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Abstract
Morphological classification and mitochondrial phylogeny of a pair of morphologically defined species 
of New Caledonian freshwater gastropods, Hemistomia cockerelli and H. fabrorum, were incongruent. We 
asked whether these two nominal species can be unambiguously distinguished based on shell morphology 
or whether the taxonomic discrepancy inferred from these character types was reflected in the variation 
of shell morphology. Our investigations were based on phylogenetic analyses of a fragment of the mito-
chondrial cytochrome c oxidase subunit I, geometric morphometric analyses as well as micro computer 
tomography. The species presorted to morphospecies by eye overlapped in shell shape. However, statisti-
cally, all shells were correctly assigned, but not all of them significantly. Qualitatively, both nominal species 
can be unambiguously distinguished by the presence/absence of a prominent denticle within the shell. 
In the phylogenetic analyses, individuals from three populations clustered with the “wrong” morphospe-
cies. In the absence of data from multiple loci, it was assumed for the single specimen from one of these 
populations that its misplacement was due to a recent hybridization event, based on its very shallow 
position in the tree. For the other two cases of misplacement neither introgression nor incomplete lineage 
sorting could be ruled out. Further investigations have to show whether the morphological overlap has a 
genetic basis or is due to phenotypic plasticity. In conclusion, despite their partly unresolved relationships 
H. cockerelli and H. fabrorum may be considered sister species, which are reliably diagnosable by the pres-
ence or absence of the denticle, but have not yet fully differentiated in all character complexes investigated.
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Introduction

Conflict in phylogenetic signal between different characters, e.g. between different 
genes, between mitochondrial (mt) and nuclear (nc) DNA, or between genes and mor-
phology, is commonly observed across a wide range of taxa (e.g., Wiens and Hollings-
worth 2000; Shaw 2002; Pelser et al. 2010; Sauer and Hausdorf 2010; Debiasse et al. 
2014; Sharma et al. 2015). This conflict may be due to a number of reasons includ-
ing selection, convergent evolution, various forms of reticulate evolution, cryptic spe-
cies, demography, inhomogeneous evolutionary rates, incomplete lineage sorting, and 
unresolved taxonomy (Felsenstein 1978; Maddison 1997; Funk and Omland 2003; 
Seehausen 2004; Arnold 2006; Mallet 2007; Nosil 2012). In a recent phylogenetic 
analysis of tateid gastropods from New Caledonia, Zielske and Haase (2015) discov-
ered incongruent topologies of trees based on mitochondrial (COI, 16S rRNA) and 
nuclear (ITS2) gene sequences regarding a pair of nominal species, Hemistomia cocker-
elli (Haase and Bouchet 1998) and H. fabrorum (Haase and Bouchet 1998). Not only 
were the sets of sequence data in conflict, also classification based on shell morphology 
did not match the DNA data. Zielske and Haase (2015) assumed that introgression 
through hybridization may be responsible for these conflicts, however, postponed a 
more definite statement to a more comprehensive analysis involving more populations 
and more specimens per locality.

These investigations were initially the goal of the present account. Unfortunately, 
we could not consistently amplify ITS2 across the entire, enlarged data set. Therefore, 
we had to restrict this analysis to a comparison of COI-phylogeny and shell morphol-
ogy. Typical H. cockerelli have a slender-conical shell whereas H. fabrorum is much 
broader. In addition, H. cockerelli is characterized by a prominent palatal denticle c. 
1/3 whorl behind the outer lip (Figs 1, 2). Anatomically, these two species are very 
similar (Haase and Bouchet 1998). However, the variation within and among popula-
tions of each taxon is considerable and identification based on shell shape alone may be 
ambiguous. Both species occur in springs as well as small streams and have fairly broad, 
overlapping ranges. Occasionally, they are encountered in sympatry (Haase and Bou-
chet 1998, present paper: population 38). Hence, the question guiding our present 
analysis was whether these two nominal species can be unambiguously distinguished 
from each other based on shell morphology. In other words, we asked whether the 
conflict between shell-based classification and DNA-based phylogenies (Zielske and 
Haase 2015) is reflected in shell morphology and how this conflict may be biologically 
explained and interpreted taxonomically.
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Figure 1. Hemistomia cockerelli, paratype. A Whole shell slightly tilted for better recognition of denticle 
exposed after digitally opening in B (arrow) C Longitudinal section in upright position showing denticle 
(arrow).

