Two new species of the genus Anisomysis (Anisomysis) (Crustacea, Mysida, Mysidae) from coral reef waters in Thailand

Mitsuyasu Moriya', Khwanruan Srinui ${ }^{2}$, Shozo Sawamoto ${ }^{3}$
I Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan 2 Institute of Marine Science, Burapha University, Muang, Chonburi 20131, Thailand 3 Department of Marine Biology, School of Marine Science and Technology, Tokai University 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan

Corresponding author: Mitsuyasu Moriya (moriya@aori.u-tokyo.ac.jp)

[^0]http://zoobank.org/22FBAEC2-29DC-4C63-9D4E-6C7EDA865F5B
Citation: Moriya M, Srinui K, Sawamoto S (2015) Two new species of the genus Anisomysis (Anisomysis) (Crustacea, Mysida, Mysidae) from coral reef waters in Thailand. ZooKeys 525: 129-145. doi: 10.3897/zookeys.525.5958

Abstract

Two new species of Anisomysis Hansen, 1910 (Mysida, Mysidae), Anisomysis (Anisomysis) spinaintus sp. n. and A. (A.) phuketensis sp. n., from coral-reef waters in Thailand are described. Anisomysis (A.) spinaintus, collected in the Chaolao Beach, Chanthaburi Province, is distinguished from the closely allied species A. (A.) incisa Tattersall, 1936, and A. (A.) hawaiiensis Murano, 1995, by the presence of $6-9$ spines on the apical cleft of telson, which are absent in the latter two allied species. The new species can also be distinguished from A. (A.) aikawai Ii, 1964, by the presence of a deep telson cleft and a large number of spines on the lateral margin of telson. A. (A.) phuketensis sp. n., collected in Ko Lon, Phuket, is distinguished from the allied species A. (A.) robustispina Panampunnayil, 1984, by having a short telson and a pair of long spines on the apical part of the telson. Keys to the subgenera and species of Anisomysis, including the two new species, are presented.

Keywords

Anisomysis, Chantaburi, new species, Phuket, taxonomy

[^1]
Introduction

The genus Anisomysis was established by Hansen (1910) to describe Anisomysis laticauda collected form Laiwui, Obi Island, Indonesia, during the Siboga Expedition.

Băcescu (1973) divided the genus into two subgenera, Paranisomysis and Anisomysis, mainly on the basis of the structure of mandibular palp: the subgenus Paranisomysis has flagellate tubercles on the inner margin of the second segment of palp, while such tubercles are lacking in the subgenus Anisomysis. Furthermore, Băcescu (1992) provisionally created the subgenus Javanisomysis, which is characterized by the non-segmented exopod and no endopod of the fourth male pleopod. As the peculiar morphological characteristics were different from the existent characteristics of the genus Anisomysis, Murano and Fukuoka (2003) proposed to establish a new genus Javanisomysis. The genus Javanisomysis is cited as a valid name (i.e. Wittmann et al. 2014), however, recently the genus is re-defined as a subgenus in the genus Anisomysis (Sawamoto, Srinui \& Moriya, 2015) on the basis of examination of the paratypes of Javanisomysis gutzui.

Murano and Fukuoka (2003) carried out a systematic study of the genus Anisomysis and created the fourth subgenus, Pseudanisomysis, to accommodate a few species that have the eye divided into two parts by a groove based on A. bipartoculata. The genus Anisomysis is composed of the four subgenera, Anisomysis, Paranisomysis, Pseudanisomysis (Murano \& Fukuoka, 2003) and Javanisomysis (Sawamoto et al., 2015), and most of which are known in tropical and subtropical waters of the Indian Ocean, the western and the central Pacific Ocean, and the marginal seas of these oceans (Murano and Fukuoka 2003). According to Mees (2015) the subgenus Pseudanisomysis is accepted as a junior synonym of the genus Carnegieomysis. However, the latter is insufficiently described by Tattersall (1943) and is re-defined correctly and is housed in the genus Anisomysis by Murano (1995).

Currently, the genus Anisomysis contains 36 nominal species in the subgenus Anisomysis, 18 species in the subgenus Paranisomysis, and four species in the subgenus Pseudanisomysis (Mees, 2015) and three species in the subgenus Javanisomysis (Sawamoto et al., 2015). In particular, 15 species in the four subgenera are currently reported from Southeast Asian waters (Sawamoto 2014; Sawamoto et al. 2015). Anisomysis (Anisomysis) thurneysseni is included in the subgenus Javanisomysis, but is excluded from the species list of the Southeast Asia. The other two species in the subgenus is added to the list (Sawamoto et al. 2015).

