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Abstract
This study documents the first detailed phylogenetic analysis of an Australian paradoxosomatid millipede 
genus. Two mitochondrial genes (partial COI and 16S) as well as partial nuclear 28S rDNA were ampli-
fied and sequenced for 41 individuals of the southeastern Australian genus Pogonosternum Jeekel, 1965. 
The analysis indicates that five species groups of Pogonosternum occur across New South Wales, Victoria 
and Tasmania: P. nigrovirgatum (Carl, 1912), P. adrianae Jeekel, 1982, P. laetificum Jeekel, 1982 and 
two undescribed species. P. coniferum (Jeekel, 1965) specimens cluster within P. nigrovirgatum. Most 
of these five species groups exhibit a pattern of high intraspecific genetic variability and highly local-
ized haplotypes, suggesting that they were confined to multiple Pleistocene refugia on the southeastern 
Australian mainland. The phylogenetic data also show that northwestern Tasmania was colonized by P. 
nigrovirgatum, probably from central Victoria, and northeastern Tasmania by an as yet undescribed spe-
cies from eastern Victoria.
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Introduction

Pogonosternum Jeekel, 1965 is the most widespread and species-rich genus of the mil-
lipede tribe Antichiropodini Brölemann, 1916 in Victoria, with the five described spe-
cies Pogonosternum nigrovirgatum (Carl, 1902), P. coniferum Jeekel, 1965, P. adrianae 
Jeekel, 1982, P. laetificum Jeekel, 1982 and the subspecies P. nigrovirgatum infuscum 
Jeekel, 1982, all hitherto recorded from Victoria only. However, Jeekel (1982) and 
Mesibov and Churchill (2003) have recorded undescribed Pogonosternum species from 
Tasmania, and Car (2010) listed two undescribed Pogonosternum species from New 
South Wales.

Thus, Pogonosternum occurs on both sides of Bass Strait, which separates mainland 
Australia from Tasmania. The paradoxosomatid genus Somethus Chamberlin, 1920 
also has a trans-Bass Strait distribution (Jeekel 2006), as do the paradoxosomatid spe-
cies Dicranogonus pix Jeekel, 1982 and Notodesmus scotius Chamberlin, 1920 (Mesibov 
2014).

Many soil invertebrates, including millipedes, have limited active dispersal ca-
pabilities. Phylogenetic studies of southeastern Australian soil invertebrates can give 
important insights into the impact of glacial periods during the Pleistocene (Byrne 
2008, Endo et al. 2014, Garrick et al. 2004, Schultz et al. 2009, Sunnucks et al. 2006) 
and assist in identifying biogeographic barriers (Chapple et al. 2011). Unfortunately, 
phylogenetic studies of Australian millipedes are rare and restricted to a few taxa from 
a small number of localities (Adams and Humphreys 1993, Nistelberger et al. 2014, 
Wojcieszek and Simmons 2012). For the australiosomatine species Orocladosoma ko-
sciuskovagum (Brölemann, 1913) from the Australian Alps a hypothesis of multiple 
glacial refugia has been proposed (Endo et al. 2014) to explain the results of such 
studies. Similarly, the australiosomatine genus Somethus in South Australia was found 
to have high morphological and genetic variability within species was discovered: it 
seems probable that isolation in multiple glacial refugia during the Pleistocene was the 
evolutionary driving force for this variability (Decker 2016).

The present study documents a molecular phylogenetic analysis of the antichi-
ropodine genus Pogonosternum, using specimens from across the genus range, and with 
molecular evidence indicating past isolation in multiple Pleistocene refugia. Finally, 
the identity and origin of Tasmanian Pogonosternum populations are clarified.

