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Abstract
Ophisternon infernale is one of the 200+ troglobitic fish species worldwide, and one of the two cave-
dwelling fishes endemic to the karstic aquifer of the Yucatán Peninsula, Mexico. Because of its elusive 
nature and the relative inaccessibility of its habitat, there is virtually no genetic information on this 
enigmatic fish. Herein we report the complete mitochondrial genome of O. infernale, which overall 
exhibits a configuration comparable to that of other synbranchiforms as well as of more distantly related 
teleosts. The KA/KS ratio indicates that most mtDNA PCGs in synbranchiforms have evolved under strong 
purifying selection, preventing major structural and functional protein changes. The few instances of 
PCGs under positive selection might be related to adaptation to decreased oxygen availability. Phylogenetic 
analysis of mtDNA comparative data from synbranchiforms and closely related taxa (including the 
indostomid Indostomus paradoxus) corroborate the notion that indostomids are more closely related to 
synbranchiforms than to gasterosteoids, but without rendering the former paraphyletic. Our phylogenetic 
results also suggest that New World species of Ophisternon might be more closely related to Synbranchus 
than to the remaining Ophisternon species. This novel phylogenetic hypothesis, however, should be further 
tested in the context of a comprehensive systematic study of the group.
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Introduction

Ophisternon infernale (Synbranchiformes, Synbranchidae), commonly known as the 
blind swamp eel, is a rare and elusive freshwater teleost fish endemic to the cenotes 
and submerged caves of the Yucatan Peninsula (YP) in southeastern Mexico. Like most 
troglobites, O. infernale exhibits typical regressive troglomorphic traits associated with 
life in absolute darkness, such as the absence of both pigmentation and eyes. Besides its 
endemism and troglomorphism, O. infernale is exceptional in that it is one of two fish 
species that permanently inhabit the dark and oligotrophic subterranean waters of the 
YP karst aquifer; the other being the Mexican blind brotula (Typhlias pearsei) (Arroyave 
2020). The relative inaccessibility of its habitat–submerged caves or cenotes well inside dry 
caves–coupled with its highly cryptic lifestyle–often found burrowed under the sediment 
or hiding inside tangles of submerged roots and crevices–have made the study of the 
blind swamp eel particularly challenging, and as a result very little is known about this 
intriguing fish species. Notably, the total number of occurrence records for O. infernale 
is less than 20 localities throughout its potential range of distribution (Arroyave et 
al. 2019). By virtue of its rarity, endemism, and restricted geographic distribution, in 
addition to the current threats faced by its habitat and region, O. infernale has recently 
been categorized as Endangered (EN) (Arroyave et al. 2019). Unsurprisingly, genetic data 
from O. infernale are virtually nonexistent, and this has hampered efforts at establishing 
its exact phylogenetic placement (Perdices et al. 2005). Besides their importance for 
phylogenetic and biogeographic research, genomic data are fundamental for addressing 
other evolutionary lines of inquiry, such as the genetic basis of troglomorphism (Protas 
and Jeffery 2012). Hence the need for generating genomic information of such a unique, 
endangered, and understudied species such as O. infernale. In order to provide genomic 
resources potentially informative for future evolutionary studies, here we present the first 
complete mitochondrial genome of the troglomorphic and YP-endemic O. infernale. 
In addition to sequencing, assembling, and annotating its mitogenome, we present 
detailed descriptive (genome size and organization, protein-coding genes [PCGs], 
non-coding regions, and RNAs features) and comparative (patterns of selection on 
PCGs, phylogenetic) analyses. Leveraging novel mitogenomic data to shed light on the 
systematics of Synbranchiformes is particularly relevant and timely because of ongoing 
conflicting hypotheses of relationships regarding the limits and composition of this teleost 
order that involve the phylogenetic placement of the monogeneric family Indostomidae 
with respect to synbranchiforms and closely related euteleost lineages (Van Der Laan et 
al. 2014; Nelson et al. 2016; Betancur-R et al. 2017). Furthermore, the phylogenetic 
position of the blind swamp eel, O. infernale, in the context of the diversification of the 
family Synbranchidae, has yet to be established (Perdices et al. 2005).
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Material and methods

Sample collection and raw data generation

All methods were carried out in accordance with relevant guidelines and regulations, 
and the study was carried out in compliance with the ARRIVE guidelines. Sampling 
of the O. infernale individual used to generate the mitogenome presented here was 
accomplished with the assistance of a professional cave diver who captured the 
specimen using a custom-made hand net specifically designed for efficient capture and 
secure storage while cave diving. The sample was collected under collecting permit 
SGPA/DGVS/05375/19 issued by the Mexican Ministry of Environment and Natural 
Resources (Secretaría de Medio Ambiente y Recursos Naturales; SEMARNAT) to JA. 
The sampling locality is the cenote Kan-Chin (Huhí, Yucatán), located at 20°40'11"N, 
89°10'6"W. The voucher specimen was euthanized with MS-222 prior to preservation 
in accordance with recommended guidelines for the use of fishes in research (Nickum 
et al. 2004), fixed in a 10% formalin solution, and subsequently transferred to 70% 
ethanol for long-term storage in the Colección Nacional de Peces (CNPE) of the 
Instituto de Biología (IB) at the Universidad Nacional Autónoma de México (UNAM), 
where it has been catalogued and deposited (CNPEIBUNAM 23285). A tissue sample 
(muscle fragment) was taken prior to specimen fixation, preserved in 95% ethanol, 
and eventually cryopreserved at -80 °C. High-molecular genomic DNA was extracted 
using the phenol-chloroform protocol (Sambrook et al. 1989). The DNA was sheared 
by sonication with a Bioruptor pico of Diagenode and Minichiller. Sonication was 
performed using six cycles of alternating 30 s ultrasonic bursts and 30 s pauses in a 
4 °C water bath. For library preparation we used a DNA sample of 200 ng which was 
quantified using a Qubit fluorometer (Invitrogen). Library preparation was carried 
out using the KAPA Biosystem Hyper Kit (Kapa, Biosystem Inc., Wilmington, MA). 
Fragmented DNA was ligated to custom, TruSeq-style dual-indexing adapters (Glenn 
et al. 2016). Fragments were size selected in a ~300–500 bp range which was enriched 
through PCR, purified and normalized. The Illumina NextSeq v2 300 cycle kit was 
used for sequencing paired-end 150 nucleotide reads at the Georgia Genomics Facility, 
University of Georgia, Athens, USA.

