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Abstract
This study investigates genetic diversity in three species of Ephemeroptera, one eurytopic and therefore 
widespread (Afroptilum sudafricanum) and two stenotopic and thus endemic (Demoreptus natalensis and 
Demoreptus capensis) species, all of which co-occur in the southern Great Escarpment, South Africa. Mi-
tochondrial DNA was analysed to compare the genetic diversity between the habitat generalist and the 
two habitat specialists. Afroptilum sudafricanum showed no indication of population genetic structure due 
to geographic location, while both Demoreptus species revealed clear genetic differentiation between geo-
graphic localities and catchments, evident from phylogenetic analyses and high FST values from AMOVA. 
In addition, the phylogenetic analyses indicate some deeper haplotype divergences within A. sudafricanum 
and Demoreptus that merit taxonomic attention. These results give important insight into evolutionary 
processes occurring through habitat specialisation and population isolation. Further research and sam-
pling across a wider geographic setting that includes both major mountain blocks of the Escarpment and 
lowland non-Escarpment sites will allow for refined understanding of biodiversity and associated habitat 
preferences, and illuminate comparative inferences into gene flow and cryptic speciation.
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Introduction

Greater genetic diversity within a lineage is regarded as increasing its resilience to envi-
ronmental change (Jump et al. 2009, Razgour et al. 2019), which gives contemporary 
relevance to insights into the mechanisms shaping genetic diversity of populations. Ge-
netic diversity between populations is, in part, a reflection of their members’ dispersal 
activity through space and time (Slatkin 1985, Bohonak 1999, Avise 2009). Theoreti-
cally, if widespread intermigration between populations of a species occurs, then levels of 
genetic differentiation will be relatively low, whereas if dispersal is restricted by physical 
barriers or limitations to mobility, then genetic differentiation is likely to be higher (Slat-
kin 1993). The relationship between dispersal ability and genetic population structure of 
a species can provide important insights into micro-evolutionary processes, phylogeogra-
phy (Hanski and Gaggiotti 2004, Avise 2009), and resilience to environmental change.

Aquatic insects have a winged adult stage that is generally considered to have rela-
tively strong dispersal ability (Hughes and Mather 1995, Bunn and Hughes 1997). This 
is reflected in the ability of stream organisms to recover from disturbance (Wallace 1990, 
Yount and Niemi 1990) and the widespread geographic distribution of many aquatic 
species across catchments. Consequently, many such insects show low levels of genetic 
differentiation among populations, both within and between catchments, attributed to 
the extensive dispersal of adults by flying (Schmidt et al. 1995, Hughes et al. 1998, 2000, 
Miller et al. 2002, Monaghan et al. 2002, Pereira-da-Conceicoa et al. 2012, Gattolliat et 
al. 2018). Despite the apparent mobility of these species, their need for persistent waters 
for breeding tends to fragment their distribution into metapopulations (Avise 2009). 
The patchiness of lakes, the linear, unidirectional, hierarchical character of rivers, and the 
topographical structure of catchments tend to structure the dispersal of aquatic organ-
isms between breeding sites or local populations (Wishart et al. 2003, Kaltenbach and 
Gattolliat 2018). The population genetic variance of certain species is structured signifi-
cantly according to drainage basin, especially in mountainous landscapes with rugged 
topography (Hughes et al. 1999, 2003, Wishart and Hughes 2001, 2003, Monaghan 
et al. 2002, Price et al. 2010, Toussaint et al. 2013, 2014, Barber-James and Pereira-da-
Conceicoa 2016). Ecologically, aquatic habitats within terrestrial landscapes can there-
fore be conceptualised as functional islands for some aquatic organisms.

Genetic variation between populations is related to the ability of their members to 
disperse, and a high degree of genetic structure has been observed among populations 
of some South African winged aquatic (Wishart and Hughes 2001, 2003) and ter-
restrial (Price et al. 2007, 2010) insects. This has been attributed to habitat-specificity 
that imparts a high cost to unsuccessful dispersal, so that stronger associations with 
restricted habitats, such as particular aquatic conditions, result in increasingly limited 
potential for successful dispersal (Price et al. 2007). Aquatic invertebrate species, in-
cluding Ephemeroptera, show varied degrees of habitat-specificity, with some species 
being completely restricted to a certain habitat and others occurring in a range of 
habitat types (Barber-James and Lugo-Ortiz 2003).
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The aim of this study is to use three model species of mayfly to test the hypoth-
esis that habitat-restricted taxa have greater phylogeographical structure than habitat-
generalist species. Afroptilum sudafricanum Lestage is a common, widespread African 
species, occurring in a range of ecological conditions, including different flow regimes 
and a wide altitude range (Barber-James and Lugo-Ortiz 2003). Demoreptus natalensis 
Crass and Demoreptus capensis Barnard have very specific habitat requirements, being 
most commonly found on rock faces associated with waterfalls in fast-flowing moun-
tain streams (Barber-James and Lugo-Ortiz 2003).