The present paper reports two new species of the subgenus Anisomysis, which were discovered during a study of the mysid diversity in Southeast Asia. Keys to the four subgenera and to the 38 species of the subgenus Anisomysis have been provided.

Materials and methods

Sample collection and morphological measurements

Mysid specimens were collected with a hand net by skin diving in a coral reef in Thailand (see "Systematics" section for details). The mysids from the net samples were immediately fixed in 5\% seawater-buffered formalin for morphological analysis and 99\% ethanol for genetic analysis, the results of which will be reported elsewhere.

Terminology was mainly based on Murano and Fukuoka (2003). The body length (BL) of the specimens was measured from the anterior end of rostrum to the posterior end of telson as the body was stretched. Illustrations were made with the aid of a camera lucida.

Type specimens are housed in the National Museum of Nature and Science, Japan (NSMT).

Systematics

Order Mysida Boas, 1883
Family Mysidae Haworth, 1825
Subfamily Mysinae Haworth, 1825
Tribus Anisomysini Wittmann, Ariani \& Lagardère, 2014
Genus Anisomysis Hansen, 1910
Subgenus Anisomysis Băcescu, 1973

Anisomysis (Anisomysis) spinaintus sp. n.

http://zoobank.org/D61A9F38-853F-40D4-8EA4-00322F37D952
Figs 1-4

Type series. Holotype (NSMT-Cr 24246), adult male (BL, 4.1 mm); allotype (NSMTCr 24247), adult female with embryos (BL, 4.5 mm); paratypes (NSMT-Cr 24248), 3 adult males (BL, 5.0, 4.8 and 4.2 mm) and 2 adult females with embryos (BL, 4.2 and 4.7 mm); Chaolao Beach, Chantaburi Province, Thailand, $12^{\circ} 31.58^{\prime} \mathrm{N}, 101^{\circ} 55.21^{\prime} \mathrm{E}$; collected with a hand net (mesh size, 0.33 mm ; mouth diameter, 30 cm) by skin diving on a coral reef 3-5 m deep on November 28, 2010 by M. Moriya.

Description. Body slender (Fig. 1A). Carapace produced anteriorly as a low triangular rostrum with a moderately pointed apex, uncovering eyestalks almost completely (Fig. 1B).

Eyes large, cornea globular, extending laterally beyond the lateral margin of carapace (Fig. 1B, C).

Antennular peduncle more robust in male (Fig. 1B) than that of female (Fig. 1C), first segment as long as third, armed with single seta at anterolateral corner, second segment shortest. In female (Fig. 1C), first segment armed with single seta at anterolateral corner, third segment as long as combined length of first and second segments.

Figure I. Anisomysis (Anisomysis) spinaintus sp. n., A, B, D holotype \mathbf{C} allotype \mathbf{A} lateral view \mathbf{B} anterior part of body \mathbf{C} anterior part of body \mathbf{D} antenna.

Antennal scale slightly beyond anterior margin of antennular peduncle in male (Fig. 1B), and beyond anterior margin in female (Fig. 1C); 5.9 times as long as broad, slightly curved outward in male (Fig. 1D), 6.7 times as long as broad in female. Antennal peduncle (Fig. 1B, C) short, not reaching the middle of antennal scale in both sexes.

Mandibular palp (Fig. 2A) 3-segmented; second segment widened mesially at around mid-length, armed with setae on both margins, without prominent denticles; third segment 0.6 times as long as second, rectangular, armed with five setae on margin increasing in length distally, with four barbed setae on distal margin and 1 recurved and barbed seta and one long seta at distomedial corner. Maxillule and maxilla as shown in Fig. 2B and C, respectively.

First thoracopodal endopod (Fig. 3A) short and robust, armed with straight, strong terminal claw. Second thoracopodal endopod (Fig. 3B) short; merus as long as carpopropodus, dactylus slightly longer than broad. Third to sixth thoracopodal endopods (Fig. 3C-F) with carpopropodus divided distally into two segments, seventh and eighth thoracopodal endopods (Fig. 3G, H) with undivided carpopropodus in both sexes. Flagelliform part of first and eighth thoracopodal exopods 7 -segmented (Fig. 3A, H) and second to seventh 8 -segmented (Fig. 3B-G). Basal plates of eight thoracopodal exopods with rounded outer distal corner.

Abdomen (Fig. 1A) long and slender, sixth somite almost as long as fifth.