Mitogenome assembly and annotation

The quality of the raw data was assessed with FastQC (Andrews, 2010). Good-
quality sequences that did not contain ambiguous nucleotides and reads with average 
quality of 30Q were demultiplexed, trimmed and merged using Geneious Prime 
2020.0.4 (https://www.geneious.com). Mitogenome assembly was conducted with 
MITObim v.1.9 (Hahn et al. 2013) using two reference mitogenomes from close 
relatives of O.  infernale available in GenBank: Ophisternon candidum (MT436449) 
and Synbranchus marmoratus (AP004439). These reference mitogenomes were aligned 
in order to generate a consensus sequence for use during the annotation procedure. 

https://www.geneious.com
http://www.ncbi.nlm.nih.gov/nuccore/MT436449
http://www.ncbi.nlm.nih.gov/nuccore/AP004439
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MitoFish MitoAnnotator (Iwasaki et al. 2013) and MITOS (Bernt et al. 2013) were 
used to identify and annotate protein-coding genes (PCGs), transfer RNAs (tRNAs), 
and ribosomal RNAs (rRNAs). The resultant annotated O. infernale mitochondrial 
genome was deposited in the GenBank database under accession number OM388306.

Descriptive analyses

Nucleotide and amino acid composition, codon usage profiles of protein-coding 
genes (PCGs), Relative Synonymous Codon Usage (RSCU), and characterization 
the non-coding mtDNA control region (CR) were computed with mega X (Kumar 
et al. 2018). Nucleotide composition skewness was calculated with the formulas AT 
skew = (A − T)/(A + T) and GC skew = (G − C)/(G + C) (Perna and Kocher 1995). 
Prediction of tRNAs secondary structure was accomplished with tRNAScan-SE 2.0 
(Chan and Lowe 2019) through the webserver http://lowelab.ucsc.edu/tRNAscan-
SE/, using Infernal without HMM filter search mode and “vertebrate mitochondrial” 
as sequence source (Lowe and Chan 2016). Analysis and prediction of CR secondary 
structure in O. infernale was accomplished using the software ClustalW (Thompson 
et al. 2003) as implemented in mega X (Kumar et al. 2018) by comparison (via 
multiple sequence alignment) with reports of secondary CR structure from two other 
teleost fishes, namely Siniperca chuatsi (EU659698) (Zhao et al. 2006) and Cyprinion 
semiplotum (MN603795) (Sharma et al. 2020).

Comparative analyses

We investigated patterns of selection on PCGs on a mitogenomic scale and phylogenetic 
relationships among major synbranchiform lineages based on all mitogenomic 
comparative data for the group available on GenBank. To measure of the strength and 
mode of natural selection acting on PCGs, we estimated the ratio of non-synonymous 
(KA) to synonymous (KS) substitutions (KA/KS, also known as ω or dN/dS) using the 
HyPhy 2.5 package (Kosakovsky Pond et al. 2020) as implemented in mega X (Kumar 
et al. 2018) based on the newly assembled mitochondrial genome (Ophisternon infernale, 
OM388306) and seven additional synbranchiform mitogenomes previously available in 
GenBank: Ophisternon candidum (MT436449), Synbranchus marmoratus (AP004439), 
Monopterus albus (NC003192), Mastacembelus armatus (NC023977), Mastacembelus 
erythrotaenia (NC035141), Macrognathus aculeatus (KT443991), and Macrognathus 
pancalus (NC032080). To compare patterns of selection between synbranchiform 
families, we conducted two separate KA/KS analyses, one for synbranchids and one 
for mastacembelids. The taxonomic sampling for phylogenetic analyses included 
representatives of the synbranchiform families Synbranchidae and Mastacembelidae, 
as well as a representative of Indostomidae, a monogeneric family historically classified 
in the Gasterosteiformes on the basis of morphological evidence (Van Der Laan et 
al. 2014; Nelson et al. 2016) but more recently assigned to the Synbranchiformes in 
accordance to the results of molecular phylogenetic studies (Betancur-R. et al. 2013; 

