Kelawakaju gen. nov., a new Asian lineage of marpissine jumping spiders (Araneae, Salticidae, Marpissina)

Wayne P. Maddison', Gustavo R. S. Ruiz², Paul Y. C. Ng^{3}, Ettukandathil Haridas Vishnudas ${ }^{4}$, Ambalaparambil V. Sudhikumar ${ }^{4}$
I Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 2 Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, CEP 66075-110, Belém, PA, Brazil 3205 River Valley Road, \#16-53, Singapore 238274, Singapore 4 Centre for Animal Taxonomy and Ecology, Department of Zoology, Christ College, Irinjalakuda, Kerala, 680 125, India

Corresponding author: Wayne P. Maddison (wayne.maddison@ubc.ca)

[^0]
https://zoobank.org/57F636A8-D488-446F-9210-CBFA33A78998

Citation: Maddison WP, Ruiz GRS, Ng PYC, Vishnudas EH, Sudhikumar AV (2022) Kelawakaju gen. nov., a new Asian lineage of marpissine jumping spiders (Araneae, Salticidae, Marpissina). ZooKeys 1130: 79-102. https://doi. org/10.3897/zookeys. 1130.87730

Abstract

The genus Kelawakaju Maddison \& Ruiz, gen. nov., is described for a lineage of bark-dwelling Asian marpissine jumping spiders that represent a dispersal to Eurasia separate from that of the MarpissaMendoza lineage, according to the phylogeny recovered from analysis of four gene regions. All species of Kelawakaju are new to science except Kelawakaju frenata (Simon, 1901), comb. nov., which is transferred from Ocrisiona Simon, 1901. Kelawakaju frenata is known from Hong Kong, Guangdong, Guangxi, and likely Taiwan. The five new species are Kelawakaju mulu Maddison \& Ruiz, sp. nov. (type species of Kelawakaju, from Sarawak, Malaysia, (${ }^{\lambda}$ ㅇ), K. intexta Maddison \& Ruiz, sp. nov. (from Sarawak, ठ〕), K. leucomelas Maddison \& Ng, sp. nov. (Singapore and Johor Bahru, ${ }^{\lambda}$ if), K. sahyadri Vishnudas, Mad-

Keywords

Classification, Dendryphantini, molecular phylogeny, new genus, new species, Salticinae, Salticoida, taxonomy

[^1]
Introduction

Jumping spiders of the tribe Dendryphantini diversified into more than 700 known species largely in the Americas (Maddison 2015), but a few lineages reached the Old World: a few genera in the Dendryphantina, one genus in the Synagelina, and two genera in the Marpissina. The two marpissine genera, Marpissa C. L. Koch, 1846 and Mendoza Peckham \& Peckham, 1894, are similar and likely closely related (Logunov 1999), possibly representing a single dispersal into the Palearctic. There is, however, another distinct lineage of the Marpissina in Asia, hidden taxonomically because its one described species has been misplaced to genus and tribe. Simon (1901b) chose the astioid genus Ocrisiona Simon, 1901 as the home for his species O. frenata Simon, 1901, described from Hong Kong. The type species and others of the primarily Australasian Ocrisiona (Astioida: Viciriini) are elongate and flat-bodied, as is O. frenata, but the latter species is a marpissine rather than an astioid, as we show here. Field work has revealed that O. frenata is not alone but is part of a small radiation of tree trunk dwelling marpissines in tropical Asia. We here describe the new genus Kelawakaju, gen. nov., to contain K. frenata, comb. nov., and five new species.

Materials and methods

Spider specimens examined for this study are stored in the University of British Columbia Spencer Entomological Collection, Canada (UBCZ), the Lee Kong Chian Natural History Museum, Singapore (LKCNHM, https://lkcnhm.nus.edu.sg), the Research Collections at National Centre for Biological Sciences, Bengaluru, Karnataka, India (NCBS, http://biodiversitycollections.in), and the Centre for Animal Taxonomy and Ecology, Christ College, Thrissur, Kerala, India (CATE).

Preserved specimens were examined under both dissecting microscopes and a compound microscope with reflected light. Drawings were made with a drawing tube on a Nikon ME600L compound microscope. Most photographs of living specimens were made with either a Pentax Optio 33WR digital camera with a small lens glued to it for macro capability or an Olympus OM-D E-M10 II camera with 60 mm macro lens.

All measurements are given in millimeters. Descriptions of color pattern are based on the alcohol-preserved specimen. Carapace length was measured from the base of the anterior median eyes not including the lenses to the rear margin of the carapace medially; abdomen length to the end of the anal tubercle. The following abbreviations are used: PLE, posterior lateral eyes; RTA, retrolateral tibial apophysis.

Molecular data was gathered for four gene regions by traditional Sanger PCR methods and combined with previously published data to compose a dataset of 36 taxa (Table 1) including 32 species of marpissoids (14 Marpissina, 3 Itatina, 8 Dendryphantina, 4 Synagelina, 3 Ballini) and 4 outgroups (1 Plexippini, 1 Baviini, 2 Astioida). Preservation, DNA extraction, PCR, and sequencing of nuclear 28S and Actin 5C and mitrochondrial 16SND1 and COI followed the protocols of Zhang and Maddison (2013) and Maddison et al. (2014). Alignments were done by MAFFT
with the L-INS-i option (Katoh and Standley 2013), with edges of coding regions of Actin and ND1 refined by hand using amino acid translation in Mesquite 3.61 (Maddison and Maddison 2021) and comparison to sequences with known boundaries. The Actin intron aligned so poorly that it was excluded entirely from phylogenetic analyses (Maddison et al. 2014).

Maximum-likelihood phylogenetic analyses were performed with IQ-TREE version 1.6.7.1 (Nguyen et al. 2015) using the Zephyr 3.1 package (Maddison and Maddison 2020) in Mesquite 3.7 (Maddison and Maddison 2021). The four genes were concatenated and set into seven partitions expected to have potentially different models of evolution: 28S, 16S (including other non-coding parts of 16SND1), mitochondrial codon positions 1 and 2, mitochondrial codon position 3, Actin codon position 1, Actin 2, and Actin 3. IQ-TREE was run with the options -m TESTMERGE -spp to allow the partitions to be merged and their models chosen according to the Bayesian information criteria. (The best partition scheme united Actin 1 and 2 to yield six partitions, with models 28 S : TIM3 $+\mathrm{F}+\mathrm{I}+\mathrm{G} 4,16 \mathrm{~S}: \mathrm{GTR}+\mathrm{F}+\mathrm{I}+\mathrm{G} 4$, mitochondrial 1, 2: TIM2+F+I+G4, mitochondrial 2: HKY+F+I+G4: Actin $1+2: \mathrm{SYM}+\mathrm{I}$, Actin 2: JC, Actin 3: $\mathrm{K} 3 \mathrm{Pu}+\mathrm{F}+\mathrm{G} 4$.) The maximum likelihood tree was sought with 50 search replicates, and repeatability assessed with 1000 standard bootstrap replicates.

