemin and Condé (1967) for all specimens examined, with 12 setae along 
posterior margin, except for those from Queensland mainland sites Hann Tableland 
and Eungella with 10 setae (n = 11); further variation was also noted with a few 
specimens having 3 rather than 2 lamellar teeth each side along anterior margin. 
Occasional variation noted in number of sensilla on gnathochilarium with 20–22 
sensilla each medial round palp and 12–13 each lateral palp. The majority have 22 
sensilla on medial palp in contrast to the 21 in the single specimen described by 
Nguyen Duy-Jacquemin and Condé (1967).

Collum similar to description in Nguyen Duy-Jacquemin and Condé (1967) with 
trichomes in broad lateral clusters each side of wide medial gap equal to width of 
cluster, a posterior row extending from lateral edge of each cluster towards the midline. 
Barrow Island adult specimens similar to paratype (Nguyen Duy-Jacquemin and Condé 
1967) with continuous posterior row of trichomes and trichome insertion at midline. 
However in all other specimens examined, a median gap was present in the posterior 
row (Figs 3A and B). Number of trichomes each side median gap varied: Barrow Island 
39–49 (n = 3), Eil Eil Spring 32–34 (n = 1, subadult male), Eungella 30–31 (n = 1, 
subadult male), Hann Tablelands 37–43 (n = 4), Capricornia Cays 35–57 (n = 12). 
In remaining tergites, only Barrow Island specimens were similar to the description by 
Nguyen Duy-Jacquemin and Condé (1967) with a continuous posterior row in all but 
tergite 10. In all other specimens examined, a median gap was present in the posterior 
row of most if not all tergites. Number of trichomes each side on tergite 2 variable: 
Barrow Island 46–60 (n = 3); Eil Eil Spring 39 (n = 1, subadult male); Eungella 36 (n = 
1, subadult male); Hann Tablelands 48–66 (n = 4); Capricornia Cays 43–70 (n = 12). 
Tergal trichomes barbate and twice as long as those of U. attemsi, trichomes longer in 
more posterior tergites. Males with coxal glands present on leg pairs 8 and 9.

Variation observed in number of ornamental trichomes a as follows (number given 
per side): Barrow Island 4–6 (n = 4, no differences between sexes); Eil Eil Spring 6 
(n = 1, subadult male); Hann Tablelands: adult females 3–8 (n = 5), subadult males 
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8–12 (n = 3); Eungella 7–8 (n = 1, subadult male); Capricornia Cays 4–9 (n = 13, no 
differences between sexes). Hooked caudal trichomes with 1–4 hooks on barbed stems, 
barbs all distal-facing (Fig. 3E).

Distribution. Unixenus mjoebergi has been identified in north western and north 
eastern Australia, including islands off the coast on either side of the continent (Fig. 
8). The lack of records for central Australia and Northern Territory is possibly more a 
reflection of very limited and untargeted collecting effort rather than actual absence 
of the species from these regions. The species is found in litter of treed habitats (both 
open and closed forest types), and occasionally in sandy beach and sand dune habitats.

Remarks. The specimens examined showed variation in a number of characters, 
with those of the single female adult paratype described by Nguyen Duy-Jacquemin 
and Condé (1967) falling within the range for each. Of particular interest is the vari-
ation in pattern of tergal trichomes with only the Barrow Island specimens showing 
the same pattern as the paratype. All specimens from Queensland, as well as the single 
specimen from Eil Eil Spring, showed a distinct gap in all or almost all tergites (the 
only exception were two specimens that lacked a gap in posterior row of tergites 4 and 
5). Numbers of trichomes, including the ornamental trichomes a, varied also with no 
distinct geographic pattern discernible. The wide distribution, and presence of the spe-
cies on islands on both sides of the continent points to the possible movement of the 
species by birds and or wind.

In the course of this study, collections from the Hamersley Ranges of Western 
Australia previously identified as Unixenus mjoebergi were found to have a number of 
important differences requiring erection of a new species, Unixenus karajinensis sp. n.

Unixenus karajinensis sp. n.
urn:lsid:zoobank.org:act:8D5DDD19-2571-437F-AE9D-74B932AD9ABB
http://species-id.net/wiki/Unixenus_karajinensis
Figs 1C, 4, 5

Holotype. Male, Wittenoom Gorge, asbestos mine, WA, 22°19'S, 118°19'E, 20 May 
1977, WD Temperton, WAM T71106, mounted on slide.

Paratypes. Six females same data as holotype, on six slides, WAM T116452–7; four 
females and three males from Tom Price, WA, 22°41'S, 117°47'E, 727 m, 6 February 
1978, CE Chobanoff, females: WAM T116458–61, males: WAM T116462–64, 
mounted on slides.

Other material. Additional specimens, same data as holotype, WAM T116451; 
additional specimens, same data as paratypes from Tom Price, WAM T116465; AM 
collection from Hamersley Ranges, WA, 10 km north from Tom Price turnoff along 
Nanutarra - Wittenoom Rd, on left side, 22°32'21"S, 117°38'01"E, 25 May–4 June 
2004, M. Bulbert et al., pitfall traps, AM KS111219.