http://www.ncbi.nlm.nih.gov/nuccore/OM388306
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.ncbi.nlm.nih.gov/nuccore/EU659698
http://www.ncbi.nlm.nih.gov/nuccore/MN603795
http://www.ncbi.nlm.nih.gov/nuccore/OM388306
http://www.ncbi.nlm.nih.gov/nuccore/MT436449
http://www.ncbi.nlm.nih.gov/nuccore/AP004439
http://www.ncbi.nlm.nih.gov/nuccore/NC003192
http://www.ncbi.nlm.nih.gov/nuccore/NC023977
http://www.ncbi.nlm.nih.gov/nuccore/NC035141
http://www.ncbi.nlm.nih.gov/nuccore/KT443991
http://www.ncbi.nlm.nih.gov/nuccore/NC032080
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Betancur-R et al. 2017). The lack of published mitochondrial genomes of fishes from 
the synbranchiform family Chaudhuriidae prevented us from including representatives 
of this taxon in our analyses. The ingroup consisted of the synbranchids Ophisternon 
infernale (OM388306), Ophisternon candidum (MT436449), Synbranchus marmoratus 
(AP004439) and Monopterus albus (NC003192), the mastacembelids Mastacembelus 
armatus (NC023977), Mastacembelus erythrotaenia (NC035141), Macrognathus 
aculeatus (KT443991) and Macrognathus pancalus (NC032080), and the indostomid 
Indostomus paradoxus (NC004401). The outgroup consisted of representatives of 
close relatives of Synbranchiformes such as the anabantiforms Channa micropeltes 
(NC030542) and Nandus nandus (AP006809), and the gasterosteiforms Gasterosteus 
aculeatus (NC041244) and Pungitius pungitius (NC011571); the last two included 
to test the phylogenetic position of I. paradoxus with respect to members of the 
Gasterosteiformes. The phylogeny was rooted at the viviparous brotula Diplacanthopoma 
brachysoma (AP004408). Phylogenetic relationships were inferred based on a 
concatenated alignment of all 13 PCGs. DNA sequence data from each PCG was 
independently aligned via multiple sequence alignment using the software MUSCLE 
(Edgar 2004) under default parameters via the “translation align” tool of the software 
Geneious Prime 2020.0.4 (https://www.geneious.com). The best-fit substitution 
model for each PCG was determined according to the corrected Akaike Information 
Criterion (AICc) with the software jModelTest2 (v. 2.1.10) (Darriba et al. 2012) 
under the following likelihood settings: number of substitution schemes = “3”; base 
frequencies = “+F”; rate variation = “+I and + G with nCat = 4”; base tree for likelihood 
calculations = “ML optimized”; and base tree search = “Best” (effectively evaluating 
among all 24 “classical” GTR-derived models). Individual alignments (ATP6=681 bp, 
ATP8=168 bp, COX1=1,539 bp, COX2=690 bp, COX3=783 bp, CYTB=1,137 bp, 
NAD1=975 bp, NAD2=1,053 bp, NAD3=348 bp, NAD4=1,380 bp, NAD4L=294 
bp, NAD5=1,836 bp, and NAD6=525 bp) were subsequently concatenated using the 
software 2matrix (Salinas and Little 2014), yielding a data matrix totaling 11,409 
aligned bp. Maximum Likelihood inference of phylogeny was carried out on the 
concatenated alignment partitioned by gene using the software RAxML-NG (v. 1.0.1) 
(Kozlov et al. 2019) through the CIPRES Science Gateway (Miller et al. 2010), with 
nodal support estimated by means of the bootstrap character resampling method 
(Felsenstein 1985) based on 1000 pseudoreplicates.

Results and discussion

Genome size and organization

The complete mitochondrial genome of O. infernale presented herein (GenBank accession 
number OM388306) is 16,804 bp in total length (Fig. 1; Table 1), a somewhat larger 
size than previously published synbranchiform mitogenomes, which range from 16,493 
bp (in M. erythrotaenia) (or from 16,152 bp if considering the putative synbranchiform 

http://www.ncbi.nlm.nih.gov/nuccore/OM388306
http://www.ncbi.nlm.nih.gov/nuccore/MT436449
http://www.ncbi.nlm.nih.gov/nuccore/AP004439
http://www.ncbi.nlm.nih.gov/nuccore/NC003192
http://www.ncbi.nlm.nih.gov/nuccore/NC023977
http://www.ncbi.nlm.nih.gov/nuccore/NC035141
http://www.ncbi.nlm.nih.gov/nuccore/KT443991
http://www.ncbi.nlm.nih.gov/nuccore/NC032080
http://www.ncbi.nlm.nih.gov/nuccore/NC004401
http://www.ncbi.nlm.nih.gov/nuccore/NC030542
http://www.ncbi.nlm.nih.gov/nuccore/AP006809
http://www.ncbi.nlm.nih.gov/nuccore/NC041244
http://www.ncbi.nlm.nih.gov/nuccore/NC011571
http://www.ncbi.nlm.nih.gov/nuccore/AP004408
https://www.geneious.com
http://www.ncbi.nlm.nih.gov/nuccore/OM388306
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I. paradoxus) to 16,622 bp (in M. albus). Although the mitogenome of the synbranchid 
S. marmoratus reported in GenBank (AP004439) is considerably shorter (15,561 
bp), this significant difference in length is actually due to it missing the NAD1 gene 
(normally ~1,000 bp) as a result of reported technical difficulties during sequencing 
(Miya et al. 2003). The composition and general arrangement of mitochondrial genes 
in O. infernale is identical to that reported for other synbranchiforms (Li et al. 2016; 
Han et al. 2018; White et al. 2020) as well as for more distantly related teleosts (Miya 
et al. 2001, 2003; Satoh et al. 2016), and consists of a total of 37 genes divided into 
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Figure 1. Annotated map of the mitochondrial circular genome of O. infernale. The outer ring corre-
sponds to the H- (outermost) and L-strands, and depicts the location of PCGs (in black, except for ND6 
which is encoded in the L-strand and is portrayed in red), the non-coding control region (in dark brown), 
tRNAs (in red), and rRNAs (in light brown). The inner ring (black sliding window) denotes GC content 
along the genome. Live specimen photograph taken in the Cenote Kancabchen (Homún, Yucatán), cour-
tesy of cave diver Erick Sosa.

http://www.ncbi.nlm.nih.gov/nuccore/AP004439
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the following categories: 13 PCGs, 2 rRNAs, 22 tRNAs, and the non-coding control 
region (CR) (Fig. 1; Table 1). Twenty-eight genes (12 PCGs, 2 rRNAs, 14 tRNAs) 
plus CR are located on the H-strand, while the remaining nine genes (NAD6 and 8 
tRNAs) are located on the L-strand (Table 1); a configuration that corresponds to those 
of previously reported synbrachiform mitogenomes (Li et al. 2016; Han et al. 2018; 
White et al. 2020). The overall base composition of the O. infernale mitogenome is 
T=28.7%, A=31.6%, G=13.2%, and C=26.5%, which is fairly similar to those of other 
synbrachiform mitogenomes (Table 2). Nucleotide composition, however, is biased 

Table 1. Mitochondrial genes and associated features of O. infernale. Intergenic space (IGS) described as 
intergenic (+) or overlapping nucleotides (–). AA = amino acid.

