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Abstract

'The Bactrocera dorsalis complex (Tephritidae) comprises 85 species of fruit flies, including five highly destruc-
tive polyphagous fruit pests. Despite significant work on a few key pest species within the complex, little has
been published on the majority of non-economic species in the complex, other than basic descriptions and
illustrations of single specimens regarded as typical representatives. To elucidate the species relationships within
the B. dorsalis complex, we used 159 sequences from one mitochondrial (COJ) and two nuclear (elongation
Jactor-1aand period) genes to construct a phylogeny containing 20 described species from within the complex,
four additional species that may be new to science, and 26 other species from Bactrocera and its sister genus
Dacus. The resulting concatenated phylogeny revealed that most of the species placed in the complex appear to
be unrelated, emerging across numerous clades. This suggests that they were placed in the B. dorsalis complex
based on the similarity of convergent characters, which does not appear to be diagnostic. Variations in scutum
and abdomen color patterns within each of the non-economic species are presented and demonstrate that dis-
tantly-related, cryptic species overlap greatly in traditional morphological color patterns used to separate them
in keys. Some of these species may not be distinguishable with confidence by means other than DNA data.
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Introduction

Most of the Dacine fruit flies (Tephritidae: Dacini) are in the genera Bactrocera (651
described species) and Dacus (270 species), with many species (73 Bactrocera and 11
Dacus) bred from commercial/edible fruit and fleshy vegetables (Vargas et al. 2015).
Species of Bactrocera thrive in the endemic rainforest habitats of South-East Asia and
Australasia, with a high degree of host specialization and a large number of cryptic spe-
cies (Drew and Hancock 2000, Drew 2004).

Among the pest species, Bactrocera dorsalis (Hendel) (= the Oriental fruit fly) is
the most destructive and polyphagous species (Vargas et al. 2015), belonging to a large
complex of similar-looking species: the Bactrocera dorsalis complex (hereafter referred
to as the OFF complex). The first reference to the OFF complex was by Hardy (1969),
who recognized and provided a key to B. dorsalis and 15 other non-economic species.
Subsequently, Drew and Hancock (1994) revised the group from South-East Asia,
describing 40 new species and splitting B. dorsalis into four distinct species, resulting in
a total of 52 species, plus 16 species in Australasia (Drew 1989). Among the combina-
tion of character states defining the complex, they included a mostly black scutum and
abdomen terga III-V with a medial longitudinal band forming a “T-shaped” pattern
with the transverse band at base of tergum III, and with variable dark patterns on lat-
eral margins of terga III-V. Currently, 85 species are recognized, taking into account
the recent revision (Drew and Romig 2013) and synonymization (Schutze et al. 2014).
Six of the species (B. carambolae Drew & Hancock, B. caryeae (Kapoor), B. dorsalis,
B. kandiensis Drew & Hancock, B. occipitalis (Bezzi), and B. trivialis (Drew)) in the
complex are significant pests of cultivated fruit (Vargas et al. 2015).

While literature abounds on the taxonomy, genetic diversity, biology and man-
agement of the economic species (Clarke et al. 2005, Schutze et al. 2014a), very lit-
tle is known about most of the other species in the OFF complex, other than basic
taxonomic descriptions. Identification to species level is challenging for many species,
due to uniform appearance and extensive intraspecific morphological variation. Mor-
phological diagnostic tools were developed for the economic species, based of wing
morphometrics (Schutze et al. 2012) and ovipositor and aedeagus lengths (Iwaizumi
et al. 1997, Drew et al. 2008, Krosch et al. 2013, White 2000). Some of the species,
especially B. dorsalis, display a broad range of color patterns and length of aedeagus
and ovipositor, that have resulted in the description of geographic variants as new spe-
cies, which were subsequently argued to be conspecific (Schutze et al. 2012, 2014b),
and synonymized (Schutze et al. 2014a). The range of color variation in the scutum
and abdomen was characterized to some extent for B. dorsalis and B. carambolae (e.g.
Nishida and Vargas 1992, Iwahashi 1999, Drew et al. 2005, Leblanc et al. 2013), but
no information has been published for the other 83 species.

Species descriptions and illustrations in published monographs (Drew 1989, Drew
and Hancock 1994, Drew and Romig 2013) are based on the most commonly en-
countered morphological variants, and little information is presented on intraspecific
variation. The dichotomous key in Drew and Hancock (1994) is based on these most
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common variants, hence difficult to use to identify more atypical specimens. An at-
tempt to account for variation in an interactive CD-ROM key (Lawson et al. 2003)
yielded limited success (Clarke et al. 2005). In addition to the described species, there
may likely exist cryptic species, hard to distinguish by morphological means, which
can be separated with the help of genetic sequencing (e.g. Carew et al. 2011, Dujardin
and Kitthawee 2013).