Figure 2. Anisomysis (Anisomysis) spinaintus sp. n., A-C holotype; A mandible and mandibular palp (right side) \mathbf{B} maxillule \mathbf{C} maxilla.

First, second, third, and fifth pleopods of males and all pleopods of females rudimentary. Fourth male pleopod (Fig. 4A) biramous; endopod thin lobed with 1 seta, exopod long, 3-segmented, extended to anterior margin of sixth abdominal somite including terminal setae (Fig. 1A); First segment as long as second and third segments combined; second segment shortest; segment length ratios 2.6:1:1.6; third segment with two terminal setae, inner seta slightly shorter than outer, and stout and swollen in proximal part and barbed in distal part, outer seta slender and naked.

Uropod (Fig. 4B) slender, setose; endopod straight, 1.8 times longer than telson excluding apical spines, no spine in statocyst region; exopod slightly curved outward, 1.2 times as long as endopod.

Telson (Fig. 4B) nearly $3 / 4$ length of sixth abdominal somite, 1.7 times as long as broad at base, narrower distally, with apical cleft; lateral margin armed on distal half with 4-7 spines increasing in length distally; distal margin of each apical lobe armed with 2-4 large subequal spines. Apical cleft 2/5 length of telson, slightly more than 1/2 as broad as base at level of cleft, with rounded bottom and 6-9 spines.

Etymology. The specific name is derived from Latin spina intus, meaning spine on the inside, referring to the apical cleft of telson armed with spines.

Remarks. The most noticeable characteristic of A. (A.) spinaintus is the presence of 6-9 spines on the apical cleft of telson. This new species resembles A. (A.) incisa Tattersall, 1936; A. (A.) hawaiiensis Murano, 1995; and A. (A.) aikawai Ii, 1964, which was re-described by Murano and Fukuoka (2003) on the basis of the specimens from Nomo,

Figure 3. Anisomysis (Anisomysis) spinaintus sp. n., A-H holotype A $1^{\text {st }}$ thoracopod $\mathbf{B} 2^{\text {nd }}$ thoracopod $\mathbf{C} 3^{\text {rd }}$ thoracopod $\mathbf{D} 4^{\text {th }}$ thoracopod $\mathbf{E} 5^{\text {th }}$ thoracopod $\mathbf{F} 6^{\text {th }}$ thoracopod $\mathbf{G} 7^{\text {th }}$ thoracopod $\mathbf{H} 8^{\text {th }}$ thoracopod.

Nagasaki, Japan, by the form of the apical cleft of telson. The present species is distinguished from A. (A.) incisa and A. (A.) hawaiiensis by the presence of spines on the apical cleft of the telson, and from A. (A.) aikawai by the deeper apical cleft and larger number of spines on the telson. Differences among these four species are summarized in Table 1.

Distribution. Only known from the type locality.

Figure 4. Anisomysis (Anisomysis) spinaintus sp. n., A, B holotype A 4 ${ }^{\text {th }}$ pleopod \mathbf{B} uropods and telson.

Table I. Morphological differences among A. (A.) spinaintus n. sp; A. (A.) incisa Tattersall, 1936; A. (A.) hawaiiensis Murano, 1995, A. (A.) aikawai Ii, 1964; and A. (A.) aikawai Ii, 1964, re-described by Murano and Fukuoka (2003).

	A. (A.) spinaintus sp. n.	A. (A.) incisa	A. (A.) bawaiiensis	A. (A.) aikawai
Carpopropodus of $3^{\text {rd }}$ to $8^{\text {th }}$ thoracopodal endopod	$3^{\text {rd }}$ to $6^{\text {th }}$ divided distally into 2 segments	Unsegmented	Unsegmented	$8^{\text {th }}$ divided distally into 2 segments (at least)
Exopod of $4^{\text {th }}$ male pleopod: length	Anterior margin of $6^{\text {th }}$ abdominal somite	Backwards to level of the apical lobes of the telson	Middle of telson	Backwards to the posterior end of the $5^{\text {th }}$ abdominal somite
Telson: apical cleft	Deep	Deep	Deep	Deep
Spines on each lateral margin of telson	12 or 13	9 or 10	10	$\begin{gathered} 11 \text { or } 12 \\ (9 \text { or } 10) \# \\ \hline \end{gathered}$
Spines on each lateral margin of telson cleft	8	0 (un-armed)	0 (un-armed)	6 (4) \#

[^2]
Anisomysis (Anisomysis) phuketensis sp. n.

