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Abstract

With the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily of
Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly species in
Europe, including 18 very localised endemics for which no public DNA sequences had been available pre-
viously. It is based on a concatenated alignment of the mitochondrial gene COI and up to eleven nuclear
gene fragments, using Bayesian inferences of phylogeny. To avoid analytical biases that could result from
our region-focussed sampling, our European tree was grafted upon a global genus-level backbone butterfly
phylogeny for analyses. In addition to a consensus tree, the posterior distribution of trees and the fully
concatenated alignment are provided for future analyses. Altogether a complete phylogenetic framework
of European butterflies for use by the ecological and evolutionary communities is presented.
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Introduction

The incorporation of phylogenetic information in ecological theory and research has
led to significant advancements by facilitating the connection of large-scale and long-
term macro-evolutionary processes with ecological processes in the analysis of species
interactions with their abiotic and biotic environments (Webb et al. 2002; Mouquet
et al. 2012). Phylogenies are increasingly used across diverse areas of macroecologi-
cal research (Roquet et al. 2013), such as studies on large-scale diversity patterns (De
Palma et al. 2017), disentangling historical and contemporary processes (Mazel et al.
2017), latitudinal diversity gradients (Economo et al. 2018) or improving species area
relationships (Mazel et al. 2015). Phylogenetic information has also improved studies
on assembly rules of local communities (Cavender-Bares et al. 2009; Gerhold et al.
2015; D’Amen et al. 2018), including spatiotemporal community dynamics (Monnet
et al. 2014) and multi-spatial and -temporal context-dependencies (Ovaskainen et al.
2017). Additionally, phylogenetic information has provided insights into the mecha-
nisms and consequences of biological invasions (Knapp et al. 2008; Winter et al. 2009;
Li et al. 2015; Gallien et al. 2017). They also contribute to assessments of ecosystem
functioning and service provisioning (Difaz et al. 2013; Davies et al. 2016), though
phylogenetic relationships cannot simply be taken as a one-to-one proxy for ecosystem
functioning (Winter et al. 2013; Mazel et al. 2018). However, they are of great value
for studies of species traits and niche characteristics by quantifying the amount of
phylogenetic conservatism (Wiens and Graham 2005) and ensuring statistical inde-
pendence (Kithn et al. 2009) in multi-species studies. Using an ever increasing toolkit
of phylogenetic metrics (Schweiger et al. 2008; Tucker et al. 2017), and a growing
body of phylogenetic insights, the afore mentioned advances across diverse research
fields document how integrating evolutionary and ecological information can enhance
assessments of future impacts of global change on biodiversity (Thuiller et al. 2011;
Lavergne et al. 2013; Morales-Castilla et al. 2017) and consequently inform conserva-
tion efforts (Thuiller et al. 2015; but see also Winter et al. 2013).

Although the amount of molecular data has increased exponentially during the last
decades, most available phylogenetic studies are either restricted to a selected subset
of species, higher taxa, or to small geographic areas. Complete and dated species-level
phylogenetic hypotheses for species-rich taxa of larger regions have been restricted to
vascular plants (Durka and Michalski 2012) or vertebrates, such as global birds (Jetz
et al. 2012) or European tetrapods (Roquet et al. 2014), or the analyses are based on
molecular data from a small subset of species (e.g., 5% in ants; Economo et al. 2018).
Regionally complete phylogenetic hypotheses are rare for insects, although they com-
prise the majority of multicellular life on Earth (Stork 2018), have enormous impacts
on ecosystem functioning, provide a multitude of ecosystem services (Noriega et al.
2018), and have long been used as biodiversity indicators (McGeoch 2007).

Here, we present the first comprehensive time-calibrated molecular phylogeny of
all 496 extant European butterfly species (Lepidoptera: Papilionoidea), based on one
mitochondrial and up to eleven nuclear genes, and the most recent systematic list
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of European butterflies (Wiemers et al. 2018). European butterflies are well-studied,
ranging from population level analyses (Settele et al. 2009) to large-scale impacts of
global change (Devictor et al. 2012). There is also good knowledge of species traits and
environmental niche characteristics (Bartonova et al. 2014; Schweiger et al. 2014),
population trends (van Swaay et al. 2006; van Swaay et al. 2010) and large-scale dis-
tributions (Settele et al. 2008; Kudrna et al. 2011). Butterflies are thus well placed for
studies in the emerging field of ecophylogenetics (Mouquet et al. 2012).

