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Abstract

Five complete mitochondrial genomes of five species from the subfamily Agrilinae were sequenced and
annotated, including Coraebus diminutus Gebhardt, 1928 (15,499 bp), Coracbus cloueti Théry, 1893
(15,514 bp), Meliboeus sinae Obenberger, 1935 (16,108 bp), Agrilus sichuanus Jendek, 2011 (16,521 bp),
and Sambus femoralis Kerremans, 1892 (15,367 bp). These mitogenomes ranged from 15,367 to 16,521 bp
in length and encoded 37 typical mitochondrial genes: 13 protein-coding genes (13 PCGs), 2 ribosomal
RNA genes (2 rRNAs), 22 transfer RNA genes (22 tRNAs), and a control region (CR). Most of PCGs
had typical ATN start codons and terminated with TAR or an incomplete stop codon T—. Among these
five mitogenomes, Leu2, lle, Phe, Ser2, Gly, Met, and Val were the seven most frequently encoded amino
acids. Interestingly, in A. sichuanus, a 774 bp insertion was present at #rnW and #nC junction, which is
unusual in Buprestidae. Additionally, phylogenetic analyses were performed based on three kinds of nu-
cleotide matrixes (13 PCGs, 2 rRNAs, and 13 PCGs + 2 rRNAs) using Bayesian inference and maximum-
likelihood methods. The results showed that the clade of Buprestidae was well separated from outgroups
and all Agrilinae species formed to a single highly supported clade. The tribe Coraebini was polyphyletic,
as the genus Meliboeus (Coraebini) clustered with the genus Zachys (Tracheini). The rRNA genes had
important impact for the tree topology of Agrilinae. Compared to the tribes Tracheini and Agrilini, the
tribe Coraebini is a younger group.
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Introduction

The superfamily Buprestoidea, which contains the families Buprestidae and Schizo-
podidae, differs from other groups of the Elateriformia by their serrate antennae, hy-
pognathous head, transverse suture of metaventrite present, and two connate basal
abdominal ventrites (Bellamy and Volkovitsh 2016). The buprestid beetles are a large
group containing six subfamilies, 521 genera, and more than 15,000 species widely
distributed in the world (Bellamy 2008; Kubdn et al. 2016). The adults exhibit a broad
range of host utilization in leaves, flowers, and stems, whereas larvae are mostly in-
ternal feeders on roots and stems, or feed on foliage of woody or herbaceous plants
(Bellamy and Volkovitsh 2016). Only adults of the Australian Xyroscelis crocata were
reported to feed on the sap of the host plant Macrozamia communis (Bellamy 1997).

Although taxonomists have made important contributions to the buprestid classi-
fication of subfamilies and tribes based on several morphological characteristics (Cobos
1980, 1986; Toyama 1987; Holyriski 1988, 1993, 2009; Bellamy 2003), the problems
of the overall classification in Buprestoidea remain unsettled.

In the past two decades, molecular systematic approaches have been used to resolve
unsettled classification and phylogenetic relationships in Insecta (Short and Fikdcek
2013; Cline et al. 2014; Robertson et al. 2015; Kundrata et al. 2017; Gimmel et
al. 2019; Lee et al. 2020). As to Buprestidae, Bernhard et al. (2005) first used mo-
lecular phylogenetic methods based on three mitochondrial markers (nad1, 125, and
165) and confirmed that the Agrilus viridis complex, which is widely distributed across
Eurasia, is monophyletic. Pentinsaari et al. (2014) and Pellegrino et al. (2017) used
mitochondrial markers to evaluate the diversity of A. viridis complex, their results sug-
gest that different feeding forms of A. viridis represent distinct species. Subsequently,
Evans et al. (2015) performed the first large-scale phylogenetic trees combing nuclear
and mitochondrial data from 141 species to understand the higher-level relationships
in Buprestidae. In that study, the monophyly of the family Schizopodidae and sub-
families Agrilinae, Julodinae, and Galbellinae were strongly supported, while the in-
terrelationships of Chrysochroinae and Buprestinae remained uncertain. Hansen et
al. (2016) used molecular systematic methods based on nuclear and mitochondrial
data (coi and k) to investigate the relationships within Chrysobothris femorata species
group, and their results showed that some morphological species were not well sepa-
rated. Kelnarova et al. (2019) provided a molecular phylogeny of Agrilus species from
the Northern Hemisphere and their results suggest that DNA barcoding is a powerful
species identification to Agrilus.