Locus Type One-letter 
code

Start End Length 
(bp)

Strand # of 
AA

Anticodon Start 
codon

Stop 
codon

IGS

tRNAPhe tRNA F 1 69 69 H GAA 0
12s rRNA rRNA 70 1017 948 H 0
tRNAVal tRNA V 1018 1091 74 H TAC 0
16s rRNA rRNA 1092 2766 1092 H 0
tRNA-Leu tRNA L 2767 2840 74 H TAA 63
NAD1 Protein-coding 2904 3872 951 H 316 ATG TAA 7
tRNAIle tRNA I 3880 3949 70 H GAT 8
tRNAGln tRNA Q 3958 4028 71 L TTG –1
tRNAMet tRNA M 4028 4097 70 H CAT 0
NAD2 Protein-coding 4098 5144 1047 H 337 ATG AGA –3
tRNATrp tRNA W 5142 5211 70 H TCA 1
tRNAAla tRNA A 5213 5281 69 L TGC 1
tRNAAsn tRNA N 5283 5355 73 L GTT 53
tRNACys tRNA C 5409 5475 67 L GCA 0
tRNATyr tRNA Y 5476 5542 67 L GTA 1
COX1 Protein-coding 5544 7082 1539 H 489 GTG AGA –4
tRNASer tRNA S 7127 7197 71 L TGA 2
tRNAAsp tRNA D 7200 7270 71 H GTC 2
COX2 Protein-coding 7273 7963 691 H 225 ATG T 0
tRNALys tRNA K 7964 8036 73 H TTT 1
ATP8 Protein-coding 8038 8205 168 H 51 ATG TAA –8
ATP6 Protein-coding 8196 8878 683 H 223 ATG TA 0
COX3 Protein-coding 8879 9662 784 H 249 ATG T 0
tRNAGly tRNA G 9663 9731 69 H TCC 0
NAD3 Protein-coding 9732 10079 348 H 112 ATG GAC 0
tRNAArg tRNA R 10080 10148 69 H TCG 0
NAD4L Protein-coding 10149 10445 297 H 97 ATA TAA –5
NAD4 Protein-coding 10439 11819 1380 H 445 ATG T 0
tRNAHis tRNA H 11820 11888 69 H GTG 0
tRNASer tRNA S 11889 11952 64 H GCT –1
tRNALeu tRNA L 11952 12024 73 H TAG 1
NAD5 Protein-coding 12026 13855 1830 H 598 ATG TA –2
NAD6 Protein-coding 13852 14373 522 L 172 ATG T 1
tRNAGlu tRNA E 14375 14443 69 L TTC 2
CYTB Protein-coding 14446 15586 1141 H 369 ATG T 0
tRNAThr tRNA T 15587 15662 76 H TGT –1
tRNAPro tRNA P 15662 15730 69 L TGG 0
D-loop Non-coding   15731 16804 1074 H         0
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toward A+T (60.4%), with O. infernale displaying the highest values of this metric 
among the analyzed synbranchiforms. The mitogenome of O. infernale exhibits positive 
AT (0.046) and negative GC (-0.277) skewness, a general pattern shared with other 
species of the Synbranchiformes (Table 2).

Table 2. Size and nucleotide composition of the complete synbranchiform mitochondrial genomes (and 
their concatenated PCGs) analyzed in this study. *NAD1 gene missing from published mitogenome.

Species GenBank 
Accession #

Entire genome Protein-coding genes
Length 

(bp)
A(%) T(%) C(%) G(%) AT(%) AT 

skew
GC 

skew
Length 

(bp)
AT(%) AT 

skew
GC 

skew
Ophisternon 
infernale

OM388306 16804 31.6 28.7 26.5 13.2 60.4 0.046 -0.277 11449 60.1 -0.038 -0.348

Ophisternon 
candidum

MT436449 16526 31.5 27.5 27.9 13.1 59 0.067 -0.36 11377 59.1 -0.015 -0.374

Synbranchus 
marmoratus*

AP004439 15561 30.7 26.8 28.5 14 57.5 0.067 -0.341 10529 57.1 -0.027 -0.355

Monopterus albus NC003192 16622 28.9 27.2 29.4 14.5 56.1 0.03 -0.34 11430 54.9 -0.052 -0.356
Mastacembelus 
armatus