Material and methods

Specimen collecting and preservation

Pogonosternum specimens were collected by hand in Victoria and New South Wales in 
August 2014 by the author, Karin Voigtländer and Robert Mesibov, and by Mesibov in 
Tasmania in May 2014 and May 2015 (Fig. 1). Most sites were searched for 1-5 hours 
with the aim of finding 1-3 adult males. At only a few localities were Pogonosternum 
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found to be abundant. Specimens were killed and stored in 95% ethanol, with a change 
of ethanol after 1–2 months. Full details of locality, date, collector, collection number 
and coordinates (WGS84 decimal degrees) are provided in Suppl. material 1.

Figure 1. Map of Southeast Australia showing the distribution of Pogonosternum sampling sites with site 
numbers (see Table 1 and Suppl. material 1 for further details). P. adrianae (light green), P. laetificum 
(green), P. nigrovirgatum s. l./coniferum (yellow), P. sp. A (red), P. sp. B (blue).
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Illustrations

Maps were created with ArcGIS 10. The final phylogenetic trees were edited using 
Adobe Illustrator CS4.

Molecular analysis

DNA was extracted from 2-4 legs from each of 41 Pogonosternum specimens and from 
the three paradoxosomatid species Archicladosoma magnum Jeekel, 1984, Somethus 
scopiferus Jeekel, 2002 and S. castaneus (Attems, 1944), which were chosen as outgroups 
(Table 1). Total genomic DNA was extracted using the Qiagen DNAeasy Blood&Tissue 
kit following the standard protocol except that tissue was incubated for 48h.

Glom primer cocktail pairs (Decker 2016, Macek et al. 2014) were used to se-
quence a 618 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) 
gene. Primer pairs 28S D1a (Fw) and 28S D3b (Rv) (Dell’Ampio et al. 2009) were 
used to amplify 1225 bp of the D2 fragment and adjacent areas of D1 and D3 on the 
nuclear 28S ribosomal RNA gene.

For PCR protocol and all primer sequences (COI, 28S) see Decker (2016).
Primer pairs 16Sar (Fw) (5’-CGCCTGTTTAACAAAAACAT-3’) and 16Sbr (Rv) 

(5’-CCGGTCTGAACTCAGATCACGT-3’) (Simon et al. 1994) were used to se-
quence a 566 bp fragment of the large-subunit ribosomal RNA (16S) gene. The fol-
lowing thermocycling profile was used to amplify fragments of 16S: pre-denaturation 
at 94°C for 4 min 30 sec, 35 cycles of 30 sec at 94°C, 30 sec at 49°C and 50 sec at 
72°C, and the final extension step for 5 min at 72°C.

All PCR mixes had a total volume of 10 µl comprising 1 µl template, 0.2 µM of 
each primer, 4x0.2 mM dNTPs [Peqlab], 1 x PCR Buffer containing 1.5 mM MgCl2 
[Peqlab], and 0.05u Polymerase [Peqlab].

All fragments were sequenced in both directions by the BiK-F Laboratory Cen-
tre, Frankfurt, Germany. All obtained sequences were checked via BLAST searches of 
GenBank; no contamination was discovered. The sequences were aligned by hand in 
ClustalX ver. 1.83 (Chenna et al. 2003) and uploaded to GenBank (Table 1).

Some homologisation problems in the 16S rRNA sequences arose mainly because 
of the highly variable expansion loops. As a result, selected alignment positions (272-
297) were excluded from the 16S rRNA dataset for all further analyses using MEGA6.

The final alignments consisted of 618 bp of COI mtDNA, 540 bp of 16S rRNA 
and 1206 bp of 28S rRNA. The combined datasets after these exclusions consisted of 
1158 bp for COI+16S. Individual partial alignments can be obtained from the author 
upon request. The alignment of the combined dataset can be found in the Suppl. mate-
rial 2 as a FASTA file.