Compared to other groups of insects, the phylogenetic relationships of butterflies
are reasonably well-known, with robust backbone molecular phylogenies at the sub-
family (Wahlberg et al. 2005a; Heikkild et al. 2012; Espeland et al. 2018) and genus-
level (Chazot et al. 2019). In addition, molecular phylogenies also exist for most but-
terfly families (Campbell et al. 2000; Caterino et al. 2001; Wahlberg et al. 2003; Braby
et al. 2006; Warren et al. 2008; Wahlberg et al. 2009; Wahlberg et al. 2014; Espeland
et al. 2015; Sahoo et al. 2016; Seraphim et al. 2018; Toussaint et al. 2018; Allio et al.
2020) as well as major subgroups (Wahlberg et al. 2005b; Pefia et al. 2006; Nylin and
Wahlberg 2008; Pena and Wahlberg 2008; Wiemers et al. 2010; Talavera et al. 2013;
Pefa et al. 2015; Condamine et al. 2018) and comprehensive COI data at the species
level are available from DNA barcoding studies (Wiemers and Fiedler 2007; Dinci
et al. 2011; Hausmann et al. 2011; Dinci et al. 2015; Huemer and Wiesmair 2017;
Litman et al. 2018). Some ecological studies on butterflies have already incorporated
phylogenetic information, e.g., on the impact of climate change on abundance trends
(Bowler et al. 2015; Bowler et al. 2017), the sensitivity of butterflies to invasive species
(Gallien et al. 2017; Schleuning et al. 2016) or the ecological determinants of but-
terfly vulnerability (Essens et al. 2017). However, the phylogenetic hypotheses used
in these studies had incomplete taxon coverage and were not made available for reuse
by other researchers. A first complete phylogeny of European butterflies was published
by Dapporto et al. (2019) but this tree was not based on a global backbone phylogeny
and therefore was also not time-calibrated. To fill these gaps in the literature, and to
facilitate the growing field of ecophylogenetics, here we present the first complete and
time-calibrated species-level phylogeny of a speciose higher invertebrate taxon above
the family level for an entire continent. Importantly, we provide this continent-wide
fully resolved phylogeny in standard analysis formats for further advancements in theo-
retical and applied ecology.

Materials and methods

Taxonomic, spatial, and temporal coverage

We analyse a dataset comprising all extant European species of butterflies (Papilio-
noidea), including the families Papilionidae, Hesperiidae, Pieridae, Lycaenidae, Riodi-
nidae, and Nymphalidae. We base our species concepts, as well as the area defined as
Europe, on the latest checklist of European butterflies (Wiemers et al. 2018).
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Acquisition of sequence data

The data were mainly collated from published sources and downloaded from NCBI
GenBank (Suppl. material 1). One mitochondrial gene, cytochrome ¢ oxidase subunit
I (COI, 1464 bp), was available for all species in the data matrix, in particular the 5’
half of the gene (658 bp, also known as the DNA barcode). Eleven nuclear genes were
included when available: elongation factor-1a (EF-1a, 1240 bp), carbamoyl-phosphate
synthase domain protein (CAD, 850 bp), cytosolic malate dehydrogenase (MDH, 733
bp), isocitrate dehydrogenase (IDH, 711 bp), glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH, 691 bp), ribosomal protein S5 (RpS5, 617 bp), arginine kinase (ArgK,
596 bp), wingless (412 bp), ribosomal protein S2 (RpS2, 411 bp), DOPA decarboxy-
lase (DDC, 373 bp), and histone 3 (H3, 329 bp). H3 has been sequenced almost
exclusively for the family Lycaenidae, while the other gene regions have been sampled
widely also in the other butterfly families. For each gene, the longest available sequence
was used. However, in the case of several available sequences of similar length, those of
European origin were preferentially used. Sequences were aligned manually to main-
tain protein reading frame, and were curated and managed using VoSeq (Pefia and
Malm 2012).

In many cases, new sequences were generated for this study. For these specimens,
protocols followed Wahlberg and Wheat (2008) or Wiemers and Fiedler (2007).
These include several species that did not have any available published sequences,
many of which are island endemics (Table 1). The 239 new sequences have been sub-
mitted to GenBank (accessions KC462784-KC462854, MN752702-MN752850,
MN829460-MN829496).

Almost all genera are represented by multiple genes, except Borbo, Gegenes, Lae-
osopis, Callophrys, and Cyclyrius (the latter recently synonymised with Leprotes; Fric et
al. 2019) which are represented only by the COI gene. Species represented by only the
DNA barcode tend to be closely related to species with more genes sequenced (Suppl.
material 1), minimising the potential bias these samples could have in our analyses.