Alignments and trees are deposited in the Dryad data repository (http://dx.doi. org/10.5061/dryad.mw6m9060r).

Results

Molecular phylogenety

The reconstructed phylogeny (Fig. 1) gives support for Kelawakaju being a monophyletic group within the Marpissina, and distinct from other genera, including the Marpissa, another known Eurasian marpissine. As expected, the Dendryphantini and each of its subtribes are monophyletic. The two species of Kelawakaju are monophyletic together, distinct from described marpissine genera, and placed as a relatively deep branching lineage in the Marpissina, although the bootstrap support is not high. These results suggest that marpissines dispersed from the Americas (where most marpissoid diversity lies; Maddison 2015) into the Old World at least twice, once for MarpissaMendoza, and once for Kelawakaju.

The phylogenetic results emphasize the difficulties faced in recognizing salticid relationships from general appearances. When one author (WPM) first collected members of the K. mulu group, he recorded them as baviines, and assumed that their resemblance to the marpissine Balmaceda Peckham \& Peckham, 1894 was convergence for trunk-dwelling. It was only with the molecular data that their identity as marpissines became clear. When other authors (EHV, AVS) first collected K. sahyadri, they also thought it likely to be a baviine. Simon (1901a, b) considered K. frenata congeneric with the viciriine Ocrisiona. It is indeed easy to confuse various marpissines, baviines, viciriines, and bredines, for convergence has given them similar body forms.
Table I. Specimens and GenBank accession numbers of four gene regions analyzed. Accession numbers with * indicate already published (Hedin and Maddison 2001; Maddison and Hedin 2003; Maddison and Needham 2006; Maddison et al. 2007, 2008, 2014; Vink et al. 2008; Bodner and Maddison 2012; Ruiz and Maddison 2015; Maddison 2016; Maddison and Szűts 2019).

Species	Specimen ID	Locality	28S	Actin	16SND1	CO1
Non-marpissoid outgroups						
Evarcha proszynskii Marusik \& Logunov, 1998	d096/S232	Canada: British Columbia	DQ665765*	EU522704*	DQ665723*	AY297379*
Bavia cf. intermedia (Karsch, 1880)	d079	Malaysia: Sabah	EU815490*	KM032958*	KM032925*	EU815603*
Myrmarachne sp.	d162	Malaysia: Pahang	EU815507*	JX145837*	EU815565*	EU815616*
Simaetha sp.	d027	Australia: Queensland	EU815477*	JX145839*	EU815546*	EU815592*
Ballini						
Afromarengo sp.	MRB262	Gabon: Ngounié: Waka National Park	JX145758*	JX145842*	JX145905*	JX145682*
Mantisatta longicauda Cutler \& Wanless, 1973	S209	Philippines: Luzon	AY297270*		AY296689*/AY297333*	AY297399*
Peplometus sp.	d199	Ghana: N. of Cape Coast, Kakum Forest	EU815515*	JX145843*	EU815572*	EU815621*
Dendryphantini: Synagelina						
Admestina sp.	GR057	U.S.A.: Mississippi	OP605970	OP700690	OP700674	
Attidops youngi (Peckham \& Peckham, 1888)	S97	U.S.A.: Missouri	AF327933*		AF327961*/AF328020*	AF327990*
Peckhamia sp.	GR137	Dominican Republic: Barahona	OP605980	OP700699	OP700683	
Synageles sp.	GR056	U.S.A.: Mississippi	OP605985	OP700705	OP700689	
Dendryphantini: Dendryphantina						
Dendryphantes hastatus (Clerck, 1757)	d043	Poland: Siedlce	EF201646*	KY200848*	KM032927*	KM033228*
Ghelna canadensis (Banks, 1897)	d005	U.S.A.: North Carolina	EF201651*	EU522708*	OP700675	
	d391	U.S.A.: North Carolina				KT462689
Hentzia grenada (Peckham \& Peckham, 1894)	GR064	USA: Florida	OP605971	OP700691	OP700676	
Phanias albeolus (Chamberlin \& Ivie, 1941)	GR049	Canada: British Columbia	OP605981	OP700700	OP700684	
Phidippus otiosus (Hentz, 1846)	GR073	USA: Florida	OP605982	OP700701	OP700685	
Rhene sp.	MRB081	China: Guangxi	OP605984	OP700704	OP700688	
Sassacus papenhoei Peckham \& Peckham, 1895	S295	U.S.A.: Arizona	AF327953*		AF327982/AF328041*	AF328012*
Zygoballus rufipes Peckham \& Peckham, 1885	S142	U.S.A. and Panama	AF327944*		AF327972*/AF328031*	AF328002*
Dendryphantini: Itatina						
Itata sp. A	S181	Ecuador: Manabi	AF327932*		AF327960*/AF328019*	AF327989*
Itata sp. B	GR107	Ecuador: Napo	OP605972	OP700692		
Itata sp. C	ECU11-4724	Ecuador: Orellana:Yasuní	OP605973		OP700677	

Species	Specimen ID	Locality	28S	Actin	16SND1	CO1
Dendryphantini: Marpissina						
Kelawakaju mulu sp. nov.	SWK12-2610	Malaysia: Sarawak: Mulu	OP605974		OP700678	OP606004
Kelawakaju frenata (Simon, 1901)	d224	China: Guangxi	JX145769*		JX145911*	JX145688*
	GR048	China: Guangxi		OP700693		
Maevia inclemens (Walckenaer, 1837)	d465	USA: Tennessee		OP700694		
	GR126	USA: North Carolina	OP605975			
Maevia intermedia Barnes, 1955	S87	USA: Alabama	AY297269*		AY296688*/AY297332*	AY297398*
Marpissa lineata (C. L. Koch, 1846)	GR055	USA: Mississippi	OP605977	OP700696	OP700680	
Marpissa nivoyi (Lucas, 1846)	GR145	Spain: Sitges	OP605978	OP700697	OP700681	
Marpissa pikei (Peckham \& Peckham, 1888)	S294/S299	USA: Arizona	AF327936*		AF327964*/AF328032*	AF327993*
Marpissa aff. pikei (Peckham \& Peckham, 1888)	GR141	Dominican Republic: Pedernales	OP605976	OP700695	OP700679	
Metacyrba pictipes Banks, 1903	GR140	Dominican Republic: Pedernales	OP605979	OP700698	OP700682	
Metacyrba taeniola (Hentz, 1846)	S298	USA: Arizona	AY297271*		AY296690*/AY297334*	
Platycryptus californicus ($\mathrm{Pkm} \& \mathrm{Pkm}$, 1888)	d316	Canada: British Columbia	KM033194*	KM032960*		KM033229*
	d158	Canada: British Columbia			OP700686	
Platycryptus undatus (De Geer, 1778)	S72	U.S.A.: Florida	AF327935*		AF327963*/AF328022*	AF327992*
	d462	Canada: Ontario: St. Williams		OP700702		
Psecas cf. viridipurpureus (Simon, 1901)	S227	Ecuador: Sucumbios	AY297273*		AY297336*	AY297400*
Psecas sp.	GR124	Ecuador: Napo	OP605983	OP700703	OP700687	

Figure I. Maximum likelihood phylogeny of Dendryphantini showing placement of Kelawakaju species as a distinct lineage in the Marpissina. Based on 28S, Actin 5C, 16SND1, COI gene regions; numbers indicate percentage of 1000 bootstrap replicates showing clade.

