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Abstract
A reliable taxonomy, together with more accurate knowledge of the geographical distribution of species, 
is a fundamental element for the study of biodiversity. Multiple studies on the gastropod family Neritidae 
record three species of the genus Neritina in the Brazilian Province: Neritina zebra (Bruguière, 1792), 
Neritina virginea (Linnaeus, 1758), and Neritina meleagris Lamarck, 1822. While N. zebra has a well-
established taxonomic status and geographical distribution, the same cannot be said regarding its 
congeners. A widely cited reference for the group in Brazil considers N. meleagris a junior synonym of 
N. virginea. Using a molecular approach (phylogenetic, species delimitation, and statistical parsimony 
network analyses), based on two mitochondrial markers (COI and 16S), this study investigated if N. 
virginea and N. meleagris are distinct species. The molecular results confirmed the existence of two strongly 
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supported distinct taxonomic entities in the Brazilian Province, which is consistent with the morphological 
descriptions previously proposed for N. virginea and N. meleagris. These species occur in sympatry in the 
intertidal sandstone formations of Northeastern Brazil. Despite the great variation in the colour patterns 
of the shells, the present study reinforced previous observations that allowed the differentiation of these 
two species based on these patterns. It also emphasized the importance of the separation of these two clades 
in future studies, especially those conducted in the Brazilian Province, since these species may cohabit.
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Brazilian Province, Caribbean Province, geographic distribution, neritids, species delimitation

Introduction

Molluscs from the gastropod family Neritidae are the most diverse members of Neriti-
morpha (Kano et al. 2002), with some groups within this family having variable shell 
colouration patterns (e.g., Russell 1941; Tan and Clements 2008; Eichhorst 2016). 
Due to the great variety of colour patterns, the delimitation of different species could 
be hampered, especially if they are closely related and live in sympatry (e.g., Huang 
1997; Blanco et al. 2014). This may explain the disparate estimates in the literature of 
the number of species of Neritina reported for the Brazilian Province.

Several studies report three species of the genus Neritina on the Brazilian coast: 
Neritina zebra (Bruguière, 1792), Neritina virginea (Linnaeus, 1758), and Neritina 
meleagris Lamarck, 1822 (e.g., Baker 1923; Russell 1941; Rios 1975; Matthews-Cas-
con et al. 1990; Díaz and Puyana 1994; Quintero-Galvis and Castro 2013; Eichhorst 
2016). While N. zebra has a well-established taxonomic status and geographical dis-
tribution (Matthews-Cascon et al. 1990; Rios 2009; Barroso et al. 2012; Eichhorst 
2016), there is uncertainty regarding its congeners. The shell catalogues of Rios (1985, 
1994, 2009), a widely cited reference in studies conducted in Brazil, state that only two 
species occur in the Brazilian Province: N. virginea and N. zebra. In these compendia, 
N. meleagris is considered a junior synonym of N. virginea without any justification. 
Quintero-Galvis and Castro (2013), using a molecular phylogenetic approach to ana-
lyse specimens from the Colombian coast (Caribbean Province), concluded that N. 
meleagris and N. virginea are phylogenetically close, but different species. Since these 
species have a wide geographic distribution, encompassing the Caribbean and Brazil-
ian Provinces (Barroso et al. 2016; Eichhorst 2016), that are separated by a recognized 
biogeographic barrier (the Amazon-Orinoco outflow) (Floeter et al. 2008; Barroso et 
al. 2016), the inclusion of specimens from both biogeographical provinces in phyloge-
netic analyses is desirable.

Since a reliable taxonomy, together with a more accurate knowledge about the geo-
graphical distribution of species, is fundamental to the study of biodiversity (Wheeler 
et al. 2004), the present study aims to investigate if N. virginea and N. meleagris are two 
distinct species, using molecular data (phylogenetic, species delimitation, and statisti-
cal parsimony network analyses).
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Methods

We collected specimens from Barra Grande beach (Piauí State) (2°54.125'S, 
41°24.573'W) and Camocim beach (Ceará State) (02°51.778'S, 41°51.57'W), both 
located in Northeastern Brazil, and preserved them in 95% ethanol. We identified the 
species using the literature (Russell 1941; Matthews-Cascon et al. 1990; Eichhorst 
2016), primarily based on the shape and colour patterns of the shells. Specimens were 
collected under SISBIO permit no. 57473-3 and deposited in the malacological collec-
tion “Prof. Henry Ramos Matthews” – series B (CMPHRM-B) of Universidade Fed-
eral do Ceará (UFC). A total of 17 specimens, eight newly sequenced and nine already 
published by Quintero-Galvis and Castro (2013) and available on GenBank, were 
used for phylogenetic reconstruction (Table 1). All sequences used were attributed to 
nominal species considered valid in the literature (see Aktipis and Giribet 2010; Cook 
et al. 2010; Page et al. 2013; Quintero-Galvis and Castro 2013).