Materials and methods

Study region

The southern Great Escarpment forms an 800-km-long stretch of mountain complexes 
extending from the Nuweveldberge in the west to the Eastern Cape Drakensberg in 
the east. Ancient erosional features divide the mountains into five main blocks that 
range in altitude from 1 600–3 000 m a.s.l., making the area interesting for study of 
dispersal-limited groups.

Taxon sampling

Nymphs of A. sudafricanum, D. capensis, and D. natalensis were collected from 21 
rivers in the Eastern Cape Great Escarpment, relating to 12 study areas within the 
Escarpment and non-Escarpment sites (Table 1). An additional six rivers were sampled 
for A. sudafricanum in lower-altitude (non-Escarpment) areas in the Eastern Cape and 
KwaZulu-Natal (Table 1). All specimens were preserved in 80% ethanol.

A related species of Baetidae, Baetis rhodani Pictet, was used as the outgroup for 
phylogenetic analyses, and relevant sequence data (Rutschmann et al. 2014) were ob-
tained through Genbank (Benson et al. 2012) for both cytochrome c oxidase subunit I 
(COI) (KP438135 and KP438160) and 16S rRNA (16S) (KP438109 and KP438119) 
gene regions.

DNA extraction, amplification, and sequencing

DNA was extracted using the Invisorb Spin Tissue Mini Kit following manufacturer’s 
protocol (Invitek, Berlin, Germany). Extraction was non-destructive, using internal 
body digestion, which ensured the preservation of the exoskeleton for future morpho-
logical analysis (housed in the Albany Museum, Makhanda, South Africa, along with 
additional material that is stored in the collection, listed under the GEN catalogue.)

http://www.ncbi.nlm.nih.gov/nuccore/KP438135
http://www.ncbi.nlm.nih.gov/nuccore/KP438160
http://www.ncbi.nlm.nih.gov/nuccore/KP438109
http://www.ncbi.nlm.nih.gov/nuccore/KP438119
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Two mitochondrial gene regions were amplified: cytochrome c oxidase subunit I 
(COI) and small subunit ribosomal RNA (16S). A 528-bp section of the COI regions 
of D. natalensis and D. capensis was successfully amplified with the standard ‘universal’ 
primer pair, LCO1490 and HCO2198 (Folmer et al. 1994), which worked with only 
limited initial success with A. sudafricanum. A new forward primer (5’–GGT GGA 
TGG GCA GGA ATG GTA GGA–3’) was designed and used with HCO2198 to 
successfully sequence the remaining samples of A. sudafricanum. The 16S region was 
amplified with the primer pair 16Sar (5’–CGC CTG TTT ATC AAA AAC AT–3’) 
and 16Sbr (5’–CCG GTC TGA ACT CAG ATC ACG T–3’) (Palumbi 1996). How-
ever, these primers proved problematic for the Demoreptus samples, and this region is 
thus excluded from subsequent analyses for this taxon.

The polymerase chain reaction (PCR) was performed in a 50  μl volume using 
the following thermal regime: 95 °C for 5 min, 35 cycles of 95 °C for 45 s, 50 °C 
for 45 s, and 72 °C for 90 s, followed by a final extension period of 72 °C for 5 min. 
PCR amplifications were checked for the presence of amplified PCR products by gel 
electrophoresis (0.5% agarose gel stained with SYBR green) and viewed with a UV-
transilluminator. Successful PCR products were cleaned up using the Invisorb PCRa-
pace® Quick purification kit (Invitek, Berlin, Germany) and cycle-sequenced in both 
directions using the primers used for amplification, the ABI Big Dye Sequencing kit 
v.3.1 (following manufacturer’s instructions (Applied Biosystems)), and a ABI Genetic 
Analyzer 3500 (Applied Biosystems).

Sequence trace files were assembled and edited using Sequencher 3.0 (DNA se-
quence analysis software, Gene Code Corporations, Ann Arbor, MI USA, http://www.
genecodes.com). The sequences were then aligned in MEGA v.6 (Tamura et al. 2013) 
using the ClustalW algorithm and subsequently each non-synonymous mutation was 
manually cross-checked in the original trace files.

Phylogenetic analyses

Each gene was tested for substitution saturation using plots of transitions and transversions 
against F84 distance in DAMBE v7.0.58 (Xia et al. 2003, Xia and Lemey 2009, Xia 2017).

Congruence between the COI and 16S datasets was assessed using the partition 
homogeneity test (PHT) in PAUP* (Swofford 2002) with 1000 replicates to verify that 
the gene sections could be combined for analysis.