Diagnosis. Differs from Unixenus mjoebergi in longer and thinner tergal trichomes, 
6 pairs of coxal glands in males on leg pairs 6–11, telotarsus with anterior spinous 
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projection shorter than claw, 8 ornamental trichomes c each side. Antennal articles 
VI and VII with distinctive notched appearance at distal edge, arrangement of sensilla 
in article VI with setiform sensillum anterior to 3 basiconic sensilla. Number of setae 

Figure 4. Unixenus karajinensis sp. n., holotype, WAM T71106 A Head, dorsal view showing arrangement 
of ocelli, position of trichobothria and trichome insertions B Right antenna C Details of sensilla on 
antennal articles VI and VII, sensilla type indicated as follows: coeloconic (c), setiform (s), thick basiconic 
(T), article VI sensilla lower row D Clypeo-labrum with enlargement to show papillae e Right palp of 
gnathochilarium showing long lateral palp, medial palp and simple sensilla F Collum, tergite 2 and tergite 
10 showing pattern of trichome insertions G Left leg 2 showing chaetotaxy on leg segments and penis h 
Details of seta on coxa, prefemur and femur I Anterior view of left telotarsus showing anterior spinous 
projection (s), claw (c) with anterior (a) and posterior (p) processes and lamella (l) J Pattern of ornamental 
trichomes a, b, c and circular indentations d K Distal portion of typical hooked trichomes showing double 
headed barbs L Trichome from tergite 2. Scale bars: A, B & F = 200 µm; G = 100 µm; E = 50 µm; D = 
40 µm; C, J & K = 20 µm; H & I = 10µm.
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on coxae 3–13 varies more widely from 1–6 in contrast to 2–3 in U. mjoebergi. The 
hooked caudal trichomes have double barbs proximal to the hooks, last sternal plate 
with 2 setae.

Etymology. The Australian aboriginal Banyjima people’s name for the Hamersley 
Ranges is Karajini.

Description. Length of both sexes 2.8–3.3 mm, caudal bundle 0.3 mm.
Colouration in alcohol both sexes yellow brown with trichomes including caudal 

bundle medium to dark brown, long ornamental trichomes darker.
Head with 8 ocelli each side: 4 dorsal, 4 lateral (1 anterior, 2 medial and 1 

posterior). Vertex with 2 posterior groups of trichomes arranged in 3 oblique rows 
(Fig. 4A). Number of trichomes varies, holotype with 40+38 trichomes, comprising: 
8+8 (anterior rows), 21+20 (middle rows) and 11+10 (posterior rows). Total numbers 

Figure 5. Unixenus karajinensis sp. n., Wittenoom A Antennal articles VI and VII showing notched dis-
tal edge B Detail of sensory cones on tip antennal article VIII C Ridged funicle of seta of coxa, prefemur 
and femur D Posterior view of stadium VII subadult, showing caudal trichome and associated trichome 
insertions e Lateral palp of gnathochilarium showing simple sensilla F Detail of tergal barbed trichomes. 
Scale bars: A = 20 µm, B & C = 5 µm, D & F = 50 µm, E = 20 µm.
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each side varied: Tom Price paratypes 27–45 (n = 7); Wittenoom paratypes 25–35 (n = 
6). Overall, both sexes showed highly variable number vertex trichomes (51–85), with 
asymmetrical pattern of 1–2 trichomes difference (occasionally up to 5). Trichobothria 
equal in size, arranged in shape of isosceles triangle with greater width a–c.

Antennae with proportions of 8 articles and 4 sensory cones typical of other species 
in genus (Figs 4B and 5B). Antennal articles VI and VII with distinctive notched 
appearance at distal edge (Fig. 5A), article VI with 3 thick basiconic sensilla of equal 
length, coeloconic sensillum posterior to basiconic sensilla, setiform sensillum anterior 
to basiconic sensilla. Antennal segment VII typical of genus with 1 coeloconic sensillum 
to the posterior followed anteriorly by 2 thick basiconic sensilla of similar height; 
1 setiform sensillum between the basiconic sensilla (Fig. 4C). Clypeo-labrum with 
12 setae along posterior margin, anterior margin with no dentition lateral to median 
cleft, two thirds surface covered with spherical papillae, papillae reducing in size to the 
posterior margin and lacking hairs (Fig 4D). Gnathochilarium with length lateral palp 
at least 2 X diameter medial palp; lateral palp with 13 cylindrical sensilla, medial palp 
21 sensilla (Figs 4E and 5E).

Collum with almost symmetrical arrangement of trichomes, posterior row of 
trichomes with broad medial gap, extending to lateral clusters of trichomes, anteriorly 
a narrowing band of trichomes extending from each lateral cluster towards midline, 
scattered trichomes between posterior row and anterior bands (Fig. 4F). Number 
of trichomes 56L + 59R in holotype male; variation common with range per side: 
Wittenoom female paratypes 31–46 (n = 6); Tom Price paratype females 33–47 
(n = 4), paratype males 37–43 (n = 3). Small lateral protuberances each with row 
of 6 forward-facing trichomes in holotype, varying between 4–6 in Tom Price and 
Wittenoom paratypes.

Trichomes of tergites 2–9 arranged on posterior half of tergite, 1 distinct posterior 
row with medial gap, merging with clusters laterally. Further trichomes anteriorly, 
loosely arranged in 2 to 3 rows. Anterior trichomes directed towards head while 
remaining trichomes directed posteriorly. Number of trichomes on tergite 2 in holotype 
male 61L+54R, variation common with range per side: Wittenoom paratype females 
36–49 (n = 4); Tom Price paratype females 38–64 (n = 3), paratype males 49–52 (n = 
2). Tergite 10 with wide medial gap, large clusters of trichomes either side, posterior 
rows forming part of each cluster (Fig 4F). Conical pleural projections along each side 
associated with tergites 2–10, each with dense cluster of trichomes. Tergal and pleural 
trichomes, long and thin with 2 internal rows projections (Figs 4L and 5F), tergal 
trichomes increasing in length posteriorly.