We extracted whole genomic DNA from the foot muscle of specimens, using the 
Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA). The quality and 
integrity of the DNA obtained were evaluated in a micro-volume spectrophotometer. 
Amplification of double-stranded fragments from the cytochrome c oxidase I (COI) 
and 16S mitochondrial genes was achieved by polymerase chain reaction (PCR) using 
newly developed neritid-specific custom primers for the 16S gene [(16SNer_F 5’AC-
TACTCCGCCTGTTTATCAAA3’) and (16SNer_R 5’GGGCTTAAACCTAATG-
CACTT3’)] and modified versions of Folmer et al. (1994) primers for the COI gene 
[(LCO1490_mod 5’ATTCTACGAATCAYAAAGAYATTGG3’) and (HCO2198_
mod 5’TAWACTTCAGGATGACCRAAAAATCA3’)]. The PCR was carried out us-
ing GoTaq Green Master Mix (Promega Corporation), 1.25 μL of each primer (10 μM 
stock), and 100 ng of DNA template in a 25 μL reaction volume. The PCR cycles for 
COI and 16S amplification consisted of an initial denaturation step at 95 °C for 2 min, 
followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 48–49 °C for 45 s 
and extension at 72 °C for 1 min, and a final extension at 72 °C for 5 min. The PCR 
products were then examined using gel electrophoresis on 1.3% Tris-Borate-EDTA-
agarose gel stained with SYBR Safe DNA Gel Stain (Invitrogen). The PCR products 
showing strong bands in gel electrophoresis were purified with IllustraExoProStar - 
1 Step (GE Healthcare Life Sciences), following its standard protocol, and sent for 
Sanger sequencing (Macrogen Inc., South Korea).

The forward and reverse sequences for each gene fragment were edited using Ge-
neious v. 7.1 (Biomatters). The concatenated alignments of COI and 16S were con-
ducted using the MAFFT program with the G-INS-I algorithm (Katoh and Standley 
2013) using the default parameters, with additional inspection by eye for accuracy 
(see Suppl. material 1). As our 16S sequences (650 bp for N. virginea and 651 bp 
for N. meleagris) were longer than those available on GenBank, we used a minor 
homologous region in the alignment of this gene. However, we deposited the full 
650–651 bp 16S sequences in GenBank. The combined dataset contained 1124 bp 
(639 bp for COI and 485 bp for 16S). Evolutionary relationships were estimated 
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for the concatenated genetic markers using Bayesian inference (BI) and maximum 
likelihood (ML) analyses. The best-fit evolution models were determined using Parti-
tionFinder (Lanfear et al. 2012), considering the positions of the codon for the COI 
gene, which codes for protein, and a single partition for the 16S gene. The corrected 
Bayesian Information Criterion (BIC) was used to select among the options. Parti-
tionFinder selected respectively GTR + I, F81, and HKY + G as the best model for 
the three positions of the codon in COI, and GTR + G for 16S. Bayesian inference, 
using the previously mentioned partitions and models, was performed using the Mr-
Bayes program (Ronquist et al. 2012) and the dataset was run for 3 × 107 generations, 
with Markov chains sampled every 1000 generations, and the standard 25% burn-
in calculated. Convergence was checked using Tracer 1.6 (http://beast.bio.ed.ac.uk/
Tracer). Tree branches were considered strongly supported if posterior probabilities 
were ≥ 0.90. Randomized accelerated maximum likelihood (RAxML) (Stamatakis 
2006) was used to generate a ML tree with partitions under the evolution model 
GTR + G and with 1 × 104 replications. Branches with bootstrap values greater than 
70 were considered strongly supported. Phylogenetic trees were drawn and edited in 
FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