Clarke et al. (2005), when reviewing the data available at the time, stated that phy-
logenetic studies using limited taxa and genes may not demonstrate the monophyly of
the complex. However, recent molecular phylogenies which include the OFF complex
have found that most species form a well-defined monophyletic clade (Krosch et al.
2012, Virgilio et al. 2015). However, these studies only included methyl eugenol-
attracted species and were limited to six economic species and six, mainly Australian,
non-pest species such as B. cacuminata (Hering) and B. opiliae (Drew and Hardy). An
alternate, polyphyletic complex was indicated by a phylogeny based on one mitochon-
drial and two nuclear genes by San Jose et al. (2013), but sampling was limited.

Our goal was to examine the B. dorsalis species complex more broadly than the
few frequently targeted pest species. This is accomplished by reporting and analyzing
novel molecular and morphological data on 22 non-pest species in the complex, in the
context of the main pest species and selected outgroups. These data are used to: (i) de-
termine through phylogenetic analysis if the complex is monophyletic or polyphyletic;
(ii) provide diagnostic molecular data for over 25 species for which such data is cur-
rently lacking; and (iii) determine the utility of thoracic and abdominal color/pattern
variation as species level diagnostic characters.

Materials and methods

Taxa sampling

The molecular phylogenies presented here are based on DNA sequences of 53 speci-
mens collected in Asia, Australia, Oceania, the United States and Africa. These speci-
mens include 47 species of Bactrocera belonging to five subgenera (including 24 species
from the OFF complex), three species of Dacus, and Ceratitis capitata (Wiedemann)
as the outgroup, (Table 1). In addition, we examined the morphology of thousands
of specimens of the economic species and over 1,600 specimens of 22 non-economic
species in the OFF complex. Two hundred and thirty seven representatives of these,
selected to cover a broad range of color variants, were sequenced for the CO! gene, as
detailed below, to confirm morphological identifications and document intraspecific
variation in morphological characters. In addition to examining the color pattern of
individual specimens, photographs of the scutum and abdomen were taken, for all the
sequenced specimens, and used to compile the variation plates (Figures 2—15). The
number of specimens examined and sequenced for individual species are included in
the figure captions.
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ms1033 B. B. nigrotibialis CL
ms1559 B. B. zonata ME
ms1093 B. B. correcta ME
ms1546 B. B. quasiinfulata CL
ms0892 B. B. tryoni CL
ms1411 B. B. melastomatos CL
100 ms1163 B. B. osbeckiae CL
99/96' ms3544 B. B. rubigina CL
ms1164 B. B. sp59 CL
ms3762 B. B. laithieuiae CL
ms1166 B. B. bhutaniae CL
ms0894 B. B. kirki CL
100 ms1395 B. B. albistrigata CL
ms1173 B. B. usitata CL
ms1083 B. B. tuberculata ME
ms1047 B. B. thailandica CL
ms1331 B. B. raiensis ME
ms1997 B. B. cacuminata ME
ms1985 B. B. occipitalis ME
ms0853 B. B. dorsalis ME
ms0898 B. B. dorsalis (formerly B. invadens) ME
ms1439 B. B. carambolae ME
ms1428 B. B. dorsalis (formerly B. papayae) ME
ms1557 B. B. aethriobasis ME
ms1548 B. B. lombokensis CL
ms1167 B. B. propinqua CL
ms1300 B. B. kanchanaburi ME
ms1110 B. B. paraarecae ME
ms1305 B. B. bivittata ME
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10 ms1470 B. B. paradiospyri ME

ms1002 B. B. umbrosa ME
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ms1175 B. B. fuscitibia CL
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ms1109 B. B. dongnaiae CL

ms0882 B. B. latifrons
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ms1108 B. B. limbifera CL
100 ms1139 B. B. kohkongiae CL

—

Figure |. Maximum likelihood tree, concatenated, based three gene (COL period, EF-1a) dataset. Sup-

port values above branches are Maximum Likelihood Bootstrap values / Bayesian Posterior Probabilities.

Scale bar indicates the number of substitutions per site. Species in the Oriental fruit fly complex are

outlined in red.