Bayesian Inference (BI) analyses were conducted with MrBayes v.3.1.2 (Huelsen-
beck and Ronquist 2001) using the GTR+I+G model since it is the most complex 
model, allowing the nesting of simpler models that could be estimated through the 
Bayesian sampling. Each analysis comprised two independent runs with random start-
ing trees and four chains (three heated and one cold) each, sampled every 200 genera-
tions for 20 million generations per run. The cumulative sample sizes were plotted 
against the likelihood scores and tree length using Tracer v1.7.0 (Rambaut et al. 2018), 
to ascertain when the analysis reached stationarity after the first 10% of the trees were 

http://www.genecodes.com
http://www.genecodes.com
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discarded as burn-in. The analysis was run on the CIPRES Science Gateway (Miller et 
al. 2010) using default parameters for variables not mentioned above.

Maximum likelihood (ML) analyses were conducted with 2 000 bootstrap replicates 
using the GARLI (Genetic Algorithm for Rapid Likelihood Inference) on XSEDE via the 
CIPRES (Cyberinfrustructure for Phylogenetic Research) Science Gateway v3.3 (Miller 
et al. 2010), which is supported by the San Diego Supercomputer Center (SDSC) and 
the University of California (UC San Diego). Models of molecular evolution for each 
dataset were selected using the Akaike information criteria (AIC) as implemented by 
jModeltest 2.1.6 (Darriba et al. 2012) (Table 2). The COI and COI+16S ML phylo-
grams were compared and presented using Phylo.io software (Robinson et al. 2016).

Parsimony analyses were performed in PAUP* version 4.0b10 (Swofford 2002) 
using the heuristic search option with 100 random addition replicates. A search with 
TBR (Tree Bisection and Reconnection) branch-swapping was used to find the ap-
proximate length of the shortest trees, with one tree kept with each random addition. 
To investigate nodal support, all of the trees from this search were used as starting trees 
for a second heuristic search with MAXTREES set to 5 000. The Demoreptus analysis 
used FASTBOOTSTRAP with 10 000 replicates.

Phylogeographical structure and variation

Molecular diversity was investigated using the COI datasets. The number of variable 
sites (S), number of haplotypes (Hap) and haplotype diversity (Hd), Nucleotide diver-
sity (p) and neutrality tests (Tajima’s D and Fu’s FS) were calculated in DNAsp (Rozas 
et al. 2017). Population structures within each species were estimated using one-level 
Analyses of Molecular Variance (AMOVA) in ARLEQUIN ver. 3.5.2 (Excoffier and 
Lischer 2010). FST (fixation index) values were calculated between localities to deter-
mine whether putatively conspecific populations differed significantly in their genetic 
composition. For all AMOVA analyses (listed in Table 4), a priori groups were defined 
by each site where the insects were collected. Haplotype networks were illustrated with 
a median-joining network (MJN) algorithm (ε = 0) (Bandelt et al. 1999) using the 
software PopART v. 1.7 (Leigh and Bryant 2015) to analyse haplotype genealogy.

Results

Data characteristics

COI sequences (649 bp) were obtained from 86 individuals and 16S sequences (542 
bp) obtained from 59 individuals of A. sudafricanum. Shorter (528 bp) COI sequences 
were obtained for 24 Demoreptus individuals (for D. natalensis, N = 12; D. capensis, 
N = 11; unidentified, N = 1). DNA characteristics for each gene dataset are summa-
rised in Table 2. The Partition Homogeneity Test for incongruency (Swofford 2002) 
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showed that the combined COI and 16S datasets were not significantly incongruent 
(P = 0.3890) and could therefore be combined for analysis. The COI+16S molecular 
dataset consisted of 59 specimens and 1191 nucleotides including the outgroup. No 
evidence of saturated substitution was found for either gene (data not shown).

Phylogenetic analyses

The parsimony analyses’ results are summarised in Table 2. Phylogenetic analyses of the 
habitat generalist A. sudafricanum consistently retrieved six distinct clades and an unre-
solved grade of specimens (referred to hereafter as the “widespread grade”) from a wide 
range of sites for all analyses (Fig. 1). The tree comparison shows that the relationships 
between these clades in the analysis of the CO1 data and the CO1+16S data sets were 
consistent, with improved support for the combined dataset. The well-supported clades 
did not conform to the mountain blocks described in Table 1 and included specimens 
from across these ranges. The clades were roughly separated into overlapping geograph-
ic groups: Southern Montane, Stormberg/Barkly East, and Eastern Cape, while more 
restricted geographic areas included KwaZulu-Natal and Eastern Cape Drakensberg, 
the latter clade showing a longer stem branch compared to other clades (Fig. 1).