For the species delimitation analyses, we initially constructed a distance matrix 
based on the Kimura 2-parameter (K2P) model, using the COI sequences, in the 
MEGA 6.0.6 software (Tamura et al. 2013). This matrix was analysed with the default 
settings of the Automatic Barcode Gap Discovery method (ABGD) (Puillandre et al. 
2012) (available at http://www.abi.snv.jussieu.fr/public/abgd/abgdweb.html). We also 
used the Species Delimitation plugin v1.04 for Geneious v. 7.1 (Masters et al. 2011) 
with two data sets: (1) the results of our Bayesian concatenated phylogenetic analysis 
(COI + 16S), and (2) the results of a neighbor-joining tree based on the K2P model 
with 10,000 bootstrap replicates using COI sequences generated in MEGA 6.0.6. In 
this analysis, we calculated (1) the mean distance between the members within the 
clade (Intra Dist), (2) the mean distance of those individuals to the nearest clade (Inter 
Dist-closest), (3) the ratio between Intra Dist and Inter Dist-closest, and (4) the P ID, 
which represents the mean probability (95% confidence interval) of correctly identify-
ing an unknown member of the putative species to fit inside (Strict P ID), or at least 
to be the sister group of (Liberal P ID), the species clade in a tree (Masters et al. 2011).

A statistical parsimony network analysis was conducted with COI sequences (347 
bp), using the TCS algorithm (Clement et al. 2002) implemented in PopART v. 1.7.2 
(Leigh and Bryant 2015). The sequence alignment step followed the same procedures 
already described in our phylogenetic analysis protocol (see Suppl. material 1). In addi-
tion to the N. virginea and N. meleagris sequences generated in this study, we included 
55 sequences of N. virginea from island (Puerto Rico: 44 sequences) and continental 
(Panama: 10; Colombia: 1) locations in the Caribbean Province (Aktipis and Giribet 
2010; Cook et al. 2010; Page et al. 2013; Quintero-Galvis and Castro 2013) (Ta-
ble 1). Along with phylogenetic and species delimitation analyses, we also included the 
only COI sequence available on GenBank attributed to N. meleagris from Colombia 
(Quintero-Galvis and Castro 2013) (Table 1).

http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer
http://tree.bio.ed.ac.uk/software/figtree/
http://www.abi.snv.jussieu.fr/public/abgd/abgdweb.html
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Table 1. List of species included in the phylogenetic, species delimitation, and statistical parsimony network 
analyses. The voucher number of species collected in NE Brazil and the accession numbers of the sequences 
obtained in the present study and from GenBank are indicated. The numbers in parentheses next to the 
GenBank accession number correspond to each of the specimens analysed in the present study (see Figs 1, 3).

Family/Species Locality Voucher No. Accession No. Referencesb

COI 16Sa

Outgroups
Phenacolepadidae
Thalassonerita naticoidea (A. H. 
Clarke, 1989)

Gulf of 
Mexico

– FJ977768 FJ977721 1

Neritidae
Nerita fulgurans Gmelin, 1791 Colombia – JX646664 JX646655 2
Nerita tessellata Gmelin, 1791 Colombia – JX646663 JX646654 2
Nerita peloronta Linnaeus, 1758 Colombia – JX646665 JX646656 2
Nerita versicolor Gmelin, 1791 Colombia – JX646666 JX646658 2
Neritina piratica Russell, 1940 Colombia – JX646669 JX646660 2
Neritina usnea (Röding, 1798) Colombia – JX646670 JX646661 2
Neritina punctulata Lamarck, 
1816

Colombia – JX646667 JX646657 2

Ingroup
Neritina meleagris Lamarck, 
1822

Colombia – JX646671 JX646662 2
Camocim, 

Ceará, 
Brazil

CMPHRM 6408B MK628548 (1) MK628556 (1) 3

Barra 
Grande, 
Piauí, 
Brazil

CMPHRM 6409B MK628549 (2), 
MK628550, (3) 
MK628551 (4)

MK628557 (2), 
MK628558 (3), 
MK628559 (4)

3

Neritina virginea (Linnaeus, 
1758)

