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Abstract
The utility of COI DNA barcodes in species delimitation is explored as well as life stage associations of 
five closely related Propsilocerus species: Propsilocerus akamusi (Tokunaga, 1938), Propsilocerus paradoxus 
(Lundström, 1915), Propsilocerus saetheri Wang, Liu et Paasivirta, 2007, Propsilocerus sinicus Sæther et 
Wang, 1996, and Propsilocerus taihuensis (Wen, Zhou et Rong, 1994). Results revealed distinctly larger 
interspecific than intraspecific divergences and indicated a clear “barcode gap”. In total, 42 COI barcode 
sequences including 16 newly generated DNA barcodes were applied to seven Barcode Index Numbers 
(BINs). A neighbor-joining (NJ) tree comprises five well-separated clusters representing five morphospe-
cies. Comments on how to distinguish the larvae of P. akamusi and P. taihuensis are provided.
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Introduction

The genus Propsilocerus Kieffer, 1923 (Fig. 1) was erected with the type species Propsi-
locerus lacustris Kieffer, 1923. At present, there are nine Propsilocerus species described in 
the Palaearctic and Oriental regions (Sæther and Wang 1996; Zelentsov 2000; Tang et 
al. 2004; Wang et al. 2007; Makarchenko and Makarchenko 2009) and one unnamed 
species from the Nearctic region (Cranston et al. 2011). Larvae of Propsilocerus usually 
inhabit eutrophic rivers and lakes. Because of their great densities and ability to adapt 
to different freshwater bodies, they are important food items for fishes and birds, and 
also bioindicators in monitoring of the freshwater ecosystem. However, the high mor-
phological similarity between closely related species within Propsilocerus and intraspecific 
morphological variation have likely led to misidentifications, particularly in larvae. The 
morphological diagnosis (e.g., AR, LR1) of closely related morphospecies needs to be 
evaluated to verify the identity of each Propsilocerus species.

All four common species, Propsilocerus akamusi (Tokunaga, 1938), Propsilocerus 
paradoxus (Lundström, 1915), Propsilocerus sinicus Sæther et Wang, 1996, and Propsi-
locerus taihuensis (Wen, Zhou et Rong, 1994) are present in Yuqiao Reservoir, Jizhou 
Distinct, Tianjin, China during the spring and autumn. As a result, larvae of these four 
species usually have been misidentified as Propsilocerus akamusi by ecologists in China.

DNA barcodes (Hebert et al. 2003a, b) have proven successful in species delimi-
tation and recognition of cryptic species diversity in chironomids (Anderson et al. 
2013; Lin et al. 2015; Lin et al. 2018; Song et al. 2018). However, only one named 
(P. akamusi) and one unidentified species (Propsilocerus sp. JC-2015) have registered 
public DNA barcodes in the Barcode of Life Data systems (BOLD) (Ratnasingham 
and Hebert 2007). Thus, it is necessary to barcode more Propsilocerus species, which 
are common species in polluted rivers and lakes.

Here we explore the utility of DNA barcodes in species delimitation and in asso-
ciating life stage in Propsilocerus. Registering new barcodes of Propsilocerus species will 
improve the reference library of Chironomidae (Ekrem et al. 2007) for DNA metabar-
coding in biodiversity assessment in monitoring freshwater ecosystems.

Materials and methods

In this study, 42 specimens of five Propsilocerus species (P. akamusi, P. paradoxus, P. sa-
etheri, P. sinicus, and P. taihuensis) from China, Japan, Norway, and South Korea with 
COI barcodes were included. Twenty-six specimens with public COI barcodes were 
retrieved from BOLD and GenBank, and an additional 16 individuals of four Propsi-
locerus species were collected from the eutrophic lakes and reservoirs from Hebei Prov-
ince, Shanghai and Tianjin, China, using D-nets, sweep nets, and light traps.