The phylogenetic analysis of the habitat-restricted D. capensis and D. natalensis 
clearly indicated strong genetic structure corresponding to geographic location (Fig. 
2). Both species had genetically distinct populations with strong support from parsi-
mony, Bayesian and maximum likelihood analyses. The clades found for D. capensis 
and D. natalensis were more closely aligned with the mountain ranges described in 
Table 1 and appear to be site-restricted, apart from one instance where individuals of 
D. natalensis from Rhodes and Barkly Pass fell into the same well-supported clade. For 
D. capensis the Rhodes clade had a long branch and is clearly distinct from the other 
clades, which is noteworthy considering the close geographic proximity to Barkly East, 
which formed a separate well-supported clade nested with other clades (Fig. 2). This 
pattern was not apparent in D. natalensis, where the Barkly East specimen was clearly 
separate from the D. natalensis clade; morphological re-examination suggests that it 
does not belong to any described Demoreptus species.

Population genetics

MJN analysis collapsed the 86 A. sudafricanum COI sequences into 60 haplotypes 
(Fig. 3, Table 3), 45 of which were singletons or private haplotypes. Haplotype 17 
was the most abundant (N = 8) and occurred in three of the 12 study areas (Fig. 4), 
which included non-Escarpment Grahamstown and two main mountain Escarpment 
blocks (Sneeuberg and Winterberg–Amathole). Haplotype 20 was next-most-abundant 
(N = 4) and exclusive to non-Escarpment Makhanda (= Grahamstown). Haplotype 10 
(N = 3) was found in one non-Escarpment site (KwaZulu-Natal) and one main moun-
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Table 2. Data characteristics and summary of the parsimony analysis. The number of specimens with 
sequence data (ntax), total number of base pairs (bp), parsimony informative (# Pi), and percent parsimony 
informative (% Pi) is reported. The results of the parsimony are summarised with the number of trees 
retained (# trees), tree length (score), Consistence Index (CI) and Retention Index (RI). The summary of 
the models for the Maximum Likelihood analysis (ML) selected by jModeltest.

Species Dataset ntax Characters Parsimony analysis Model
bp #Var # Pi % Pi # trees Score CI RI ML analysis BI analysis

A. sudafricanum COI 88 649 217 192 29.6 5 000 421 0.601 0.932 GTR+I+G GTR+I+G
COI+16S 88 1191 380 336 28.2 5 000 645 0.662 0.939 TIM3+I+G GTR+I+G

Demoreptus spp. COI 24 528 164 159 30.1 8 302 0.745 0.922 TVM+G GTR+I+G

Table 1. Collecting localities (Site and river name) and non-zero sample sizes for each species from each site. 
The GenBank sequence accession numbers for each sample are listed in Suppl. material 1.

Locality Longitude/
Latitude

A. sudafricanum D. capensis D. natalensis Demoreptus 
sp.

Escarpment sites
Eastern Cape Drakensberg

Barkley East 1: Diepspruit -30.751, 27.546 3 1
Barkley East 2: Diepspruit -30.757, 27.552 3
Barkley East 3: Diepspruit -30.718, 27.54 3 1
Barkley Pass 1: Marais Hoek -31.215, 27.686 3
Barkley Pass 4: Ben Wyvie -31.173, 27.971 3 3
Barkley Pass 5: Lymore Lodge -31.172, 27.854 2
Rhodes 1: Hawkshead -30.676, 27.884 3 2
Rhodes 2: Tiffindell -30.674, 27.904 3 1
Rhodes 3: Tenahead -30.696, 28.150 3 1
Maclear 1: Vuvu River -30.603, 28.216 5

Stomberg
Stomberg 3: Lana River -31.163, 26.602 3
Stomberg 4: Lemonfountain -31.416, 26.842 3

Winterberg-Amatole
Elansberg 1: Elandsberg -32.506, 26.903 3
Winterberg 1: Fanella falls -32.363, 26.385 2 3
Winterberg 2: Fanella falls -32.380, 22.967 3
Winterberg 3: – 5

Sneeuberg
Sneeuberg 1: Fish River -32.227, 24.954 2
Sneeuberg 2: Melkriver -32.243, 24.941 2 3 3
Kamdeboorberg 1: Buffelsrivier -32.177, 24.016 3 2
Kamdeboorberg 3: Waterkloof -32.353, 23.890 2 2

Nuweveldberge
Nuweveldberge 1: Maijiesvlei -32.102, 22.636 1

Non-Escarpment sites
Grahamstown

Grahamstown CR: Coleridge River -33.349, 26.618 2
Grahamstown KP: Kap River -33.351, 26.858 5
Grahamstown KR: Kowie River -33.349, 26.560 5
Grahamstown PM: Palmiet River -33.370, 26.476 5