Legs 1 and 2 without trochanter, leg 1 also lacks tarsus 1. Trochanter and postfemur 
and tarsus 1 lack setae. Chaetotaxy as follows: coxa 1, 1 seta, coxa 2, 2 setae, coxae 
3–13, 1-6 setae; prefemur, tibia and tarsus 2 with 1 seta, femur with 2 setae (Fig. 
4G). Last sternal plate with 2 setae. Coxa, prefemur and femur with bi-articulate setae 
similar to those for U. mjoebergi with longitudinal ridges on basal funicle, each ridge 
extending distally in a long, thin projections which surround the base of the flagellum 
(Figs 4H and 5C), setae of tibia and tarsus 2 setiform. Telotarsus bearing anterior 



The genus Unixenus Jones, 1944 (Diplopoda, Penicillata, Polyxenida) in Australia 117

spinous projection shorter than claw which bears posterior and anterior processes, 
large lamella process present (Fig. 4I). Males with 6 pairs coxal glands, leg pairs 6–11.

Telson with ornamental trichomes arranged almost symmetrically with 5 trichomes 
(some variants with 4–8) a, 1b, and 8c each side of midline (Fig. 4J). Insertion points 
vary in size with a and c bigger than b. Single caudal bundle of hooked trichomes 
with 2–4 hooks and barbed stems. Double barbs of stem showing both distal- and 
proximal-facing barbs (Fig. 4K). Double barbs start immediately below hooks on 4 
hook trichomes, with simple distal-facing barbs before first double barb on 2–3 hook 
trichomes. In immature stadia, two clusters of short barbate trichomes with same 
structure as ornamental trichomes a found ventral to caudal bundle (Fig. 5D). These 
clusters also observed in other species in the family Polyxenidae. They displace laterally 
after moulting to become pleural projections.

Distribution. This species is only known from three sites in the Hamersley Ranges, 
WA (Fig. 8). Both males and females were collected at each location. Since collection, 
the asbestos mine at Wittenoom has been closed and access restricted to the area that 
includes the type locality.

Remarks. The widespread distributions of U. attemsi, U. mjoebergi and U. 
corticolus sp. n. are not unexpected as their small size, bristles and very light weight 
make it probable that they are blown by the wind or become attached to bird feathers. 
Unexpectedly U. karajinensis sp. n. appears to be limited to a single mountain range, 
although further sampling may extend the distribution.

Unixenus corticolus sp. n.
urn:lsid:zoobank.org:act:9AD17CAD-DE6A-4E67-B0B4-F418D0A889D0
http://species-id.net/wiki/Unixenus_corticolus
Figs 1D, 6, 7

Holotype. Male, Deep Lead Flora and Fauna Park, near Stawell, Vic, 37°00'38"S, 
142°44'19"E, 17 June 2005, M. Short and C. Huynh, in Eucalyptus bark, mounted on 
slide, MV K-11507.

Paratypes. One male, five females, same data as holotype, mounted on slides, 
male: MV K-11508, females 1–5: MV K-11509–13; one male and one female from 
Tidal River, Wilson's Promontory, Vic, 39°01'54"S, 146°18'49"E, 1 November 2005, 
C. Huynh, in Melaleuca bark, mounted on slides, male: MV K-11514, female: MV 
K-11515.

Other material examined. All collected by M. Short and C. Huynh: Ararat Hills 
Park, Vic, 37°14'30"S, 142°54'30"E, 17 June 2006, in Eucalyptus bark; Flinders, 
Vic, 38°28'54"S, 145°01'22"E, 25 August 2011, in Melaleuca bark; Pt. Addis, 
Vic, 38°22'27"S, 144°14'42"E, 21 August 2011, in Eucalyptus bark; Tathra, NSW, 
36°43'35"S, 149°59'8"E, 30 December 2007, in Melaleuca bark; Lakes Entrance, 
Vic, 37°52'45"S, 146°10'49"E, 28 December 2007, in Melaleuca bark; Sunnyside 
Beach, Mornington, Vic, 38°12'06"S, 145°03'41"E, 17 May 2008, in Melaleuca bark; 
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Launceston, Tas, 41°27'S, 147°09'E, 1 February 2008, in private garden, bark mulch; 
Holey Plains State Park, Vic, 38°13'S, 146°53'E, 20 April 2008, exuviae, in Eucalyptus 
bark; Narawntapu National Park, Tas, 42°55'07"S, 147°49'23"E, 31 January 2008, 
in Eucalyptus bark; Cataract Gorge, Launceston, Tas, 41°27'S, 147°09'E, 1 February 
2008, in Eucalyptus bark.