Taxonomy

Kelawakaju Maddison \& Ruiz, gen. nov.

https://zoobank.org/1A91FAF6-5C6F-4AAB-A770-2395DE6CCAF3
Type species. K. mulu Maddison \& Ruiz, sp. nov.
Species included.
K. mulu species group:

Kelawakaju mulu Maddison \& Ruiz, sp. nov.
Kelawakaju intexta Maddison \& Ruiz, sp. nov.
K. singapura species group:

Kelawakaju singapura Maddison \& Ng, sp. nov.
K. frenata species group:

Kelawakaju frenata (Simon, 1901)
Kelawakaju leucomelas Maddison \& Ng, sp. nov.
Kelawakaju sahyadri Vishnudas, Maddison, \& Sudhikumar, sp. nov.
Etymology. The name means tree spider in the Berawan language from the area of Long Terawan, Sarawak (kelawak = spider; kaju or kajuh = tree; Syria Lejau Malang, pers. comm.), where the first specimens of K. mulu were found. To be treated grammatically as feminine.

Diagnosis. Elongate and flat-bodied salticids, unusual among marpissines for the elongated or enlarged male chelicerae. Retrolateral tibial apophysis of palp long, blade-like, more
or less straight and parallel to axis of palp. Embolus relatively short among marpissines, arising more or less terminally on the bulb (9-12 o'clock in ventral view of left palp). Markings cryptic on tree trunks, either mottled or with low-contrast longitudinal bands.

Description. Carapace flat, narrower (K. mulu group, Figs 10, 11) to broader (K. leucomelas, Fig. 14). Lower part of the thorax in some species with $1-3$ distinct narrow vertical lines of pale scales (K. mulu: Fig. 27; K. intexta: Fig. 32; K. singapura: Figs 43, 45), resembling similar stripes in the baviine Piranthus Thorell, 1895 (Maddison et al. 2020: fig. 263) and the gophoine Cotinusa Simon, 1900 (Rubio and Baigorria 2016). Chelicerae with seta-bearing tubercles on paturon of males and some females (Figs 2-4). Males of all but two species have narrow stripes of white scales on the front face of the chelicerae, forming an inverted V (Figs 3, 4, 74, 79, 83). Two promarginal teeth and one retromarginal tooth (sometimes with a second cusp, Fig. 6). Palp's RTA a long blade. Embolus appears freely movable, separate from functional tegulum. Cymbium modified at ventral-retrolateral-proximal corner (e.g., Figs 17, 21, 47). Abdomen long and narrow.

We recognize three species groups in the genus.

Kelawakaju mulu species group

The mulu species group includes K. mulu, K. intexta, and a third as-yet-undescribed species from Singapore. They are smaller-bodied than other Kelawakaju, with mottled markings, and narrow chelicerae that project forward in the male. The embolus is narrow and forms a smooth curve bending toward the retrolateral. The lower part of the thorax has three vertical stripes of pale scales on each side. Epigynal openings are delicate and the edges difficult to discern (Fig. 18). Retromarginal tooth of chelicera with small second cusp basally (Figs 5, 6). Members of this group may prefer more shaded habitats than those of the frenata group, having been found only inside forests.

Kelawakaju mulu Maddison \& Ruiz, sp. nov.

https://zoobank.org/C1730DAC-227A-4384-B25D-CBDD46B37E76
Figs 2, 5, 10, 16-20, 23-28
Type material. Holotype: male (SWK12-2610) in UBCZ from Malaysia: Sarawak: Mulu Nat. Pk., Summit Trail near Camp 1, $4.0486^{\circ} \mathrm{N}, 114.8610^{\circ} \mathrm{E}$ to $4.0483^{\circ} \mathrm{N}$, $114.8614^{\circ} \mathrm{E}, 270 \mathrm{~m}$ elev., 21 March 2012, Maddison/Piascik/Ang WPM\#12-072. Paratype: female (SWK12-2639) in UBCZ from Malaysia: Sarawak: Mulu Nat. Pk., Summit Trail near Camp 1, $4.0480^{\circ} \mathrm{N}, 114.8626^{\circ} \mathrm{E}$ to $4.0478^{\circ} \mathrm{N}, 114.8630^{\circ} \mathrm{E}, 290-$ 320 m elev., 22 March 2012, Piascik/Ang/Andyson WPM\#12-077.

Etymology. From the name of the type locality (a noun in apposition).
Diagnosis. Dark with only a dusting of golden scales, unlike the similar but more thoroughly scale-covered K. intexta (Figs 23-28 vs. 29-34). Embolus shorter than that of K. intexta, arising at 11 o'clock (Figs 16 vs. 22).

Figures 2-9. Chelicerae of Kelawakaju species 2-4 oblique view with carapace 5-9 ventral view $\mathbf{2} K$. mulu male holotype $\mathbf{3} K$. intexta male holotype $\mathbf{4}$ K. frenata male from Guangxi $\mathbf{5} K$. mulu male holotype $\mathbf{6}$ K. intexta male holotype $\mathbf{7}$. singapura male holotype $\mathbf{8}$ K. frenata male from Guangxi $\mathbf{9} K$. frenata female from Guangxi. Scale bars: 1.0 mm .

Description. Male (based on holotype). Carapace length 2.85; abdomen length 3.05. Carapace dark brown, with white scales around cephalic region, between AME and sparse on thoracic region. Clypeus very narrow. Chelicera dark brown, elongate and projected, with a line of white scales on the prolateral face. Retromarginal tooth with two cusps, the more lateral long and curved (Fig. 5). Palp with elongate RTA. Embolus narrow and curved, but short, arising distally on the tegulum. Endite subrectangular, with no projection, dark brown. Labium dark brown and sternum light brown, with depressions along coxae I. Leg I light brown, with mid patella, mid tibia, proximal area of metatarsus and entire tarsus yellow. Legs II-IV yellow. Length of
femur I 2.10, II 1.70, III 1.40, IV 1.65; patella + tibia I 3.10, II 2.40, III 1.65, IV 2.35; metatarsus + tarsus I 1.85 , II 1.75 , III 1.50, IV 1.70. Leg spination reduced: femur I d0, p0-0-1-0 (or p0-0-2-0), II d1-1-0, p0-0-1-0, III 0 , IV d1-1-0, r0-0-1-0; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-1p, III-IV 0; metatarsus I-II v2-2, III 0 , IV v0-0-1p. Abdomen dorsally dark brown, with two transverse wide light stripes, and a third over anal tubercle; ventrally gray.

