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Abstract
The persistent enigma of why the whole-body metabolic rate increases hypoallometrically with body mass 
should be solved on both the ultimate and proximate levels. The proximate mechanism may involve hy-
perallometric scaling of metabolically inert tissue/organ masses, hypoallometric scaling of metabolically 
expensive organ masses, a decrease in mass-specific metabolic rates of organs or a combination of these 
three factors. Although there are literature data on the tissue/organ masses scaling, they do not consider 
phylogenetic information. Here, we analyse the scaling of tissue/organ masses in a sample of 100 mam-
malian and 22 bird species with a phylogenetically informed method (PGLS) to address two questions: 
the role of phylogenetic differences in organ/tissue size scaling and the potential role of organ/tissue mass 
scaling in interspecific metabolic rate scaling. Strong phylogenetic signal was found for the brain, kidney, 
spleen and stomach mass in mammals but only for the brain and leg muscle in birds. Metabolically rela-
tively inert adipose tissue scales isometrically in both groups. The masses of energetically expensive visceral 
organs scale hypoallometrically in mammals, with the exception of lungs, with the lowest exponent for 
the brain. In contrast, only brain mass scales hypoallometrically in birds, whereas other tissues and organs 
scale isometrically or almost isometrically. Considering that the whole-body metabolic rate scales more 
steeply in mammals than in birds, the mass-specific metabolic rate of visceral organs must decrease with 
body mass much faster in birds than in mammals. In general, studying whole-body metabolic rate is not 
adequate for explaining its scaling, and measuring metabolic rates of organs, together with their contribu-
tion to body mass, is urgently required.

ZooKeys 982: 149–159 (2020)

doi: 10.3897/zookeys.982.55639

https://zookeys.pensoft.net

Copyright Andrzej Antoł, Jan Kozłowski. This is an open access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

RESEARCH ARTICLE

Launched to accelerate biodiversity research

A peer-reviewed open-access journal

mailto:andrzejantol@gmail.com
http://zoobank.org/5A16CB11-3E3C-4BBB-B76F-7C3713FF1E24
https://doi.org/10.3897/zookeys.982.55639
https://zookeys.pensoft.net
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Andrzej Antoł & Jan Kozłowski  /  ZooKeys 982: 149–159 (2020)150

Keywords
adipose tissue mass, hypoallometric scaling, isometric scaling, PGLS, visceral organ mass

Introduction

The slower than linear increase in metabolic rate with body mass, often referred to as 
a negative or sublinear or hypoallometric mass-scaling of metabolism, has fascinated 
biologists since at least the time of the publications of Rubner (1908) and Kleiber 
(1947). Technically, this phenomenon is studied by examination of the slope (b) in a 
linear regression, where log metabolic rate = a + b log body mass, which takes a value 
<1 under a hypoallometric scaling. Although the existence of a universal value for b 
has been contradicted in recent decades (e.g. Harrison 2018 and citations there), the 
ubiquity of the hypoallometric scaling requires explanation on two levels: ultimate 
and proximate. There is no agreement on the ultimate causes (Kozłowski et al. 2020), 
whereas the proximate mechanism is clear but not always invoked: the relative size of 
metabolically relatively inert parts must increase with body mass or the relative size of 
energy-demanding organs must decrease with body mass or the mass-specific meta-
bolic rate of energy-demanding organs must decrease with body mass or, most likely, 
some of these three phenomena occur simultaneously (Krebs 1950; Wang et al. 2001). 
Therefore, evidence of the interspecific scaling of organ masses is crucial for explaining 
the hypoallometric scaling of the whole-body metabolic rate on the proximate level 
(Kozłowski et al. 2020).

Old data on scaling of organ masses in mammals was summarized by Prothero 
(2015), who also performed his own analysis of original data extracted from the lit-
erature. However, his analysis, as well as analyses in older sources, did not take into 
account phylogenetic information, which is standard in contemporary research. Simi-
larly, published analyses of the scaling of body components in birds (Daan et al. 1990; 
Peters 1983) were conducted without phylogenetic context.