Colombia – JX646668 JX646659 2
Panama – JF810998 to 

JF811004c and 
FJ977766

– 1, 4

Puerto 
Rico

– FJ348932 to 
FJ348975

– 5

Camocim, 
Ceará, 
Brazil

CMPHRM 6410B MK628552 (1) MK628560 (1) 3

Barra 
Grande, 
Piauí, 
Brazil

CMPHRM
6411B

MK628553 (2), 
MK628554 (3), 
MK628555 (4)

MK628561 (2), 
MK628562 (3), 
MK628563 (4)

3

aOur 16S sequences deposited in GenBank are longer than those used for the construction of the molecular phylo-
genetic hypothesis. b1. Aktipis and Giribet (2010); 2. Quintero-Galvis and Castro (2013); 3. present study; 4. Page 
et al. (2013); and 5. Cook et al. (2010). cFor the statistical parsimony network analysis, the haplotypes JF811001 and 
JF811002 had frequency 2 (Page et al. 2013).

The shells and opercula of the specimens of N. virginea and N. meleagris submitted 
to molecular analyses were observed and photographed under a stereomicroscope. A 
scanning electron microscope (SEM) was used to view their radulae (two females of 
N. virginea and two males and one female of N. meleagris) in the Analytical Facility of 
UFC (Central Analítica, UFC). This information was collected in order to compare 
our results with the information available in the literature.
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Results and discussion

The results of our molecular analyses (phylogeny, species delimitation, and statistical 
parsimony network) confirmed the existence of two strongly supported clades living in 
sympatry in the intertidal beachrocks of Northeastern Brazil (Brazilian Province). The 
Bayesian and maximum likelihood trees showed the same topology, with the forma-
tion of four clades within Neritina: Group I (Neritina piratica + Neritina usnea), Group 
II (Neritina meleagris, collected in NE Brazil), Group III (Neritina virginea, collected 
in NE Brazil and Colombia, + “Neritina meleagris”, from Colombia), and Group IV 
(Neritina punctulata) (Fig. 1). The Groups II and III were also observed in the ABGD 
analysis. Intraspecific distances in these groups were at least one order of magnitude 
smaller than the interspecific distances. Our minimum interspecific genetic distance 
values (COI region only), involving groups II and III, were 8.4 and 9.6%, respectively 
(Table 2). These values are higher than the minimum value assumed by Abdou et al. 
(2017) to characterize distinct Indo-Pacific Neritina species. In addition, the probabili-
ties of a new sequence fitting inside P ID (Strict) or at least the sister group P ID (Lib-
eral) of these clades were equal to, or in most cases, greater than 84% (Table 2). These 
results are compatible with the values found to delimit species in different groups of 
gastropods (e.g. Churchill et al. 2014; Cooke et al. 2014; Espinoza et al. 2014).

Figure 1. Molecular phylogenetic hypothesis (Bayesian tree) of some species of Neritidae of the Western 
Atlantic. The Bayesian tree was based on partial mitochondrial COI and 16S sequences. The Neritina 
meleagris and Neritina virginea clades (ingroup) are highlighted. The other taxa were used as outgroup. 
Numbers on and below the main branches represent the posterior Bayesian probabilities (BP) (>0.90) and 
bootstrap values for maximum likelihood (ML) (>70%), respectively. Specimens with the number “1” are 
from Camocim beach (Ceará State, NE Brazil) and those with numbers “2”, “3”, and “4” are from Barra 
Grande beach (Piauí State, NE Brazil). The numbered specimens of N. virginea (1, 2, 3, and 4) and N. 
meleagris (1, 2, 3, and 4) are the same specimens shown in Figure 3.
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Table 2. Species delimitation results from the Bayesian concatenated and Neighbor-Joining trees. These 
analyses were performed with the Species Delimitation plugin for Geneious.