Figure 6. Unixenus corticolus sp. n., holotype, MV K-11507 A Head, dorsal view showing arrangement 
of ocelli, position of trichobothria and trichome insertions B Right antenna C Details of sensilla on an-
tennal articles VI and VII, sensilla type indicated as follows: coeloconic (c), setiform (s), thick basiconic 
(T), article VI sensilla lower row D Left palp of gnathochilarium showing long lateral palp, medial palp 
and simple sensilla e Clypeo-labrum F Collum, tergite 2 and tergite 10 showing pattern of trichome in-
sertions G Leg 2 showing chaetotaxy and penis h Details of seta of coxa, prefemur and femur I Setiform 
sensillum, tarsus 2 J Anterior view of telotarsus showing anterior spinous projection (s), claw (c) with an-
terior (a) and posterior (p) processes and lamella (l) K Pattern of ornamental trichomes a, b, c and circular 
indentations d L Hooked caudal trichome M Tergal trichome. Scale bars: B & G = 150 µm; A & F = 100 
µm, D = 50 µm, E & K = 40 µm; M = 30 µm; C, H & I (shared bar), J & L = 10 µm.
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Etymology. Adjective; this species is almost always found under bark, rarely in 
litter, in contrast to other species in the genus.

Diagnosis. 4 basiconic sensilla on antennal article VI, basiconic sensillum 4 
posterior to coeloconic sensillum, short lateral palps on gnathochilarium (1.5 X diameter 
of medial palp), 1 seta on femur and no setae on tibia, 5 ornamental trichomes c each 
side, caudal hooked trichomes with 3–6 hooks. Setae of coxa, prefemur and femur 
similar to that of U. mjoebergi but with slightly curving and fewer ridges on funicle.

Description. Length of both sexes 2.4–3.4 mm, caudal bundle 0.45 mm.
Colour dark grey with broad unpigmented band dorsally along midline. Trichomes 

unpigmented, appearing translucent white in live specimen, long ornamental trichomes 
c darkly pigmented in contrast to trichomes of caudal bundle that appear white in live 
specimens.

Head (Fig. 6A) with 8 ocelli each side: 4 dorsal, 4 lateral (1 anterior, 2 medial and 
1 posterior). Vertex with 2 posterior groups of trichomes arranged in 2 oblique rows, 
separated medially by a broad space. Number of trichomes varies, holotype with 10L+10R 
(anterior rows) and 7L+6R (posterior rows), total each side 17L and 16R. Number of 
trichomes per side varies 14–18, with no differences between sexes, asymmetrical pattern 
common with maximum difference 2 trichomes. Trichobothria equal in size, arranged in 
triangle with angle at b >120o, distance a–b slightly shorter than distance b–c.

Antennae with proportions of 8 articles and 4 sensory cones typical of other 
species in genus Unixenus (Fig. 6B). Antennal article VI with 4 thick basiconic sensilla 
of equal length, coeloconic sensillum between basiconic sensilla 3 and 4, setiform 
sensillum between basiconic sensilla 1 and 2. Antennal segment VII typical of genus 
with 1 coeloconic sensillum to the posterior followed anteriorly by 2 thick basiconic 
sensilla of similar height; 1 setiform sensillum between the basiconic sensilla (Figs 6C 
and 7B). Clypeo-labrum covered in small spherical papillae typical of genus Unixenus, 
anterior edge with median cleft, no lamella teeth, posterior margin 8–10 setae (Fig. 6E). 
Gnathochilarium with length lateral palp 1.5 X diameter of medial palp. Lateral palp 
with 13 cylindrical sensilla, medial palp 21 sensilla (Fig. 6D).

Collum with almost symmetrical arrangement of trichomes, 2 main rows of 
trichomes each side of medial gap with small number of trichomes between rows, 
rows linked laterally with small cluster of trichomes (Fig. 6F). Trichomes 24L+23R 
in holotype, varying between 23–28 per side in paratypes. Small lateral protuberances 
each with row of 5 forward facing trichomes in holotype, 3–7 in paratypes. In tergites 
2–10, trichomes arranged on posterior half of tergite in 2 loose rows with small clusters 
laterally (Fig. 6F). Trichomes in anterior row directed towards head, those of posterior 
row directed posteriorly. Trichome number on tergite 2 variable: 26L+26R in holotype, 
24–34 each side in paratypes. Conical pleural projections along each side associated 
with tergites 2–10. Tergal trichomes, all short, barbate and thicker than those of U. 
mjoebergi and U. karajinensis with three internal longitudinal rows of projections (Figs 
6M and 7C), pleural trichomes slightly longer.

Legs 1 and 2 without trochanter, leg 1 also lacks tarsus 1. Trochanter, postfemur, 
tibia and tarsus 1 lack setae. Chaetotaxy as follows: coxa 1, one seta, coxa 2–3, 2–3 
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setae, coxa 3–10, 2–4 setae, coxa 13, 0–2 setae (males 2 setae, females 0 setae); 
prefemur, femur, and tarsus 2 with single seta (Fig. 6G). Structure of setae of coxa, 
prefemur, femur similar to that of U. mjoebergi and U. karajinensis but with less 
ridging on funicle and fewer projections, ridging slightly curved around funicle (Figs 
6H and 7A); seta of tarsus 2 setiform (Fig. 6I). Telotarsus bearing anterior very 
thin spinous projection longer than claw. Claw bears anterior and posterior slender 
processes, large lamella process (Figs 6J and 7D). Males with 2 pairs coxal glands on 
leg pairs 8–9.

Ornamental trichomes of telson with 4–6 trichomes a, 1b, and 5c (comprising 2 long, 
1 medium and 2 shorter dark brown barbate trichomes) each side of midline (Fig. 6K). 
Caudal bundle trichomes with 3–6 hooks, distal-facing barbs along the stem (Fig. 6L).