Phylogenetic tree reconstructions

A biogeographically restricted tree of a given taxon is inherently very asymmetrically
sampled. To avoid potentially strong biases when estimating topology and divergence
times we chose to build upon the recent genus-level tree of butterflies (Chazot et al.
2019), which provides a well-supported time-calibrated backbone and is congruent with
a recent phylogenomic analysis of Lepidoptera (Kawahara et al. 2019). This backbone
tree contains 994 taxa, each taxon representing a genus across all Papilionoidea. The
tree was time-calibrated using a set of 14 fossil calibration points, which provided mini-
mum ages and ten calibration points based on ages of host plant clades taken from the
literature, which provided maximum ages. Importantly, Chazot et al. (2019) tested the
robustness of their results to a wide range of alternative assumptions made in the time-
calibration analysis, and showed that the estimated times of divergences were robust.
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Table I. Newly sequenced species for which no published sequences had previously been available.
Taxon Origin COI EF-1a GAPDH Wingless

Coenonympha orientalis Greece MN829478 MN829462

Glaucopsyche paphos Cyprus MN829481 MN829463

Gonepteryx maderensis Portugal: Madeira MN829482 MN829464

Hipparchia azorina Portugal: Azores MN829483 MN829465

Hipparchia bacchus Spain: Canary Islands MN829484 MN829466

Hipparchia cretica Greece: Crete MN752718 MN829467 MN752786 MN752837
Hipparchia gomera Spain: Canary Islands MN829485 MN829468

Hipparchia maderensis Portugal: Madeira MN829486

Hipparchia mersina Greece: Samos MN752720 MN829469 MN752785 MN752836
Hipparchia miguelensis Portugal: Madeira MN829487

Hipparchia sbordonii Italy: Pontine Islands MN752723

Hipparchia tamadabae Spain: Canary Islands MN829488

Hipparchia tilosi Spain: Canary Islands MN829489

Hipparchia wyssii Spain: Canary Islands MN829490 MN829470

Lycaena bleusei Spain MN829492

Pieris balcana North Macedonia KC462788

Pieris wollastoni Portugal: Madeira KC462820

Thymelicus christi Spain: Canary Islands MN829496

Analysis overview

To estimate a time-calibrated tree of European butterflies, we first identified the posi-
tion of the European lineages and designed a grafting procedure accordingly. We split
the European butterflies that needed to be added to the tree into 12 subclades. For
each of these subclades we combined the DNA sequences of the taxa already included
in the backbone to the DNA sequences of the European taxa to assemble an aligned
molecular matrix. After identifying the best partitioning scheme, we performed a tree
reconstruction without time-calibration (i.e., only estimating branch lengths propor-
tional to relative time). The subclade trees were then rescaled using the ages estimated
in the backbone and were subsequently grafted. This procedure was repeated using
1000 trees from BEAST posterior distributions of the backbone and subclade trees in
order to obtain a posterior distribution of grafted trees. The details of these procedures
are described below.

Backbone and subclades

The time-calibrated backbone tree provided by Chazot et al. (2019) contained about
55% of all butterfly genera, including 79% of the genera occurring in Europe. A fixed
topology was obtained using RAXML (Stamatakis 2014) and node ages where esti-
mated with BEAST v.1.8.3. (Suchard et al. 2018). We used this fixed topology from
Chazot et al. (2019) to identify at which nodes European clades should be grafted.
We partitioned the analysis into 12 subclades. For each subclade, the DNA sequences
of all taxa already included in the global backbone (including also non-European
taxa) were combined with the DNA sequences of all the new European taxa that were
added. In addition to the focal taxa, we added between two and four outgroups. We
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note that the relationships of the 12 subclades were fixed according to Chazot et al.
(2019), while the relationships of species within the 12 subclades were estimated with
the new data.

The subclades, sorted by families, were defined as follows:

Papilionidae — All Papilionidae were placed into one subclade.

Hesperiidae — We identified two main clades to graft within the Hesperiidae: Hesperii-
nae and Pyrginae. The Hesperiinae subclade was extended to also encompass the
subfamilies Heteropterinae and Trapezitinae. The genus Muschampia, not available
in the backbone, was included in the Pyrginae subclade.

Pieridae — All Pieridae were considered as a single clade.

Lycaenidae — All Lycaenidae were considered as a single clade.

Riodinidae — The only European Riodinidae species, Hamearis lucina, was already
available in the backbone tree.