Bayesian concatenated tree (COI + 16S)
Species Monophyly Intra Dist Inter Dist-closest Intra/Inter P ID(Strict) P ID(Liberal)
Neritina virginea yes 0.006 0.073 0.08 0.88 (0.76, 1.0) 0.97 (0.87, 1.0)
Neritina meleagris yes 0.004 0.088 0.04 0.84 (0.70, 0.98) 0.97 (0.86, 1.0)

Neighbor-Joining K2P COI tree
Species Monophyly Intra dist Inter Dist-closest Intra/Inter P ID(Strict) P ID(Liberal)
Neritina virginea yes 0.008 0.084 0.09 0.87 (0.75, 1.00) 0.97 (0.87, 1.0)
Neritina meleagris yes 0.002 0.096 0.02 0.86 (0.72, 1.00) 0.98 (0.87, 1.0)

Although the distinction between clades showed high support values, the phyloge-
netic relationship between them could not be recovered. As we did not have access to the 
specimens, it was not possible to check the shell colour patterns of the Neritina meleagris 
from Colombia (obtained from GenBank) that was included in the same clade as Neri-
tina virginea. Thus, we suspect that an error may have occurred at the time of submission 
of the sequences to GenBank, since, in the study of Quintero-Galvis and Castro (2013), 
N. virginea and N. meleagris appeared in very distinct branches of the phylogenetic tree.

Despite the geographical distance, all N. virginea sequences from Brazil and the 
Caribbean were very similar, with all haplotypes grouped within a few mutational steps 
(Fig. 2). This result reinforces the validity of N. virginea and confirms its presence in the 

Figure 2. Statistical parsimony network analysis (TCS algorithm) based on 64 partial mitochondrial 
COI sequences (347 bp). This analysis included specimens of Neritina meleagris and Neritina virginea 
from the Caribbean and Brazilian Provinces. Size of the circle is proportional to frequency of the haplo-
type and colours inside the circles designate geographical locations to which the samples belong. Black 
circles correspond to hypothetical haplotypes. The number of mutational steps is indicated by dashes on 
branches. We highlighted the 36 mutational steps that separate the two species haplotypes.
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Figure 3. Colour patterns of shells, opercula, and radulae of the Neritina virginea and Neritina meleagris 
analysed. The red arrows highlight the differences between the leading edges of colour patterns of both 
species: N. virginea has the leading edges outlined in heavy black, while N. meleagris has the leading edge 
outlined in white or black and white. A Neritina virginea_1 B Neritina virginea_2 C Neritina virginea_3.
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Figure 3. Continued. D Neritina virginea_4 E Neritina meleagris_1 F Neritina meleagris_2 G Neritina 
meleagris_3 H Neritina meleagris_4 I ventral view of shell of Neritina virginea J operculum (outer and in-
ner views) of Neritina virginea K ventral view of shell of Neritina meleagris L operculum (outer and inner 
views) of Neritina meleagris M radula of Neritina virginea (SEM), with rachidian tooth enlarged in the 
upper left quadrant N radula of Neritina meleagris (SEM), with rachidian tooth enlarged in the upper 
left quadrant. Abbreviations: l1 first lateral tooth, l4 fourth lateral tooth, m marginal teeth, r rachidian 
tooth. The specimens with the number “1” are from Camocim beach (Ceará State, NE Brazil) and those 
with numbers “2”, “3”, and “4” are from Barra Grande beach (Piauí State, NE Brazil). The numbered 
specimens of N. virginea (1, 2, 3, and 4) and N. meleagris (1, 2, 3, and 4) are the same specimens used in 
the phylogenetic analysis of Figure 1. Scale bars: 1.0 mm (A–L); 100 μm (M, N).

Brazilian Province. As also observed in the phylogenetic analysis, the only sequence as-
signed as N. meleagris from the Caribbean Province is positioned within one of the most 
frequent N. virginea haplotypes for this region (Fig. 2). With respect to our N. meleagris 
sequences, although this species is found in sympatry with its congener in the Brazilian 
Province, it is separated from the N. virginea haplogroups by at least 36 mutational steps.