NC023977 16487 29.1 25.3 30.9 14.7 54.4 0.069 -0.355 11404 53.1 -0.013 -0.381

Mastacembelus 
erythrotaenia

NC035141 16493 29 24.5 31.6 14.9 53.4 0.086 -0.357 11417 52.2 -0.003 -0.382

Macrognathus 
aculeatus

KT443991 16543 30 26.5 28.7 14.8 56.4 0.063 -0.322 11420 55.9 -0.014 -0.345

Macrognathus 
pancalus

NC032080 16549 29.7 26 29.6 14.7 55.7 0.664 -0.337 11420 54.9 -0.02 -0.363

Protein-coding genes

The 13 PCGs, altogether totaling 11,449 bp, correspond to 68.1% of the O. infernale 
mitogenome. These genes consist of seven regions that code for the subunits of the 
NADH dehydrogenase (ubiquinone) protein complex (NAD1-6, NADL4), three that 
code for the subunits of the enzyme cytochrome c oxidase (COX1-3), one that codes 
for the enzyme cytochrome b (CYTB), and two that code for the subunits 6 and 8 
of the enzyme ATP synthase FO (ATP6, ATP8). Except for COX1 and ND4L, PCGs 
exhibit an ATG (Met) start codon, which is the standard in eukaryotic systems (Kozak 
1983). The start codon exhibited by COX1 (GTG), however, is fairly common among 
vertebrates (Nwobodo et al. 2019). Conversely, an initiation-codon change from ATG 
(Met) to ATA (Ile) such as the one observed in ND4L is less common. Notably, of 
the synbranchiform mitogenomes analyzed, only that of O. infernale displays ATA as 
ND4L initiation codon. Most PCGs (10 out of 13) exhibit a TAA stop codon, which 
is a standard termination codon common in vertebrate mtDNA. However, of these 
10 genes only three (NAD1, NAD4L, ATP8) display a complete codon (TAA), while 
the remaining seven (ATP6, COX2, COX3, NAD4, NAD5, NAD6, CYTB) contain 
an incomplete stop codon (either TA or T). Of the remaining three PCGs, NAD2 
and COX1 have the stop codon AGA, while NAD3 has the stop codon GAC (Table 

http://www.ncbi.nlm.nih.gov/nuccore/OM388306
http://www.ncbi.nlm.nih.gov/nuccore/MT436449
http://www.ncbi.nlm.nih.gov/nuccore/AP004439
http://www.ncbi.nlm.nih.gov/nuccore/NC003192
http://www.ncbi.nlm.nih.gov/nuccore/NC023977
http://www.ncbi.nlm.nih.gov/nuccore/NC035141
http://www.ncbi.nlm.nih.gov/nuccore/KT443991
http://www.ncbi.nlm.nih.gov/nuccore/NC032080
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Figure 2. Results from analysis of Relative Synonymous Codon Usage (RSCU) of the mitochondrial 
genome of O. infernale. Codon families are plotted on the x-axis. The label for the 2, 4, or 6 codons that 
compose each family is shown in the boxes below the x-axis, and the colors correspond to those in the 
stacked columns. RSCU values are shown on the y-axis.

2). PCGs in the mitogenome of O. infernale exhibit levels of A+T content (60.1%) 
comparable to–though slightly higher than–those of other synbranchiforms, which 
range from 53.1% in M. armatus to 59.1% in O. candidum (Table 2). In contrast to 
our findings for the entire mitogenome, AT-skews in PGCs across all synbranchiform 
mitogenomes analyzed exhibit negative values. Conversely, and in correspondence with 
our whole-mitogenome results, GC-skews in PGCs also exhibit negative values and 
highly similar across most analyzed synbranchiforms. A total of 3816 amino acids are 
encoded by PCGs in the mitogenome of O. infernale, with Leu (14.7%), Ser (9.4%), 
Thr (7.8%), and Pro (7.7%) being the most frequent, while Met (1.1%) being the 
least common. RSCU values represent the ratio between the observed usage frequency 
of one codon in a gene sample and the expected usage frequency in the synonymous 
codon family, given that all codons for the particular amino acid are used equally. The 
synonymous codons with RSCU values > 1.0 have positive codon usage bias and are 
defined as abundant codons, whereas those with RSCU values < 1.0 have negative 
codon usage bias and are defined as less-abundant codons (Gun et al. 2018). Results 
from RSCU analysis of PCGs in the mitogenome of O. infernale indicate that the 
most frequently used codons are ACC (1.59%), AAA (1.56%), TTA, ATA, and GAA 
(1.49%), which code for the amino acids Thr, Lys, Leu, Met, and Glu, respectively. On 
the other hand, codons encoding Prol (CCG, 0.16%), Thr (ACG, 0.2%), Ala (GCG, 
0.23%), Ser (TCG, 0.39%), and Leu (CTG, 0.4%; TTA, 0.48%) are the least frequent 
(Fig. 2; Table 3).



Adán Fernando Mar-Silva et al.  /  ZooKeys 1089: 1–23 (2022)10

Transfer and ribosomal RNAs

The mitogenome of O. infernale contains the typical 22 tRNAs usually documented for 
mitogenomes of other teleosts and vertebrates (Lee et al. 1995; Díaz-Jaimes et al. 2016; 
Satoh et al. 2016; Nwobodo et al. 2019; White et al. 2020). The genomic organization 
of tRNAs in O. infernale is identical to that reported for O. candidum (White et al. 2020) 
and other synbranchids (Li et al. 2016; Han et al. 2018). Altogether, tRNAs total 1547 
bp, with individual ones ranging from 64 bp (tRNASer) to 76 bp (tRNAThr) (Table 1). 
Fourteen tRNAs are encoded in the H-strand, while the remaining eight in the L-strand 
(Fig. 1; Table 1). Twenty-one of the 22 tRNAs fold into the canonical cloverleaf secondary 
structure that consists of four domains (AA stem, D arm, AC arm, and T arm) and a 
variable loop (Fig. 3). Notably, the tRNASer (11889–11952) exhibits an unusual structure 
in which the D arm is missing. Although any change in tRNA secondary structure could 
potentially alter its amino acid recognition capability (Nwobodo et al. 2019), it has been 

Table 3. Results from the Relative Synonymous Codon Usage (RSCU) analysis for the PCGs of the 
mitochondrial genome of O. infernale.