Nymphalidae — European Nymphalidae were divided into seven subclades. (i) A sub-
clade for the Apaturinae. (ii) In order to add Danaus chrysippus we generated a tree
of Danainae. (iii) We combined the sister clades Heliconiinae and Limenitidinae
into a single subclade. (iv) Nymphalinae was treated as a single subclade. (v) A
first clade of Satyrinae contained the genera Kirinia, Pararge, Lasiommata, Tatinga,
Chonala and Lopinga. (vi) A second Satyrinae clade contained the genera Calisto,
Euptychia, Callerebia, Proterebia, Gyrocheilus, Strabena, Ypthima, Ypthimomorpha,
Stygionympha, Cassionympha, Neocoenyra, Pseudonympha, Erebia, Boerebia, Hypone-
phele, Cercyonis, Maniola, Aphantopus, Pyronia, Faunula, Grumia, Paralasa, Mela-
nargia, Hipparchia, Berberia, Oeneis, Neominois, Karanasa, Brintesia, Arethusana,
Satyrus, Pseudochazara, and Chazara. (vii) A third Satyrinae clade was created for
the genus Coenonympha. Charaxinae were not treated separately from the back-
bone. Charaxes jasius is the only Charaxinae occurring in Europe and Charaxes cas-
tor (which is very closely related to C. jasius; Aduse-Poku et al. 2009) was already
included in the backbone tree from Chazot et al. (2019). Hence, we used the posi-
tion of Charaxes castor for Charaxes jasius.

Partitioning the dataset

For each subclade we ran PartitionFinder 2.1.1 (Lanfear et al. 2016) in order to select
the best partitioning strategy and corresponding substitution models. The dataset was
initially partitioned into genes and codon positions. Branch lengths were set to linked
and the comparison between partitioning strategies was made using the greedy algo-
rithm and BIC score (Lanfear et al. 2012).

Phylogenetic reconstruction

For each subclade, the dataset was imported in BEAUTi 1.8.3 (Drummond et al.
2012) and partitioned according to the partitioning strategy identified by Partition-
Finder. We enforced the monophyly of the clade to be grafted (i.e., excluding the
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outgroups). All other relationships were estimated by BEAST 1.8.3. (Suchard et al.
2018). We used an uncorrelated relaxed clock with lognormal distribution. By default,
we started by setting one molecular clock per partition. If convergence or good mix-
ing could not be obtained after running BEAST we reduced the number of molecular
clocks (see details for each dataset further below). We did not add any time-calibration
and therefore only estimated the relative timing of divergence. We performed at least
two independent runs with BEAST for each subclade. We checked for convergence
and mixing of the MCMC using Tracer 1.7.1 (Rambaut et al. 2018) and in the case of
full convergence of the runs, the posterior distribution of trees from different runs were
combined after removing the burn-in fraction.

Grafting procedure

Subclades were grafted on the backbone as follows. One backbone was sampled from
the posterior distribution of time-calibrated trees from Chazot et al. (2019). For each
subclade, one subclade tree was sampled from the posterior distribution of trees, the
outgroups removed, and the tree was rescaled based on the crown age of the subclade
extracted from the backbone tree. Finally, the rescaled subclade tree was grafted on
the backbone after removing all lineages belonging to this subclade in the backbone
(i.e., only keeping the stem branch). We repeated this procedure for 1000 backbone
trees and 1000 subclade trees, and we thus obtained a posterior distribution of 1000
grafted trees. The topology of the backbone was fixed (see Chazot et al. 2019) but the
topologies of the subclades were free. Hence the posterior distribution of grafted trees
includes a posterior distribution of topologies and node ages.

We describe below the details of the phylogenetic tree reconstruction for each

subclade.
1. Papilionidae

Dataset — The dataset for the Papilionidae consisted of 36 taxa to which three out-
groups were added: Macrosoma tipulata (Hedylidae), Achlyodes busiris (Hesperii-
dae), Pieris rapae (Pieridac). We concatenated 11 gene fragments (COI, CAD,
EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

PartitionFinder — PartitionFinder identified 12 subsets (Suppl. material 2: Table S1).

BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform prior ranging between 0 and 10 for the
following cases: subset5.at, subset5.cg, subset7.cg, subset7.gt, subsetl2.cg, sub-
set12.gt. We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior. We
performed three runs of 40 million generations, sampling trees and parameters
every 4000 generations.

Grafting— For grafting, the outgroups were removed, as well as Baronia brevicornis, the first
Papilionidae to diverge and endemic to Mexico (Allio et al. 2020), i.e., we grafted at
the most recent common ancestor (MRCA) of all Papilionidae but Baronia brevicornis.
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2. Hesperiidae: Hesperiinae

Dataset — The dataset for the Hesperiinae consisted of 169 taxa to which two out-
groups were added: Typhedanus ampyx (Hesperiidae: Eudaminae), Mylon pelopidas
(Hesperiidae: Pyrginae). We concatenated 10 gene fragments (COI, CAD, EF-1,
GAPDH, ArgK, IDH, MDH, RpS2, RpS5, wingless).

PartitionFinder — PartitionFinder identified 17 subsets (Suppl. material 2: Table S2).