During this time, the mitogenome emerged as a valuable source for higher-level phy-
logenetic analyses, evolutionary strategies, and genetic diversity analyses (Saccone et al.
1999; Krzywinski et al. 2011; Cameron 2014; Qin et al. 2015; Song et al. 2019; Wang
etal. 2019). Several buprestid mitogenomes have been sequenced and reported, such as
the mitogenome of Chrysochroa fulgidissima (Schonherr, 1817) by Hong et al. (2009);
the mitogenome of Agrilus planipennis Fairmaire, 1888 by Duan et al. (2017), who also
performed phylogenetic analyses based on 13 PCGs of 45 mitogenomes of coleopterans;
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Table I. Information on the mitogenomes of Buprestidae and two outgroups used in this study.

No. Taxa Accession no.  Genome A% A+T% AT skew GC skew References

size (bp)
1 Coraebus diminutus OK189521 15,499 38.34 68.42 0.12 -0.25 This study
2 Coraebus cloueti OK189520 15,514 38.53 69.27 0.11 -0.25 This study
3 Meliboeus sinae OK189522 16,108 40.18 72.42 0.11 -0.22 This study
4 Sambus femoralis OK349489 15,367 40.98 73.23 0.12 -0.18 This study
5 Agrilus sichuanus OK189519 16,521 40.19 71.73 0.12 -0.21 This study
6 Agrilus planipennis KT363854 15,942 40.25 71.90 0.12 -0.24 Duan et al. 2017
7 Agrilus mali MN894890 16,204 40.34 74.46 0.08 -0.18 Sun et al. 2020
8 Coraebus cavifrons MK913589 15,686 38.94 69.79 0.12 -0.18  Cao and Wang 2019b
9 Trachys auricollis MHG638286 16,429 38.94 71.05 0.10 -0.20 Xiao et al. 2019
10 Trachys troglodytiformis KX087357 16,316 41.03 74.62 0.10 -0.19 Unpublished
11 Trachys variolaris MN178497 16,771 39.92 72.11 0.11 -0.21 Cao and Wang 2019a
12 Melanophila acuminata MW287594 15,853 38.74 75.66 0.02 -0.25 Peng et al. 2021
13 Anthaxia chinensis MW929326 15,881 40.12 73.61 0.09 -0.29 Chen et al. 2021
14 Chrysochroa fulgidissima EU826485 15,592 40.31 69.92 0.15 -0.24 Hong et al. 2009
15 Acmacodera sp. FJ613420 16,217 38.11 68.41 0.11 -0.25 Sheffield et al. 2009
16 Heterocerus parallelus (outgroup) KX087297 15,845 41.90 74.03 0.13 -0.24 Unpublished
17 Dryops ernesti (outgroup) KX035147 15,672 39.04 72.98 0.07 -0.23 Unpublished

the mitogenome of Trachys variolaris Saunders, 1873 by Cao and Wang (2019a); and
the mitogenome of Coraebus cavifrons Descarpentries & Villiers, 1967 by Cao and Wang
(2019b). More detailed information of buprestid mitogenomes is presented in Table 1.

Currently, the subfamily Agrilinae contains four tribes (Agrilini, Coraebini,
Aphanisticini, and Tracheini); however, the phylogenetic placement of several genera
of this subfamily remains unstable. The genera in the tribes Coraebini and Agrilini
were revised by Kubdn et al. (2000). In that study, the genus Sambus in the tribe
Coraebini was transferred to Agrilini based on the female behavior of ovipositing on
rather smooth surfaces of living plants. Later, Kubdn (2016) placed the genera Sambus,
Parasambus, and Pseudagrilus in incertae sedis. In order to solve these problems, we
contribute mitogenomic data of five species of buprestids, Coraebus diminutus Geb-
hardt, 1928, Coraebus cloueti Théry, 1893, Meliboeus sinae Obenberger, 1935, Agrilus
sichuanus Jendek, 2011, and Sambus femoralis Kerremans, 1892, and perform a mo-
lecular phylogenetic analysis in this study. The phylogenetic trees of 15 species from
nine genera belonging to four subfamilies of Buprestidae were constructed based on
the newly sequenced and previously reported mitogenomes (Table 1).