http://zoobank.org/1C987A5B-8D8F-436B-A3C3-5B1739089E97
Figs 5-8
Type series. Holotype (NSMT-Cr 24249), adult male (BL, 3.6 mm); allotype (NSMTCr 24250), adult female with embryos (BL, 3.9 mm); paratypes (NSMT-Cr 24251), 2 adult males (BL, 3.8, 4.0 mm) and 2 adult females with embryos (BL, 3.2, 3.6, 3.4 mm); Ko Lon, Phuket Is., Thailand, $7^{\circ} 47.01^{\prime} \mathrm{N}, 98^{\circ} 21.30^{\prime} \mathrm{E}$; collected with a hand net (mesh size, 0.33 mm ; mouth diameter, 30 cm) by skin diving in a coral reef of 2-3 m deep, December 3, 2010 by M. Moriya.

Description. Body slender (Fig. 5A). Carapace extending anteriorly into obtusely triangular rostrum with bluntly pointed apex, covering bases of antennules (Fig. 5B, C).

Eyes large, cornea occupying half of eye in dorsal view (Fig. 5A-C). Eyestalk very short, without papilliform process on dorsal surface.

Figure 5. Anisomysis (Anisomysis) phuketensis sp. n., A, B, D holotype \mathbf{C} allotype \mathbf{A} lateral view \mathbf{B} anterior part of body \mathbf{C} anterior part of body \mathbf{D} antenna.

Antennular peduncle more robust in male (Fig. 5B) than that in female (Fig. 5C); first segment shorter than third, armed with two setae at anterolateral corner; second segment shortest. In female (Fig. 5C), first segment armed with single seta at anterolateral corner.

Antennal scale (Fig. 5D) closely near the anterior margin of antennular peduncle in male (Fig. 5B), well beyond anterior margin in female (Fig. 5C); 5.5 times as long as broad in male, 6.1 times as long as broad in female. Antennal peduncle short, not reaching middle of antennal scale in both sexes (Fig. 5D).

Mandibular palp (Fig. 6A) 3-segmented; second segment widened mesially at around mid-length, armed with setae on both margins, without triangular processes; third segment rectangular, 0.5 times as long as second segment, outer margin armed with 5 marginal setae increasing in length distally, distal margin with 5 barbed setae on margin, 1 recurved and barbed seta and 1 long seta at distomedial corner. Maxillule and maxilla as shown in Fig. 6B and C, respectively.

Figure 6. Anisomysis (Anisomysis) phuketensis sp. n., A-C holotype A mandible and mandibular palp (right side) B maxillule \mathbf{C} maxilla.

First thoracopodal endopod (Fig. 7A) short and stout, armed with straight, strong terminal claw. Second thoracopodal endopod (Fig. 7B) short; merus as long as carpopropodus, dactylus with strong, curved terminal claw. Third to eighth thoracopodal endopods (Fig. $7 \mathrm{C}-\mathrm{H}$) with undivided carpopropodus in both sexes. Flagelliform part of first and eighth thoracopodal exopods 7-segmented (Fig. 7A, H) and second to seventh 8 -segmented (Fig. 7B-G). Basal plate of eight thoracopodal exopods with rounded outer distal corners.

Abdomen (Fig. 5A) long and slender, sixth somite 1.3 times longer than fifth.
First, second, third, and fifth pleopods of male and all pleopods of female rudimentary. Fourth male pleopod (Fig. 8A) biramous; endopod minute and thin lobe with 4 setae; exopod long, three-segmented, overreaching distal end of telson (Fig. 5A). First

Figure 7. Anisomysis (Anisomysis) phuketensis sp. n., A-H holotype $\mathbf{A} 1^{\text {st }}$ thoracopod $\mathbf{B} 2^{\text {nd }}$ thoracopod $\mathbf{C} 3^{\text {rd }}$ thoracopod $\mathbf{D} 4^{\text {th }}$ thoracopod $\mathbf{E} 5^{\text {th }}$ thoracopod $\mathbf{F} 6^{\text {th }}$ thoracopod $\mathbf{G} 7^{\text {th }}$ thoracopod $\mathbf{H} 8^{\text {th }}$ thoracopod.
segment longer than second and third segments combined; second segment shortest; segment length ratios 3:1:1.5; third segment with two terminal setae, almost equal in length, outer setae slender and naked, inner setae swollen at base and barbed on distal half.

Uropod slender, setose around (Fig. 8B); endopod straight, 1.5 times longer than telson excluding apical spines, no spine in statocyst region; exopod slightly curved outward, 1.1 times as long as endopod.