Amino acid Codon Number Freq. (%) RSCU Amino acid Codon Number Freq. (%) RSCU
Phe TTT 110 2.9 1.02 Ala GCA 48 1.3 1.12

TTC 105 2.8 0.98 GCG 10 0.3 0.23
Leu TTA 139 3.6 1.49 Tyr TAT 119 3.1 1.13

TTG 45 1.2 0.48 TAC 92 2.4 0.87
CTT 144 3.8 1.54 His CAU  59 1.5 1.08
CTC 85 2.2 0.91 CAC 50 1.3 0.92
CTA 110 2.9 1.18 Gln CAA 78 2 1.42
CTG 37 1 0.4 CAG 32 0.8 0.58

Ile ATT 134 3.5 1.17 Asn AAT 101 2.6 1
ATC 95 2.5 0.83 AAC 102 2.7 1

Met ATA 119 3.1 1.49 Lys AAA 78 2 1.56
ATG 41 1.1 0.51 AAG 22 0.6 0.44

Val GTT 31 0.8 1.18 Asp GAT 34 0.9 1.1
GTC 23 0.6 0.88 GAC 28 0.7 0.9
GTA 32 0.8 1.22 Glu GAA 50 1.3 1.49
GTG 19 0.5 0.72 GAG 17 0.4 0.51

Ser TCT 73 1.9 1.22 Cys TGT 30 0.8 0.98
TCC 80 2.1 1.34 TGC 31 0.8 1.02
TCA 88 2.3 1.47 Trp TGA 63 1.7 1.26
TCG 23 0.6 0.39 TGG 37 1 0.74
AGT 42 1.1 0.7 Arg CGT 14 0.4 0.67
AGC 52 1.4 0.87 CGC 22 0.6 1.06

Pro CCT 104 2.7 1.42 CGA 28 0.7 1.35
CCC 91 2.4 1.24 CGG 19 0.5 0.92
CCA 86 2.3 1.17 Gly GGT 44 1.2 1.35
CCG 12 0.3 0.16 GGC 36 0.9 1.11

Thr ACT 66 1.7 0.87 GGA 30 0.8 0.92
ACC 120 3.1 1.59 GGG 20 0.5 0.62
ACA 101 2.6 1.34 Stop TAA 83 2.2 1.78
ACG 15 0.4 0.2 TAG 39 1 0.84

Ala GCT 45 1.2 1.05 AGA 37 1 0.8
GCC 69 1.8 1.6 AGG 27 0.7 0.58
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shown that loss of the D arm does not necessarily imply reduced functionality; in fact, 
almost all tRNAsSer for AGY/N codons lack the D arm, and truncated tRNAs appear 
to have been compensated for by several interacting factors (Watanabe et al. 2014). 
Furthermore, among fishes, loss of the tRNASer D arm is not unique to O. infernale, for 
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Figure 3. Secondary structure of the 22 tRNA genes of the mitochondrial genome of O. infernale pre-
dicted by tRNAScan-SE 2.0.
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it has been reported in several species, including chondrichthyans such as Chiloscyllium 
griseum (Chen et al. 2013), Triaenodon obesus (Chen et al. 2016), and Cephalloscyllium 
umbratile (Zhu et al. 2017), as well as teleosts such as Oreochromis andersonii and 
O. macrochir (Bbole et al. 2018). Although most tRNAs present the canonical 7-bp T 
loop, nonstandard T-loop lengths were observed in tRNAMet (6 bp), tRNAPhe (8 bp), and 
tRNASer (9 bp). Other deviations from the traditional tRNA secondary structure that 
could affect functionality is the presence of extra loops. The tRNAArg (10080–10148) in 
the mitogenome of O. infernale exhibits a loop at the base of the AA stem, thus potentially 
affecting aminoacylation. The nucleotide composition in the tRNAs of the O. infernale 
mitogenome is T=29%, A=31.4%, G=20.2%, and C=19.3%. The genes that code for 
the mitochondrial 12S and 16S rRNA subunits in O. infernale are 948 bp and 1092 bp 
long, respectively, and are located on the H-strand separated by the tRNAVal, just like in 
most teleost fishes (Lee et al. 1995; Satoh et al. 2016).

Non-coding regions

The mtDNA control region of O. infernale is 1074 bp long (15731–16804), encoded 
in the H-strand, and flanked by tRNAPro and tRNAPhe at the 5' and 3' ends, respectively 
(Fig. 1; Table 1), which is consistent with our understanding of mitogenome structure and 
organization in fishes (Lee et al. 1995; Rasmussen and Arnason 1999; Satoh et al. 2016). 
Ophisternon infernale CR nucleotide composition is T=33.1%, A=36.7%, G=10.9%, 
and C=19.3%, with A+T content (69.8%) larger than that of the entire mitogenome but 
similar to that of other fishes including synbranchids (Li et al. 2016; Han et al. 2018). 
Like in other fishes, CR in O. infernale is divided into three domains: a central conserved 
domain flanked and two hypervariable domains (upstream and downstream). Three con-
served sequence blocks (CSBs) were detected at the central conserved domain (CSB-F, 
CSB-E, CSB-D) as well as at the downstream hypervariable region (CSB1, CSB2, CSB3) 
(Fig. 4). Although additional CBSs have been identified for the central conserved domain 
(CSB-B, CSB-C) in mammals (Southern et al. 1988), the three identified herein for 
O. infernale are those commonly found in fishes (Broughton and Dowling 1994; Chen 
et al. 2012). The upstream hypervariable domain in the CR of O. infernale has a length 
of 256 bp and includes two copies of the motif TACAT and three copies of palindromic 
motif ATGTA. A change in the motif sequence (TGCAT) was observed in C. semiplotum 
and S. chuatsi but not in O. infernale. Compared to those from the central conserved 
domain, CSBs in the downstream hypervariable domain displayed larger variation across 
the three fish species compared. Notably, CSB2 and CSB3 were slightly more conserved 
than CSB1, a pattern that has been reported for other fishes (Chen et al. 2012).