Validation of identification

Our specimens in the OFF complex were initially tentatively identified to species using
available resources (Drew and Hancock 1994, Lawson et al. 2003, Drew and Romig
2013). These determinations were then confirmed by comparing pinned representa-
tives and photographic plates of color variation to the large series of specimens used
to produce the above publications, deposited in the Queensland Department of Agri-
culture and Fisheries (QDAF) insect collection (Ecosciences Precinct, Brisbane). The
identifications were also confirmed by R.A.I. Drew, an expert on Bactrocera morphol-
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Figure 2. Variation in color pattern of scutum and abdomen in Bactrocera bhutaniae Drew and Romig
(321 specimens examined and 36 sequenced). Voucher codes are: A ms3593 B ms3531 € ms3533
D ms4321 E ms2034 F ms1166 G ms2031 H ms3527 1 ms3580 ) ms1168 K ms2030 L ms3578
M ms4329 N ms3527 O ms1168.

ogy. Species referred to by numbers in previous publications (San Jose et al. 2013, Leb-
lanc et al. 2013, 2014) and included in this study were identified as B. osbeckiae Drew
and Hancock (species 22), B. bhutaniae Drew and Romig (species 25), B. paraarecae
(species 26), and B. propinqua (Hardy and Adachi) (species 45).

DNA extraction, amplification, and sequencing

For each specimen, one to three legs were used for total genomic DNA extraction.
The remainder of the specimen was deposited as a voucher in the University of Ha-
waii Insect Museum (UHIM) for preservation and morphological studies (Table 1).
Genomic DNA was extracted using the DNeasy animal blood and tissue extraction kit
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Figure 3. Variation in color pattern of scutum and abdomen in Bactrocera bivittata Li and Wang (47
specimens examined and 10 sequenced). Voucher codes are: A ms3606 B ms1305 € ms1304 D ms3607
E ms3605 F ms3604 G ms3609 H ms3608 1 ms1790 J ms3605 K ms3606 L ms3609 M ms3604.

following manufacturer’s protocol (Qiagen, Inc., Valencia, CA). Three different gene
regions were amplified: the mitochondrial gene cyrochrome ¢ oxidase I (COI, 780 bp)
and the nuclear genes, elongation factor-1a (EF-1a, 759 bp) and period (PER, 450 bp).
These three genes were selected because each has been demonstrated to be informa-
tive in distinguishing populations, species complexes, species, or genera in Diptera
(Folmer et al. 1994, Simon et al. 1994, Cho et al. 1995, Bauzer et al. 2002, Moulton
and Wiegmann 2004, Barr et al. 2005, Foley et al. 2007, Virgilio et al. 2009, Gibson
etal. 2011, San Jose et al. 2013). Gene amplification followed San Jose et al. (2013).
All polymerase chain reaction (PCR) products were visualized on 1% agarose gel and
purified using QIAquick spin columns (Qiagen, Inc.) according to the manufacturer’s
protocol. Bidirectional DNA sequencing was performed at the Advanced Studies of
Genomics, Proteomics and Bioinformatics (ASGPB) sequencing facility of the Univer-
sity of Hawaii at Manoa (http://asgpb.mhpcc.hawaii.edu/).
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Figure 4. Variation in color pattern of scutum and abdomen in Bactrocera cacuminata (Hering) (> 300
specimens examined and 12 sequenced). Voucher codes are: A ms2003 B ms2005 € ms1998 D ms2008
E ms1999 F ms1997 G ms2010 H ms2004 1 ms2009 J ms2002 K ms2005 L ms2008 M ms2009.

Sequence alignment, nucleotide composition, and phylogenetic analysis

Sequence alignments were performed with the software package Geneious 7.1.7 (Biomat-
ters ltd.). Heterozygosity in the nuclear genes was present in most samples. Ambiguity
codes (i.e., notation according to International Union of Pure and Applied Chemistry
(IUPAC)) were used to denote heterozygous base pairs, and these codes were used in the
subsequent analysis. Sequence alignment for each gene was conducted in Geneious using
the Muscle option with default settings (Edgar 2004). We used jModeltest and the Akaike
information criterion (Darriba et al. 2012) to determine the most appropriate evolution-
ary model for each gene in our analysis. Phylogenetic analyses were performed with both
Maximum Likelihood and Bayesian Inference. MrBayes 3.2.1 (Ronquist et al. 2012) was
used for Bayesian analyses and RaxML (Stamatakis et al. 2008) was used for maximum
likelihood (ML). We used jModeltest (Darriba et al. 2012) to determine the most appro-
priate model for each partition. We concatenated our datasets by gene and used a GTR+ T’
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Figure 5. Variation in color pattern of scutum and abdomen in Bactrocera fuscitibia (Drew and Han-
cock) (33 specimens examined and 6 sequenced). Voucher codes are: A ms1178 B ms1177 € ms1297
D ms1175 Ems1176 F ms1177 G ms1178 H ms1297.