BEAST analysis — Preliminary analyses showed problems with the subset 3 (ArgKin_
pos3) which was therefore removed from the analyses. In order to improve the
quality of our runs we replaced the default priors for rates of substitutions by uni-
form priors ranging between 0 and 10 for the following case: subset17.cg. The sub-
stitution model for the subset 14 was also changed into HKY+I after preliminary
analyses. We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior. We
performed two runs of 150 million generations, sampling trees and parameters
every 15000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the
MRCA of Hesperiinae.

3. Hesperiidae: Pyrginae

Dataser — The dataset for the Pyrginae consisted of 77 taxa to which three outgroups
were added: Typhedanus ampyx (Hesperiidae: Eudaminae), Pyrrhopyge zenodorus
(Hesperiidae: Pyrginae), and Hasora khoda (Hesperiidae: Coeliadinae). We con-
catenated ten gene fragments (COI, CAD, EF-1o, GAPDH, ArgK, IDH, MDH,
RpS2, RpS5, wingless).

PartitionFinder — PartitionFinder identified 14 subsets (Suppl. material 2: Table S3).

BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform priors ranging between 0 and 10 for
the following cases: subset7.ac, subset7.gt, subsetl4.cg, subset3.cg. Preliminary
analyses showed problems when using a separate molecular clock for each subset
identified by PartitionFinder. We restricted the analysis to one molecular clock. We
used a birth-death tree prior. We performed two runs of 100 million generations,
sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Pyrginae.

4. Pieridae

Dataset — The dataset for the Pieridae consisted of 126 taxa to which three outgroups
were added: Bicyclus anynana (Nymphalidae), Achlyodes busiris (Hesperiidae), and
Papilio glaucus (Papilionidae). We concatenated eleven gene fragments (COI,
CAD, EF-1u, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

PartitionFinder — PartitionFinder identified 17 subsets (Suppl. material 2: Table S4).
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BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform priors ranging between 0 and 10 for
the following case: subset7.cg. The substitution model for the subset 7 was also
changed into GTR+G after preliminary analyses. We used one molecular clock per
subset identified by PartitionFinder and obtained good mixing and convergence.
We used a birth-death tree prior. We performed two runs of 100 million genera-
tions, sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Pieridae.

5. Lycaenidae

Dataset — The dataset for the Lycaenidae consisted of 187 taxa to which three out-
groups were added: Bicyclus anynana (Nymphalidae), Pieris rapae (Pieridae) and
Hamearis lucina (Riodinidae). We concatenated 12 gene fragments (COI, CAD,
EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless and H3).

PartitionFinder — PartitionFinder identified 12 subsets (Suppl. material 2: Table S5).

BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform priors ranging between 0 and 10 for the
following cases: subset3.cg, subset6.ag, subset6.at, subset11.gt_subst7.cg. We used
one molecular clock per subset identified by PartitionFinder and obtained good
mixing and convergence. We used a birth-death tree prior. We performed two runs
of 150 million generations, sampling trees and parameters every 15000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Lycaenidae.

6. Nymphalidae: Danainae

Dataset — The dataset for the Danainae consisted of 7 taxa to which two outgroups
were added: Euploea camaralzeman (Nymphalidae: Danainae) and Lycorea halia
(Nymphalidae: Danainae). We concatenated 9 gene fragments (COI, CAD, EF-
lo, GAPDH, IDH, MDH, RpS2, RpS5, wingless).

PartitionFinder — PartitionFinder identified eight subsets (Suppl. material 2: Table S6).

BEAST analysis — We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior.
We performed two runs of 20 million generations, sampling trees and parameters
every 2000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Danainae.

7. Nymphalidae: Apaturinae

Dataset — The dataset for the Apaturinae consisted of nine taxa to which two outgroups
were added: Timelaea albescens (Nymphalidae: Apaturinae) and Biblis hyperia



106 Martin Wiemers et al. / ZooKeys 938: 97—124 (2020)

(Nymphalidae: Biblidinae). We concatenated ten gene fragments (COI, CAD,
EF-1o, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, wingless).

PartitionFinder — PartitionFinder identified seven subsets (Suppl. material 2: Table S7).

BEAST analysis — We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior.
We performed two runs of 20 million generations, sampling trees and parameters
every 2000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Danainae.

8. Nymphalidae: Heliconiinae + Limenitidinae

Dataset — The dataset combined the sister clades Heliconiinae and Limenitidinae and
consisted of 92 taxa to which three outgroups were added: Amnosia decora (Nym-
phalidae: Pseudoergolinae), Apatura iris (Nymphalidae: Apaturinae) and Libythea
celtis (Nymphalidae: Libytheinae). We concatenated eleven gene fragments (COI,
CAD, EF-1u, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

PartitionFinder — PartitionFinder identified 14 subsets (Suppl. material 2: Table S8).