Distribution. Specimens of this species have been found at a number of locations 
some distance from each other in southern Australia (Fig. 8). Specimens were collected 
from under bark of Eucalyptus, Melaleuca and Leptospermum. The species was found 
once only on the ground, in litter formed from mulched bark. Males and females were 
collected at each location. No specimens were found in museum collections.

Remarks. Although this species is similar in many ways to U. mjoebergi, it appears 
to have different habitat requirements as it is rarely found in litter, and then only in 
bark mulch. This would explain the absence of the species from museum collections 
that are mainly the result of pitfall trapping or extraction from litter.

Figure 7. Unixenus corticolus sp. n., adult male, Deep Lead A Setae on coxa B Sensilla on antennal ar-
ticle VI, thick basiconic (T), coeloconic (c), setiform (s) C Detail of barbed tergal trichomes D Detail of 
telotarsus showing anterior spinous projection (sp), claw (c), lamella process (l), anterior process (a). Scale 
bars: A = 10 µm, B & D = 5 µm, C = 20 µm.
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Key to described species of Unixenus

The type species from India, U. padmanabhii, is not included as insufficient details are 
known:

1a. Presence of unridged setae on legs ...............................................................2
1b. Presence of leg setae with ridges and spiny projections ................................3
2a. One small seta on tibia of at least legs 1–5 ...........................U. broelemanni
2b. No setae on tibia .........................................................................................4
3a. Presence of 3 ornamental trichomes c per side .......................... U. mjoebergi
3b. Presence of more than 3 ornamental trichomes c per side ............................5
4a. Telotarsus with more than 2 processes on claw ............................. U. attemsi
4b Telotarsus with 1 process only on claw ................................... U. vuillaumei

Figure 8. Map of Australia with states indicated, showing distribution of four Unixenus species. U mjoe-
bergi (Verhoeff, 1924): filled circles, type region shown as open circle; U. attemsi Nguyen Duy-Jacquemin 
and Conde, 1967: filled 4 point star, type locality shown as open 4 point star; U. karajinensis sp. n.: type 
locality shown as open 5 point star; U corticolus sp. n.: filled triangles, type locality shown as open triangle.
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5a. 5 ornamental trichomes c per side, 2 pairs coxal glands in male ....................
 ...................................................................................... U. corticolus sp. n.

5b. 8 ornamental trichomes c per side, 6 pairs coxal glands in male ....................
 .................................................................................. U. karajinensis sp. n.
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Abstract
We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the 
Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life. Having analyzed 126 taxa 
(including 122 species) belonging to all major German chilopod and diplopod lineages, often using four 
or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the 
chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of 
more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and fami-
lies appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between 
them are not always depicted correctly. We give examples of (1) high interspecific sequence variability 
among closely related species; (2) low interspecific variability in some chordeumatidan genera, indicating 
that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3) high intraspecific 
variation in some genera, suggesting the existence of cryptic lineages; and (4) the possible polyphyly of 
some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, 
our data may be useful in various ways in the context of species delimitations, taxonomic revisions and 
analyses of ongoing speciation processes.

Keywords
Chilopoda, Diplopoda, COI barcoding, Bavaria, Germany

ZooKeys 156: 123–139 (2011)

doi: 10.3897/zookeys.156.2176

www.zookeys.org

Copyright Jörg Spelda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ReSeARCh ARTICLe

Launched to accelerate biodiversity research

A peer-reviewed open-access journal



Jörg Spelda et al.  /  ZooKeys 156: 123–139 (2011)124

Introduction

Molecular species identification based on sequence diversities in the Folmer segment 
of mitochondrial COI DNA has been under intense study for some years (Hebert 
et al. 2003, Savolainen et al. 2005). For the identification of a wide set of species, 
reference barcode libraries are needed; therefore, various projects are currently build-
ing such libraries by mass sequencing. The Barcoding Fauna Bavarica project (http://
www.faunabavarica.de, Haszprunar 2009, Hausmann et al. 2011a, b), in close associa-
tion with IBOL, the International Barcode of Life (http://ibol.org/), the DNA bank 
facility at Zoologische Staatssammlung München (ZSM) (http://www.zsm.mwn.de/
dnabank/, Gemeinholzer et al. 2011), and the GLOMYRIS project of the Global 
Biodiversity Information Facility (GBIF) (http://www.gbif.de/evertebrata2/glomyris), 
aims to barcode all animal species in Bavaria, i.e. some 35000 species, representing 
85% of the species found in Germany.