model for each gene in the Bayesian analysis general time reversible model (Tavaré 1986)
with gamma distribution of rates (GTRGAMMA) for each gene in our likelihood analy-
sis. We first analyzed each gene separately and subsequently concatenated them into a sin-
gle dataset partitioned, by gene, using Maximum Likelihood and Bayesian inference. For
each individual gene analysis (COL, period, and EF-1a) we ran four independent Bayesian
runs in MrBayes 3.2.1 using the default settings. Each run started from a random tree
using default priors sampling every one thousand generation for 10 million generations
with a relative burn-in of 25%. We used the program Tracer 1.5 (Rambaut and Drum-
mond 2009) to assess convergence of standard deviation in variance for Bayesian analyses.
For RaxML analyses, each dataset included 10 ML tree searches with default settings,
using a random starting tree to find the tree with the best likelihood score. One thousand
Maximum Likelihood bootstrap replicates were conducted in Raxml to assess support for
inferred relationships. For the concatenated dataset, we partitioned the data by gene and
ran MrBayes using the same settings as the individual gene analyses except the parameters
statefreq, revmat, shape, and pinvar were unlinked between partitions. For the Maximum
Likelihood analysis of the partitioned concatenated dataset, we ran RaxML using the same
settings and analyses for each partition as when genes were analyzed individually. Trees
were visualized using FigTree v1.4.0 (Rambaut 2012) and rooted with Ceratitis capirara.
COI sequences for all non-economic species in the B. dorsalis complex for which at least
four sequences were available were analyzed using the program DNAsp to provide basic
population genetic variability summary statistics (Hn, b , S).
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Figure 6. Variation in color pattern of scutum and abdomen in Bactrocera kanchanaburi Drew and Han-
cock (47 specimens examined and 16 sequenced). Voucher codes are: A ms3599 B ms1300 € ms3598
D ms1303 E ms3725 F ms1302 G ms3597 H ms3596 1 ms3728 ) ms3603 K ms3599 L ms3728
M ms1300 N ms1301 O ms3729.

Data Resources

Sequences listed on Table 1, as well as COI sequences for all specimens included on all
figure plates, were deposited into GenBank KT591129 to KT591164 and KT594783
to KT595006.

Results

Topological differences between the individual gene trees were not supported with
high bootstrap values and posterior probabilities (<50% BS <0.9 PP) and overall indi-
vidual gene trees were poorly resolved, with CO! providing more signal for the more
recent divergences (Suppl. material 1) and the nuclear genes providing signal for deep-


http://www.ncbi.nlm.nih.gov/nuccore/KT591129
http://www.ncbi.nlm.nih.gov/nuccore/KT591164
http://www.ncbi.nlm.nih.gov/nuccore/KT594783
http://www.ncbi.nlm.nih.gov/nuccore/KT595006
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Figure 7. Variation in color pattern of scutum in Bactrocera kohkongiae Leblanc (210 specimens ex-
amined and 22 sequenced). Voucher codes are: A ms1149 B ms1144 C ms1142 D ms1780 E ms1148
F ms1145 G ms1307 H ms1143 | ms1141 ) ms1146 K ms1151 L ms1785 M ms1140 N ms1781
O ms1150.

er relationships (Suppl. material 2, 3). However the concatenated analysis produced
a well-resolved tree (Figure 1) which is consistent with previous studies (Krosch et al.
2012, San Jose et al. 2013, Virgilio et al. 2015). In the concatenated phylogeny, the
Zeugodacus group of subgenera (as defined by Drew and Hancock 2000) is sister to
Dacus and the Bactrocera+ Notodacus+ Daculus clades, which themselves are sister taxa.
This renders Bactrocera paraphyletic with respect to Dacus, as suggested previously
(White 2006, Krosch et al. 2012, Virgilio et al. 2015). However the relationship is
not strongly supported in the tree and additional genes and taxa are necessary to fully
resolve this relationship. The subgenus Bactrocera is monophyletic in the concatenated
phylogeny (100 BS, 1.0 PP). The inclusion of many non-economic OFF complex
species in our study shows with high support that despite a similar appearance, the
complex is a highly polyphyletic group. Multiple, well-supported, clades (75-100%
BS values) in the subgenus Bactrocera contain a mix of species previously thought to
belong to the OFF complex and non-OFF complex species. One clear example is the
inclusion of non-OFF complex B. bryoniae, B. latifrons, B. limbifera, with B. kohkon-
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Figure 8. Variation in color pattern of abdomen in Bactrocera kohkongiae Leblanc. Voucher codes are:
A ms1149 B ms1147 € ms1145 D ms1785 E ms1146 F ms1139 G ms1137.