Telson (Fig. 8B) short, nearly $3 / 5$ length of sixth abdominal somite, 1.2 times longer than broad at base, compressed around distal $1 / 4$, then expanding distally, dis-

Figure 8. Anisomysis (Anisomysis) phuketensis sp. n., A, B holotype A $4^{\text {th }}$ pleopod \mathbf{B} uropods and telson
tal margin slightly narrower than base; lateral margin armed with $4-5$ short spines; apex of telson concave at the middle with paired spines almost equal in length, apical margin truncate with two long stout spines, outer spine curved inward, slightly shorter than inner straight spine.

Etymology. The species is named after the type locality.
Remarks. The most noticeable characteristic of A. (A.) phuketensis is the form of the telson. This species resembles A. (A.) robustispina Panampunnayil, 1984 and A. (A.) truncata Panampunnayil, 1993 in the presence of the peculiar long stout spines on the apical margin of telson. However, A. (A.) phuketensis is distinguished from A. (A.) robustispina by the following characters: only two long stout spines on telson (three in the latter), the length/width ratio of telson being 1.2 (1.6 in the latter), the length ratio of uropodal endopod to telson being 1.5 (2.3 in the latter). Although the telson of A. (A.) truncata is also armed with two pairs of stout apical spines, the outer spines are twice as long as the inner (subequal in A. (A.) phuketensis) and lacks the medial depression with two small spines, which is present in A. (A.) phuketensis and A. (A.) robustispina.

Distribution. The type locality and Ko Chueak, Hat Chao Mai National Park, Trang Province, Thailand.

Key to the subgenera of the genus Anisomysis (cited from Murano and Fukuoka 2003)

$1 \quad$ Body rather strongly built, gibbous; abdomen flexed ventrally; eye large, with cornea divided into two parts by groove

Pseudanisomysis Murano \& Fukuoka, 2003

- Body slender, straight; eye globular, expanded, not divided into two portions 2
2 Mandibular palp with second segment armed with triangular processes on mesial margin

Paranisomysis Băsescu, 1973

- Mandibular palp with second segment armed with normal setae on both margins. 3
3 Carapace with spinules on antero-lateral margin; telson with un-articulated denticles on lateral margin

Javanisomysis Băcescu, 1992

- Carapace without spinules on antero-lateral margin; telson with articulated denticles on lateral margin

Anisomysis Băcescu, 1973

Key to the species of the subgenus Anisomysis

Subgenus Anisomysis Băsescu, 1973

Type species. Anisomysis laticauda Hansen, 1910.
Description. Body straight, slender, not hispid. Cornea of eye large, globular, not divided into two portions. Antennular peduncle having neither expanded lobe nor finger-like process on second segment. Second segment of mandibular palp foliate, without triangular denticles on mesial margin. Telson variable with basally articulated denticles on lateral margin.

1 Telson longer than last abdominal somite....... A. sirielloides Băsescu, 1975

- Telson shorter than last abdominal somite.. 2

2 Telson without distal cleft... 3

- Telson with distal cleft.. 11

3 Telson triangular with narrow apex .. 4

- Telson with rounded or truncate distal margin ... 5

4 Rostrum triangular with narrowly rounded apex; exopod of fourth male pleopod with second segment $1 / 3$ as long as third segment; marginal spines of telson increasing distally in length, apical spine 3 times as long as broad at base..A. mixta Nakazawa, 1910

- Rostrum broadly rounded or triangular with broadly rounded apex; exopod of fourth male pleopod with second segment about $4 / 5$ as long as third segment; marginal spines of telson subequal in length, apical spine 1.5 times as long as broad at bas...A. australis Zimmer, 1918
5 Distal margin of telson rounded .. 6