COI and 16S sequences were combined as a single dataset and incongruence as-
sessed between the mtDNA intergenic spacer sequences with the incongruence length 
difference (ILD) test (Farris et al. 1994) implemented as the partition homogeneity test 
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in PAUP* version 4.0b10 using a full heuristic search, 10 random taxon addition repli-
cates, tree-bisection-reconnection (TBR) branch swapping, and with MaxTrees set to 
100 (Swofford 2002). The best-fit model of nucleotide substitution for the individual 
COI and 16S dataset was determined by MrModelTest 2 (Nylander 2004). The best-
fit model of nucleotide substitution selected using MrModelTest 2 was the General 
Time Reversible model with gamma distribution and proportion of invariant sites 
(Nei and Kumar 2000) for the individual COI and 16S dataset. The trees constructed 
from individual genes did not show significant conflicts in topology (nodes different 
among trees with support > 70% in ML) and no significant incongruence among the 
three genes was revealed by the ILD test (P > 0.83 in all of the pairwise comparisons), 
so the sequences were concatenated into a dataset containing 1158 characters for 
phylogenetic analysis.

The combined dataset of COI and 16S was analysed under maximum likelihood 
(ML) using MEGA6 (Tamura et al. 2011) and Bayesian inference (BI) using MrBayes 
version 3.2 (Ronquist et al. 2012). For ML analysis, three independent runs were 
performed with nodal support estimated from 1000 bootstrap (BP) pseudoreplicates 
using the best-fit model for the concatenated dataset. For Bayesian analysis, two 
independent runs were carried out with four differentially heated Metropolis-coupled 
Monte Carlo Markov chains for 10 000 000 generations started from a random tree 
and chains were sampled every 100 generations.

Multiple runs of ML and BI converged in trees with the same topology and similar 
likelihood score so that only the result of the first run is presented. The topology resulting 
from ML and BI analyses was largely congruent except for the arrangements of several 
terminal nodes with low support. Thus, results from the ML and BI analyses are shown 
together based on the ML tree with bootstrap (BP) and posterior probabilities (PP) of 
the major lineages shown on the corresponding branches with BP values > 70 (Fig. 2).

An appropriate DNA substitution model was determined for 28S under the 
Bayesian Information Criterion (BIC) in Modeltest implemented in MEGA 6 (Tamura 
et al. 2011). The lowest Bayesian Information Criterion score (BIC) was obtained for 
28S rRNA (BIC 3875.11) with the Tamura 3-parameter model (Tamura 1992).

A phylogenetic hypothesis was inferred for COI+16S and 28S by using the 
maximum likelihood method conducted in MEGA6 (Tamura et al. 2011). The 
phylogenetic tree with the highest log likelihood (COI+16S: -7237.4280; 28S: 
-1831.9238) is shown (Figs 2, 3). Initial trees for the heuristic search were obtained 
by applying the neighbor-joining method to a matrix of pairwise distances estimated 
using the Maximum Composite Likelihood (MCL) approach (Tamura et al. 2004). A 
discrete Gamma distribution was used to model evolutionary rate differences among 
sites (five categories (+G, parameter = COI+16S: 0.2338)). The bootstrap consensus 
tree inferred from 1000 replicates (Felsenstein 1985) is here used as the best estimate 
of the phylogeny of the analyzed taxa (Figs 2, 3).

Mean uncorrected pairwise distances between terminals (transformed into per-
centages) were determined using MEGA6 (Tamura et al. 2011) and can be found in 
Suppl. material 3.
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Figure 2. Maximum likelihood tree for the combined mitochondrial COI+16S dataset, 1000 bootstrap 
replicates, values below 70 not shown. The bootstrap values of ML and posterior probabilities of BI are 
given above and below the corresponding branches, respectively, for all major clades. Scale bar = substitu-
tions per site. Coloured blocks indicate species groups. Color of branches refers to the major subregions 
shown in the map, Tasmanian branches thicker. General differences in male gonopod morphology are 
shown by sketches of the apical region of the right gonopod not drawn to scale. Coloured lines link those 
analysed specimens that have similar gonopod morphology. Posterior view = post.; lateral view = lat.; 
anterior view = ant.
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Figure 3. Maximum likelihood tree for the nuclear 28S dataset, 1000 bootstrap replicates, values below 
70 not shown.