giae, which fits in the OFF complex (Figure 15 A—C) in a strongly supported (100%,
100% PP value) clade (Figure 1). This indicates that, despite low support for the back-
bone topology in the subgenus Bactrocera, the polyphyletic nature of the OFF com-
plex is still well supported. The main pest species in the complex (B. carambolae and
B. dorsalis, now including B. papayae and B. invadens, see Schutze et al. 2014a) form
a monophyletic unit with very little genetic differentiation (<1.3% in COI) between
them, and rest within a well defined clade that includes several other species attracted
to methyl eugenol (B. occipitalis, B. cacuminata, B. raiensis). Three species, B. melas-
tomatos (Figure 9F-O), B. osbeckiae (Figure 10) and B. rubigina (Figure 14F), were
genetically indistinguishable using CO/ (0.1% pair-wise difference) in the phylogeny,
appearing together in a single lineage, despite having very distinctive color patterns.
Interestingly, they were slightly more distinct in the nuclear genes (1.1% EF-1a and
1% period pair-wise difference), which was not the case for most species. Population
genetic statistics, based on COI sequences, showed high levels of haplotype diversity
for most of the non-economic species in the B. dorsalis complex (Table 2).

Color patterns of scutum and/or abdomen (Figures 2—15) varied extensively with-
in some of the species (Figures 2A—J, 3A-1, 4A-], 5D-H, 6K-O, 7, 8, 9F-0O, 10,
11B-E, 12A-], 13F-0), and were relatively uniform in others (Figures 2K-O, 3]-M,
4K-M, 5A-C, 6A-], 9A-E, 11A, 12K-0O, 13A-E). Scutum color pattern was highly
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Figure 9. Variation in color pattern of scutum and abdomen in Bactrocera latilineola Drew and Hancock
(A-E) (11 specimens examined and 4 sequenced) and B. melastomatos Drew and Hancock (F-O) (46
specimens examined and 8 sequenced). Voucher codes are: A ms1114 B ms2025 C ms2025 D ms2024
E ms1299 F ms1415 G ms1416 H ms1410 | ms1412 J ms1411 K ms1416 L ms1417 M ms1413
N ms1410 O ms1411.

polymorphic in B. bhutaniae (Figure 2), B. bivittata (Figure 3), B. kohkongiae (Figure
7), B. melastomatros (Figure 9F-O), B. osbeckiae (Figure 10), and B. propingua (Figure
12). Abdomen pattern was confusingly polymorphic, yet scutum remained uniform in
B. thailandica (Figure 13).

Scutum color and variation followed three basic patterns among species for which
series of specimens were examined. In B. bhutaniae (Figure 2), B. bivittata (Figure 3),
B. kohkongiae (Figure 7), and B. osbeckiae (Figure 10), scutum was predominantly red—
brown with a highly variable dark lanceolate pattern. The pattern was composed of a
medial and two lateral bands, generally interrupted at the level of the transverse suture,
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Figure 10. Variation in color pattern of scutum and abdomen in Bactrocera osbeckiae Drew and Romig
(100 specimens examined and 39 sequenced). Voucher codes are: A ms1161 B ms3559 € ms3558
D ms3553 E ms3555 F ms3561 G ms1163 H ms3785 | ms3764 ) ms3768 K ms1153 L ms3758
M ms3554 N ms1180 O ms1138 P ms3555 Q ms3784 R ms3560 S ms1154 T ms3768.

in B. bhutaniae and B. bivittata (medial band usually narrower and lateral bands very
broad). The lanceolate pattern was highly variable in B. kohkongiae, from extensively
pale with a narrow medial band to almost entirely dark with light markings restricted
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Figure |1. Variation in color pattern of scutum and abdomen in Bactrocera paraarecae Drew and

Romig (10 specimens examined and 5 sequenced). Voucher codes are: A ms1295 B ms1296 € ms2040
D ms1294 E ms1110.