Figure 3 shows the colour patterns, opercula, and radulae of the N. meleagris and 
N. virginea specimens collected from the Barra Grande and Camocim beaches. Our 
molecular results are consistent with the morphological descriptions previously proposed 
for each species (Russell 1941; Matthews-Cascon et al. 1990; Eichhorst 2016). Russell 
(1941) described, for both species, a colour pattern consisting of dark zigzag lines and 
lighter spots. However, this author emphasized that while N. virginea has a leading edge 
outlined in heavy black, N. meleagris instead has a leading edge outlined with white, 
white and black, or white and red, resembling imbricating scales. The imbricating scales 
pattern was emphasized in the original description of N. meleagris (Lamarck  1822), 
whereas Matthews-Cascon et al. (1990) and Eichhorst (2016) highlighted the 
differences in the leading edges of the colour pattern for each species. Although did not 
examine the type specimens, individuals of N. virginea from the Linnean Collection at 
the Natural History Museum, London (see http://linnean-online.org/17152/), and N. 
meleagris, from the type locality (Dominican Republic) (see http://data.biodiversitydata.
nl/naturalis/specimen/ZMA.MOLL.313038), had the same leading edge patterns as 
described earlier. All analysed specimens of N. meleagris had the leading edge outlined 
with white or white and black, while N. virginea specimens had the leading edge 
outlined in black (Fig. 3A–H). Despite the great variation in their shell colour patterns, 
a more detailed observation of the leading edges of the N. virginea and N. meleagris shells 
allows the separation of the two species, even in the field. Warmke and Abbott (1962) 
also emphasized the use of leading edges to separate the two species. Williams (2017) 
argued that the colours and patterns of gastropod shells could be genetically determined, 
influenced directly by environmental factors, or a combination of both. Specifically, the 
patterns of leading edges (leading edge outlined with white or white and black in N. 
meleagris and outlined in black in N. virginea) appear to be under genetic control rather 
than be influenced directly by environmental factors, since the patterns for each species 
are consistent regardless of the location studied (e.g. Russell 1941; Eichhorst 2016; 

http://linnean-online.org/17152/
http://data.biodiversitydata.nl/naturalis/specimen/ZMA.MOLL.313038
http://data.biodiversitydata.nl/naturalis/specimen/ZMA.MOLL.313038
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present study). This observation is reinforced by the clades obtained in our phylogenetic 
analysis, corroborating the diagnostic colour patterns previously described (Fig. 1).

Besides the shell colour patterns, N. virginea and N. meleagris differ from each other 
in subtle ways. The inner lips of the shells of the two species are denticulated. However, 
in N. virginea there are several small denticles interspersed by two larger teeth, while in 
N. meleagris the teeth are larger, more prominent in the central region, and less numer-
ous when compared to N. virginea (Fig. 3I, K). Russell (1941), Matthews-Cascon et al. 
(1990), and Eichhorst (2016) also highlighted these differences regarding the number 
of teeth on the inner lip. Both species have a calcareous and smooth operculum, with a 
bifurcated apophysis. Comparing the opercula, N. virginea has a darker (bluish-black) 
and more elongated operculum, with the apophysis elements thinner and more sepa-
rated from each other. On the other hand, the operculum of N. meleagris presents a 
lighter coloration (yellowish-black) and a semi-circular shape, with the apophysis ele-
ments much stouter and closer to each other (Fig. 3J, L). In the present study, Neritina 
virginea and N. meleagris have a very similar morphology of the radula: a rhipidoglos-
sate radula, with one rachidian tooth, five pairs of lateral teeth, and many denticulated 
marginal teeth arranged in transverse rows (Fig. 3M, N; see also Suppl. material 2). 
The most striking difference between these radulae is the rectangular rachidian tooth, 
which has three cusps in N. meleagris (both male and female) but is cuspless in N. 
virginea. The first lateral tooth of N. virginea is more slender than that of N. meleagris. 
Previous studies have shown that the radula teeth pattern of neritids is very stable, the 
most variable character being the number of cusps on the fifth lateral tooth, which is 
likely correlated with age (Baker 1923; Huang 1997; Haynes 2001). This characteris-
tic makes it difficult to define intra- and interspecific differences. Further studies are 
needed to better define the differences between the radulae of the two species.

Our molecular data show that N. virginea and N. meleagris are two distinct species, 
thus confirming the N. meleagris record for the Brazilian coast. In summary, our re-
sults, along with the already well-established record of Neritina zebra (Matthews-Cas-
con et al. 1990; Rios 2009; Barroso et al. 2012, 2016; Eichhorst 2016), demonstrate 
that there are three species of the genus Neritina registered for the Brazilian Province to 
date. We emphasize the importance of the separation of N. virginea and N. meleagris in 
future studies, especially those conducted in the Brazilian Province, since these species 
may cohabit. In the field, these species can be identified with a detailed observation of 
the leading edge patterns of their shells, assisting ecological studies. Further research is 
needed in other areas along the Brazilian Province to determine the geographic distri-
bution of N. virginea and N. meleagris, highlighting the locations where they co-occur.
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