Results

Phylogenetic and distance analysis

The monophyly of the genus Pogonosternum is strongly supported (ML BP = 97; BI PP 
= 1.0) in the mitochondrial tree and shows five clades within Pogonosternum, resem-
bling five species groups (Fig. 2).

One main clade includes three species from the mountainous area east and north-
east of Melbourne: the undescribed species Pogonosternum sp. B (ML BP = 99; BI PP 
= 1.0), already mentioned by Car (2010) from New South Wales, P. laetificum (ML 
BP= 33; BI PP = 1.0) and P. adrianae (ML BP = 68; BI PP = 1.0), both not supported, 
the latter forming a sister clade (ML BP = 100; BI PP = 1.0) to P. sp. B. The latter two 
species show moderately large intraspecific distances ranging from 1.1 to 4.6% (P. sp. 
B) and 0.1 to 3.0% (P. adrianae), while P. laetificum shows high intraspecific distances 
(0.6–5.5%), even between geographically close (<10 km) populations.

Pogonosternum nigrovirgatum sensu lato with a trans-Bass Strait distribution 
formed a well-supported (ML BP = 89; BI PP = 1.0) sister clade to the new species P. 
sp. A (ML BP = 98; BI PP = 1.0) that also has a trans-Bass Strait distribution. Pogon-
osternum sp. A also occurs in New South Wales (Car 2010) and in northeast Tasmania 
(Mesibov & Churchill 2003). Pogonosternum nigrovirgatum s. l. occurs on mainland 
Australia (Otway Ranges to eastern Victoria) and in northwest Tasmania. Pogonoster-
num coniferum clusters with another form with intermediate gonopods (referred to as 
P. cf. nigrovirgatum in Fig. 2) between P. nigrovirgatum sensu stricto and P. coniferum. 
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Both P. nigrovirgatum s. l. and P. sp. A show high intraspecific distances ranging from 
1.8 to 6.8% within P. nigrovirgatum s. l. and 1.1 to 5.9% within P. sp. A.

Within the P. nigrovirgatum s. l. species-group, the greatest genetic distances were 
observed between populations in the Strzelecki Ranges (S60, S63; ML BP = 100; BI PP 
= 1.0) and more western populations, with values ranging from 5.0 to 6.8%. Specimens 
from the Otway Ranges (S77, S78, S81) all formed a well-supported cluster (ML BP = 
86; BI PP = 1.0). The Tasmanian specimen (X2) was distinct from both the Strzelecki 
Ranges (5.4–6.0%) and central and western Victorian specimens (3.7–3.8%). In the case 
of Pogonosternum sp. A the largest distances (4.2–5.8%) were between the Eastern Gipp-
sland populations (S42, S47; ML BP = 100; BI PP = 1.0) and all other specimens. The 
status of the northeast Tasmanian specimen is not well resolved; it is closest to a popula-
tion from Kosciuszko National Park (S31, 3.0%), the two forming a poorly supported 
sister clade with a specimen from Gippsland (S52; ML BP = 55; BI PP = 0.6).

All species show considerable intraspecific genetic distances and high phylogeo-
graphic structure, especially P. laetificum, and, except in the case of P. adrianae, no hap-
lotypes are shared between different populations. Additional one to three sequenced 
specimens from eight sampling sites (S14, S15, S22, S58, S59, S78, S83, S87) always 
showed the same haplotype in Pogonosternum (data not published).

Interspecific distances within the genus Pogonosternum are moderately large, vary-
ing from 5.5% (P. sp. A–P. nigrovirgatum s. l.) to 10.4% (P. nigrovirgatum s. l.–P. 
laetificum), except P. adrianae to P. laetificum with only 2.9%.

Owing to the general lack of variability within the nuclear 28S rRNA dataset, the 
phylogenetic relationships among species were largely unresolved. Distances for 28S 
rRNA within Pogonosternum are very low, with a maximum of three base pair differ-
ences noted for P. sp. B (Fig. 3). Only the two condensed sister clades of P. nigrovirga-
tum + P. sp. A and P. adrianae + P. laetificum, as well as P. sp. B are shown.