Table 2. Summary statistics of genetic variability, based on COI gene sequences, for non-economic spe-
cies in the B. dorsalis complex.

Speci Sample | Haplotypes | Haplotype diversity | Nucleotide diversity | Segregating sites
pectes size (Nh) (h) (pi) (s)
B. bhutaniae 33 25 0.966 0.02557 86
B. bivittata 10 9 0.978 0.00320 10
B. cacuminata 11 4 0.491 0.00161 5
B. fuscitibia 6 5 0.933 0.00676 14
B. kanchanaburi 15 13 0.981 0.00768 31
B. kohkongiae 22 17 0.952 0.00472 23
B. latilineola 4 3 0.833 0.00320 5

B. melastomatos 8 4 0.643 0.00127

B. osbeckiae 35 13 0.704 0.00717 18
B. paraarecae 5 5 1.000 0.01536 29
B. propinqua 24 23 0.996 0.01047 40
B. thailandica 56 13 0.386 0.00145 24
B. usitata 5 5 1.000 0.01076 17

to the transverse suture, and B. osbeckiae, from mostly dark fuscous, with red-brown
markings at level of postpronotal lobes and along transverse suture, to extensive lan-
ceolate red—brown pattern with a broad medial longitudinal band, which can be faint
or absent. In B. cacuminata (Figure 4), scutum was red-brown with a single medial
dark band widened at apex of scutum and anteriorly narrowed to a point, and with
two short lateral bands pointed anteriorly. A similar pattern was frequently observed in
B. propingua (Figure 12), in which the scutum varied from B. cacuminata-like to uni-
formly dark with light markings at level of transverse suture and inside postpronotal
lobes. Scutum was generally uniformly black, with at most small red—brown markings
anterior to lateral postsutural vittae, inside postpronotal lobes and sometimes at the
level of prescutellar setae, in B. fuscitibia (Figure 5), B. latilineola (Figure 9), B. paraare-
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Figure 12. Variation in color pattern of scutum and abdomen in Bactrocera propingua (Hardy and
Adachi) (49 specimens examined and 24 sequenced). Voucher codes are: A ms4324 B ms4331 € ms4322
D ms3568 E ms3571 F ms3833 G ms3572 H ms3567 | ms2041 ) ms1170 K ms4331 L ms3765
M ms3757 N ms3572 O ms3566.

cae (Figure 11), B. thailandica (Figure 13), and B. usitata (Figure 14H), and frequently
with more extensive red—brown markings along transverse suture in B. kanchanaburi
(Figure 6) and B. melastomatos (Figure 9 F—]). The shape and width of lateral postsu-
tural vittae was relatively constant for all species except B. thailandica (Figure 13).
Abdomen color for almost all species and variants followed the basic “T-shaped”
pattern typical of the B. dorsalis complex, i.e. a black band across the base of tergum III,
a narrow to broad medial longitudinal black band covering the entire length of terga III
to V, and narrow to broadly expanded lateral black markings on terga III to V. Medial
band was broad and lateral markings generally broad along margins of tergum III and
narrower on terga IV and V in B. bhutaniae (Figure 2) and B. propinqua (Figure 12), or
the markings on terga III and IV expanded and pointed at apex in B. bivittata (Figure 3).
Medial band was broad and extended to the base of tergum II and lateral markings broad
on terga III, IV, and base of tergum V in B. latilineola (Figure 9 C-E). Medial band was



A phylogenetic assessment of the polyphyletic nature and intraspecific color... 357

Figure 13. Variation in color pattern of scutum in Bactrocera thailandica Drew and Romig (712 specimens
and 56 sequenced). Voucher codes are: A ms3587 B ms3588 € ms3586 D ms3525 E ms1952 F ms3576
G ms3586 H ms3736 1 ms3585 J ms3539 K ms3581 L ms3538 M ms3695 N ms3582 O ms1949.