Figure 2. Hemistomia fabrorum, topotype. A Whole shell B Longitudinal section.

Material and methods

Material

Most specimens examined in this study were collected in 2012 at 22 localities in New 
Caledonia (Table 1, Fig. 3; Zielske and Haase 2015). Presorting of the collected ani-
mals to morphospecies was made by eye and in case of population 46 deviated from 
our previous paper. 37 paratypes (Haase and Bouchet 1998) of H. cockerelli included 
in morphometric analyses were borrowed from the Museum National d’Histoire Na-
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Table 1. Material investigated. Ngen, number of genetically investigated specimens; Nmor, number of 
morphologically investigated specimens; Pop#, population number; Pt, paratypes.

Pop# Species Latitude Longitude Nmor Ngen

1A H. fabrorum 22°08'59.0"S, 166°29'10.6"E 25 10
6B H. fabrorum 21°48'08.0"S, 166°04'14.6"E 36 9
8 H. fabrorum 21°44'32.1"S, 166°05'20,6"E 4 0

9A H. cockerelli 21°44'30.9"S, 166°05'57.9"E 3 2
10 H. fabrorum 21°42'55.4"S, 166°07'21.1"E 15 8
11 H. cockerelli 21°48'16.8"S, 166°00'00.8"E 26 7
13 H. cockerelli 21°47'30.8"S, 165°54'31.6"E 20 7
14 H. cockerelli 21°47'30.8"S, 165°54'38.7"E 11 8

15A H. cockerelli 21°47'24.4"S, 165°54'51.2"E 6 1
16 H. cockerelli 21°47'24.4"S, 165°54'51.2"E 10 2
17 H. cockerelli 21°39'52.8"S, 165°43'10.3"E 11 2
18 H. cockerelli 21°39'40.6"S, 165°43'06.9"E 22 1

25B H. fabrorum 21°34'15.7"S, 165°49'41.2"E 11 9
28 H. fabrorum 21°31'07.4"S, 165°48'20.0"E 11 10

30C H. cockerelli 21°34'21.6"S, 165°41'02.5"E 9 1
31 H. cockerelli 21°33'33.5"S, 165°42'11.3"E 7 2
32 H. cockerelli 21°34'55.9"S, 165°40'16.7"E 6 0
36 H. cockerelli 21°38'22.1"S, 165°51'37.5"E 9 3

38B H. fabrorum 21°38'09.3"S, 165°51'52.7"E 11 9
38C H. cockerelli 21°38'09.3"S, 165°51'52.7"E 10 6
39 H. fabrorum 21°37'56.1"S, 165°51'54.4"E 6 2
41 H. cockerelli 21°38'12.3"S, 165°51'34.1"E 5 0
46 H. fabrorum 21°14'30.2"S, 165°16'30.8"E 13 9
Pt H. cockerelli 21°49.2’S, 166°56.6’E 37 0

turelle Paris (MNHN-IM-2012-2694). Altogether 324 individuals from 24 sites were 
used for morphometric analyses. 108 thereof from 20 sites were used for phylogenetic 
analyses. The COI-sequence of a specimen from population 18 was taken from Ziel-
ske and Haase (2015). Sequences were submitted to GenBank and received acces-
sion numbers KT203603 - KT203710. Specimens included in the recent study are 
encoded as follows: “Population.Specimen Number”, for instance “1A.01” represents 
specimen number one from population 1A.