Female (based on paratype SWK 12-2639). Carapace length 2.7; abdomen length 3.55. Color as in male, except when mentioned. Chelicera light brown. Retromarginal tooth with two cusps, the distal one almost twice the size of the other, both acute. Legs II-IV with narrow stripes of white scales. Length of femur I 1.90, II 1.50, III 1.45, IV 1.85; patella + tibia I 2.60, II 1.90, III 1.75, IV 2.60; metatarsus + tarsus I 1.40 , II 1.30 , III 1.60 , IV 1.90 . Leg spines as in male, except for femur III, as in II. Abdomen as in male, except for stripes, medially interrupted; ventrally white, with two longitudinal dark brown stripes extending from booklungs to spinnerets. Epigyne with a pair of small copulatory openings distant from the posterior border, which has a medial excavation; internally, copulatory ducts fuse with glandular portions, spiral backwards and enter the large spermathecae, from which fertilization ducts emerge.

Natural history. Both specimens were collected on tree trunks on a forested slope.

Kelawakaju intexta Maddison \& Ruiz, sp. nov.

https://zoobank.org/58AE0276-1E71-45DA-AAFB-EAD822AE60F3
Figs 3, 6, 11, 21, 22, 29-34
Type material. Holotype: male (SWK12-3752) in UBCZ from MALAYSIA: Sarawak: Lambir Hills Nat. Pk., headquarters area, 4.197 to $4.198^{\circ} \mathrm{N} 114.0400$ to $114.0402^{\circ} \mathrm{E}$, 50 m elev., 30 March to 6 April 2012 Maddison/Piascik/Ang WPM\# 12-104. Paratype: male (SWK12-0523) in UBCZ from MALAYSIA: Sarawak: Bako Nat. Pk. Ulu Assam Trail, $1.712^{\circ} \mathrm{N}, 110.445^{\circ} \mathrm{E}$ to $1.713^{\circ} \mathrm{N}, 110.448^{\circ} \mathrm{E}, 30-80$, m elev., 8 March 2012, Maddison/Piascik/Ang/Lee WPM\#12-005.

Etymology. Latin, interwoven, referring to the textile-like pattern of coloured scales on the body.

Diagnosis. Body covered with a dense and intricate pattern of pale scales, white on the abdomen and slightly golden on the carapace (Figs 29, 32), and thus paler in appearance than K. mulu. Embolus arising at 9 to 10 o'clock, longer than in any other Kelawakaju (Fig. 22).

Description. Male (based on holotype). Carapace length 2.45; abdomen length 3.45. Carapace dark brown, with white scales on cephalic region, sparse on thoracic region and with line of white scales along borders of carapace. Clypeus very narrow. Chelicera dark brown, slightly projected, with mastidion. Retromarginal tooth with two cusps, the more lateral larger (Fig. 6). Palp light brown. RTA elongate. Embolus

Figures 10-15. Carapaces of Kelawakaju males $\mathbf{1 0}$ K. mulu holotype II K. intexta holotype $\mathbf{1 2}$ K. singapura holotype $\mathbf{1 3}$ K. frenata from Guangxi, Dongxing $\mathbf{1 4}$ K. leucomelas holotype $\mathbf{I 5}$ K. sahyadri holotype. Scale bars: 1.0 mm .
narrow, gently curving from its base, longer than half the length of the tegulum, arising prolaterally from the tegulum. Endite dark brown. Labium dark brown and sternum light brown. Leg I dark brown, with proximal portion of femur, mid tibia and metatarsus light brown, and tarsus yellow; II-IV light brown. Length of femur I 2.10, II 1.70, III 1.40, IV 1.65; patella + tibia I 3.10, II 2.40, III 1.65, IV 2.35; metatarsus + tarsus I 1.85, II 1.75, III 1.50, IV 1.70. Leg spination reduced: Femur I-II d1-1-0, p0-01, III d1-1-1, p0-0-1, IV d1-1-1, r0-0-1, patella I-IV 0, tibia I v2-2-2, II v1r-1r-1p, III-IV 0 , metatarsus I-II v2-2, III 0 , IV v0-0-1p. Abdomen dorsally with three pairs of dark marks with dark scales, among light areas with white scales; entirely covered by scutum; ventrally gray, with dark brown ring around spinnerets. Spinnerets yellow.

Figures I6-22. Kelawakaju mulu species group, genitalia I6-20 K. mulu I6 holotype male palp, ventral I7 same, retrolateral I8 paratype female SWK12-2639 epigyne, ventral 19 same, vulva, dorsal 20 same, ventral 2I, $22 K$. intexta holotype male palp 21 retrolateral $\mathbf{2 2}$ ventral. Scale bars: 0.1 mm .

Figures 23-28. Kelawakaju mulu 23-25 holotype male SWK12-2610 26-28 paratype female SWK122639. Scale bars: 1.0 mm .

Figures 29-34. Kelawakaju intexta 29-3 I holotype male SWK12-3752 32-34 paratype male SWK120523. Scale bars: 1.0 mm .

Female unknown.
Natural history. The paratype from Bako was found along a trail in a forest.

Kelawakaju singapura species group

The singapura species group includes only K. singapura, distinctive for the robust male chelicerae, short and stout embolus, and the long palp tibia (longer than the tibial apophysis). It is larger-bodied, like the frenata group, but has a longer ocular quadrangle, and the abdominal markings are inverted compared to the frenata group: dark laterally, paler medially, similar to K. intexta of the mulu group. There is no clear indication to which of the other two groups K. singapura is more closely related, and hence we keep it separate.

Kelawakaju singapura Maddison $\&$ Ng, sp. nov.

https://zoobank.org/418101EA-5EED-4C48-87C7-5411F4FDF216
Figs 7, 12, 35-45
Type material. Holotype: male (JK.21.08.02.0001) in LKCNHM from Singapore: Labrador Nature Reserve, $1.2653^{\circ} \mathrm{N}, 103.8019^{\circ}$ E, J.K.H. Koh \& P.Y.C. Ng, 2 August 2021. Paratypes: One female (JK.21.05.14.0001) in LKCNHM from Singapore:

Labrador Nature Reserve, $1.2664^{\circ} \mathrm{N}, 103.8014^{\circ}$ E, J.K.H. Koh \& P.Y.C. Ng, 14 May 2021. One male (90.10 .21 .0002) in LKCNHM from Singapore: Simpang, $1.44^{\circ} \mathrm{N}, 103.85^{\circ}$ E, J.K.H. Koh, 21 October 1990. One female (AS19.0023) in UBCZ from Singapore: Adam Road, $1.336^{\circ} \mathrm{N}, 103.816^{\circ} \mathrm{E}, 10 \mathrm{~m}$ elev., $1-2$ June 2019 , W. Maddison \& P.Y.C. Ng WPM\#19-030.