Here, we used published data to estimate body mass-scaling for the mass of the 
brain, heart, liver, kidneys, lungs, spleen, digestive tract and its components (stomach 
and intestine) and the adipose deposits in 100 mammalian species and the mass of the 
brain, heart, liver, kidneys, lungs, breast muscle, skin, digestive tract, plumage and fat 
in 22 bird species with a phylogenetically informed method. We address two questions: 
the role of phylogenetic differences in organ/tissue size scaling and the potential role of 
organ/tissue mass scaling in interspecific metabolic rate scaling. Recent studies showed 
that hypoallometry of the metabolic rate is not an artefact of phylogeny, but taking 
into account phylogenetic information affects the slopes of the scaling (e.g., Griebeler 
and Werner 2016). Because the relative masses of organs may affect the scaling of the 
metabolic rate, it is important to examine the sensitivity of the slopes of organ masses 
to phylogenetic signal.
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Methods

The data sets used in our analyses are relatively uniform, collected by the same people. 
Data for whole-body mass, fat-free body mass, adipose deposits and sizes of organs 
were taken from the supplemental material of Navarrete et al. (2011). Their dataset 
comprises one species of Didelphimorphia, 3 species of Diprodontia, 3 species of Ar-
tiodactyla, 28 species of Carnivora, 3 species of Chiroptera, one species of Erinaceo-
morpha, two species of Lagomorpha, 23 species of Primata, 29 species of Rodentia, 
one species of Scandentia and 6 species of Soricomorpha. Data for 22 bird species were 
taken from Daan et al. (1990). Their dataset comprises 9 species of Passeriformes, one 
species of Galliformes, 6 species of Charadriformes, one species of Columbiformes, 
one species of Falconiformes, 3 species of Anseriformes and one species of Rallidae. 
Importantly, the species of birds were chosen by Daan et al. (1990) to cover relatively 
uniformly log body mass axis. The authors also provide the BMR (basal metabolic rate) 
of the same birds that were used for tissue/organ mass analysis. Those BMR measure-
ments were analysed here with the PGLS method here. Wet masses of mammalian and 
dry masses of birds’ organs were analysed; the slopes are comparable because water 
mass in birds scaled isometrically, whereas the intercepts are not. Phylogenetic trees 
of the studied birds and mammals are presented in the supplemental material (Suppl. 
material 1: Figures S1, S2).

Scaling parameters for sizes of organs/tissues were calculated in the R software (R 
CoreTeam 2019) with an ordinary least squares regression (OLS) and with a phylo-
genetic generalized linear model (PGLS) from the caper package (Orme et al. 2018). 
Body mass or fat-free body mass were independent variables. All analysed data were 
log transformed prior to the analysis. For birds the tree did not include branch lengths, 
which were then calculated with the compute.brlen function. The function arbitrarily 
assigns lengths of branches assuming an ultrametric tree.

Results

The results of the PGLS and OLS models for mammals with log fat-free body mass 
as the independent variable are presented in Figure 1 together with the corresponding 
confidence intervals for the slopes (b). In mammals, the masses of the brain, heart, 
liver, kidneys, digestive tract as a whole, and intestine scale hypoallometrically for both 
the PGLS and OLS. Scaling of the spleen and stomach masses is hypoallometric ac-
cording to the OLS, but PGLS analysis does not exclude isometry. Scaling of the lung 
and adipose deposit masses is isometric for both the OLS and PGLS. The results of the 
same analyses with log body mass are given in the supplemental material (Suppl. mate-
rial 1: Figure S3); because the increase in adipose deposits is almost ideally isometric 
(PGLS slope 0.99, OLS slope 1.02), the scalings for log body mass and for log fat-free 
body mass are almost identical. A substantial difference between the PGLS and OLS 
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Figure 1. PGLS (solid lines) and OLS (dashed lines) interspecific scaling of tissue/organ masses in mam-
mals with log fat-free-body mass as the independent variable. For the scaling with log body mass as an 
independent variable, see Suppl. material 1: Figure S3.
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results is visible only in the scaling of the brain mass (PGLS slope 0.71, OLS slope 
0.82), which demonstrates the strongest phylogenetic signal (Pagel’s lambda=0.923). 
Interestingly, the slightly weaker but still strong phylogenetic signals observed for the 
scaling of the stomach and spleen masses do not affect the slopes and only slightly af-
fect the intercepts. The scaling of the liver, intestine and adipose deposit masses does 
not show any phylogenetic signals. The scattering of species-specific points around 
regression lines is very low (r2=0.97–98) in most visceral organs and low for brain 
(r2=0.94, PGLS), spleen (r2=0.81), stomach (r2=0.95) and adipose tissues (r2=0.88).