narrow (broad in B. usitata) and lateral markings usually broad along terga III-IV and
basal half of tergum V in B. cacuminata (Figure 4), B. kanchanaburi (Figure 6), and B.
usitata (Figure 14 G). Medial band was broad and lateral markings moderately to very
broad on tergum III and IV, and shining spots on tergum V usually black (fuscous to
dark fuscous in most other species) and continuous with lateral black markings in B. fus-
citibia (Figure 5). Medial band was narrow (broad in B. paraarecae) and lateral markings
moderately to very broad but diffuse, rather than well defined (as in previous species), in
B. kohkongiae (Figure 8), B. melastomatos (Figure 9 K-O), B. osbeckiae (Figure 10), and
B. paraarecae (Figure 11). In B. thailandica, medial band was narrow and the extent of
lateral markings varied considerably, from very limited to almost entirely covering the
terga except traces of red—brown on tergum V, on either side of medial band (Figure 13).
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Figure 14. Scutum and abdomen of: A Bactrocera dongnaiae Drew and Romig (ms1158; 7 specimens
examined and 3 sequenced) B B. lzithieuiae Drew and Romig (ms3762; 1 specimen examined and se-
quenced) € B. lombokensis Drew and Hancock (ms1548; 1 specimen examined and sequenced) D B.
quasiinfulata Drew and Romig (ms3455; 4 specimens examined and sequenced) E B. raiensis Drew and
Hancock (ms1331; 2 specimens examined and 1 sequenced) F B. rubigina (Wang and Zhao) (ms3543;
259 specimens examined and 27 sequenced) G B. wusitata Drew and Hancock (ms2039; 27 specimens
examined and 6 sequenced).
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Discussion

The concatenated tree demonstrates that the OFF complex is a highly polyphyletic
assemblage of unrelated species. Consistent with other published studies, the methyl
eugenol responsive B. dorsalis, B. carambolae, B. occipitalis, B. cacuminata, and B. raien-
sis, form a well-defined monophyletic unit (Krosch et al. 2012, San Jose et al. 2013,
Boykin et al. 2013, Virgilio et al. 2015). Because the phylogeny is based on a relatively
limited (24%) proportion of all the species included in the OFF complex, adding more
species and using multiple genes may reveal scattered clusters of related species, but the
proportion of unrelated clades including OFF complex species is likely to remain high.

The widespread conformity of unrelated species to the dorsalis-like appearance is
unclear. Color patterns in Dacine fruit flies are assumed to mimic wasps (White 2000),
though few actual wasp mimic examples exist in Dacine fruit flies, and the OFF com-
plex appearance is not a particularly convincing wasp imitation when compared to
other groups of mimics (sesiid moths, syrphid flies, etc.). Whether the similarity rep-
resents convergent evolution or a retained ancestral state requires further investigation.

Except for a handful of well-studied species (e.g. B. dorsalis, B. carambolae, B.
cacuminata), the definitions and concepts for the majority of the OFF complex spe-
cies were based on morphology (mainly color patterns), lure response, and generally
limited host fruit records. Only now are we starting to better characterize these species
with molecular tools. Most of the non-economic species described by Drew and Han-
cock (1994) included in our study appear to be valid, confirmed by molecular data and
comparison of morphological intraspecific variation with large series of specimens in
QDAF (L.L., unpublished observations).

Attraction of B. osbeckiae to cue-lure is a new lure record. Morphological variation
in our cue-lure trapped specimens (Figure 10) closely matched that observed in the
QDAF and Bishop Museum (Honolulu, Hawaii, USA) series, which consist of host-
reared specimens without male lure records.

Four species, consistent in appearance with the definition of the OFF complex,
could not clearly be identified and are referred to here as numbered species. Species 54
(from Chiang Mai, Thailand) and 55 (Luang Nam Tha, Laos and Jinghong, China)
look very similar (Figure 15A-F), yet are genetically distinct (8.85% COI pair-wise
difference). They both key to B. irvingiae in Drew and Hancock (1994), but neither
can be confidently matched to that species, even after comparison with series of pinned
specimens of B. irvingiae and other OFF complex species in the QDAF collection.
Also, B. irvingiae was collected further south in Thailand (Khao Yai) than the samples
we have. Until fresh host-reared specimens of B. irvingiae can be obtained from the
type locality and sequenced, we will defer from describing new species that may in the
future turn out to be synonyms. Species 59 (Luang Nam Tha, Laos) and 60 (Jinghong,
China) (Figure 15G-L) could not be definitely determined to species using available
resources (Drew and Hancock 1994, Drew and Romig 2013), and did not match any
of the OFF complex species examined in QDAF. They are likely new species, but not
described here, due to the lack of distinctive characters and the very small number of
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Figure 15. Scutum, abdomen and wing costal region of: A=C Bactrocera species 54 (ms1798 (wing,

scutum), ms3777 (abdomen); 7 specimens examined and sequenced) D-F B. species 55 (ms3575; 7
specimens examined and sequenced) G-l B. species 59 (ms1164; 1 specimen examined and sequenced)
J-L B. species 60 (ms3730; 3 specimens examined and sequenced).