Shell morphology

All 324 individuals were investigated for the presence/absence of a denticle 1/3 whorl 
behind the outer lip, which has been described as diagnostic for H. cockerelli (Haase 
and Bouchet 1998), under a dissecting microscope. For documentation, four speci-
mens were selected for micro-computed X-ray tomography (μCT) - one paratype of 

http://www.ncbi.nlm.nih.gov/nuccore/KT203603
http://www.ncbi.nlm.nih.gov/nuccore/KT203710
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H. cockerelli, one topotype of H. fabrorum, and one specimen each from morphologi-
cally intermediate populations 9A and 46 (see below). Scans were performed using an 
XRadia Micro XCT-200 (Carl Zeiss X-ray Microscopy Inc., Pleasanton, USA). The 
samples were placed in pipette tips glued on an insect pin. Each shell was scanned for 
1 h at 40 kV and 8 W at four times magnification. Image stacks were processed and 
three dimensional surface models constructed using the 3D analysis software AMIRA 
v. 5.6.0 (FEI, Visualization Science Group).

For geometric morphometric investigations (Zelditch et al. 2012), shells were pho-
tographed at 30-times magnification using a Nikon SMZ 800 stereoscopic microscope 
(Nikon Corporation, Tokyo, Japan) equipped with a Nikon DS-2M camera and NIS-
Elements AR v. 3.2 software (Nikon, Tokyo, Japan). Snails were placed onto a silicone 
surface for easier positioning, all orientated with the longitudinal axis (columella) parallel 
to the y-axis. Images were converted into tps format using TPSUTIL v. 1.58 (Rohlf 
2013a). 17 landmarks (Fig. 4) were digitized for each individual with TPSDIG v. 2.17 
(Rohlf 2013b). In order to check the repeatability of the procedure, it was repeated for 
ten specimens on two consecutive days. The comparison with Goodall’s F-test in TWO-
GROUP v. 8 (a program of the IMP suite written by David Sheets: http://www.canisius.
edu/~sheets/morphsoft.html) was not significant (p = 0.59) indicating that positioning 
the shells and placing the landmarks was highly repeatable (cf. Haase and Misof 2009).

50 km500 km

New Caledonia

Australia

Vanuatu

Solomon Islands

Papua New Guinea

Hemistomia fabrorum

Hemistomia cockerelli

46

18
9A

Figure 3. Map of New Caledonia showing sampling localities. Samples “misplaced” in phylogenetic 
analyses identified by population numbers.

http://www.canisius.edu/~sheets/morphsoft.html
http://www.canisius.edu/~sheets/morphsoft.html
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Figure 4. Seventeen landmarks placed on a shell of Hemistomia fabrorum from population 39.

In order to visualize the morphological variation, a principal component analysis 
(PCA) was performed using MORPHOJ v. 1.06a (Klingenberg 2011). COORDGEN 
v. 8 belonging to the IMP suite was used in order to generate input-data for further 
analyses with other IMP programs. Based on the PCA, we identified individuals with 
uncertain morphospecies allocation for further analyzes by canonical variates analysis 
(CVA) and assignment tests conducted with the IMP program CVAGEN v. 8. For 
this identification, equal frequency confidence ellipses with a probability of 95% were 
plotted on the PCA graph. Individuals localized in the intersection of both ellipses and 
its neighborhood were classified as uncertain and treated as “unknown specimens” in 
assignment tests including jackknife-assignment (Webster and Sheets 2010). The CVA 
axes determined by the two known groups were used to assign the unknown specimens 
to one of the known groups. A pair-wise comparison between the two morphospecies 
including all specimens previously assigned to either morphospecies with a p-value 
higher than 0.05 was performed with Goodall’s F-test in TWOGROUP v. 8.
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DNA isolation and sequencing