Among the Chilopoda and Diplopoda, the 146 species known from Bavaria 
cover 73% of the fauna of Germany. Hence, the first aim of our study is to estab-
lish a barcode reference library for Bavarian Myriapoda that will be expanded step 
by step (the dataset treated in this paper can be accessed in Barcode of Life Data 
Systems (BOLD; Ratnasingham and Hebert 2007, http://www.boldsystems.org) un-
der ‘MYFBA (Fauna Bavarica Myriapoda public 1)’ as part of the campaign ‘Fauna 
Bavarica’). Moreover, myriapods found in our studied area cover many of the nu-
merous species and subspecies of uncertain morphology-based species delimitations 
described in the huge works of K.W. Verhoeff (e.g. 1934, 1935) and C. Attems (e.g. 
1927) many of which need taxonomic revision. Our work aims to provide morphol-
ogy-independent sets of characters to enable us to check against the descriptions 
and species delimitations, and therefore to draw new conclusions about the validity 
of these species. This is also important since in the Bavarian Alps numerous species 
are found which are relicts of speciation processes that occurred during and after the 
last glaciation periods. Our barcodes will provide a basis or a test for these analyses 
(e.g. Pilz et al. 2008). Furthermore, barcoding of myriapods is of particular interest 
since in many species, i.e. in many diplopods such as the family Julidae, only a small 
fraction of the specimens (only adult males) can be identified using morphologi-
cal sets of characters. Conversely, DNA barcoding allows the determination of all 
developmental stages from the egg to the male or female adults. In the future, DNA 
barcoding will therefore allow the identification of all life stages of these taxa instead 
of adult males only.

In the present paper we give an overview of our ongoing barcoding activities, 
which so far cover 73% of all Bavarian Chilopoda and Diplopoda. In addition to 
conventional analysis of the actual dataset based on our BOLD data, we give examples 
of how our barcodes will contribute to taxonomic revisions and to analyses of past and 
ongoing speciation processes.
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Material and methods

Sampling

To cover the variability within species, numerous samples from locations inside and 
outside Bavaria have been included. Besides the centipedes and millipedes known 
to occur in Bavaria, species that might be found there in the future have also been 
included, as well as close relatives of the known Bavarian species (Fig. 1). Since the 
study arose from the ‘Barcoding Fauna Bavarica’ project, sampling was restricted 
to a few individuals per species. We have tried to include material from all four 
major Bavarian faunal regions as defined in Voith (2004), provided that the species 
occurred in all of them. If this was not the case, additional sampling took place in 
adjacent countries. Attempts to amplify and sequence museum material (stored in 
denatured 75% ethanol), mainly from the more than 70 year-old Verhoeff collec-
tion housed at the ZSM, have failed. Hence we had to use newly sampled material 
less than two years old. This fresh tissue material was ideally stored in reagent-grade 
96% ethanol which was exchanged several (3-4) times. In practice it was some-
times unavoidable to use material stored in about 75% ethanol for some days or 
months before replacement with 96% ethanol. All specimens used for sequencing 
have been photographed, as required by the Canadian Centre for DNA Barcoding 
(CCDB). Most of these photos were taken of live specimens in the field and are 
available online via BOLD. Taxonomy and nomenclature is based on the Bavarian 
list by Spelda (2006), except for a few updates reflecting more recent taxonomic 
decisions, e.g. taxa raised to species rank, new synonymies and new combinations. 
A website has been established for ‘Barcoding Fauna Bavarica’ (http://www.fauna-
bavarica.de) that continuously updates project progress, such as lists of species and 
their barcode coverage.

DNA sequencing

Sequencing was carried out at the CCDB, using the standard protocols of IBOL 
(http://www.dnabarcoding.ca/pa/ge/research/protocols). For reasons of perfor-
mance, so far only the C_LepFolF and C_LepFolR primers have been used for PCR 
and sequencing. Barcoded voucher specimens are stored at ZSM, and DNA extracts 
from the specimens at the CCDB and the ZSM’s DNA bank facility (http://www.
zsm.mwn.de/dnabank/). Specimen data, images and DNA sequences will be avail-
able on BOLD. BOLD numbers are given for each specimen in the depicted NJ trees 
(Figs. 8–11). These allow the tracking of our sequences in BOLD and GenBank, 
respectively.

Sequencing failed for about 30% of the species. Sometimes whole genera (Tra-
chysphaera, Ommatoiulus, Megaphyllum, Mycogona), and sometimes species-level taxa 
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(Glomeris undulata s.l., Leptoiulus simplex-group) were reluctant to barcoding. In these 
cases we either obtained no barcodes, or less than a quarter of the specimens were suc-
cessfully barcoded. Hence, barcoding success of single samples was somewhat unpre-
dictable. It seems that minor differences in tissue composition and protocol determine 
whether or not a sample runs; e.g., in one particular plate all Megaphyllum and Om-
matoiulus were amplified successfully, whereas they had failed before.

Figure 1. Map of sampled areas (dots). For checks of intraspecific variability of COI sequences, localities 
in Bavaria, but also elsewhere within the species’ areas of distribution, have been sampled and analyzed 
(sampling data from November 2008 to November 2010; a few specimens from northern Spain omitted).
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Data analysis

Resulting data for the myriapods treated here are taken from the respective tools in-
cluded in BOLD, and calculated using the Kimura 2 Parameter (K2P) model. Se-
quences were imported into PAUP* (Swofford 2003) as Fasta files, and tree statis-
tics were calculated using the bootstrap algorithm of PAUP* with 10 replicates and a 
neighbour-joining/UPGMA search. Only groups with a frequency above 50% were 
retained for consensus tree reconstruction.

Results

Data analysis

At the moment our myriapod barcode library includes 320 specimens, 122 species, 56 
genera and 24 families of Myriapoda (Fig. 2). All sequences were longer than 500 bp 
and thus fulfill the requirements for barcoding. The following analysis is based on this 
dataset (MYFBA), composed of a total of 126 taxa (122 species, three additional sub-
species and one subspecies hybrid).