specimens available (1 of species 59 and 3 of species 60). With additional survey work
and genetic sequencing, a number of additional cryptic species likely will appear.
Bactrocera dorsalis, B. invadens and B. papayae were recently declared conspecific,
and are genetically indistinguishable (Schutze et al. 2014a), despite what some consider
diagnosable differences (Drew and Romig 2013). We have found a similar genetically
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indistinguishable situation for B. osbeckiae, B. melastomatos and B. rubigina (Wang and
Zhao) in our phylogeny, despite them being very distinct from each other in color pat-
tern (Figures 9F-0O, 10, 14F). This suggests that these species, if distinct, may or may
not differ at gene loci other than those sequenced in our study. Bactrocera osbeckiae and
B. rubigina are sympatric in Thailand and Southern China (Leblanc, unpublished) and
differ in color patterns and wing costal band expansion (Drew and Romig 2013), while
B. melastomatos is confined to Peninsular Malaysia, Borneo, Java and Sumatra. Bac-
trocera osbeckiae and B. melastomatos are biologically close and peculiar, both breeding
on flowers rather than fruits of Melastomataceae (Drew and Hancock 1994, Allwood et
al. 1999), while the host range of B. rubigina is not well documented. Similarly, sympa-
tric B. tryoni and B. neohumeralis in Australia are currently genetically inseparable, yet
are likely valid biological species, isolated by time of mating (Clarke et al. 2011).

The high degree of intraspecific variation in color pattern severely limits the reli-
ability of dichotomous and interactive keys. The range of variation differs considerably
among species, with extreme cases like the scutum of B. dorsalis (Leblanc et al. 2013),
and the abdomen of B. thailandica (Figure 13). Also, variants of unrelated species,
such as B. bhutaniae (Figure 2) and B. bivittata (Figure 3), can overlap and make them
hard to distinguish. The full extent of observed variation is easier to demonstrate in
plates rather than words when describing a species. We suggest that descriptions of
new species in the future should be accompanied by extensive plates showing variation,
included in publications or posted as supplementary online material.

Conclusion

The OFF complex was defined by Hardy (1969) and the definition refined by Drew
and Hancock (1994). The species and specimens examined in this study fit their defini-
tion in all respects, except for scutum color, said to be mostly black (Drew and Han-
cock 1994) or black (Drew and Romig 2013). Several species included in the complex
consistently have extensive pale markings on the scutum (e.g. B. arecae (Hardy and
Adachi), B. bivittata, B. cacuminata, B. osbeckiae). Bactrocera dorsalis has a broad range
of variation, from entirely black to extensively or almost entirely pale (Schutze et al.
2014b, Leblanc et al. 2013), a form that was described as the now-synonymized, B.
invadens (Drew et al. 2005), which was not included in the OFF complex by Drew and
Romig (2013). It is likely that at least some of the 21 other species complexes (Drew
1989, Drew and Romig 2013) are also polyphyletic and their morphological diag-
nostic characters not robust. Nonetheless, the B. dorsalis complex is likely to remain
entrenched for some time in future literature, as an informal group referred to as a
“collective group” in the International Code of Zoological Nomenclature (http://iczn.
org/iczn/index.jsp). Caution must be exercised in literature to not refer to the group as
a biological or evolutionary unit.
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Explanation note: Maximum likelihood tree, based the COI gene dataset. Support val-
ues above branches are Maximum Likelihood Bootstrap values / Bayesian Posterior
Probabilities. Scale bar indicates the number of substitutions per site. Species in the
Oriental fruit fly complex are outlined in red.

Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODDL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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Figure S2
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Data type: TIF File Format

Explanation note: Maximum likelihood tree, based the EF-7a gene dataset. Support
values above branches are Maximum Likelihood Bootstrap values / Bayesian Poste-
rior Probabilities. Scale bar indicates the number of substitutions per site. Species
in the Oriental fruit fly complex are outlined in red.

Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODDL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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Figure S3
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Data type: TIF File Format

Explanation note: Maximum likelihood tree, based the period gene dataset. Support
values above branches are Maximum Likelihood Bootstrap values / Bayesian Poste-
rior Probabilities. Scale bar indicates the number of substitutions per site. Species
in the Oriental fruit fly complex are outlined in red.

Copyright notice: This dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODDL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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