Larvae were preserved in 95% ethanol, adults in 85% ethanol, and stored at 4 °C 
in the dark before morphological and molecular studies. Photographs of all intact spec-
imens were taken before dissection using a ZEISS camera mounted on a ZEISS ster-
eomicroscope using the software AxioVision Rel. 4.8. at the College of Life Sciences, 
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Figure 1. Larva of Propsilocerus taihuensis (Wen, Zhou & Rong, 1994).

Nankai University, Tianjin, China. Digital photographs of slide specimens were taken 
at 300-dpi resolution using a Nikon Digital Sight DS-Fi1 camera mounted on a Nikon 
Eclipse 80i compound microscope.

Extraction of genomic DNA was done following the standard protocol of the Qia-
gen DNeasy Blood & Tissue Kit, except the volume of DNA template was 110 μl in 
the final step. Morphological terminology used in this work is according to Sæther 
(1980). The cleared exoskeleton of adults was mounted in Euparal on microscope 
slides together with the corresponding wings, legs, and antennae after DNA extraction. 
Voucher specimens from China were deposited in the College of Life Sciences, Nankai 
University, Tianjin, China.

DNA amplifications of COI barcode sequences with the universal primers 
LCO1490 and HCO2198 (Folmer et al. 1994) were carried out at the College of 
Fishery, Tianjin Agricultural University. Polymerase chain reaction (PCR) was set up 
using12.5 μl 2× Es Taq MasterMix (CoWin Biotech Co., Beijing, China), 0.625 μl 
of each primer, 2.5 μl template DNA, and 8.75 μl ddH2O to make a total of 25 μl 
for each sample. PCR was performed on a MasterCycler Gradient (Biometra GmbH, 
Göttingen, Germany), with an initial denaturation step of 95 °C for 4 min followed 
by 40 cycles at 94 °C for 45 s, 52 °C for 45 s, 72 °C for 1 min, and one final extension 
at 72 °C for 10 min. PCR products were electrophoresed in 1.5% agarose gel, purified 
and sequenced with ABI 3730 (BGI TechSolutions Co., Lit. Beijing, China).

Raw sequences were edited and assembled in SeqMan version 7.1.0 (in the Laser-
Gene package, DNASTAR, Madison, USA), aligned using the Muscle algorithm (Edgar 
2004), and checked for stop codons on the amino acids in MEGA version 7.0 (Kumar 
et al. 2016). Sequences were uploaded on BOLD with collateral information and im-
ages. A public dataset including all 42 specimens, “DNA barcodes of Propsilocerus [DS-
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PROPSIL]”, can be found in BOLD. The neighbor-joining (NJ) trees were constructed 
in MEGA using Kimura 2-Parameter (K2P) substitution model, 1000 bootstrap repli-
cates and the “pairwise deletion” option for missing data. The pairwise distances of five 
Propsilocerus species were calculated using K2P model in MEGA. To detect the “barcode 
gap”, the aligned sequence dataset was subject to Automatic Barcode Gap Discovery 
(ABGD) (Puillandre et al. 2012) with the K2P model, following the default setting.

Results

DNA barcode analyses

In general, the data showed distinctly larger interspecific than intraspecific divergence, 
and there was a clear “barcode gap” in the pairwise K2P distances (Fig. 2). The minimum 
interspecific genetic distance between the closely related morphospecies P. akamusi and 
P. taihuensis is 13.4%. The maximum intraspecific distance of P. akamusi is 5.2%, 3.0% 
in P. taihuensis, 0.8% in P. paradoxus, and 0.5% in P. saetheri (P. sinicus is a singleton). 
Examining the present dataset in BOLD, 42 COI barcodes from five morphospecies 
of Propsilocerus were assigned into seven barcode index numbers (BINs). There are 
two BINs in each species P. akamusi (BOLD:ACB4994, BOLD:ACQ5058) and P. 
taihuensis (BOLD:ADX1391, BOLD:ADK5547), and a unique BIN in P. paradoxus 
(BOLD:ADX2356), P. saetheri (BOLD:AAM7072), and P. sinicus (BOLD:ADX6952).