In birds, water mass scales isometrically with body mass (the slope is 0.99 for both 
PGLS and OLS) with very narrow confidence intervals (Suppl. material 1: Figure S4). 
Thus, slopes for dry masses of organs in the studied birds are comparable to slopes for 
wet masses of organs in the studied mammals. Scattering of data points for fat mass 
in birds is substantial, with slopes of 0.95 for PGLS and 0.91 for OLS if fat-free body 
mass is taken as the independent variable (Figure 2). As a result, confidence intervals are 
very broad for this scaling, not excluding isometry. Thus, it is reasonable to show scaling 
with respect to fat-free body mass for other organs (Figure 2). Brain mass scales hypoal-
lometrically with a slope of 0.69 (PGLS) or 0.56 (OLS) and a very strong phylogenetic 
signal. Breast muscle, heart, lung, kidney, liver and digestive tract masses scale isometri-
cally or almost isometrically, with the isometric slopes falling within the confidence 
intervals. Phylogenetic signal is negligible for these organs. Plumage mass also scales 
isometrically but with a weak phylogenetic signal. Leg muscle mass scales isometrically 
but with a strong phylogenetic signal (Suppl. material 1: Figure S4). Interestingly, skin 
mass seems to scale hyperallometrically for OLS, but PGLS does not exclude isometry; 
phylogenetic signal is moderate for this tissue. Despite the much smaller number of 
species than in the case of mammals, r2 is very high, in the range of 0.93 to 0.99, with 
two exceptions: for fat mass, r2 equals 0.63 (PLGS) or 0.62 (OLS); for brain mass, r2 
equals 0.93 in PGLS analysis but only 0.79 in OLS analysis, which additionally sup-
ports the need for phylogeny-informed analysis in the case of this organ.

The slope for BMR in the studied birds equalled 0.67 according to PGLS analysis 
(Suppl. material 1: Figure S4), almost identical to the value reported by McKechnie 
and Wolf (2004). Thus, the set of birds analysed in this paper, although relatively 
small, samples very well the class of birds with respect to their metabolic requirements, 
and likely also their body composition.

Discussion

Adipose tissue is metabolically relatively inert: 0.79 kJ kg-1 h-1 as compared to 77 kJ kg-1 
h-1 in kidney and hearts in humans (Gallagher et al. 1998); less than one tenth of the 
metabolic rate in liver and muscle of Sturnus vulgaris and Calidris alpine (Scott and Ev-
ans 1992)), but our results show that its mass-scaling cannot explain the origin of the 
hypoallometric scaling of whole-body metabolism. We found that the mass of the adi-
pose deposits scales with the log body mass isometrically in mammals (b=0.99 (PGLS) 
or 1.02 (OLS)) and almost isometrically in birds (b=0.95 (PGLS) or 0.91 (OLS)).
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Figure 2. PGLS (solid lines) and OLS (dashed lines) interspecific scaling of tissue/organ masses in birds 
with log fat-free-body mass as the independent variable. For the scaling with log body mass as an inde-
pendent variable, see Suppl. material 1: Figure S5.
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Lung mass scales isometrically with body mass in both mammals and birds. Pro-
thero (2015) also reported isometric scaling of lung mass in 115 mammalian species 
from 12 orders. However, alveolar surface area scales with a slope of 0.94, pulmonary 
capillary surface area with a slope of 0.89 and diffusion capacity with a slope of 0.965 
in 20 mammal species from 6 orders (Prothero 2015). According to Hoppeler and 
Weibel (1998), lungs in mammals have very low developmental and training plasticity, 
and they are built with significant excess structural capacity in non-athletic mammals 
but may limit the maximal metabolic rate in athletic species. Because of the high en-
ergy demand for flight, all studied birds can be considered athletic. Although Lasiewski 
and Calder (1971, cited after Peters 1983) reported a lower slope of the lung mass, 
equal to 0.95, in birds, it is likely that the confidence interval of this scaling contains 
isometry because r2 equals only 0.85 for their analysis. Additionally, the slope of 0.94 
with SE 0.029 reported by Brody (1945) seems relatively close to isometry.