Material and methods
Sampling and DNA extraction
Specimens of five species were collected using an entomological net. Among them,

C. diminutus, C. cloueti, M. sinae, and A. sichuanus were collected in the Dayaoshan
Mountains in Guangxi Zhuang Autonomous Region, and S. femoralis was collected at
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Yingjiang County in Yunnan Province, China. Specimens were immediately preserved
in 95% ethanol in the field after collected and then stored at —24 °C in the laboratory.
The specimens were identified based on morphological characteristics under a Leica
M205 FA stereomicroscope. Total DNA was extracted from muscle tissues using the
Ezup Column Animal Genomic DNA Purification Kit (Shanghai, China) following

the manufacturer’s instructions.

Sequencing, sequence assembly, annotation, and heterogeneity

DNA sequencing and de novo assembly of each mitogenome were performed by Bei-
jing Aoweisen Gene Technology Co. Ltd (Beijing, China). 22 tRNA genes were identi-
fied using the MITOS webserver, with the parameters of the Invertebrate Mito genetic
code (Bernt et al. 2013). Their secondary structures were plotted manually from the
MITOS predictions using Adobe Illustrator. Every sequence of tRNA genes was manu-
ally checked separately. The PCGs were identified as open reading frames correspond-
ing to the 13 PCGs. The rRNAs and control regions were identified by the boundaries
of the tRNA genes. The tRNA secondary structures were identified using tRNAscan-SE
(Lowe and Chan 2016). Mitogenome maps (Suppl. material 1: Fig. S1) were produced
using Organellar Genome DRAW (OGDRAW) (Greiner et al. 2019). The Base com-
position and relative synonymous codon usage values were determined using MEGA
6.0 (Kumar 2016). Strand asymmetry was calculated using the formulae AT-skew =
(A-T)/(A+T),and GC-skew = (G — C) / (G + C) (Perna and Kocher 1995). In the
control region (CR), tandem repeat elements were detected by Tandem Repeats Finder
(Benson 1999). The heterogeneous analysis of the 13 PCGs and two rRNAs datasets
were performed using AiGROOVE 1.06 (Kiick et al. 2014), and the nucleotide di-
versity (Pi) and the ratio of Ka/Ks of PCGS were calculated with DnaSP v. 5 (Librado
and Rozas 2009).

Phylogenetic analyses

Phylogenetic trees for A. sichuanus, C. diminutus, C. cloueti, M. sinae, S. femoralis, and
10 other buprestid species belonging to four subfamilies were reconstructed by three
separate datasets (13 PCGs, 2 rRNAs, and 13 PCGs + 2 rRNAs) using different best-
fit models (Table 4). The mitogenomes of Heterocerus parallelus (Heteroceridae) and
Dryops ernesti (Dryopidae) were used as outgroups, as they are phylogenetically dis-
tant from Buprestidae in the suborder Polyphaga (Xiao et al. 2019). The phylogenetic
analyses were performed using PhyloSuite v. 1.2.2 (Zhang et al. 2020). Nucleotide
sequences of the 13 PCGs and 2 rRNAs of all 17 mitogenomes were aligned using
Clustal W (Thompson et al. 1994) and trimmed using trimAl v. 1.2 (Capella-Gutiérrez
et al. 2009). The best-fit model for three datasets was determined by ModelFinder
based on Bayesian information criterion. The maximum-likelihood (ML) and Bayesian
inference (BI) methods were used to reconstruct the phylogenetic trees by 1Q-tree v.
1.6.8 (Guindon et al. 2010) and MrBayes v. 3.2.6 program respectively (Ronquist et al.
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2012). Bayesian analyses were run with two independent chains spanning 2,000,000
generations, four Markov chains, sampling at every 100 generations, and a burn-in
period of 0.25 for each chain. The phylogenetic trees were edited and visualized by
Figtree v. 1.4.3.