DNA was isolated using Qiagen’s DNeasy Blood & Tissue Kit (QIAGEN GmbH; 
Hilden, Germany) in compliance with the manufacturer’s protocol except that we eluted 
only in 20 μl of AE-buffer. A fragment of the mitochondrial cytochrome c oxidase subu-
nit I gene (COI) was amplified using the primers LCO1490 and HCO2198 (Folmer 
et al. 1994), the latter modified at position 12 (G→A; Zielske et al. 2011). Polymerase 
chain reactions were performed in 12.5 μl containing 1.1 μl 10x BH4 buffer (BIOLINE 
GmbH; Luckenwalde, Germany), 4.4 mM MgCl, 0.3 μM of each primer, 0.2 mM 
dNTP, 0.5 μl BSA (1%), 0.25 U DNA-Polymerase (BIOLINE), 5–50 ng DNA and 
water. The PCR conditions were 95 °C for 5 min for denaturation and 40 cycles start-
ing at 94 °C for 60 s, followed by annealing for 90 s with an initial touchdown from 55 
to 46 °C with a drop of one degree per cycle, an extension step at 72 °C for 60 s, and 
10 min final extension at 72 °C. Amplification products were purified using 4 μl PCR-
product and 1 μl Exo-SAP [0.04 μl Exonuclease I (20.000 U/ml; New England BioLabs 
GmbH; Frankfurt/Main, Germany), 0.15 μl 10x Shrimp Alkaline Phosphatase Buffer 
(Promega; Madison, WI, USA), 0.81 μl ddH2O] per sample. This mix was incubated 
at 37 °C for 15 min followed by 85 °C for another 15 min. Cycle sequencing was con-
ducted using the Big Dye Terminator Ready Reaction Mix v3.1 (Applied Biosystems, 
(ABI); Carlsbad, CA, USA) and the PCR primers. The cycle sequencing products were 
purified using Agencourt’s® CleanSEQ® Dye-Terminator Removal (Beckman Coulter; 
Beverly, MA, USA) before sequencing on an ABI 3130xl Genetic Analyzer.

Phylogenetic analyses

COI sequences were edited using the software DNA BASER v. 4.16 (DNA Baser 
Sequence Assembler v. 4.16 2014). After addition of two outgroup sequences of 
H. nyo and H. andreae (see Haase and Zielske 2015; Zielske and Haase 2015), the 
alignment was generated with Clustal W implemented in MEGA v. 6.06 (Tamura 
et al. 2013) and trimmed to a length of 658 bp. The alignment was screened for 
potential stop-codons with the software DAMBE v. 5.5.1 (Xia 2013) to check for 
potential editing errors and nuclear pseudogenes. jMODELTEST v. 2.1.4 (Darriba 
et al. 2012) identified HKY + I + Γ as best-fitting DNA substitution model according 
to the Bayesian information criterion. Three phylogenetic analyses were conducted, 
a maximum likelihood analysis (ML), a bio-neighbor-joining analysis (BNJ), and a 
neighbor-net analysis. ML was performed using Garli 2.01 (Zwickel 2006). Both 
optimal tree and bootstrap support were inferred from 500 replicates. The BNJ tree 
including 5000 bootstrap replicates was constructed in PAUP* v. 4.0b10 (Swofford 
2002). Bootstrap support was considered significant if > 75. The neighbor-net was 
computed with the software SPLITSTREE v. 4.13 (Huson and Bryant 2006) based 
on the K3ST-model. The optimal model (see above) could not be applied because the 
program issued undefined distance values.
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Results

Geometric morphometrics

The first two axes of the PCA comparing the morphospecies explained 76.2% of the 
total morphological variation. The nominal species were fairly well separated along 
axis 1, however, the 95% confidence ellipses were overlapping. Nineteen specimens 
within the area of overlap and its neighborhood as defined in Figure 5 were treated as 
specimens with unknown identity (“unknown”) in further analyses. The CVA defined 
the set of axes allowing for the greatest possible discrimination of the two groups and 
axis 1 was highly significant (p < 0.001). These axes were used to assign the unknown 
specimens. Eight of these specimens were classified as H. cockerelli and 11 as H. fa-
brorum. All assignments were correct with respect to the initial classification by eye, 
however, only nine significant. Twelve of the 305 shells with - according to the PCA 
- unambiguous identity were also assigned correctly but not significantly.

A jackknife test of assignment, a cross-validation procedure, was performed a pos-
teriori to assess the robustness of the CV axes and comprised these 305 specimens. In 
10,000 replicates, 10% of the specimens (31) were randomly selected as unknown data 
and assigned to one of the resulting groups of the following CVA analysis based on the 
remaining 274 shells. 99% of the assignments were correct and significant, 1% correct 
and not significant, and no shell was incorrectly assigned.