The mean sequence compositions in our sequences are G = 16.32%, C = 21.75%, 
A = 30.04% and T = 31.87% in Chilopoda, and G = 17.64%, C = 17.67%, A = 
26.21% and T = 38.29% in Diplopoda. This shows a pronounced bias towards A and 
T, which is characteristic of arthropods.

In Chilopoda (Fig. 3) the lowest interspecific distance (K2P distance to nearest 
neighbour) was found between the species Lithobius borealis and Lithobius valesiacus 
(11.99%), and the maximum between Pachymerium ferrugineum and Strigamia crassipes 
(25.26%). The mean value of the interspecific distance for Chilopoda was 18.30%. 
Interspecific distances in Diplopoda (Fig. 4) ranged between 0 % in the subspecies of 
Craspedosoma rawlinsii (including the taxa alemannicum, alsaticum, transsilvanicum and 
the hybrid germanicum (= alemannicum X rawlinsii)) and 33.18 % between the neigh-
bour pair Polyzonium germanicum and Geoglomeris subterranea which belong to differ-
ent orders. The mean value of the interspecific distance for Diplopoda was 14.17%.

Intraspecific distances in Chilopoda (K2P maximum pairwise distance) ranged 
between 0%, for five species, and 21.55% for Lithobius microps, with a mean value for 
all studied chilopod species of 6.73% (Fig. 5). In Diplopoda, 0% was found for 19 
species, and the maximum was 6.61 in Glomeridella bitaeniata, with a mean value of 
0.82% for all studied diplopods (Fig. 6).

Neighbour-joining trees

Analysis of our data resulted in the Neighbour-joining (NJ) trees shown in Figs 7–11. 
Especially in Diplopoda-Helminthomorpha, where species delimitation is compara-
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Figure 2. Some Bavarian myriapods for which barcodes are now available. A. Glomeris pustulata Latreille, 
1804. B. Polydesmus helveticus Verhoeff, 1894. C. Cylindroiulus boleti (C. L. Koch, 1847). D. Unciger 
foetidus (C. L. Koch, 1838). E. Haasea flavescens (Latzel, 1884). F. Atractosoma meridionale Fanzago, 1876. 
G. Cryptops parisi Brölemann, 1920. H. Henia vesuviana (Newport, 1845). Photos: J. Spelda.

tively easy due to the diversity of their species-specific secondary copulatory appa-
ratus (gonopods), the results of classical (morphological) taxonomy correspond per-
fectly with the COI lineages in most cases of our dataset. In the following, we give 
examples to show how fruitful the combination of barcoding and classical taxonomy 
can be in myriapod research.

Though the mitochondrial COI gene is generally not seen as adequate for resolving 
relationships at taxonomic levels higher than species or genus, all barcoded myriapod 
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Figure 3. Interspecific COI variability (K2P): distance to nearest neighbour; Chilopoda

Figure 4. Interspecific COI variability (K2P): distance to nearest neighbour; Diplopoda
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Figure 5. Intraspecific COI variability (K2P): maximum pairwise distances; Chilopoda

Figure 6. Intraspecific COI variability (K2P): maximum pairwise distances; Diplopoda
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orders (Polyxenida, Polydesmida, Glomerida, Chordeumatida, Polyzoniida, Scolopen-
drida, Lithobiida and Geophilida) form single COI clades, except for the Julida, which 
form two clades (Figs 7, 9). The latter is not too puzzling, however, as according to 
Enghoff (1981) one of these two clades is formed by the species Nemasoma varicorne, 
which belongs to the only distantly related superfamily Nemasomatoidea. Moreover, 
several chordeumatidan families are also well supported by the barcodes, i.e. Mastigo-
phorophyllidae, Haaseidae and Craspedosomatidae (Fig. 10).

Most of the studied species appear as distinct COI clades. Barcoded species can 
overlap for two reasons. First, speciation may have been very recent, e.g. during 
Pleistocene glacial episodes, as is the case for the diplopod genera Craspedosoma, 
Rhymogona and Listrocheiritium (Spelda 1996). In these genera genetic introgression 
is thought to occur commonly. For that reason the subtaxa are treated as subspecies 
(see Hauser 2004 for Craspedosoma, and Scholl and Pedroli-Christen 1996 for Rhy-
mogona) or as (semi)species when their separation has been confirmed (Spelda 2006 
for Rhymogona). The second reason for overlapping barcode groups originates from 

Figure 7. Complete neighbour-joining tree of COI sequence divergences (K2P model) of studied myri-
apod orders; barcoded terminal taxa and clades above their basal nodes omitted. This tree serves for orien-
tation in the detailed trees given in Figs 8–11.
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Figure 8. Neighbour-joining tree of COI sequence divergences (K2P model) of studied Polyxenida, 
Polydesmida and Glomerida. Solid circles: examples of excellent resolution of very close species of the ge-
nus Polydesmus. Numbers above and below branches show bootstrap values of NJ analysis, branch length 
indicates sequence divergence in %.
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Figure 9. Neighbour-joining tree of COI sequence divergences (K2P model) of studied Julida. Note 
well-supported COI groups for each species allowing for sequence-based species identification. Numbers 
above and below branches show bootstrap values of NJ analysis, branch length indicates sequence diver-
gence in %.