KwaZulu-Natal
KwaZulu-Natal KK: Karkloof River -29.338, 30.307 5
KwaZulu-Natal LR: Lions River -29.492, 30.108 5
KwaZulu-Natal UM: Umgeni River -29.477, 30.261 1

86 11 12 1
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tain Escarpment block (Eastern Cape Drakensberg, in two study areas: Barkly Pass and 
Maclear; Figs 3, 4). Haplotypes were clustered according to a broad geographical struc-
ture, which correspond to clades from the phylogenetic analyses (Fig. 1). The numerous 
missing mutational steps in the haplotype network (Fig. 3) suggest that more sampling 
is needed for some clusters, particularly between sites that are separated by long sam-
pling gaps (for example, the non-Escarpment sites). Other clusters that are separated 

Figure 1. Bayesian inference phylograms of A. sudafricanum for gene markers COI (left) and COI + 16S 
(right). Support for major nodes shown in the order Bayesian Inference / Maximum Parsimony / Maxi-
mum Likelihood (BI/ML/MP). Bars next to clades refer to distinct clades that are colour-coded according 
to the study areas found within that clade (see colour legend), except for the widespread grade which is 
designated by a solid black line. Branches bearing outgroups have been omitted to save space and their 
position is depicted by a dashed line.
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by numerous missing intermediates could represent cryptic species or relict lineages 
that have re-joined the metapopulation (Hinojosa et al. 2019) (encircled with dashes in 
Fig. 3). The divergent Haplotype 27 from the Kamdebooberg did not cluster with the 
other haplotypes from the same area and may represent such a lineage. The widespread 
grade showed little geographic structure, and all haplotypes from Stormberg (Hap 51, 
52 and 53) grouped together exclusively, otherwise all other sites are mixed.

The MJN analyses for D. capensis retrieved eight haplotypes (Hd = 0.9273, S = 101), 
six of which were singletons and D. natalensis retrieved six haplotypes (Hd = 0.8636, 
S = 21) including three singletons (Fig. 5). Haplotypes were largely site-restricted for 
both species with the exception of Haplotype 1 (N = 3) for D. capensis and Haplotype 4 
(N = 3) for D. natalensis (study areas Barkly Pass and Rhodes), which are both found in 
the Eastern Cape Drakensberg main mountain block in the Escarpment (Fig. 4). Both 
networks show many missing mutational steps between haplotypes grouped by locality, 
which could result from undersampling or haplotype filtering.

Nucleotide diversities (Pi) are reported in Table 3 and are not interpreted further 
because the small sample sizes for Demoreptus spp. make the estimates imprecise. Neu-
trality tests (Tajima’s D and Fu’s FS) were not significant for A. sudafricanum, D. capensis 
or D. natalensis indicating that the nucleotide patterns of variation are consistent with 
the neutral theory of evolution. Fu’s FS statistic for the widespread grade of A. sudafrica-
num was negative (FS = –11.544) and significant (P < 0.02), indicating a recent popu-
lation expansion (Table 3). The Fu’s FS statistics for D. capensis and D. natalensis were 

Figure 2. Bayesian inference phylogram of Demoreptus spp for the COI gene marker. Support for major 
nodes is shown in the order Bayesian Inference / Maximum Parsimony / Maximum Likelihood (BI/ML/
MP). Bars next to clades refer to distinct clades that are colour-coded according to the study areas found 
within that clade (see colour legend). Baetis rhodani Pictet was used as the outgroup.
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Table 3. Haplotype characteristics and Neutrality tests for A. sudafricanum, D. capensis and D. natalensis.

Species Haplotype characteristic
Number of haplotypes (Hap) Nucleotide diversity (Pi) Number of variable sites (S)

A. sudafricanum 60 0.07508 129
A. sudafricanum 
(unresolved)

28 0.01998 67

D. capensis 8 0.08592 101
D. natalensis 6 0.01881 21

Figure 3. Median-joining network of A. sudafricanum based on COI haplotypes generated in this study. 
The network was estimated using the median-joining algorithm in PoPArt v.1.7 with epsilon = 0. Each 
circle represents a different haplotype and the size of a circle correlates with the number of individuals 
assigned to that haplotype. Only haplotypes found in more than one sample are numbered. Colours indi-
cate the geographic origin of sequences; black dots indicate unsampled or extinct haplotypes.
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Figure 4. Distribution of A. sudafricanum, D. natalensis and D. capensis COI haplotypes across the study 
area. The map shows the study areas defined in Table 1, and the pie charts indicate the haplotype composi-
tion of the population from each area. Each colour represents a shared haplotype found across the study 
area; private haplotypes (singletons found in the samples from one particular population and are absent in 
the samples from other populations) are represented as clear sections within the pie charts.
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Figure 5. Median-joining networks of D. natalensis and D. capensis based on COI haplotypes generated 
in this study. The network was estimated using the median-joining algorithm in PoPArt v.1.7 with epsilon 
= 0. Each circle represents a different haplotype and the size of a circle correlates with number of individu-
als belonging to that given haplotype. Only haplotypes found in more than one sample are numbered. 
Colours indicate the geographic origin of sequences; black dots indicate unsampled or extinct haplotypes.

positive, indicating a deficiency of alleles as expected from a population bottleneck, but 
they were not significant and need a larger sample size to confirm these results.