BEAST analysis — Preliminary analyses showed problems with the subset 14 (RpS2_
pos2) which was therefore removed from the analyses. In order to improve the qual-
ity of our runs we replaced the default priors for rates of substitutions by uniform
priors ranging between 0 and 10 for the following case: subset7.cg. We used one
molecular clock per subset identified by PartitionFinder and obtained good mixing
and convergence. We used a birth-death tree prior. We performed two runs of 100
million generations, sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
split between Limenitidinae and Heliconiinae.

9. Nymphalidae: Nymphalinae

Dataset — The dataset of Nymphalinae consisted of 83 taxa to which two outgroups
were added: Historis odius (Nymphalidae: Nymphalinae) and Pycina zamba (Nym-
phalidae: Nymphalinae). We concatenated eleven gene fragments (COI, CAD,
EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

PartitionFinder — PartitionFinder identified 12 subsets (Suppl. material 2: Table S9).

BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform priors ranging between 0 and 10 for
the following case: subset5.cg. Preliminary analyses revealed problems when using
one molecular clock per subset identified by Partition Finder. We restricted the
analysis to one molecular clock for the mitochondrial gene fragments and one
molecular clock for the nuclear gene fragments. We used a birth-death tree prior.
We performed two runs of 100 million generations, sampling trees and parameters
every 10000 generations.
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Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
MRCA of Nymphalinae.

10. Nymphalidae: Satyrinae 1

Dataser — 'The first Satyrinae dataset consisted of 13 taxa, belonging to the genera
Kirinia, Pararge, Lasiommata, Iatinga, Chonala, and Lopinga, to which three out-
groups were added: Bicyclus anynana (Nymphalidae: Satyrinae), Acrophtalmia leuce
(Nymphalidae: Satyrinae), and Ragadia makura (Nymphalidae: Satyrinae). We
concatenated 5 gene fragments (COI, EF-1o, GAPDH, RpS5, wingless).

PartitionFinder — PartitionFinder identified six subsets (Suppl. material 2: Table S10).

BEAST analysis — We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior.
We performed two runs of 20 million generations, sampling trees and parameters
every 2000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
crown of the clade after removing the outgroups.

11. Nymphalidae: Satyrinae 2

Dataset — The second Satyrinae dataset consisted of 161 taxa, belonging to the genera Cal/-
isto, Euptychia, Callerebia, Proterebia, Gyrocheilus, Strabena, Ypthima, Ypthimomorpha,
Stygionympha, Cassionympha, Neocoenyra, Pseudonympha, Erebia, Boerebia, Hypone-
phele, Cercyonis, Maniola, Aphantopus, Pyronia, Faunula, Grumia, Paralasa, Melanar-
gia, Hipparchia, Berberia, Oeneis, Neominois, Karanasa, Brintesia, Arethusana, Satyrus,
Pseudochazara, and Chazara, to which three outgroups were added: Coenonympha
pamphilus (Nymphalidae: Satyrinae), Taygetis virgilia (Nymphalidae: Satyrinae), and
Pronophila thelebe (Nymphalidae: Satyrinae). We concatenated ten gene fragments
(COI, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, wingless).

PartitionFinder — PartitionFinder identified eleven subsets (Suppl. material 2: Table S11).

BEAST analysis — In order to improve the quality of our runs we replaced the default
priors for rates of substitutions by uniform prior ranging between 0 and 10 for the
following cases: subset5.ac, subset5.ag, subset5.at, subset5.cg, subset5.gt. We used
one molecular clock per subset identified by PartitionFinder and obtained good
mixing and convergence. We used a birth-death tree prior. We performed two runs
of 100 million generations, sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
crown of the clade after removing the outgroups.

12. Nymphalidae: Satyrinae 3

Dataser — The third Satyrinae dataset consisted of 15 taxa all belonging to the genus
Coenonympha, to which two outgroups were added: Sinonympha amoena (Nym-
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phalidae: Satyrinae) and Oressinoma sorata (Nymphalidae: Satyrinae). We concat-
enated nine gene fragments (COI, CAD, EF-1«, GAPDH, IDH, MDH, RpS2,
RpS5, wingless).

PartitionFinder — PartitionFinder identified six subsets (Suppl. material 2: Table S12).

BEAST analysis — We used one molecular clock per subset identified by PartitionFinder
and obtained good mixing and convergence. We used a birth-death tree prior.
We performed two runs of 20 million generations, sampling trees and parameters
every 2000 generations.

Grafting — For grafting, the outgroups were removed, and the subclade grafted at the
crown of Coenonympha.