Jörg Spelda et al.  /  ZooKeys 156: 123–139 (2011)134

Figure 10. Neighbour-joining tree of COI sequence divergences (K2P model) of studied Chordeu-
matida. Asterisk: deep barcoding divergence in Chordeuma silvestre; solid squares: polyphyly of genus 
Ochogona; arrows: low sequence divergences in the genera Craspedosoma, Listrocheiritium and Rhymogona. 
Numbers above and below branches show bootstrap values of NJ analysis, branch length indicates se-
quence divergence in %.
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extraordinarily high intraspecific variation (over 5% divergence) in several nominal 
chilopod species. Unfortunately, the chilopod samples in our dataset include a com-
paratively high number of singletons and doubletons, which makes it difficult to 
decide whether we face cryptic species or genuinely high intraspecific variation. For 
example, the genus Strigamia, especially the S. crassipes group, was previously split 
into many more species than today (Verhoeff 1935), a solution that might be justi-
fied in the light of our barcoding results.

At the species and genus levels, we found examples of both well and weakly sup-
ported species. For example, Polydesmus testaceus and P. helveticus (both often regarded 
as belonging to a separate genus Propolydesmus; see Enghoff and Golovatch 2003), and 
P. angustus, P. illyricus and P. monticola (Polydesmus s. str.), respectively, both form close-
ly related species groups of highly similar morphology that show interspecific COI 
differences of more than 5%, and hence can be identified unequivocally using DNA 
barcodes (Fig. 8). It is also interesting to see that two other ‘true’ Polydesmus species, P. 
denticulatus and P. edentulus, are quite distant from both species groups, which implies 
that the genus Polydesmus could be split further.

Conversely, very low interspecific variation is found, e.g., in the chordeumatidan 
genera Craspedosoma, Listrocheiritium and Rhymogona (Fig. 10). In particular it was not 
possible to resolve the very closely allied species/subspecies complex within the Craspe-
dosoma rawlinsii –group, a result that may reflect ongoing introgression and hybridiza-
tion. The members of this group even exhibit nearest neighbour distance values of zero, 
indicating that the COI barcoding method is not suitable for separating its subtaxa.

Moreover, examples of high intraspecific variation can be found in several Litho-
bius species (L. forficatus, L. mutabilis, L. tricuspis) (Fig. 11), and in Chordeuma 
sylvestre (Fig. 10). These deep barcoding divergences could represent more than just 
high variation and might indicate that cryptic species, previously undetected using 
the classical morphological approach, are present among our samples. However, the 
revalidation of the species L. glacialis by Pilz et al. (2008) is clearly supported by 
our barcoding results. This species is distinctly separate from the lowland clade of L. 
mutabilis (a clade that might contain a cryptic species, as stated above), but shows 
only low intraspecific variation, even though the investigated material originates 
from very distant mountain areas (Wetterstein Mts Bavaria, and Dachstein Mts Aus-
tria). Surprisingly deep divergences are also found within the chordeumatidan genus 
Ochogona, suggesting that this genus is paraphyletic (Fig. 10).

Discussion

Despite the success of COI barcoding in so many species of centipedes and millipedes 
it has to be admitted that there are still technical problems with this method that make 
the success of the barcoding process for any single sample unpredictable. For reasons 
of cost efficiency the CCDB presently uses only one set of standard primers that are 
probably not optimal for all groups of centipedes and millipedes. For example, we have 
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Figure 11. Neighbour-joining tree of COI sequence divergences (K2P model) of studied Chilopoda. As-
terisks: Deep divergences within Lithobius tricuspis and L. mutabilis suggesting cryptic speciation. Numbers 
above and below branches show bootstrap values of neighbour-joining analysis, branch length indicates 
sequence divergence in %.
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failed so far to get any sequences in the genera Trachysphaera and Mycogona, and have 
obtained only single chance results in the Glomeris undulata and the Leptoiulus simplex 
species groups. The genera Ommatoiulus, Unciger and Tachypodoiulus also seemed to be 
difficult, as we have obtained only a few barcodes for each of these taxa. To get optimal 
results special primers would have to be designed. But it is not only the primer design 
but also the protocol that influences the results. This might explain why some species 
yielded a barcode in one analytical plate but not in another. Contamination by chemi-
cals (defense secretions in millipedes) might be another cause of unpredictable failures.

Although COI barcoding has provided an excellent tool for the identification of 
all life stages in several species, there are some problems with this gene locus as it is of 
mitochondrial origin. This means that it only shows maternal inheritance; therefore 
different maternal lines might mock cryptic species. This mainly affects the Chilopoda, 
which show a much higher genetic variability than the Diplopoda. While the histo-
gram of intraspecific distances of the Diplopoda (Fig. 6) resembles that found in in-
sects (e.g., Lepidoptera – Geometridae: Hausmann et al. 2011a), the histogram of the 
Chilopoda (Fig. 5) implies several undiscovered lineages, either of cryptic species or of 
long separated haplotypes.

Recent speciations of glacial or postglacial origin with ongoing hybridization and 
introgression are impossible to resolve using barcodes, as apparently shown by the gen-
era Craspedosoma, Rhymogona and Listrocheiritium. In such cases other genes, especially 
of nuclear origin, should be used for evolutionary analysis in addition to COI.

Our results show that DNA barcoding can be a highly effective tool for the iden-
tification of Chilopoda and Diplopoda, provided that the right primers are designed 
and the right protocol is used. Before it can be better used, a reference barcode library 
is needed, the genetic variation must be known, and a close partnership between re-
searchers with taxonomic expertise and those with a background in molecular analysis 
should be established for the interpretation of the results.
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