Our results show that the mass of the heart, responsible for the distribution of both 
oxygen and nutrients, has in mammals a slope of 0.92 (PGLS) or 0.95 (OLS). Prothero 
(2015) reported a slope of 0.95 for 126 mammalian species from 14 orders. The slopes 
for birds in our analysis are slightly higher in the PGLS analysis (0.97), but confidence 
intervals contain mammalian values. Lasiewski and Calder (1971, cited after Peters 
1983) reported a slope of 0.91 with r2=0.94 and Brody (1945) a slope of 0.92 with SE 
0.021 in birds.

Liver mass scales in mammals with a slope of 0.89 (PGLS) or 0.90 (OLS) in our 
analysis, identical to the value given by Prothero (2015) for 134 species from 13 orders. 
Interestingly, the liver mass scales isometrically in birds in our data, but Brody (1945) 
reported a much lower value of 0.88 with SE 0.026. The slope for kidney mass in 
mammals in our analysis, equal to 0.84 (PGLS) or 0.85 (OLS), is slightly lower than 
the 0.88 reported by Prothero (2015), but the difference fits the confidence interval. 
Again, in contrast to mammals, scaling of the kidney mass is isometric in birds. Previ-
ous papers reported lower slopes for the kidney in birds: 0.91 in 334 species (Johnson 
1968) or 0.85 with SE 0.032 (Brody 1945), likely because of the inclusion of non-
flying giants such as ostrich. The mass of the digestive tract as a whole scales hypoallo-
metrically in mammals (0.93 for PGLS and 0.91 for OLS), while in birds, the scaling 
is even slightly hyperallometric: 1.05 (PGLS) or 1.06 (OLS), although confidence 
intervals contain isometry. Old data by Brody (1945) and Calder (1974, cited after 
Peters 1983) confirm isometric scaling.

Because of the expensive brain hypothesis, linking relative brain size with the life 
history-based pace of life (Aiello and Wheeler 1995), more is known about the scaling 
of the brain mass. The observed 0.70 PGLS slope in our analysis for mammals is lower 
and the 0.81 OLS slope is higher than the 0.77 slope (OLS, r=0.98; the same slope 
for 14 order averages) given by Martin (1996) for a set of 477 mammals. According to 
a recent analysis of 1552 species of mammals, the OLS slope for brain mass equalled 
0.75 (CI 0.742, 0.758) with a very strong phylogenetic signal (Burger and George 
2019); according to PGLS analysis, the slope was very low at only 0.57. However, the 
analysis at the level of orders resulted in variable slopes (0.24 to 0.81) with a median 
value of 0.64, differing from both OLS and PGLS slopes for all mammals. These re-
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sults provide a warning that PGLS analysis does not solve the problem of the lack of 
phylogenetic independence if grade shifts exist, i.e., if branches of a tree differing in the 
slopes or intercepts of a scaling are not randomly distributed along the log body mass 
axis (Martin et al. 2005). Although the realistic value of the slope is still uncertain, the 
scaling of brain mass in mammals is much lower than one. It is also very low in birds in 
our study, as well as in Brody (1945), 0.498 with SE 0.022, and in Martin (1981), 0.58 
with SE 0.018. Because PGLS slopes for the brain are much higher than OLS slopes in 
both mammals and birds, old OLS slopes must be considered understated. However, 
even phylogeny-informed analysis gives slopes for the brain that are much lower than 
for other organs (0.71 in mammals and 0.69 in birds).