	Distal margin of telson truncate or weakly truncate 7
6	Telson 1.5 times as long as broad, with $10-12$ spines on posterior half of each lateral margin. \qquad A. chessi Murano, 1983
-	Telson nearly twice as long as broad, with $7-8$ spines on posterior $2 / 3$ of each lateral margin. \qquad A. quadrispinosa Wang, 1989
7	Telson with constriction, more than 10 spines on each lateral margin \qquad .. A. enewetakensis Murano, 1983
-	Telson without constriction.. 8
8	Telson armed with 4-5 spines on each lateral margin 9
-	Telson armed with 9-13 spines on each lateral margin 10
9	Telson rounded triangular with weakly truncate distal margin; distal spines of telson subequal in size. A. levi Băsescu, 1973
-	Telson trapezoid with truncate distal margin; distal spines of telson longer and stouter than lateral spines \qquad A. truncata Panampunnayil, 1993
10	Each lateral margin of telson with 9 spines. Exopod of fourth male pleopod reaching tip of telson \qquad A. bacescui Pillai, 1976
-	Each lateral margin of telson with 10-13 spines. Exopod of fourth male pleopod reaching beyond base of telson........A. comorensis Wooldridge \& Mees, 2004
11	Inner margin of telson cleft unarmed with spines.................................. 12
-	Inner margin of telson cleft armed with spines..................................... 22
12	Uropodal endopod with process on mesial margin of statocyst region...... 13
	Uropodal endopod without process on mesial margin of statocyst region.... 14
13	Process on uropodal endopod blunt, without articulation at base \qquad \qquad A. bifurcata Tattersall, 1912
-	Process on uropodal endopod acutely pointed, with articulation at base \qquad \qquad A. spinata Panampunnayil, 1993
14	Each apical lobe of telson with single spine.. 15
-	Each apical lobe of telson with 2 or 3 spines .. 19
15	Telson cleft about half of telson length ... 16
-	Telson cleft less than 1/3 of telson length ... 17
16	Rostrum pointed; eyestalk with papilliform process; telson with 2 or 3 spines on lateral margin of each posterior lobe \qquad A. megalops (Illig, 1913)
-	Rostrum rounded; eyestalk without papilliform process; telson with 5 or 6 spines on lateral margin of each posterior lobe.........A. nana Murano, 1995
17	Each lateral margin of telson with 11-20 spines...A. minuta Liu \& Wang, 1983
-	Each lateral margin of telson with less than 10 spines 18
18	Each lateral margin of telson with 5-9 short slender spines. Cleft of telson $1 / 3$ length of telson. A. pelewensis Ii, 1964
-	Each lateral margin of telson with 3 small spines. Cleft of telson $1 / 5$ length of telson \qquad A. unispinosa Wooldridge \& Mees, 2004
19	Telson narrowing abruptly at distal $1 / 3$, each lateral margin with 2 spines at narrow part; each apical lobe of telson with 2 short spines.

Telson 1.5 times as long as broad. Exopod of fourth male pleopod extendingto distal end of telson.27nal somite28
Exopod of fourth male pleopod extending to or beyond posterior margin oflast abdominal somite29

Apical cleft as long as $1 / 9$ of telson, each lateral margin of telson with 3 or 4 spines
A. aikawai Ii, 1964

- Apical cleft as long as $2 / 5$ of telson, each lateral margin of telson with 5 or 6 spines
A. spinaintus sp. n.
29 Exopod of fourth male pleopod extending to middle of telson, second segment 1.6 times longer than third A. hashizumei Fukuoka \& Murano, 1997
- Exopod of fourth male pleopod extending slightly beyond anterior margin of telson, second segment slightly longer than thirdA. laticauda Hansen, 1910
30 Distal margin of telson armed with 2 or 3 pairs of long and robust spines 31
- Distal margin of telson without long and robust spines............................. 32
31 Posterior margin of telson broader than basal width, with 3 pairs of long and robust spines, about $1 / 3$ of telson length
A. robustispina Panampunnayil, 1984
- Posterior margin of telson equal to or narrower than basal width, with 2 pairs of long and robust spines, about $2 / 5$ of telson length...A. phuketensis sp. n.
32 Telson 1.3-1.4 times as long as broad 33
- Telson 1.5-1.8 times as long as broad 35
33 Posterior $2 / 3$ of telson gradually narrowing distally; lateral spines of telsonconsiderably reduced in sizeA. vasseuri Ledoyer, 1974normally developed34
34 Rostrum broadly rounded; uropodal endopod subequal to exopod in length;length ratios of 3 exopod segments of fourth male pleopod $3.1: 1: 1.5$A. rotunda Murano \& Fukuoka, 2003
- \quad Rostrum triangular with rounded apex; uropodal endopod clearly shorter than exopod; length ratios of 3 exopod segments of fourth male pleopod 5.5 : 1 : 2.6A. maldivensis Murano \& Fukuoka, 2003
35 Lateral spines of telson considerably reduced in size 36
- Lateral spines of telson normally developed 37
36 Antennal scale not extending to distal end of antennular peduncle in male,slightly beyond in female, 6 times as long as broad; telson 1.5 times as long asbroad, with 7 spines on each lateral margin..A. boraboraensis Murano, 1995- Antennal scale extending beyond distal end of antennular peduncle in bothsexes, 7 times as long as broad; telson 1.7 times as long as broad, with 8 or 9spines on each lateral margin
A. parvispina Murano \& Fukuoka, 2003
37
Lateral depression of telson clear at distal quarter; distal margin of telson broad, with 4 or 5 pairs of long spines
A. brevicauda Wang, 1989
- Lateral depression of telson very slight if present; distal margin of telson narrow, with 3 pairs of long spines.
A. akajimaensis Murano, 1990