Patterns of selection on PCGs

Results from KA/KS analyses (Fig. 5) indicate that most mtDNA PCGs in synbranchiform 
fishes have evolved under strong purifying selection (KA/KS <<1), preventing major 
structural and functional protein changes. Exceptions to this general pattern were 
observed for COX1 and NAD6 in synbranchids (Fig. 5a) and for NAD4 and NAD6 in 
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mastacembelids (Fig. 5b), where significant signals of positive selection were detected. 
Studies in different groups of animals, including cephalopods (Almeida et al. 2015), 
rodents (Tomasco and Lessa 2011), and humans (DeHaan et al. 2004), have linked 
amino acid replacements in NAD6 to adaptive selection to hypoxic conditions. Because 
numerous synbranchiform species are known to be fossorial and to inhabit low-oxygen 
waters, the observed signature of positive selection in NAD6 might be related to 
adaptation to decreased oxygen availability. Notably, a recent comparative mitogenomic 
study of the African tilapias Oreocrhomis andersonii and O. macrochir similarly uncovered 
a pattern of positive selection in NAD6 suggestive of adaptation in response to changing 
environments (Bbole et al. 2018). In contrast to the pattern observed for NAD6, selection 
in COX1 and NAD4 is completely conflicting between synbranchiform families. While 
in mastacembelids COX1–like most mitochondrial genes–has evolved under purifying 
selection (KA/KS <1), the opposite happens in synbranchids. Although speculative 
at this point, the fact that half of our synbranchid dataset consists of troglomorphic 
cave-dwelling species (O. infernale and O. candidum) (vs. none in the mastacembelid 
dataset) could explain the observed differences in COX1 selection patterns. Compared 
to surface waters, subterranean waters such as those of karst environments that harbor 
populations of O. infernale and O. candidum (in Mexico and Australia, respectively) 
contain low dissolved oxygen (Huppop 2000). Because of its role in aerobic metabolism, 
COX1 might therefore be a target of directional selection promoting the evolution of 
more metabolically efficient variants in hypogean lineages (Boggs and Gross 2021). In 
contrast, the observed conflicting patterns of selection in NAD4–another gene involved 
in cellular respiration–between mastacembelids (positive) and synbranchids (purifying), 
do not seem to be readily explained by ecological differences related to cave life.
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Figure 4. Comparison (multiple sequence alignment) of the mtDNA control region of O. infernale 
with those of fellow teleosts Siniperca chuatsi and Cyprinion semiplotum. The alignment displays the three 
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Phylogeny and systematics of synbranchiform fishes

Our understanding of phylogenetic relationships in synbranchiform fishes is incipient 
compared to that of other teleost groups. Despite the fact that for the past two decades 
molecular systematics has been routinely employed to refine and update the classification 
of fishes and our knowledge of their evolutionary history (Betancur-R et al. 2017), a 
comprehensive molecular phylogeny of the Synbranchiformes has yet to be proposed. 
Apart from a phylogenetic study focused on Central American synbranchids (Perdices et 
al. 2005), no studies have investigated synbranchiform relationships using comparative 
DNA sequence data. Surprisingly, recent phylogenetic studies focused on higher-level 
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Figure 5. Patterns of selection in mtDNA PCGs of synbranchiform fishes. Results from KA/KS ratio 
analysis on mitochondrial PCGs (x-axis) in synbranchiform fishes of the families Synbranchidae (a) and 
Mastacembelidae (b).