The neighbor-joining tree (Fig. 3) based on 42 COI barcodes of Propsilocerus spe-
cies revealed five distinct genetic clusters, corresponding to five morphospecies. The 
unidentified species (Propsilocerus sp. JC-2015) grouped into P. taihuensis (Fig. 3). Lar-

Figure 2. Histogram of pairwise K2P distances of 42 aligned sequences of five Propsilocerus morphospe-
cies. The figure was a result of analysis with ABGD using the K2P model. The horizontal axis shows the 
pairwise K2P-distance, and the vertical axis shows the number of pairwise sequence comparisons.

http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ACB4994
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ACQ5058
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADX1391
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADK5547
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADX2356
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAM7072
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADX6952
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Figure 3. Neighbor-joining tree based on the 42 COI barcode sequences of Propsilocerus. Bootstrap support 
(1000 replicates) > 70% are labelled.

vae of P. akamusi, P. saetheri, and P. taihuensis can now be associated with adults based 
on DNA barcodes.

Morphology

Although it is feasible to distinguish species of Propsilocerus by referring to the works 
of Makarchenko and Makarchenko (2009), Sæther and Wang (1996), and Wang et 
al. (2007), misidentification of the larvae of Propsilocerus often occurs due to high 
morphological similarities. Currently, larvae of six Propsilocerus named species have 
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Figure 4. Head capsules of Propsilocerus akamusi (Tokunaga, 1938) and Propsilocerus taihuensis (Wen, Zhou 
& Rong, 1994) A head capsule of P. akamusi, ventral view B head capsule of P. taihuensis, ventral view C man-
dible of P. akamusi D mandible of P. taihuensis E antenna of P. akamusi F antenna of P. taihuensis G premento-
hypopharyngeal complex of P. taihuensis. Scale bar: 100 µm (A, B), 50 µm (C, D), 25 µm (E, F).

been described. Tang et al. (2004) provided a key to the larvae of known species, and 
described the larvae of P. taihuensis based on the material from the type locality, Wuli 
Lake, Taihu Lake, Jiangsu Province, China. However, these larvae of P. taihuensis were 
not reared, and their identification could be uncertain. In this study, the larvae of 
P. taihuensis have been associated with adults using DNA barcodes. After reexamin-
ing the voucher and type specimens, we confirm that the description of the larvae of 
P. taihuensis by Tang et al. (2004) is correct, and P. akamusi can be separated from P. 
taihuensis by the relative lengths of the third and fourth antennal segments and the 
numbers of lateral teeth (Fig. 4) on the mentum (Tang et al. 2004). However, this 
is difficult in practice because larvae of P. akamusi and P. taihuensis both have dark 
head capsules, and 9–10 lateral teeth (often not easy to count) on the mentum, and 
short third and fourth antennal segments (Fig. 4). These two species can be more ef-
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fectively distinguished by observing the premandible and mentum. In P. akamusi, the 
premandible is bifid, and the median portion of the mentum with one median notch 
and is subdivided into small teeth; whereas in P. taihuensis, the premandible is simple, 
and the median portion of the mentum has four teeth and one median notch.

It was also discovered that the undescribed Nearctic larva (Cranston et al. 2011) 
is closely related to P. taihuensis (Fig. 4B) in having a well-developed premento-hy-
popharyngeal complex (Fig. 4G) and the apical tooth longer and pointed, longer than 
the combined width of four teeth.

Conclusions

Our study has revealed strong concordance between morphospecies and DNA bar-
codes of Propsilocerus. Distinct “barcode gaps” were discovered among Propsilocerus 
species. DNA barcodes have been used to associate different life stages, and the uni-
dentified species (Propsilocerus sp. JC-2015) was confidently assigned to P. taihuensis. 
Comments on how to distinguish this species from congeners on the larvae of P. 
taihuensis are given.
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