The AMOVA results for A. sudafricanum revealed that over all localities, 52.33% of 
the total variance was explained by variation among populations (df = 10, Va = 12.073) 
while 47.67% (df = 75, Vb = 10.998) was explained by variation within populations 
(Table 4). A similar result was found with the widespread grade of A. sudafricanum, 
with 39.43% of the total variance explained by variation among populations (df = 5, 
Va = 2.238) and 60.57% (df = 28, Va = 3.438) explained by variation within popu-
lations. In contrast, the AMOVAs for the habitat-restricted species, D. capensis and 
D. natalensis, indicated a higher proportion of variation among populations: 94.83% 
(df = 4, Va = 24.950) and 95.39% (df = 4, Va = 5.423), respectively (Table 4). The 
total variance explained by variation within populations was only 5.17% (df = 6, Vb = 
1.361) for D. capensis and 4.61% (df = 7, Vb = 0.262) for D. natalensis.
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Table 4. One-level AMOVA results for A. sudafricanum, D. capensis and D. natalensis showing percentage var-
iation among and within populations and the fixation index (FST). Significant p-values (< 0.05) are set in bold.

Species/clade % variation FST

Among Within
A. sudafricanum 52.33 47.67 0.52327
A. sudafricanum unresolved group 39.43 60.57 0.39426
D. capensis 94.83 5.17 0.94827
D. natalensis 95.39 4.61 0.95393

The measure of population differentiation due to genetic structure (FST) was much 
lower for A. sudafricanum compared to the Demoreptus species (Table 4). The wide-
spread grade for A. sudafricanum had a very low FST value of 0.39 while D. natalensis 
and D. capensis had very high FST values of over 0.94 (Table 4).

Discussion

This study considered evidence of the phylogenetic structure of three species of Baeti-
dae corresponding to two different habitat requirements. Results indicate that habitat-
restricted Demoreptus species have greater maternal genetic structure than widespread 
A. sudafricanum, showing notable genetic differentiation associated with geographic 
localities and catchments. This is evident from the haplotype networks in a MJN anal-
ysis, FST values from an AMOVA and the phylogeographical structure indicated by 
phylogenetic trees.

Phylogeographical structure of habitat generalist, A. sudafricanum retrieved six 
distinct, well-supported clades and one widespread grade of individuals from wide-
spread (Escarpment and non-Escarpment) sites across the sampling area. Afroptilum 
sudafricanum was best represented with a haplotype network (Fig. 3), particularly for 
the widespread grade as the samples have evolved over such a short time that ancestral 
and descendant haplotypes exist concurrently, and so it remains unresolved in the 
hierarchical tree. The species occupies a range of habitats from still to flowing rivers. 
Remarkably, shared haplotypes (Haps 10, 17, and 19) were identified between Escarp-
ment and non-Escarpment sites, some over 300 km apart (Hap 10), across various 
mountain chains and differing in altitude by over 900 m (Fig. 4). The genetic dif-
ferentiation within A. sudafricanum is not attributed to purely geographic location or 
catchments. Most clades seen in both the hierarchical trees and haplotype networks 
include sites that are widely spread across sampled catchments and mountain blocks, 
with the exception of one clade that occurs only in the Eastern Cape Drakensberg 
(Rhodes and Barkly East). Even if A. sudafricanum is treated as a species complex and 
assessed for mitochondrial genetic differentiation, results indicate low divergence be-
tween populations, suggesting that gene flow is not particularly limited within catch-
ments and across the geographic range. Although mayflies are traditionally thought to 
have limited dispersal ability due to weak flight and short adult lifespans (Brittain and 
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Sartori 2003, Monaghan et al. 2005, Gattolliat et al. 2008), some mitochondrial clades 
within A. sudafricanum are remarkably widespread. These results support studies indi-
cating that long-distance dispersal is in fact more prevalent in mayflies than previously 
thought (Monaghan et al. 2005, Gattolliat and Staniczek 2011, Pereira-da-Conceicoa 
et al. 2012, Vuataz et al. 2013, Rutschmann et al. 2016).