Morphology

In a separate paper (Decker, in preparation), the morphology of the Pogonosternum spe-
cies groups is described in detail and new species are described, based on the specimens 
used here and from ca 130 additional localities. Here I note briefly that several common 
morphological features were observed in the gonopods of P. nigrovirgatum s. l., P. laetificum, 
and P. sp. A: some specimens also showed intermediate states of those features (Fig. 2). It 
was found, however, when additional material was examined from each population that the 
morphology of each population was locally stable. It was only in rare cases in the Otway 
Ranges and NW Tasmania populations that two gonopod morphs occurred in one place.

Surprisingly, gonopod morphology did not appear to agree well with the phyloge-
netic tree (Fig. 2). Various gonopod forms were distributed with no apparent phylogeo-
graphical correlation. Only the species P. adrianae and P. sp. B showed stability in both 
gonopods and some other non-gonopodal characters over their distribution area, even 
when material from other museum collections was included (Decker, in preparation).
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Discussion

Phylogenetic analysis

The mitochondrial tree (Fig. 2) shows five main clades, suggesting five species. Pogon-
osternum coniferum clustered within P. nigrovirgatum, and its taxonomic status needs 
re-examination (Decker, in preparation).

The 28S tree shows little or only little resolution at the species level (Fig. 3), but 
was useful in identifying sister clades. This result contrasts with that from a study of the 
paradoxosomatid genus Somethus in South Australia, in which the 28S gene was used 
successfully for species identification (Decker 2016). Future studies on other Austral-
ian Paradoxosomatidae will reveal if 28S is useful as a diagnostic nuclear gene at the 
species level.

Morphological variability

With the exception of P. adrianae and P. sp. B, Pogonosternum species show significant 
variability in gonopod form, with local morphs occurring throughout each species’ 
distribution area.

Interestingly, P. adrianae is morphologically distinct (in size, spiracles, male tibio-
tarsal brushes and gonopods, female coxal process) from P. laetificum despite their 
close genetic distance.

Gonopod variability was also documented for some species of Somethus in South 
Australia (Decker 2016) and Stygiochiropus Humphreys & Shear, 1993 from Western 
Australia (Humphreys and Shear 1993). Another good example of variability is seen 
in the trans-Bass Strait (eastern Victoria, NE Tasmania) paradoxosomatid millipede, 
Dicranogonus pix: while this species shows only slight variability in gonopods there is 
marked variation in the development of their paranota. Individuals with no paranota 
are separated from those with keels by a gap between the Kent and Furneaux Groups 
of islands (Mesibov 2014).

This study has shown that in the area of southern and southeast Australia, there 
are at least two genera, Pogonosternum and Somethus (Decker 2016), which both show 
variability in morphology and genetics. Poor sampling and too few specimens could 
lead to incorrect conclusions and unnecessary multiple species descriptions.

Multiple glacial refugia in southeastern Australia

The results indicate that there is high intraspecific genetic divergence, with high genet-
ic distances and haplotype diversity in the mitochondrial genes between populations 
of Pogonosternum, even those adjacent to each other. The P. laetificum clade, which has 
been sampled extensively in the Central Highlands, shows particularly high intraspe-
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cific genetic differences (mean genetic distance of 3.9%), apparently without corre-
sponding geographic patterning, or morphological variation (Decker, in preparation).