Results and discussion

Genome organization and base composition

The complete mitogenomes of the buprestids A. sichuanus, C. diminutus, C. cloueti,
M. sinae, and S. femoralis have the following GenBank accession numbers attributed
to them: OK189519, OK189521, OK189520, OK189522, OK349489. The mitog-
enomes of these five species contained the 37 typical mitochondrial genes (13 PCGs,
22 tRNAs, and 2 rRNAs) and a control region (CR) (Table 2). The composition and
arrangement of the mitochondrial genes in these species (Table 2) were highly similar
as those in most other buprestid species (Duan et al. 2017; Cao and Wang 2019a,
2019b; Xiao et al. 2019; Chen et al. 2021; Peng et al. 2021).

Four of the 13 PCGs (nadl, nad4L, nad4, and nad5), eight tRNAs (#7nQ, trnV,
trnl 1, truP, trnH, truF, trnY, and trnC), and two rRNAS (77zL and rrnS) are encoded
on the N-strand, whereas the other 23 genes (9 PCGs and 14 tRNAs) are encoded on
the J-strand. The mitogenome sequence of these five buprestid species ranged in size
from 15,367 to 16,521 bp.

The mean A + T nucleotide contents of five complete mitogenomes were similar:
68.42% in C. diminutus, 69.27% in C. cloueti, 72.42% in M. sinae, 71.73% in A. si-
chuanus, and 73.23% in S. femoralis. The entire mitogenomes had a higher A + T con-
tents of 68.42-73.23% (66.05-72.50% for PCGs, 70.95-74.03% for tRNA genes,
75.20-77.33% for rRNA genes, and 74.17-78.38% for the CR) than G + C contents,
which is consistent with the typical base of buprestid mitogenomes. The overall AT
skews in these five complete mitogenomes were 0.12, 0.11, 0.11, 0.12, and 0.12, re-
spectively. These five species showed a positive TA skew, suggesting that a slight AT
bias which are similar to those observed in other buprestid species (Duan et al. 2017;
Cao and Wang 2019a, 2019b; Xiao et al. 2019; Chen et al. 2021; Peng et al. 2021).

Protein-coding regions, codon usage, and nucleotide diversity

The total lengths of PCGs in these five buprestid species ranged from 11,090 to
11,158 bp, accounting for 67.54-72.17% of the entire mitogenomes. Similar to the
other buprestid mitogenomes, nad5 and atp8 were found to be the largest (1708—
1723 bp) and smallest (156159 bp) genes, respectively. The majority of PCGs strictly
started with an ATN (ATA/ATT/ATC/ATG) start codon, except for the nadl starting
with TTG. All PCGs strictly terminated with TAR (TAG/TAA) or an incomplete stop
codon T—. Similar to most previously sequenced members of Buprestidae, the AT skew
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Table 3. Summarized mitogenomic characteristics of the five buprestid species in this study.

Species PCGs rRNAs tRNA CR
Size A+T AT skew  Size A+T AT skew  Size A+T AT skew Size A+T AT skew
(bp) content (bp) content (bp) content (bp) content

A. sichuanus 11,158 70.08 -0.15 1976 75.96 -0.13 1444 74.03 -0.0009 1142 74.17 0.06
C. diminutus 11,093 66.05 -0.14 1984 75.20 -0.11 1477 70.95 0.03 1019 77.72 0.02

C. cloueti 11,093  67.09 -0.15 1983 75.39 -0.11 1414 71.22 0.019 1031 78.27 0.02
M. sinae 11,135 70.70 -0.15 1967 77.33 -0.11 1435 72.13 0.007 1577 78.38 0.13
S. femoralis 11,090  72.50 -0.16 1954 75.69 -0.13 1430 73.85 0.03 910 75.82 0.18

Table 4. Best-fit models of three datasets used for phylogeny.