Plumage mass scales isometrically in the studied birds. Brody (1945) also reported 
isometric scaling of plumage in male passerine birds (slope 0.99, SE 0.130) and close 
to isometric in females (0.93, SE 0.098). Isometry of plumage mass is counterintuitive 
because larger birds have a smaller surface-to-volume ratio and thus lower heat loss. 
However, plumage also comprises flight feathers, and large birds are more likely to use 
gliding flight, requiring a greater bearing area. This explanation may also justify the 
hyperallometric scaling of skin mass found in our analysis, as skin is a base for anchor-
ing flight feathers.

The heart, kidney, liver and brain are expensive organs. In humans, these organs 
comprise 0.5, 0.4, 2.6 and 2.0% of the body mass, respectively, but are responsible for 
as much as 8.7, 8.2, 21.6 and 20.2% of the total resting metabolic rate (calculated from 
Gallagher et al. 1998). Altogether, these organs constitute only 5.5% of the body mass, 
but their metabolic rates constitute as much as 59% of the metabolic rate (calculated 
from Gallagher et al. 1998). For comparison, isometrically scaling (Muchlinski et al. 
2012; Raichlen et al. 2010) skeletal muscles constitute 40% of body mass and use only 
22% of energy at rest in humans (Gallagher et al. 1998), and adipose tissue constitutes 
21% of body mass, using 15% of the energy. The hypoallometric scaling of visceral or-
gans responsible for 59% of the metabolic rate in humans and over 50% of that in mice 
(Konarzewski and Diamond 1995) may explain a large part of the hypoallometric scaling 
of the whole-body metabolic rate in mammals. Additionally, the mass-specific metabolic 
rate of these organs decreases with body mass, with a slope of -0.12 for the heart, -0.27 
for the liver, -0.08 for the kidneys (Wang et al. 2001), and -0.14 for the brain (Karbowski 
2007). Interestingly, in birds, scaling of all visceral organs except the brain is steeper 
than that in mammals and isometric or close to isometric, but scaling of the whole-body 
metabolic rate is shallower (Glazier 2008). Because the brain mass of birds (1.7% of body 
mass for 1 kg bird; Daan et al. (1990)) is much lower than that of mammals (5.5% of 
body mass for a 1 kg mammal; Burger and George (2019)), shallower scaling of brain 
mass in birds cannot compensate for the steeper scaling of other visceral organs.

In birds, most tissues/organs scale isometrically. Strong hypoallometric scaling of 
the brain and slightly hypoallometric scaling of a few organs is likely to be balanced by 
hyperallometric scaling of the skin, plumage and digestive tract mass (if they truly di-
verge from isometry). In mammals, such hyperallometric scaling was not found. Since 
compensation must appear because body mass, by definition, scales isometrically with 
itself, hyperallometry may exist in tissues/organs not studied here, but we did not find 
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strong enough hyperallometry in the survey presented by Prothero (2015) to support 
this view. Alternatively, some massive tissues/organs/components (water, fat, skeleton) 
considered to scale isometrically may in fact scale slightly hyperallometrically, which is 
possible considering the confidence limits for the scaling parameters.

The hypoallometric scaling of the masses of energy-demanding visceral organs 
must significantly contribute to the hypoallometric scaling of the whole-body meta-
bolic rate in mammals, but such scaling only slightly contributes to the same scaling in 
birds. Taking into account that the whole-body BMR increases with body mass faster 
in mammals (PGLS slope between 0.71 and 0.74; White et al. (2009)) than in birds 
(independent contrast slope 0.68; McKechnie and Wolf (2004); 0.67 PGLS slope in 
the sample analysed here), the mass-specific metabolic rate of visceral organs must de-
crease with body mass much faster in birds than in mammals. Certainly, physiological 
mechanisms leading to this difference in proximate mechanisms shaping the metabolic 
rate scaling are worthy of study.

Metabolism takes place in cells that form different tissues/organs. Unfortunately, 
researchers usually measure total body masses and whole-body metabolic rates. Such 
state-of-the-art results do not originate from a well-developed research strategy but 
from the ease of taking these measurements. If we want to resolve the still-enigmatic 
hypoallometric scaling of the whole-body metabolism, we should refocus on body 
composition and organ-specific metabolic rates.
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