In a subsequent Goodall’s F test both morphospecies were highly significantly (p 
< 0.001) distinguished. This test included all specimens unambiguously (p > 0.05) as-
signed to one of the nominal species in the previous CVA-based tests.

Micro-CT

The μCT-based three dimensional shell surface models revealed, as expected, presence and 
absence of the palatal denticle in the paratype of H. cockerelli and the topotype of H. fab-
rorum, respectively (Figs 1, 2). In the specimen from population 9A with shells unusually 
broad for H. cockerelli, the denticle was well developed, while it was entirely absent in the 
shell from population 46, a slender H. fabrorum, also confirming the initial classification.

Phylogenetic analyses

The phylogenetic tree reconstructions inferred very similar relationships. Figure 6 em-
phasizes the fully resolved BNJ topology, because it had higher bootstrap support than 
the ML tree except for the clade of population 46. In order to show the general con-
gruence of both reconstructions, the ML topology is given in Figure 6B. The main 
differences between both optimal topologies were the different positions of the clade 
of population 46 and individual 6B.10. In the BNJ tree population 46 was nested 
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Figure 5. Landmark-based principal component analysis with 95% confidence ellipses. A Variation of 
visually determined H. cockerelli and H. fabrorum B Definition of specimens treated as “unknown” in 
assignment test.

among specimens allocated to H. cockerelli and 6B.10 sister species of a clade contain-
ing sequences from populations 25, 28, 38, and 39. In the ML tree, population 46 was 
sister group to nominal H. cockerelli and 6B.10 clusterd with other individuals from 
population 6B. However, when unsupported nodes including those concerning both 
aforementioned lineages were collapsed, the topologies were practically identical. The 
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ingroup was well supported. It consisted of two main clades of which only the one 
containing the majority of specimens identified as H. fabrorum received significant 
bootstrap support. This H. fabrorum-clade included three specimens that were mor-
phologically identified as H. cockerelli, one from population 18 nested with a short 
branch among individuals from populations 1A and 10, and the two snails from popu-
lation 9A forming a well supported clade on a long branch. In turn, population 46, 
morphologically identified as H. fabrorum, clustered with specimens allocated to H. 
cockerelli. Within both morphospecies, not all populations were monophyletic. The 
neighbor-net revealed basically the same topology including the shallow position of 
the specimen from population 18 and the rather basal connections of the snails from 
populations 9A and 46, respectively (Fig. 7). The network also illustrated the conflict-

Figure 7. Neighbor-net illustrating conflict in phylogenetic signal of sequence data. Arrows indicate 
“misplaced” individuals. Scale bar: substitutions per site.
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ing signal within the two major clades most likely due to lack of data and homoplasy, 
which explain e.g. the lack of bootstrap support for the H. cockerelli-clade in the tree 
reconstructions (Fig. 6).

Discussion

Conflict in phylogenetic/taxonomic signal between different characters is not uncom-
mon among truncatelloidean gastropods, in particular in cases of recent events of spe-
ciation and young evolutionary radiations (e.g., Haase 2005; Haase et al. 2007; Zielske 
and Haase 2014a, b), but also among deeper lineages (Colgan et al. 2006; Wilke et 
al. 2006; Prié and Bichain 2009). Geometric morphometric analyses and μCT-scans 
showed that the two nominal species H. cockerelli and H. fabrorum are distinguishable 
by their shell characteristics. The presorting to morphospecies was 100% in accordance 
with the final allocation of specimens based on the CVA despite a slight overlap of the 
variation in the PCA. However, less than 50% of the assignments of specimens with 
intermediate shape treated as “unknown” specimens were significantly correct. Thus, 
in face of this remaining ambiguity shell shape alone is not a perfect discriminator. 
However, both taxa can be unambiguously identified by the presence (H. cockerelli) 
or absence (H. fabrorum) of the shell denticle (Haase and Bouchet 1998). This den-
ticle is either fully developed or absent. We did not observe intermediate states such 
as a smaller size. Across Hemistomia, this denticle exhibits a considerable variation 
in shape, size and position and is readily visible through the shell under a dissecting 
microscope. In several mainly larger species, it is lacking, though (Haase and Bouchet 
1998). Also in the genetically “misplaced” specimens from populations 9A, 18 (both 
morphologically H. cockerelli) and 46 (morphologically H. fabrorum), the denticle was 
either present or absent.