Etymology. From name of the type locality, Singapura in the Malay language, a noun in apposition.

Diagnosis. Distinctive for the abdomen's central pale longitudinal band with wavy edge (Figs 41, 43, 45), short and stout embolus (Figs 35, 36), long tibia on the male palp (Figs 36, 40), and broad rounded retromarginal tooth on the male chelicera (Fig. 7). The male's chelicerae are relatively more robust than in other species, which in contrast have narrower and more projecting or diverging chelicerae.

Description. Male (based on holotype). Carapace length 3.1, width 2.3; abdomen length 3.9. Carapace (Figs 12, 41, 42): Distinctly wider just behind PLE. Depressed around fovea. Integument black to very dark brown. Thorax with dark setae near lower margin, interrupted by a fine vertical line of pale scales on each side at posterior corner; upper thorax clothed with pale scales; a few scales in ocular quadrangle. Narrow band of white scales along margin posterior to PLE. Clypeus narrow, dark, with black hairs. Chelicerae projecting only slightly, robust. Dark brown, with black hairs, many of which arise from tubercles. Retromarginal tooth a broad rounded flange, broadening from base. Palp tibia long. Embolus erect but short, broad, bifid at tip (Fig. 35). Integument black to brown, with black setae except white setae on last third of femur. Long black setae project laterally along length of tibia (not as a narrow brush). Endite subrectangular, with no projection, dark brown. Legs medium to dark brown. First leg dark brown except slightly paler at base of patella, which has white setae, and the honey-coloured tarsus. Patella with some white scales above and fringe of white hairs below, which continues onto the distal portion of the femur. Posterior legs with somewhat annulate markings. Length of femur I 2.0, II 1.5, III 1.5, IV 1.6; patella + tibia I 3.0, II 2.1, III 1.7, IV 2.5; metatarsus + tarsus I 1.8, II 1.4, III 1.6, IV 1.8. Leg spination reduced: femur I d0-1-0 (or 0-1-1), p0-2-0, II d1-1-1, p0-0-1, III d1-1-1, p0-$0-1$, IV d1-1-0, r0-0-1; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-2, III v0-0-1p, IV v0-0-1p; metatarsus I-II v2-2, III v0-0-3, IV v0-0-1 p. Abdomen narrow. Dorsum with a medial pale band having scalloped edges; darker laterally.

Female (based on specimen AS19.0023). Carapace length 3.2, width 2.2; abdomen length 3.9. Carapace: As in male, but not quite so wide, and with two fine vertical lines of pale scales on lower posterior thorax (Figs 43, 45). Clypeus narrow, dark, with black hairs. Chelicerae black to brown, with black hairs. Two promarginal and one unident retromarginal tooth, similar to those of K. frenata (Fig. 9). Legs honey-coloured to dark brown, first pair darker, posterior somewhat annulate. Length of femur I 1.7, II 1.5, III 1.4, IV 1.7; patella + tibia I 2.4, II 1.9, III 1.7, IV 2.6; metatarsus + tarsus I 1.5, II 1.4, III 1.5, IV 1.8. Leg spination reduced: femur I d1-1-0, p0-1-0, II d1-1-0, p0-0-1, III d1-1-1, p0-0-1, IV d1-1-0, r0-0-1; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-2, III v0-0-1p, IV v0-0-1p; metatarsus I-II v2-2, III v0-0-2, IV v0-0-1p. Abdomen as in male. Epigyne with openings crescent-shaped, at posterior and medial side of pale desclerotized patch.

Figures 35-45. Kelawakaju singapura $\mathbf{3 5}$ holotype male JK.21.08.02.001 embolus, ventral $\mathbf{3 6}$ paratype male JK.90.10.21.0002 palp, ventral $\mathbf{3 7}$ same, retrolateral $\mathbf{3 8}$ paratype female AS19.0023 epigyne, ventral $\mathbf{3 9}$ same, vulva, dorsal $\mathbf{4 0 - 4 2}$ holotype male $\mathbf{4 3}$ paratype female JK.21.05.14.0001 44, $\mathbf{4 5}$ paratype female AS19.0023. Scale bars: 0.1 mm .

Natural history. The holotype and females from the type locality were found under bark of both small and large trees in open areas at the edge of coastal forest. Female AS19.0023 was found under bark of large tree in roadside clearing.

Kelawakaju frenata species group

The frenata species group includes the relatively large-bodied K. frenata, K. leucomelas, and K. sahyadri. They differ from other Kelawakaju in having pale longitudinal bands on the sides of the body, a proportionately shorter ocular quadrangle, and longer first legs in the male. The male chelicerae diverge but do not project as forward as in the mulu group. A narrow band of white scales descends along the front face of the male chelicerae (Figs 4, 73, 79, 83), also seen in K. intexta. As in K. singapura, the embolus is terminal on the bulb, and more or less erect, similar to those of many Dendryphantina. Two to three macrosetae on anteriolateral face of first femur are displaced ventrally and basally toward the middle of that face (as in Padilla Peckham \& Peckham, 1894 and Padillothorax Simon, 1901 [Maddison et al. 2020], and more so than in K. singapura). Kelawakaju sahyadri and K. leucomelas have been found on large trees exposed in clearings.

Kelawakaju frenata (Simon, 1901), comb. nov.

Figs 4, 8, 9, 13, 46-54, 73-78
Ocrisiona frenata Simon, 1901.
Notes. The type specimen of Ocrisiona frenata Simon, 1901 has not been found, neither in the Oxford Natural History Museum (O. Pickard Cambridge collection; Simon 1901b) nor in the MNHN (Paris). Nonetheless, the application of the name is reasonably secure, as Simon's figure (1901a: fig. 730, shown here in Fig. 50 reversed so that the right palp appears as the left) and description (1901b) match well specimens from the type locality here illustrated (Hong Kong, Fig. 49) and nearby Guangxi (Figs 46-48). Simon's figure shows clearly the distinctive tibial apophysis of Kelawakaju, and the general conformation of this species group. The critical details of the embolus are unclear in Simon's figure, and thus there remains the possibility of two very similar species at the type locality. However, at no locality have we seen two different species sympatric from the same species group, and the many photographs on iNaturalist labeled as "Ocrisiona frenata" from Hong Kong are credibly conspecific. Because a good case can be made for the identity of the species, and there is still hope that the type may be found, we will not designate a neotype at this time. This species was labelled "marpissine indet. [China]" in Bodner and Maddison's (2012) molecular phylogeny; that specimen (voucher d224) was lost in the Butantan fire.