Quality control

Species identities of the chosen sequences for the dataset were validated by blasting the
DNA barcode sequences against the Barcode Of Life Database (http://www.boldsys-
tems.org/), which has a good representation of European butterfly species due to a
number of barcoding projects implemented in different countries (e.g., Wiemers and
Fiedler 2007; Dinca et al. 2011; Hausmann et al. 2011; Dinca et al. 2015; Huemer
and Wiesmair 2017; Litman et al. 2018). In almost all cases, the sequences came from
the same voucher specimen itself. In 17% of cases (Suppl. material 1), the sequences
used were from different individuals. In these cases special care was taken to use se-
quences from reliable sources, preferably those with voucher photographs.

We estimated our time-calibration from a recent re-evaluation of the timing of
divergence of higher-level Papilionoidea. We used the topology inferred by Chazot
et al. (2019) as a backbone in our grafting procedure. This topology was fixed in
Chazot et al. (2019), hence only node ages were estimated. However, within each
subclade we grafted, we let BEAST estimate the topology in addition to node ages.
Several sections of the European butterfly tree remain poorly supported. This most
likely arises from the lack of molecular information as well as recent and rapid di-
versification events within Polyommatus, Hipparchia, or Pseudochazara for example.
Further more detailed work is needed in these groups, building on preliminary
studies (e.g., Wiemers and Fiedler 2007; Vila et al. 2010; Wiemers et al. 2010;
Verovnik and Wiemers 2016; Vishnevskaya et al. 2016), which might show that
some of the taxa need to be synonymised (as e.g., Erebia polaris with E. medusa; see
Aarvik et al. 2017). Most of the higher relationships among genera are well sup-
ported, however. Exceptions with low support values are the relationships among
the genera Anthocharis, Euchloe, and Zegris (Pieridae: Pierinae), among Agriades,
Cyaniris, Eumedonia, Kretania and Plebejidea (Lycaenidae: Polyommatinae), some
relationships among the Theclinae (Lycaenidae) and between Aphantopus and Py-
ronia (Nymphalidae: Satyrinae). This also means that the apparent non-monophy-
ly of the genera Euchloe, Kretania, Satyrium, and Pyronia in our tree needs to be
confirmed by further studies. The only subfamily relationship with low support is
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the sister relationship of Aphnacinae with Lycaeninae. In Dapporto et al. (2019)
Aphnaeinae turned out as sister to the remaining Lycaenidae, a result in line with
Espeland et al. (2018), although with low support in the latter study. In most of
these cases, the low support values are due to insufficient molecular information for
those groups of taxa.

We show here a synthetic tree summarising the posterior distribution of topolo-
gies and node ages, but the posterior distribution of grafted trees can be found in the
Supporting Information, providing a distribution of alternative topologies and node
ages estimated by BEAST. We strongly advise any researcher using these phylogenetic
trees to repeat any analyses on at least 100 trees randomly sampled from this posterior
distribution in order to account for topology and node age uncertainties. This tree can
also help to identify the sections of the tree lacking molecular information and there-
fore points at the sections that should be targeted in the future when generating new
molecular data.

Dataset descriptions

The analysed dataset (a concatenated alignment of the genes COI, CAD, EF-1a,
GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless, and H3) is available in
NEXUS format and the posterior distribution of ML trees and the consensus tree in
NEWICK format at DOI: https://dx.doi.org/10.5281/zenodo.3531555.

Conclusions

We have generated a robust phylogenetic hypothesis for all European species of but-
terflies with estimations of divergence times (Fig. 1, Suppl. material 3: Fig. S1) as well
as subtrees of major sections (Suppl. material 4: Fig. S2, Suppl. material 5: Fig. S3,
Suppl. material 6: Fig. S4, Suppl. material 7: Fig. S5), a tree with posterior prob-
abilities (Fig. 2, Suppl. material 8: Fig. S6) and gene coverage (Fig. 3). Our purpose
is to provide a complete phylogenetic framework for use by the ecological and evo-
lutionary communities. The demand for such phylogenetic information is high and
various proxies have been used that are not ideal, starting already in 2005 (Piivinen
et al. 2005). Although the topology of major clades in our consensus tree is largely
congruent with the one by Dapporto et al. (2019), differences can be found e.g., in
the monophyly of Papilioninae which appeared as a paraphylum in the trees of Dap-
porto et al. (2019) and Espeland et al. (2018). Our tree also confirms the monophyly
of most of the European butterfly genera in the recent checklist of Wiemers et al.
(2018). An exception is the genus Carcharodus which turned out to be a paraphylum.
This result is in line with the tree in Dapporto et al. (2019) and a recent study by
Zhang et al. (2020), that revises the taxonomy of Carcharodina accordingly, lead-
ing to a change of several names (Table 2). We provide a posterior distribution of
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Figure 1. Time-calibrated tree of European butterflies (Lepidoptera: Papilionoidea) with time scale and
taxonomic assignment to subfamilies and families.