As the number of individuals misplaced in the phylogenetic analyses was very low 
and in particular because ncDNA data were lacking, explanations for the incongru-
ences have to remain largely speculative. However, at least for dubious shallow rela-
tionships the assumption of a recent event, which can only be introgression through 
hybridization, is very likely. The specimen identified as H. cockerelli from population 
18 was nested among individuals allocated to H. fabrorum from three populations. 
Since all surrounding, more basal nodes belonged to H. fabrorum, this misplaced speci-
men most likely has inherited its mitochondria through introgression by hybridization 
of a female H. fabrorum with a male H. cockerelli in the not too distant past.

In contrast, the misplaced clades consisting of the two specimens from popula-
tion 9A and the nine individuals of H. fabrorum from population 46, respectively, 
were connected to deeper, partly unsupported nodes. It is exactly this situation which 
makes the distinction of incomplete lineage sorting and hybridization difficult (Joly et 
al. 2009). Assuming hybridization as cause of the topological inconsistencies requires 
adhoc hypotheses, though. In order to coalesce prior to the completion of speciation a 
lineage “misplaced” through introgression would have a sole survivor and that only in 
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the species it introgressed into (Joly et al. 2009). Therefore, assuming incomplete line-
age sorting as cause for the position of populations 9A and 46 is more parsimonious, 
although hybridization cannot be ruled out.

In conclusion, despite their partly unresolved relationship H. cockerelli and H. fab-
rorum may be considered sister species, which are reliably diagnosable by the presence 
or absence of the palatal denticle, but have not yet fully differentiated in all character 
complexes investigated. The range of H. fabrorum covers wide parts of southern New 
Caledonia and largely overlaps with that of H. cockerelli, which is found almost across 
the entire island (Haase and Bouchet 1998). In contrast to the majority of spring 
snails in New Caledonia and elsewhere, both species have fairly wide ranges with many 
island-like populations. This kind of structure has been shown to preserve genetic vari-
ation and delay lineage sorting as the effective population size remains large (Slatkin 
1991; Thomaz et al. 1996). Most of the investigated Hemistomia populations occurred 
in close geographical proximity. Consequently, interactions between both species can-
not be excluded. Interestingly, only in a single locality, 38, were both species found 
sympatrically. The fifteen individuals sequenced from there fell into the respective cor-
rect clades. This suggests that hybridization is probably occurring only rarely. How-
ever, three individuals from population 38 were among the 19 with ambiguous shell 
shape. These comprised also individuals of populations 18 and 46. However, it is 
impossible to tell whether ambiguities in shell shape had a genetic cause or were due 
to phenotypic plasticity, which obviously plays an important role in a related species 
from New Zealand, Potamopyrgus antipodarum (Gray, 1843) (Haase 2003; Kistner 
and Dybdahl 2013; and literature therein).

In order to unambiguously identify the causes of the genetic inconsistencies an even 
denser sampling design as well as using more genetic markers would be required. The 
potential role of phenotypic plasticity can only be assessed in common garden experi-
ments. The ambiguous genetic signal also calls for caution for barcoding (Hebert et al. 
2003) if this is conducted without morphological control (e.g. Goldstein and DeSalle 
2010). Morphologically, H. fabrorum represents the derived conditions regarding the 
broader shell shape and the lack of a denticle considering that the closest relatives of the 
pair of species discussed in this account, H. andreae and H. nyo, are hardly distinguish-
able from H. cockerelli (Haase and Bouchet 1998; Haase and Zielske 2015).
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