Diagnosis. Differs from other Kelawakaju in the embolus bending suddenly toward the retrolateral, the epigynal atria with sclerotized edge both anteriorly and posteriorly (not just medially or posteriorly), and posterior notch of epigyne narrow and distinct.

Description. Male (based on specimen from Dongxing City). Carapace length 3.1; abdomen length 4.1. Carapace dark brown, with sparse white scales. Clypeus very narrow. Chelicera dark brown, with a line of white scales on the prolateral face. One

Figures 46-72. Kelawakaju frenata species group, genitalia 46-54 K. frenata $\mathbf{4 6}$ male from Dongxing, palp, ventral $\mathbf{4 7}$ same, retrolateral $\mathbf{4 8}$ same, dorsal $\mathbf{4 9}$ male from Hong Kong, embolus, ventral $\mathbf{5 0}$ Simon's (1901a) figure, reversed $\mathbf{5 I}$ female d 224 from Dongxing, epigyne, ventral $\mathbf{5 2}$ second female from Dongxing, epigyne, ventral $\mathbf{5 3}$ same, vulva, ventral $\mathbf{5 4}$ same, dorsal 55-63 K. leucomelas $\mathbf{5 5}$ holotype male palp, ventral $\mathbf{5 6}$ same, retrolateral $\mathbf{5 7}$ same, embolus, oblique $\mathbf{5 8}$ paratype male JK13.12.10.0001, embolus, oblique $\mathbf{5 9}$ male JK.19.08.18.0010, embolus, oblique $\mathbf{6 0}$ same, palp, retrolateral $\mathbf{6 1}$ same, ventral $\mathbf{6 2}$ female paratype JK.20.11.13.0001, epigyne, ventral $\mathbf{6 3}$ same, vulva, dorsal 64-72 K. sahyadri $\mathbf{6 4}$ holotype male, palp, ventral 65 same, retrolateral 66 same, embolus, oblique $\mathbf{6 7}$ paratype male from Kerala, embolus, oblique 68 same, ventral $\mathbf{6 9}$ same, palp, ventral $\mathbf{7 0}$ same, retrolateral $\mathbf{7 I}$ paratype female AS19.4934 epigyne, ventral $\mathbf{7 2}$ same vulva, dorsal. Oblique views of embolus are between ventral and prolateral. Scale bars: 0.1 mm .

Figures 73-78. Kelawakaju frenata 73, 74 male from Tai Tam County Park, Hong Kong (© 2020 Artur Tomaszek) 75 female from Guangdong, Gaotan Town 76 male from Guangxi, Dongxing, dorsal 77 female from Dongxing, dorsal 78 same, ventral. Specimen in 73, 74 not examined microscopically; inferred as K. frenata by appearance and locality.
retromarginal tooth (Fig. 8). Palp dark brown, with long white scales on tibia. RTA elongate. Embolus short, from base leans slightly toward the prolateral, then twists so that its terminal part leans toward the retrolateral. Legs dark brown to yellow. First leg
reddish dark brown, with sparse short white scales. Tibia with three pairs of ventral macrosetae. Legs II-IV yellow except dark brown femur, brown joints, and sparse short white scales; III and IV additionally have prolateral and retrolateral sides of tibiae and metatarsi dark brown. Abdomen dorsally cream colored, with a longitudinal, irregular, dark brown stripe, and almost entirely covered by a light brown scutum; laterally dark brown, with a pale stripe on the posterior fourth; ventrally dark brown, with a longitudinal pale stripe. Spinnerets dark brown.

Female (based on specimen from Dongxing City). Carapace length 3.45 ; abdomen length 5.55. Color as in male, except when mentioned. Chelicerae dark. One retromarginal tooth. Leg I light brown, with median third of femur, distal of patella and proximal and distal of tibia dark brown; tarsus yellow; II yellow, with same markings as I; III and IV as II, but with patellae entirely yellow and prolateral side of tibia dark brown. Tibia with three pairs of ventral macrosetae. Abdominal pattern as in male; no scutum. Epigyne with a pair of small copulatory openings distant from the posterior border, which has a medial excavation; internally, copulatory ducts fuse with glandular portions, spiral backwards and enter the large spermathecae, from which fertilization ducts emerge.

Material examined. One male and two females in UBCZ from China: Guangxi: Dongxing City, Wanwei Village. $21.5217^{\circ} \mathrm{N}, 108.1383^{\circ} \mathrm{E}$, 3 m elev., 23 May 2006, J.X. Zhang, M.S. Zhu, W.G. Lian, H.Q. Ma JXZ06\#013. One male (IDWM.20018) in UBCZ from Hong Kong: Mai Po Nature Reserve, 22.2799° N, 113.9296° E, 5 July 2020, Cheuk Lun Alex Ng. One female ZRC_ENT00053870) in LKCNHM from China: Guangdong: Huidong County, Gaotan Town, Y.X. Lim, 1 October 2018. Photographs on iNaturalist suggest the species is also in Taiwan.

Kelawakaju leucomelas Maddison \& Ng, sp. nov.

https://zoobank.org/F7326873-F2B9-4DF7-8C0B-C0F6A20522B7
Figs 14, 55-63, 79-81
Type material. Holotype: male (JK.20.11.13.003) in LKCNHM from Singapore: Lorong Pang Sua $1.3833^{\circ} \mathrm{N}, 103.7567^{\circ}$ E, 13 xi 2020, J.K.H. Koh \& P. Y. C. Ng. Paratypes: Two females (JK.20.11.13.0001 and JK.20.11.13.0002) with same data as holotype. One male (JK.13.12.10.0001) from Singapore: Pulau Tekong, $1.4072^{\circ} \mathrm{N}$, 104.0283° E, 10 December 2013, J.K.H. Koh.

Etymology. Refers to the longitudinal bands of white scales (leuco, Greek for white) on either side of the body contrasting against the black median (melas, Greek for black), formed not as an adjective but more simply as the two colours themselves (and thus without an expectation of agreement with the genus name).

Diagnosis. Carapace wider and ocular quadrangle shorter (Fig. 14) than in other species. Embolus differs in shape from that of the similar K. sahyadri: embolus tip with retrolateral flange more distinct and larger (Figs 55, 57-59, 61), and prolateral edge of embolus curves abruptly to the distal to make the embolus appear more erect (Figs 55,
61). Long brush of white hairs projecting prolaterally from male palp tibia is lacking (present in K. frenata and K. sahyadri). In the specimens we have, the body's white side bands are more distinct than in K. frenata and K. sahyadri, and the posterior legs more uniform coloured, lacking distinct annulate markings.