Table 2. Proposal for changes in the current taxonomic checklist by Wiemers et al. (2018) according to
the recent revision of Carcharodina by Zhang et al. (2020).

Current name (Wiemers et al. 2018) Proposed name (Zhang et al. 2020)
Muschampia cribrellum (Eversmann, 1841) Favria cribrellum (Eversmann, 1841)

Carcharodus lavatherae (Esper, 1783) Muschampia (Reverdinus) lavatherae (Esper, 1783)
Carcharodus orientalis Reverdin, 1913 Muschampia (Reverdinus) orientalis (Reverdin, 1913)
Carcharodus floccifera (Zeller, 1847) Muschampia (Reverdinus) floccifera (Zeller, 1847)
Carcharodus stauderi Reverdin, 1913 Muschampia (Reverdinus) stauderi (Reverdin, 1913)
Carcharodus baeticus (Rambur, 1839) Muschampia (Reverdinus) baeticus (Rambur, 1840)
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Figure 2. Majority rule consensus tree topology of a set of 1000 trees from the posterior distribution
of time-calibrated trees of European butterflies. Circles at the nodes display clade support with a colour
gradient from 50% (red) via 75% (yellow) to 100% (green).

topologies and node ages for researchers to be able to take phylogenetic and node
age uncertainty into account in the analyses. The tree files are provided in standard
Newick format as output from BEAST. Since there are easily applied methods to
prune the phylogeny to the species pool of a particular study, e.g., the ape package
(Paradis et al. 2004) in R (R Core Team 2018), our tree is readily applicable to a large
variety of ecological analyses ranging from the very local and regional scales, where
the species pool only represents a subset of the European species, to the European
scale. Since butterflies are an important indicator taxon for biodiversity studies, this
time-calibrated phylogeny will provide a solid basis to advance our understanding of
large-scale biodiversity patterns and underlying mechanisms by allowing the incorpo-
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Figure 3. Time-calibrated tree of European butterflies. Grey bars indicate gene coverage per taxon.

ration of macro-evolutionary processes into biodiversity analyses at macroecological,
landscape and local community scales and by combining trait- and phylogeny-based
assessments of species assembly processes.
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Copyright notice: This dataset is made available under the Open Database License
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Table S1-S12

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: PartitionFinder results

Explanation note: Table S1. PartitionFinder results for dataset 1 (Papilionidae). Table
$2. PartitionFinder results for dataset 2 (Hesperiidae: Hesperiinae). Table S3. Par-
titionFinder results for dataset 3 (Hesperiidae: Pyrginae). Table S4. PartitionFinder
results for dataset 4 (Pieridae). Table S5. Partitionfinder results for dataset 5 (Lycae-
nidae). Table S6. PartitionFinder results for dataset 6 (Nymphalidae: Danainae).
Table S7. PartitionFinder results for dataset 7 (Nymphalidae: Apaturinae). Table
$8. PartitionFinder results for dataset 8 (Nymphalidae: Heliconiinae + Limenitidi-
nae). Table S9. PartitionFinder results for dataset 9 (Nymphalidae: Nymphalinae).
Table S10. PartitionFinder results for dataset 10 (Nymphalidae: Satyrinae 1). Ta-
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Figure S1. Time-calibrated tree of European butterflies

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Unlabelled terminal branches (with monophyletic entities col-
lapsed) represent non-European taxa which were included in the global backbone
tree. Age estimates are indicated at the nodes (Ma). Node bars represent the 95%
credibility intervals.
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Figure S2. Time-calibrated tree of European butterflies Section I: Papilionidae,

Hesperiidae & Pieridae

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Age estimates are indicated at the nodes (Ma).
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Figure S3. Time-calibrated tree of European butterflies Section II. Riodinidae &

Lycaenidae.

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Age estimates are indicated at the nodes (Ma).
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use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
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Figure S4. Time-calibrated tree of European butterflies Section III: Nymphalidae
Part I: Subfamilies Limenitidinae, Heliconiinae, Apaturinae & Nymphalinae
Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,
Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Age estimates are indicated at the nodes (Ma).
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Figure S5. Time-calibrated tree of European butterflies Section IV: Nymphalidae

Part II: Subfamilies Libytheinae, Danainae & Satyrinae

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Age estimates are indicated at the nodes (Ma).
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Figure S6. Time-calibrated tree of European butterflies

Authors: Martin Wiemers, Nicolas Chazot, Christopher W. Wheat, Oliver Schweiger,

Niklas Wahlberg

Data type: Phylogenetic dendrogram

Explanation note: Unlabelled terminal branches (with monophyletic entities col-
lapsed) represent non-European taxa which were included in the global backbone
tree. Posterior probabilities are indicated at the nodes (Ma).
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