The habitat specialist species, D. natalensis and D. capensis are rheophilic and 
found on rock faces associated with waterfalls and large bedrock sections in shallow 
but fast-flowing sections of mountain streams. Analyses indicate restricted gene flow 
over distance and across catchments, a possible consequence of isolation by habitat 
limitations in mountainous areas. Distinct clades retrieved from phylogenetic analyses 
show a close association with geographic locality. Demoreptus natalensis returned clades 
and haplotypes exclusive to Sneeuberg and Winterberg areas; the Eastern Cape Drak-
ensberg clade included two study areas (Barkly Pass and Rhodes areas); and Kamde-
booberg was unresolved. Demoreptus capensis had a similar result, but the Rhodes area 
returned a separated clade with a well-supported, long branch. Suggestively, the sam-
ples of A. sudafricanum and D. capensis collected at Rhodes both occupy long branches 
in their respective phylogenetic analyses (Figs 2, 3). These sites are from the highest 
regions of the study (2600 m.a.s.l.) on the slopes of Ben MacDhui. This may indicate 
a historical isolation event or an accelerated local rate of molecular evolution (perhaps 
through faster fixation in smaller populations) responsible for the pattern observed.

Preliminary re-examinations indicate morphological differences between D. capen-
sis from Rhodes and D. capensis from other localities, and between D. natalensis from 
Barkly East and D. natalensis from other localities (HMBJ, pers. obs.); these characters 
will be documented in a subsequent taxonomic study. Other areas in the Drakensberg 
range in KwaZulu-Natal and Lesotho should be sampled to investigate the range of 
this mitochondrial clade and whether it occurs throughout high altitude, mountainous 
areas. A caveat is that the Demoreptus population analyses involve limited sample sizes 
from few localities, which can produce misleading clustering (Phiri and Daniels 2014, 
Hinojosa et al. 2019), and that sampling more localities can address this concern (Phiri 
and Daniels 2014). Furthermore, mitochondrial genes are inherited asexually and ma-
ternally, and may represent gene flow differently from sexually-inherited, recombining 
nuclear genes (Hinojosa et al. 2019), so quantifying nuclear gene diversity is also nec-
essary to clarify this situation.

Previous studies on South African species have found genetic differentiation ac-
cording to catchments in both animals with limited dispersal ability (Wishart and 
Hughes 2001, 2003, Daniels et al. 2009, McDonald and Daniels 2012, Tolley et 
al. 2014, Barber-James and Pereira-da-Conceicoa 2016) and terrestrial insects with 
high vagility (Price et al. 2007, 2010). The unexpected limited dispersal potential of 
cicadas was attributed to their habitat philopatry (Price et al. 2010) and host-plant 
specificity (Price et al. 2007). Similarly, D. natalensis and D. capensis are restricted 
by their habitat, and subsequently show high levels of genetic differentiation. Simi-
lar limitations to gene flow have been found in various other mountain-restricted 
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aquatic insects (Hughes et al. 2003, Wishart and Hughes 2003, Finn et al. 2006, 
Lehrian et al. 2010).

The high support values for some geographically localised clades within A. sudaf-
ricanum and the two Demoreptus species could indicate the presence of cryptic species 
or local haplotype filtering and mutation due to protracted isolation (Hinojosa et al. 
2019). Mountain-dwelling populations are often fragmented and under-sampled (Phi-
ri and Daniels 2013), and the reported low diversity of Baetidae in most areas of Africa 
has been attributed to the lack of data and comprehensive analysis of material collected 
by taxonomists (Gattolliat et al. 2008). Intensive sampling over large geographical 
ranges usually results in the discovery of numerous new taxa and the extension of 
distribution ranges (Gattolliat et al. 2008). Cryptic taxa are not uncommon in aquatic 
insects (Wishart and Hughes 2003, 200, Pereira-da-Conceicoa et al. 2012). Since the 
1980s there has been an exponential increase in the number of studies on cryptic 
species, partly due to the introduction of the PCR, which resulted in the increasing 
availability of DNA sequences (Bickford et al. 2007). Molecular (DNA) methods are 
valuable in resolving morphologically cryptic lineages and have been used extensively 
in discriminating species with few or no morphological differences (Jackson and Resh 
1998, Rutschmann et al. 2014, Leys et al. 2016, Tenchini et al. 2018). Within the 
Ephemeroptera, cryptic lineages have been discovered in numerous families through 
electrophoretic studies (Sweeney and Funk 1991, Zloty et al. 1993, Funk and Sweeney 
1994) and, more recently, DNA sequence data (Williams et al. 2006, Ståhls and Savol-
ainen 2008, Pereira-da-Conceicoa et al. 2012).