Mitogenome of the blind swamp eel (Ophisternon infernale) 15

relationships among major lineages of bony fishes (Betancur-R. et al. 2013; Betancur-R 
et al. 2017) resulted in the reassignment of armored sticklebacks (family Indostomidae, 
traditionally placed in the suborder Gasterosteoidei, order Scorpaeniformes) to the 
order Synbranchiformes. Although the classification of indostomids as gasterosteoids 
had been previously questioned on the basis of mitogenomic evidence (Miya et al. 
2003, 2005; Kawahara et al. 2008), it was not until the phylogenetic classification of 
Betancur et al. (2013, 2017) that the family Indostomidae was transferred to the order 
Synbranchiformes. This proposal, however, was not adopted by the most authoritative 
contemporary standard references of fish systematics (Van Der Laan et al. 2014; Nelson 
et al. 2016), on the grounds of lack of morphological support and the need for further 
corroboration. It should be noted that previous molecular phylogenetic studies that cast 
doubt on the traditional placement of indostomids, whether based on “legacy” markers 
(Betancur-R. et al. 2013; Betancur-R et al. 2017) or complete mitochondrial genomes 
(Miya et al. 2003, 2005; Kawahara et al. 2008), relied on a very limited representation 
of synbranchiform diversity. In contrast, our phylogenetic analysis used mitogenomic 
data from a comparatively larger taxon sampling that included eight synbranchiform 
species from five genera (Ophisternon, Synbranchus, Monopterus, Mastacembelus, 
and Macrognathus) and two families (Synbranchidae, Mastacembelidae). Notably, 
our phylogenetic results (Fig. 6) corroborate the notion that indostomids are more 
closely related to synbranchiforms than to gasterosteoids. Nevertheless, contrary to 
the findings of studies that have recently challenged the traditional classification of 
indostomids with respect to synbranchiforms (Kawahara et al. 2008; Betancur-R. et 
al. 2013; Betancur-R et al. 2017), our inferred phylogenetic placement of Indostomus 
does not render Synbranchiformes paraphyletic. With the caveat that our sampling 
of synbranchiforms and closely related lineages is only partial, our results imply 
that indostomids are in fact the sister lineage of the order Synbranchiformes. While 
this phylogenetic pattern (topology) might be considered sufficient for lumping 
indostomids with synbranchiforms, examination of relative branch lengths (Fig. 6) 
suggests that Indostomus is indeed a highly divergent lineage. In order to acknowledge 
their genetic and morphological (Britz and Johnson 2002) distinctiveness, indostomids 
may in fact warrant an order of their own. Within Synbranchiformes, our results 
remarkably do not support the monophyly of the synbranchid genus Ophisternon, for 
O. infernale is resolved as more closely related to Synbranchus marmoratus than to O. 
candidum (Fig. 6). While at first sight this novel finding of a sister-group relationship 
between O. infernale and S. marmoratus is certainly unexpected, this hypothesis might 
not be that far-fetched from a biogeographic perspective, and when considering 
both the striking external morphological similarity between the two genera and the 
taxonomic ambiguities surrounding the classificatory history of the group (Rosen and 
Greenwood 1976). Synbranchus is restricted to the New World and comprises three 
species: S. marmoratus (Central and South America), S. madeirae (Madeira River basin, 
Bolivia), and S. lampreia (Pará, Brazil). Ophisternon as currently delimited exhibits 
an essentially Gondwanan distribution, with six valid species distributed in Middle 
America (O. infernale, O. aenigmaticum), Australia (O. candidum, O. gutturale), South 
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Asia and Western Pacific (O. bengalense), and West Africa (O. afrum). Assuming that 
Gondwanan drift vicariance is the main process responsible for the present-day globally 
disjunct distribution of the genus (Rosen 1975), the split between the Mexican-
endemic O. infernale and the West Australian-endemic O. candidum should be at least 
as old as the Middle Jurassic separation of Eastern Gondwana (Antarctica, Madagascar, 
India, and Australia) from Western Gondwana (South America and Africa), dated at ca 
165 Ma (McLoughlin 2001). From this it follows that the split between Ophisternon 
and Synbranchus should be even older. Notably, the only phylogenetic study that has 
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Figure 6. Phylogenetic relationships of major synbranchiform lineages. Molecular phylogeny based on 
comparative mitochondrial PCGs from relevant available mitogenomes and the newly generated herein 
for O. infernale. Troglobitic cave-dwelling species are marked with an asterisk to distinguish them from 
surface-dwelling ones. Outgroup taxa not shown. Colored circles on nodes indicate degree of clade 
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investigated divergence times via molecular dating in a group of synbranchiforms 
(Perdices et al. 2005) estimated a comparatively much younger age (< 20 Ma) for 
the split between Ophisternon (aenigmaticum) and Synbranchus (marmoratus). 
Although marine dispersal and extinction could be invoked in an attempt to reconcile 
biogeographic patterns with our admittedly limited knowledge of the timescale of 
synbranchiform diversification, the paraphyly of Ophisternon remains problematic. 
Our phylogenetic results coupled with the abovementioned estimates of synbranchid 
divergence times (Perdices et al. 2005) lead us to hypothesize that perhaps New World 
species of Ophisternon (O. infernale and O. aenigmaticum) are in fact more closely 
related to Synbranchus species than to the remaining Ophisternon species. As such, New 
World species of Ophisternon would have to be transferred to the genus Synbranchus. 
This phylogenetic scenario is also compatible with a likely very recent origin of the 
cave-dwelling O. infernale. Although there is virtually no information regarding the 
timing of origin and colonization of the fishes that inhabit the cenotes and submerged 
caves of the YP karstic aquifer (Arroyave et al. 2021), these aquatic habitats are 
supposed to be extremely young, effectively established not before 20,000 years ago, 
at the end of the last glacial maximum in the Northern Hemisphere, when rising sea 
levels eventually resulted in the flooding of karstic sinkholes and dry caves (Coke IV 
2019). Such a recent origin for O. infernale is certainly much easier to explain as a 
result of speciation from a fellow New World lineage, such as O. aenigmaticum or 
S. marmoratus. Regardless of the appeal and feasibility of these hypotheses concerning 
the systematics of New World Ophisternon in general and the origins of O. infernale 
in particular, our phylogenetic findings and their interpretation need to be taken with 
caution because of their absolute reliance on mtDNA only. It is well known that the 
mitochondrial genome is effectively a single locus (Avise 2012), that individual gene 
and species trees are not always congruent (Maddison 1997), and that nuclear and 
mtDNA inheritance patterns are not always congruent either (Funk and Omland 
2003). Notwithstanding these limitations, our results emphasize the pressing need for 
a comprehensive systematic and biogeographic study of synbranchiform fishes, ideally 
based on genome-wide sequence data.

Conclusions

The first complete annotated mitochondrial genome of O. infernale, herein reported, 
exhibits an organization and arrangement similar to that of other synbranchiform fishes 
as well as of more distantly related teleosts. Based on our comparative mitogenomic 
dataset, most mitochondrial PCGs in synbranchiforms appear to have evolved under 
strong purifying selection, which has prevented major structural and functional protein 
changes. The few instances of mtDNA PCGs under positive selection might be related 
to adaptation to decreased oxygen availability and the evolution of more metabolically 
efficient variants in hypogean synbranchiform lineages. Phylogenetic analysis of 
mtDNA comparative data from synbranchiforms and closely related taxa (including 
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the indostomid Indostomus paradoxus) corroborate the notion that indostomids are 
more closely related to synbranchiforms than to gasterosteoids, but without rendering 
the former paraphyletic. Our phylogenetic results also suggest that New World species 
of Ophisternon might be more closely related to Synbranchus than to the remaining 
Ophisternon species. This novel phylogenetic hypothesis, however, should be further 
tested in the context of a comprehensive systematic study of the group.
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