ML method BI method
13 PCGs GTR+F+1+G4 GTR+F+1+G4
2 rRNAs TVM+F+1+G4 GTR+F+1+G4
13 PCGs +2 rRNAs GTR+F+1+G4 GTR+F+1+G4

(0.11-0.12) of these five PCGs (Table 3) were similar among the 15 buprestid species.
Summaries of the numbers of amino acids in the annotated PCGs and relative syn-
onymous codon usage are presented in Figs 1 and 2. Overall codon usage among the
sequenced buprestid mitogenomes was found to be similar, with Leu2, Ile, Phe, Ser2,
Gly, Met, and Val being the seven most frequently coded amino acids.

The nucleotide diversity (Pi) of the 13 PCGs among five species of Agrilinae is
provided (Fig. 3), which ranged from 0.202 to 0.375. In these genes, #nad2 (Pi= 0.375)
presented the highest variability, followed by 7ad6 (Pi = 0.346), nad4 (Pi = 0.300), and
nad5 (Pi = 0.290); cox! (Pi = 0.20) exhibited the lowest variability. The ratio of Ka/Ks
(Fig. 4) for each gene of the 13 PCGs was calculated. The values of 7ad4 and nad4L
are distinctly higher than others, which suggests that the genes 7ad4 and nad4L have a
relatively higher evolutionary rate.
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Figure |. Numbers of different amino acids in the mitogenomes of the five buprestid species; the stop
codon is not included. AS: Agrilus sichuanus, CC: Coracbus cloueti, CD: Coraebus diminutus, MS: Meli-

boeus sinae, and SF: Sambus femoralis.
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Figure 2. RSCU (relative synonymous codon usage) of the mitogenomes of the five buprestid species;
the stop codons are not included.
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Figure 4. The ratio of Ka/Ks of 13 PCGs among the 15 reported Buprestidae mitogenomes.

tRNA, rRNA genes, and heterogeneity

The length of rrnL genes ranged from 1258 bp (S. femoralis) to 1271 bp (A. si-
chuanus), whereas rrnS ranged from 696 bp (S. femoralis) to 718 bp (C. diminutus).
The A + T content of the rRNA genes ranged from 75.20% (C. diminutus) to 77.33%
(M. sinae) (Table 3). Compared with those in other sequenced buprestid mitogenom-
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~ Coraebus cloueti Coraebus diminutus

Meliboeus sinae Sambus femoralis

Figure 5. The predicted secondary structures of the tRNA-Ser in the mitogenomes of the five buprestid
species.

es, the rRNA genes in these five newly sequenced buprestid mitogenomes are highly
conserved (Hong et al. 2009; Duan et al. 2017; Cao and Wang 2019a, 2019b; Xiao
etal. 2019; Sun et al. 2020; Chen et al. 2021; Peng et al. 2021). These rRNAs were
located between the CR and #nL1, and separated by #7#V. The total lengths of the
22 tRNA genes ranged from 1414 bp (C. cloueti) to 1444 bp (C. diminutus), whereas
individual tRNA genes typically ranged in size from 58 to 70 bp, among which,
eight tRNAs were encoded on the N-strand and the remaining 14 encoded on the
J-strand. The secondary structures of tRNAs showed a standard clover-leaf structure
(Suppl. material 1: Figs $2-S6), except for tRNA-Ser (Fig. 5) which lacks or has an
unusual dihydrouridine arm, which forms a loop commonly found in other insects
(Xiao et al. 2011; Park et al. 2012; Yu et al. 2016; Yan et al. 2017; Yu and Liang
2018; Li et al. 2019). In A. sichuanus, the longest intergenic nucleotide (774 bp) was
located between #72W and #nC, which is an interesting and specific phenomenon in
Buprestidae. The degree of heterogeneity of the 13 PCGs dataset was higher than that
of the two rRNAs dataset (Suppl. material 1: Fig. §7). Additionally, the heterogeneity
in sequence divergences was slightly stronger for Coraebus than for other buprestid
genera (Suppl. material 1: Fig. S7).
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Control region

The CR, also known as the A + T-rich region (Wolstenholme 1992), was the larg-
est non-coding region and located between 7/ and rrnS. The length of CR ranged
from 910 bp (S. femoralis) to 1577 bp (M. sinae). The A +T content (74.17-78.38%)
of the CR of these five species was found to be higher than that of the whole ge-
nome (68.42—73.23%), PCGs (66.05-72.50%), rRNAs (75.20-77.33%), and tRNAs
(70.95-73.85%) (Table 3). Moreover, the compositional analysis revealed that the mi-
togenomes of the five buprestid species had a positive AT skew (0.02-0.18) in the CR.
In these five species, only C. cloueti and C. diminutus had no tandem repeat element
detected; however, those of A. sichuanus (20 and 40 bp), M. sinae (53 bp), and S. femo-
ralis (265 bp) had different lengths.