The observed deep haplotype divergences in all three species studied and the recent 
population expansion in A. sudafricanum may be explained by possible Quaternary 
glaciation in the Drakensberg area, where small glaciers formed as low as 2100 m on 
south-facing slopes (Lewis and Hanvey 1993, Lewis and Illgner 2001, Grab 2002, 
Mills and Grab 2005, Lewis 2011, Mills et al. 2012). Small remnant populations in 
non-glaciated areas at high altitude would have been isolated for some time which 
may explain the long branch patterns seen in D. capensis and A. sudafricanum for high 
altitude populations from Rhodes in the Eastern Cape Drakensberg. Glaciation would 
exacerbate the difficulty of finding suitable habitats more for Demoreptus spp. than 
for A. sudafricanum, which can find suitable habitats at lower altitudes). However, the 
evidence available for this niche glaciation is considered by some as ambiguous and 
unclear (Osmaston and Harrison 2005). Cyclical climate changes from the Pleistocene 
to present interglacial (Dingle and Rogers 1972, Siesser and Dingle 1981) could have 
resulted in historic population fluctuations including expansions, bottlenecks, drift 
and allele fixation (especially for A. sudafricanum).

However, because they are asexually and maternally inherited, strongly divergent 
haplotypes that originated in relict populations may not reflect contemporary mating 
pattern if those isolated populations’ ranges subsequently expand to restore potential 
panmixis (Hinojosa et al. 2019). More samples and an investigation of nuclear genetic 
diversity are necessary to get any further resolution into the patterns observed.
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Perspectives

These results help to illuminate some of the evolutionary processes occurring in may-
fly species and highlight the effect of habitat-specificity on haplotype diversity and 
partitioning within a species. While all three species have qualitatively similar levels 
of dispersal potential in terms of flight, they show differences in gene flow, suggesting 
that other processes, such as species-specific habitat requirements, may contribute to 
genetic population structure. These results have implications for the conservation of 
riverine organisms, the reintroduction of locally extinct taxa and the rehabilitation of 
disturbed environments (Jump et al. 2009, Razgour et al. 2019).

In South Africa, it is legislated that catchments are used as management units (Re-
public of South Africa 1998). Previous studies on the genetic population structure of 
winged aquatic insects in South Africa have further supported the use of catchments 
as units for conservation (Wishart and Hughes 2003, Wishart et al. 2003, Price et al. 
2010). The results found here for D. capensis and D. natalensis further highlight the 
genetic distinctiveness of populations between catchments, further corroborating the 
value of using catchments in conservation, management and legislative frameworks. 
These genetically distinct populations form an important component in the evolu-
tionary legacy of a species. Therefore, the development of inter-basin water transfer 
schemes poses a threat to both D. capensis and D. natalensis and many other species by 
potentially connecting historically isolated and genetically distinct populations (Snad-
don and Davies 1998, Davies et al. 2000)

In addition, dispersal among adjacent catchments has implications for the recov-
ery of lotic systems following disturbance (Wishart and Davies 2003, Bellingan et al. 
2019, Razgour et al. 2019). These factors should be considered in the development 
of strategies for the conservation of aquatic biodiversity (Wishart 2000, Thieme et 
al. 2007, Castello et al. 2013, Bellingan et al. 2019), and most particularly for high 
altitude catchments.

This study highlights the importance for future studies on community structure, 
biodiversity, and biomonitoring, where the taxonomic accuracy of species identifica-
tion is crucial (Hajibabaei et al. 2016). The identification of possible cryptic species 
in A. sudafricanum and new species of Demoreptus affect the field of aquatic research 
in South Africa. Mayflies form a very important component of applied aquatic biol-
ogy, particularly biomonitoring, the presence of cryptic taxa is being discovered at an 
increasing rate and poses challenges for some aquatic ecosystem monitoring methods. 
With bioassessment methods gaining increasing popularity, a detailed understanding of 
commonly collected species will aid in further development of assessment methods and 
clarify species identification (Delić et al. 2017, Suh et al. 2019). In addition, a deeper 
understanding of evolutionary processes and gene flow with regard to commonly oc-
curring mayfly taxa contributes to broader research on ecosystem functioning and envi-
ronmental processes. The utility of DNA barcoding for elucidating such phenomena is 
already proven (Jackson and Resh 1998, Plaisance et al. 2009, Raupach and Radulovici 
2015) and widely used, with new technologies allowing for the rapid assessment of bio-
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diversity using DNA metabarcoding (Pavan-Kumar et al. 2015, Elbrecht et al. 2017, 
Daravath et al. 2018, Alvarez-Yela et al. 2019). This approach to rapid biodiversity 
assessment has the potential to revolutionise and streamline management and conser-
vation practices by providing detailed data for informed decision- and policy-making.
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