Description. Male (based on holotype). Carapace length 3.6, width 2.6; abdomen length 4.2. Carapace: Relatively flat, broad, depressed around fovea. Integument black to dark brown, clothed loosely with white scales in two broad longitudinal bands along sides, below and behind PME. Below these bands, thorax is black, without marginal white scales. Clypeus very narrow, dark, with some black hairs. Chelicerae diverging, projecting forward slightly, with a bulge anteriolaterally (as in K. frenata, Fig. 4, but more prominent). Bulge covered with hair-bearing tubercles. Dark brown to black, with narrow and dense line of white scales appearing as an inverted V (Fig. 79). Two promarginal and one triangular retromarginal teeth, as in K. frenata (Fig. 8). Palp dark brown. Patella and distal part of femur clothed with long white hairs and a few white scales. Embolus erect, with retrolateral flange separated from the tip by a distinct cleft (Figs 57-59). Endite subrectangular, with no projection, dark brown. Legs: First pair dark except tarsus, slightly paler, with some patches of white scales and hairs (Fig. 79). Remaining legs medium brown, lightly dusted with white scales, without annulate markings. Length of femur I 2.7, II 1.9, III 1.6, IV 2.0; patella + tibia I 4.1, II 2.4, III 2.0, IV 2.9; metatarsus + tarsus I 2.4, II 1.6, III 1.7, IV 2.0. Leg spination reduced: femur I d1-1-0, p0-2-0, II d1-1-0, p0-0-1, III d1-1-1, p0-0-1, IV d1-1-0, 0; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-1p, III v0-0-1p, IV 0; metatarsus I-II v2-2, III v0-0-1p, IV v0-0-1p. Abdomen narrow and long, dark above except for band of white scales on either side, continuing the longitudinal band of the carapace (Fig. 81).

Figures 79-8 I. Kelawakaju leucomelas 79-80 male from the type locality $\mathbf{8 1}$ female from same locality. Photographs © Chris Ang 2021. Specimens not examined microscopically; inferred as K. leucomelas by appearance and locality.

Female (based on paratype JK.20.11.13.0001). Carapace length 3.2, width 2.4; abdomen length 4.3. Carapace: As in male, but narrower. Clypeus as in male. Chelicerae with bulge and tubercles, but less prominent than in male. Dark, with black setae. Two promarginal and one unident retromarginal tooth, similar to those of K. frenata (Fig. 9). Legs: First pair of legs medium brown; posterior legs honey-brown, without annulate markings. Length of femur I 1.9, II 1.6, III 1.4, IV 1.7; patella + tibia I 2.7, II 1.9, III 1.7, IV 2.5; metatarsus + tarsus I 1.6, II 1.3, III 1.4, IV 1.9. Leg spination reduced: femur I d1-0-0, p0-2-0, II d1-1-0, p0-0-1, III d1-1-0, p0-0-1, r0-0-1, IV d1-1-0, r0-0-1; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-1p, III 0 , IV 0; metatarsus I-II v2-2, III v0-0-1p, IV v0-0-1p. Abdomen narrow, long, dark medially but with pale longitudinal bands on either side. Epigyne with two crescent shaped openings posteriomedial to a pale desclerotized area (Fig. 62). (Although this specimen has the openings more medial than shown for K. sahyadri, another female of K. leucomelas, JK.20.11.13.0002, has them placed much as in K. sahyadri.).

Additional material examined. Male (JK.19.08.18.0010) in LKCNHM from MALAYSIA: Johor Bahru, Kota Tinggi, Panti Recreational Forest, $1.7872^{\circ} \mathrm{N}$, 103.9425° E, 18 August 2019, P.Y.C. Ng.

Natural history. Approximately ten adult and juvenile specimens were seen on tree bark at the type locality, including the holotype. The male from Kota Tinggi was found on tree bark in a sunny area near the entrance of Panti Recreational Forest.

Kelawakaju sahyadri Vishnudas, Maddison, \& Sudhikumar, sp. nov. https://zoobank.org/34C05BE6-0AC9-4724-808B-1D3CC7E40610
 Figs 15, 64-72, 82-88

Type material. Holotype: male (AS19.4895 = NCBS IBC-BP847) in NCBS from India: Karnataka: Kodagu: Yavakapadi, Honey Valley area, $12.2224^{\circ} \mathrm{N}, 75.6553^{\circ} \mathrm{E}$, 1045 m elev., 27 June 2019, W. Maddison WPM\#19-083. Paratypes: Female (AS19.4934 = NCBS IBC-BP848) in NCBS with data as holotype except $12.2214^{\circ} \mathrm{N}$, $75.6556^{\circ} \mathrm{E}$ and 1130 m elev. One male and one female in CATE from India: Kerala: along state highway 21 east of Chalakudy, $10.296^{\circ} \mathrm{N}, 76.685^{\circ} \mathrm{E}$, 26 June 2021, Vishnudas \& Sudhikumar CATE9826705. One female with same data but 17 July 2021.

Etymology. From the Sanskrit for 'from the Western Ghats mountains', where this species lives.

Diagnosis. Embolus differs in shape from that of the similar K. leucomelas: embolus tip with retrolateral flange less distinct and smaller (Figs 64, 66-69), and prolateral edge of embolus curves gently to the distal to make the embolus appear to be leaning slightly to the retrolateral (Figs 64, 68, 69). Compared to K. leucomelas, the longitudinal pale bands on body less distinct, and the carapace is narrower.

Description. Male (based on holotype). Carapace length 3.0, width 2.1; abdomen length 3.9. Carapace: Relatively flat; area around fovea slightly depressed. Dark brown, loosely clothed with white scales below and behind PLE forming an indistinct

Figures 82-89. Kelawakaju sahyadri 82-85 male holotype AS19.4895 86-88 female paratype AS19.4934 89 female paratype from Kerala.
longitudinal band on each side. Clypeus very narrow, dark, with black setae. Chelicerae diverging slightly, lacking the distinct bulge of K. frenata and K. leucomelas, but with hair-bearing tubercles. Narrow stripes of white scales form inverted V as in other frenata group species (Fig. 83). Two promarginal and one large triangular retromarginal teeth, as in K. frenata (Fig. 8). Palp dark to light brown, with white scales and long white hairs. The prolateral hairs on the tibia appear as a distinct long brush projecting medially (Figs 83, 84). Embolus with prolateral edge gently curved. Retrolateral flange near tip fairly large, but emerges gradually, without strong cleft near tip (Figs 66, 67). Endite subrectangular, with no projection, dark brown. Legs: First leg dark to light brown, with loose patches of white setae (Figs 82, 85). Posterior legs paler, darker on femora and near the joints. Length of femur I 2.0, II 1.5, III 1.4, IV 1.7; patella + tibia I 3.1,

II 2.0, III 1.7, IV 2.3; metatarsus + tarsus I 2.0, II 1.5, III 1.5, IV 1.7. Leg spination reduced: femur I d1-0-0, p1-1-0, II d1-1-0, p0-0-1, III d1-1-2, 0, IV d1-1-0, 0; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-1p, III 0, IV 0; metatarsus I-II v2-2, III v0-0-1p, IV v0-0-1p. Abdomen narrow, dark medially, paler and mottled laterally.