Phylogenetic analyses

Both ML and BI trees using three datasets produced identical topologies (Figs 6-8),
(Buprestinae + ((Chrysochroniae + Polycestinae) + Agrilinae)), in terms of subfamily-
level relationship. The monophyly of Buprestidae is corroborated again, as all the bu-
prestid species converged together as an independent clade, and two outgroup taxa
obviously separated from the buprestid clade. The target species C. diminutus, C. clou-
eti, Meliboeus sinae, Agrilus sichuanus, and Sambus femoralis, as well as other species of
Agrilinae, converged together as an independent clade. And the target species, M. sinae,
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Outgroups
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Figure 6. Phylogenetic relationships of 15 selected buprestid species using both BI and ML analyses
based on 13 PCGs of mitogenomes. The numbers on the branches show posterior probability (BI tree),
whereas the values under branches are bootstrap (ML tree).
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Figure 7. Phylogenetic relationships of 15 selected buprestid species using both BI and ML analyses
based on 2 rRNAs of mitogenomes. The numbers on the branches show posterior probability (BI tree),

whereas the values under branches are bootstrap (ML tree).
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Figure 8. Phylogenetic relationships of 15 selected buprestid species using both BI and ML analyses

based on 13 PCGs + 2 rRNAs of mitogenomes. The numbers on the branches show posterior probability

(BI tree), whereas the values under branches are bootstrap (ML tree).
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was most closely related to the genus 7rachys with high value support (Figs 6—8) which
is inconsistent with the previous studies (Kubdn et al. 2000; Evans et al. 2015). The
relationship of Agrilinae clades obtained from 2 rRNAs and 13 PCGs + 2 rRNAs data-
sets are identical but with different topology from the 13 PCGs dataset. In the topol-
ogy generated from the 13 PCGs dataset, S. femoralis and Agrilus were clustered into a
single branch with high support value (Fig. 6, ML: 77, BI: 1) whereas, in the topology
generated from the 2 rRNAs and 13 PCGs + 2 rRNAs datasets, S. fermoralis split from
base of the Agrilinae clades (Figs 7, 8). Based on these results the position of the genus
Sambus in the tribe Agrilini was not suitable and suspect. The different tree topologies
suggested that the rRNA genes were extremely valuable for the phylogenetic analysis of
Agrilinae. Coraebini is the most diverse tribe in Agrilinae, and 10 subtribes are defined
(Kubdn et al. 2000). The genus Meliboeus (Meliboeina) and Coraebus (Coraebina) in
different clades suggested that the tribe Coraebini was polyphyletic, which is consistent
with the previous study of Evans et al. (2015). The samples used in this study might
be too limited for a comprehensive phylogeny of Buprestidae which still needs a deep
study in the future.

Conclusions

In this study, five mitogenomes (15,367-16,521 bp) were newly sequenced and an-
notated, including representatives from the tribes Coraebini and Agrilini in subfamily
Agriinae. The mitogenomes of the genera Sambus and Meliboeus are reported for the
first time. These five sequences showed a positive AT skew, and the amino acids Leu,
Ile, Phe, Ser2, Gly, Met, and Val were most frequently used. The secondary structures
of tRNA-Ser are absent the D-arm, which is similar to other orders of Insecta. The
rRNA genes are valuable for phylogenetic analyses of Agrilinae as they could affect the
tree topologies. The results show that Coaebini is polyphyletic, and the genus Sambus
belongs to neither Coaebini nor Agrilini. However, more mitogenome samplings are
needed to resolve the phylogeny of the Buprestidae in the future to better understand
the phylogenetics of jewel beetles.
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