Note about the subgenus Pseudanisomysis

In the middle of September 2015, the subgenus Pseudanisomysis is treated as a junior synonym of the subgenus Carnegieomysis in the World Register of Marine Species (WoRMS: Mees, 2015). The reference is Mees J (2015) Anisomysis (Carnegieomysis) W. Tattersall, 1943. In: Mees J, Meland K (Eds.) World List of Lophogastrida, Stygiomysida and Mysida. Accessed through: World Register of Marine Species at http://www. marinespecies.org/aphia.php?p=taxdetails\&id=456543 on 2015-09-29.

Acknowledgements

We wish to thank Prof. S. Nishida, at the University of Tokyo, for providing us with the opportunity for sampling in Southeast Asia. Thanks are also due to all those who supported our study, particularly Dr. S. Satapoomin, at the Phuket Marine Biological Center, Thailand. We thank Prof. Ephrime B. Metillo and an anonymous referee for
helpful comments and advice on the manuscript. This study was partially supported by the Asian CORE Program of the Japan Society for the Promotion of Science.

References

Băcescu M (1973) Anisomysis levi sp. n. from the Red Sea and the dichotomic key of the species belonging to the genus, with description of a new taxon, Paranisomysis n. sg. Revue Roumaine de Biologie: Série de Zoologie 18: 173-180.
Băcescu M (1975) Contributions to the knowledge of the mysid (Crustacea) from the Tanzanian waters. University Science Journal (University of Dar es Salaam) 1:39-61.
Băcescu M (1992) Javanisomysis gutzui, n. sg., sp. n., mysidacé grégaire des eaux Indonésiennes. Revue Roumaine de Biologie: Série de Biologie Animale 37: 79-86.
Connell AD (2009) The genus Anisomysis (Crustacea: Mysidae) from the east coast of South Africa - descriptions of three new species, and range extensions of two known species. African Natural History 5: 17-30.
Fukuoka K, Murano M (1997) Mysidacea from coastal waters of Iriomote Island, Ryoukyu Islands, southwestern Japan, with descriptions of three new species. Journal of Crustacean Biology 17: 520-537. doi: 10.2307/1549445
Hansen HJ (1910) The Schizopoda of the Siboga Expedition. Siboga Expedition 37: 1-123.
Hansen HJ (1912) 27. The Schizopoda. Report on the scientific results of the expedition to the tropical Pacific by the U.S. Fish Commission Steamer Albatross, the Schizopoda, Memoirs of the Museum of Comparative Zoology at Harvard College 35: 173-296.
Ii N (1964) Fauna Japonica, Mysidae (Crustacea). Biogeographical Society of Japan, 610 pp.
Illig G (1913) Ein weiterer Bericht über die Schizopoden der Deutschen Tiefsee-Expedition 1898-1899. Zoologischer Anzeiger 43: 271-273.
Ledoyer M (1974) Anisomysis vasseuri sp. n. Mysidacé nouveau vivant a l'entrée des grottes sous-marines récifales. Tethys 5: 361-366.
Liu R, Wang S (1983) On three new species of Mysidacea (Crustacea) from the coastal waters of Guangdong, China. Oceanologia et Limnologia Sinica 14: 522-530.
Mees J (2015) Mysida. World Register of Marine Species. http://www.marinespecies.org/ aphia.php?p=taxdetails\&id=149668 [accessed on 2015-08-20]
Mees J, Meland K (2015) World List of Lophogastrida, Stygiomysida and Mysida. World Register of Marine Species. http://www.marinespecies.org/aphia.php?p=taxdetails\&id=456543 [accessed on 2015-09-29]
Murano M (1983) Mysidacea fauna from Enewetak Lagoon, Micronesia. Bulletin of Plankton Society of Japan 30: 81-90.
Murano M (1987) A new species of the genus Anisomysis from the Great Barrier Reef (Mysidacea). Crustaceana 52: 47-52. doi: 10.1163/156854087X00051
Murano M (1990) Mysidacea from coastal water of Akajima Island, Ryukyu Islands. Journal of Tokyo University of Fisheries 77: 189-212.
Murano M (1995) New and already known species of the genus Anisomysis (Mysidacea) from Hawaii and the Society Islands. Journal of Crustacean Biology 15: 355-364. doi: 10.2307/1548962