Female (based on specimen NCBS IBC-BP848). Carapace length 4.0, width 2.9; abdomen length 5.0. Carapace, Clypeus as in male. Chelicerae dark, with black hairs arising from small tubercles. Two promarginal and one larger triangular retromarginal teeth. Legs: First leg darkest, but all legs have dark patches, especially the sides of the femora and near the joints. Length of femur I 2.4, II 1.9, III 1.8, IV 2.1; patella + tibia I 3.3, II 2.5, III 2.3, IV 3.3; metatarsus + tarsus I 2.1, II 1.6, III 2.0, IV 2.3. Leg spination reduced: femur I d0-1-0, p0-3-0 or 2-0, II d1-1-0, p0-0-1, III d1-1-0, p0-0-1, IV d1-1-0, 0; patella I-IV 0; tibia I v2-2-2 (asymmetrical), II v1r-1r-1p, III 0, IV 0; metatarsus I-II v2-2, III v0-0-1p, IV v0-0-1p. Abdomen long, narrow, dark medially and pale laterally. Epigyne with two crescent-shaped openings behind a pale desclerotized area (Fig. 71).

Natural history. The holotype and female paratype from Kodagu were found under loose bark of large trees standing in a field, beside a small road. The specimens from Kerala were found in crevices in the bark of Swietenia mahogany trees.

Acknowledgements

For their assistance with field work, with thanks: in Sarawak, Malaysia, Edyta Piascik, Alex Ang, Ch'ien Lee, Syria Lejau Malang, Andyson Raymond Laman, the Sarawak forestry department, and the staff at Mulu and Lambir Hills National Parks; in Singapore, Joseph Koh and Peifen Koh; in Chalakudy, India, Ramesh V.T.; and in Karnataka, India, Kiran Marathe and Abijith A.P.C. We are grateful to Krushnamegh Kunte (NCBS, Bengaluru) for arranging access to facilities and specimens, and to Wendy Wang and Peter Ng (LKCNHM, Singapore) for loan of specimens. Alex Ng kindly offered the specimen of K. frenata from Hong Kong. E. Piascik assisted with DNA sequencing. We thank Chris Ang and Artur Tomaszek for permission to use their photographs, and the developers of iNaturalist for giving us access to the observations of naturalists exploring the landscape. G. Azarkina, J Schubert, and an anonymous reviewer provided helpful comments on an earlier version of the manuscript. Funding to WPM was provided by an NSERC Canada Discovery Grant. Funding to AVS was provided by a DST-SERB grant (Major Research Project EEQ/2021/000453) and an eGrantz from the government of Kerala.

References

Bodner MR, Maddison WP (2012) The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution 65(1): 213-240. https://doi. org/10.1016/j.ympev.2012.06.005

Hedin MC, Maddison WP (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae, Salticidae). Molecular Phylogenetics and Evolution 18(3): 386-403. https://doi.org/10.1006/mpev.2000.0883
Katoh D, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772780. https://doi.org/10.1093/molbev/mst010

Logunov DV (1999) Redefinition of the genera Marpissa C. L. Koch, 1846 and Mendoza Peckham \& Peckham, 1894 in the scope of the Holarctic fauna (Araneae, Salticidae). Revue Arachnologique 13: 25-60.
Maddison DR, Maddison WP (2020) Zephyr: A Mesquite package for interacting with external phylogeny inference programs. Version 3.1. http://zephyr.mesquiteproject.org
Maddison WP (2015) A phylogenetic classification of jumping spiders (Araneae: Salticidae). The Journal of Arachnology 43(3): 231-292. https://doi.org/10.1636/arac-43-03-231-292
Maddison WP (2016) Papuaneon, a new genus of jumping spiders from Papua New Guinea (Araneae: Salticidae: Neonini). Zootaxa 4200(3): 437-443. https://doi.org/10.11646/ zootaxa.4200.3.9
Maddison WP, Hedin MC (2003) Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics 17(4): 529-549. https://doi.org/10.1071/IS02044
Maddison WP, Maddison DR (2021) Mesquite: a modular system for evolutionary analysis. Version 3.7. http://www.mesquiteproject.org
Maddison WP, Needham K (2006) Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa 1255: 37-55.
Maddison WP, Szűts T (2019) Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini). ZooKeys 842: 85-112. https://doi.org/10.3897/zookeys.842.32970
Maddison WP, Zhang JX, Bodner MR (2007) A basal phylogenetic placement for the salticid spider Eupoa, with descriptions of two new species (Araneae: Salticidae). Zootaxa 1432(1): 23-33. https://doi.org/10.11646/zootaxa.1432.1.2
Maddison WP, Bodner MR, Needham K (2008) Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa 1893(1): 49-64. https://doi.org/10.11646/zootaxa.1893.1.3
Maddison WP, Li DQ, Bodner MR, Zhang JX, Xu X, Liu QQ (2014) The deep phylogeny of jumping spiders (Araneae, Salticidae). ZooKeys 440: 57-87. https://doi.org/10.3897/ zookeys. 440.7891
Maddison WP, Beattie I, Marathe K, Ng PYC, Kanesharatnam N, Benjamin SP, Kunte K (2020) A phylogenetic and taxonomic review of baviine jumping spiders (Araneae: Salticidae: Baviini). ZooKeys 1004: 27-97. https://doi.org/10.3897/zookeys.1004.57526
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32(1): 268-274. https://doi.org/10.1093/molbev/msu300
Rubio GD, Baigorria JE (2016) New species and the first known male of the jumping spider Ceriomura Simon (Araneae: Salticidae: Gophoini) with the faunistic revision of gophoines from Misiones, Argentina. Zoology and Ecology 26(4): 265-274. https://doi.org/10.108 0/21658005.2016.1199502

Ruiz GRS, Maddison WP (2015) The new Andean jumping spider genus Urupuyu and its placement within a revised classification of the Amycoida (Araneae: Salticidae). Zootaxa 4040(3): 251-279. https://doi.org/10.11646/zootaxa.4040.3.1
Simon E (1901a) Histoire naturelle des araignées. Deuxième édition, tome second. Roret, Paris, 381-668.
Simon E (1901b) Etudes arachnologiques. 31e Mémoire. XLIX. Descriptions de quelques salticides de Hong Kong, faisant partie de la collection du Rév. O.-P. Cambridge. Annales de la Société Entomologique de France 70: 61-66.
Vink CJ, Hedin MC, Bodner MR, Maddison WP, Hayashi CY, Garb JE (2008) Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution 48(1): 377-382. https://doi.org/10.1016/j.ympev.2008.03.003
Zhang JX, Maddison WP (2013) Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 68(1): 81-92. https://doi.org/10.1016/j.ympev.2013.03.017

[^0]: Academic editor: Jeremy Miller \| Received 15 June 2022 | Accepted 3 October 2022 | Published 17 November 2022

[^1]: Copyright Wayne P. Maddison et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