The phylogenetic patterns with high intraspecific divergence, high genetic 
distances, and haplotype diversity with unique local haplotypes, resulting in long 
branches, shown by Pogonosternum, indicate multiple Pleistocene refugia according 
to Byrne (2008). These refugia provided suitably moist habitats in which species 
could persist during the dry, cold climate cycles of the Pleistocene period in south-
ern Australia, while glaciation was limited to the alpine areas of the Great Dividing 
Range and Tasmania (Barrows et al. 2002). Moderate to high genetic diversity prior 
to these cycles can be assumed for poorly dispersing millipedes, through isolation 
by distance, and it is likely that populations were isolated within refugia, leading to 
further genetic diversification. In contrast, contractions to one or few major refugia 
during cold, arid periods would result in a low genetic diversity, few divergent line-
ages and low haplotype diversity, with few haplotypes in areas of postglacial recolo-
nisation (Byrne 2008).

The phylogenetic patterns shown by Pogonosternum suggest that in Victoria and 
New South Wales there were large areas with multiple local refugia during the Pleisto-
cene. No region in the study area on mainland Australia showed results which indicate 
rapid postglacial resettlement of Pogonosternum.

Evidence for multiple glacial refugia was also identified in the spirostreptidan mil-
lipede Atelomastix bamfordi Edward & Harvey, 2010 in Western Australia (Nistel-
berger et al. 2014) and for some species of Somethus in South Australia (Decker 2016). 
Similar phylogeographic patterns seem to occur in other soil invertebrates with lim-
ited dispersal capacities in southern Australia, for example flatworms (Sunnucks et al. 
2006) and springtails (Garrick et al. 2004).

Endo et al. (2014) have suggested, however, that glacial periods have had less of 
an impact on the distribution and genetic diversity of invertebrate groups (Coleoptera, 
Orthoptera, Collembola, Diplopoda) in the Australian Alps than they have in alpine 
systems in the Northern Hemisphere.

However, further studies on genetic and morphological variability on a finer geo-
graphical scale could lead to a better understanding of the pattern and impact of isola-
tion in multiple glacial refugia during the Pleistocene, also as an evolutionary driving 
force for morphological variability in some species.

Gippsland phylogeography

There is a notable high genetic distance gap within P. nigrovirgatum sensu lato between 
specimens from the Strzelecki Ranges (S60, S63), West Gippsland, and those sam-
pled in the central and western regions in Victoria, but some specimens of adjacent 
populations from the latter (S64, S65) were morphologically indistinguishable from 
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specimens from the Strzelecki Ranges. A similar genetic gap was observed in P. sp. 
A for the populations in Eastern Gippsland east of Orbost (S42, S47) and all other 
populations. These two cases indicate that these areas may have been isolated for long 
periods from neighboring regions, possibly before the Pleistocene, perhaps during a 
marine incursion in the Gippsland Basin and other parts of southeast Australia close to 
the Miocene–Pliocene boundary (Dickinson et al. 2002).

Trans-Bass Strait distribution

The genus Pogonosternum shows a trans-Bass Strait distribution and most likely origi-
nated in mainland southeast Australia, since the highest species diversity is found on 
the mainland and the two Tasmanian branches occupy only very subordinate positions 
on the tree (Fig. 2). Tasmanian populations of this genus are restricted to the northeast 
and northwest corners of the Tasmanian mainland and neighboring islands, and pre-
sumably dispersed from Victoria when it was largely connected with Tasmania during 
the Pleistocene (Lambeck and Chappell 2001). Mitochondrial data suggest that the 
sequenced population of P. nigrovirgatum s. l. in northwest Tasmania was most likely 
derived from one in central Victoria or the Otway Ranges. While the results for P. 
sp. A from northeast Tasmania do not show a close relationship to coastal Victorian 
populations, analysis of 16S (data not included here) including sequences from two 
other localities in the western part of East Gippsland showed the Tasmanian specimen 
clustering with the latter. This indicates that the settlement of Tasmania by this species 
started in the Gippsland region. A remarkably similar distribution to that of P. sp. A 
across Bass Strait is also known for the paradoxosomatid millipedes Dicranogonus pix 
and Notodesmus scotius (Mesibov 2014).

Further studies using more sampling localities in Tasmania and its islands could in-
dicate points of origin in Victoria and the timing of millipede settlement of Tasmania.
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