Murano M, Fukuoka K (2003) A systematic study of the genus Anisomysis (Crustacea: Mysida: Mysidae), with description of six new species. Bulletin of the National Science Museum, Tokyo, Ser. A 29: 65-102.
Nakazawa K (1910) Notes on Japanese Schizopoda. Annotationes Zoologicae Japonenses 7: 247-261.
Nouvel H (1967) Mysidacés récoltés par S. Frontier a Nosy-Bé. IV. Mesacanthomysis pygmaea n. gen., sp. n. et Anisomysis hanseni sp. n. Bulletin de la Société d'Histoire Naturelle de Toulouse 106: 105-121.
Nouvel H (1973) Un Mysidacé nouveau de la Nouvelle-Calédonie: Anisomysis thurneysseni sp. n. Bulletin du Muséum National d'Histoire Naturelle 3e série, Zoologie 124: 1453-1459.

Panampunnayil SU (1984) Two new species belonging to the genus Anisomysis (Crustacea, Mysidacea) and a new record of Anisomysis bipartoculata from the Indian Ocean. Journal of Plankton Research 6: 943-952. doi: 10.1093/plankt/6.6.943
Panampunnayil SU (1993) Two new species of Anisomysis (Crustacea, Mysidacea) from the Lakshadweep Archipelago. Journal of Plankton Research 15: 1141-1148. doi: 10.1093/ plankt/15.10.1141
Pillai NK (1976) Observations on two Indo-West Pacific mysids. Aquatic Biology 1: 65-76.
Sawamoto S (2014) Current status of mysid taxonomy in Southeast Asia. Marine Research in Indonesia (Proceedings of LIPI-JSPS Joint Seminar on Coastal Ecosystems in Southeast Asia, 2012). Marine Research in Indonesia 39: 1-14.
Sawamoto S, Srinui K, Moriya M (2015) Re-definition of the genus Javanisomysis Băcescu, 1992 as a subgenus in the genus Anisomysis Hansen, 1910 (Mysida, Mysidae) and a new species of the subgenus from a coastal water in Phuket, Thailand. Cruscaceana 88: 809-838. doi: 10.1163/15685403-00003455

Tattersall WM (1912) On the Mysidacea and Euphausiacea collected in the Indian Ocean during 1905. Transactions of the Linnean Society of London, Zoology, ser. 2 15: 119136, 2 pls.
Tattersall WM (1936) Mysidacea and Euphausiacea. British Museum (Natural History), Great Barrier Reef Expedition 1928-29. Scientific Reports 5: 143-176.
Tattersall WM (1943) Biological results of last cruise of Carnegie IV. The mysids. In: Ault JP (commander), Scientific results of cruise VII of the Carnegie during 1928-1929, Biology IV. Publ. Carnegie Inst. Washington, No. 555: 61-72.

Wang S (1989) On two new species of genus Anisomysis (Crustacea Mysidacea) from the South China Sea. Studia Marina Sinica 30: 229-237.
Wittmann KJ, Ariani AP, Lagardère JP (2014) Orders Lophogastrida Boas, 1883, Stygiomysida Tchindonova, 1981, and Mysida Boas, 1883 (also known collectively as Mysidacea). In: von Vaupel Klein JC, Charmantier-Daures M, Schram FR (Eds) Treatise on ZoologyAnatomy, Taxonomy, Biology. The Crustacea. Revised and updated, as well as extended from the Traité de Zoologie, Vol. 4 Part B (54). Koninklijke Brill NV, Leiden, 189-396, 404-406. doi: 10.1163/9789004264939_006
Wooldridge T, Mees J (2004) Mysidacea from the Comoros Archipelago with descriptions of two new species. Annals of the South African Museum 112: 98-102.
Zimmer C (1918) Neue und wenig bekannte Mysidaceen des Berliner Zoologischen Museums. Mitteilungen aus dem Zoologischen Museum in Berlin 9: 13-26.

[^0]: Academic editor: A. Myers | Received 12 December 2014 | Accepted 26 August 2015 | Published 6 October 2015

[^1]: Copyright Mitsuyasu Moriya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

[^2]: \# Re-described by Murano and Fukuoka (2003).

