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Abstract
The literature on pairing and mating behavior in termites indicates that a number of distal antennal 
segments in dealates of both sexes are often removed during colony foundation, with terms such as 
amputation, mutilation and cannibalism typically employed to report the phenomenon. Here we propose 
the use of the phrase ‘antennal cropping’ to describe the behavior, and assess naturally occurring levels 
of its occurrence by comparing the number of antennal segments in museum specimens of alates and 
dealates in 16 species of Australian termites (four families), supplemented by analyzing published data on 
Coptotermes gestroi. Dealates had significantly fewer antennal segments than alates in 14 of the 16 termite 
species, with both exceptions belonging to the family Termitidae. Levels of antennal cropping were not 
significantly different between the sexes but did vary by family. Dealates in the Kalotermitidae removed 
the most segments (41.3%) and those in the Termitidae removed the fewest (8.9%). We discuss the 
biological significance of this phylogenetically widespread termite behavior, and suggest that controlled 
antennal cropping is not only a normal part of their behavioral repertoire but also a key influence that 
changes the conduct and physiology of the royal pair during the initial stages of colony foundation.
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Introduction

Several studies of colony foundation in termites note that the antennae of newly flown 
alates are typically undamaged, but the terminal antennal segments in both sexes 
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are removed during colony establishment (Heath 1903, Imms 1919, Mensa-Bonsu 
1976, Hewitt et al. 1972, Costa-Leonardo and Barsotti 1998). The phenomenon has 
been described as amputation (Heath 1927), mutilation (Heath 1903), and ‘mild’ 
or ‘restrained’ cannibalism (Mensa-Bonsu 1976, LaFage and Nutting 1978), and in 
all documented examples the removal of the antennal segments occured shortly after 
pair establishment. In Zootermopsis the behavior was observed after the nuptial cell 
was sealed (Heath 1927), three or four days after initial entry of the new pair (Heath 
1903); it happened five to ten days after pairing in Coptotermes havilandi (now C. 
gestroi – Kirton and Brown 2005) (Costa-Leonardo and Barsotti 1998). The behavior 
may play a crucial role in the physiological and behavioral transitions that occur in 
imagoes during colony establishment (Hewitt et al. 1972), but is rarely quantified, 
Costa-Leonardo and Barsotti (1998) being a notable exception. In this study we used 
counts of antennal segments in museum specimens of alate and dealate Australian 
termites to begin characterizing the nature of ‘antennal cropping’, which we advocate 
as a more neutral term to describe the behavior. Our goals were to establish the phy-
logenetic extent of the behavior, to determine the precision of the act, and to describe 
the variation between sexes, among species, and among families.

Methods

The Australian National Insect Collection (ANIC) at CSIRO Ecosystem Sciences, 
formerly CSIRO Entomology (Canberra, Australia), was systematically searched for 
termite species in which samples of both the alate and dealate stage were represented. 
Antennal segments of these stages were counted at 25× on a Wild M5A stereomi-
croscope (Meerbrugg, Switzerland), and included the scape, pedicel, and individual 
segments of the flagellum (= antennomeres or flagellomeres). Cropped antennae are 
easily distinguished from unaltered antennae as they typically have a melanized, healed 
wound at the distal tip. Because these are adult insects, wound healing occurs but there 
is no regeneration of lost segments. Data from the longer of the two antennae of each 
individual was used in the analysis. A dealate primary reproductive was included in 
the analysis only if it was collected with its mate or with colony members, or if it was 
physogastric, indicating that it was collected from an established colony. An individual 
was excluded from analysis if it exhibited any bodily damage resulting from the col-
lection process. Individuals were sexed based on the shape of the terminal abdominal 
sternites (Weesner 1969). Sixteen species from ANIC were analyzed (see Table 1 for 
species names and sample sizes), representing the termite families Stolotermitidae (n = 
2), Kalotermitidae (n = 7), Rhinotermitidae (n = 3), and Termitidae (n = 4) (classifica-
tion of Engel et al. 2009).

We supplemented our data with that obtained from Coptotermes gestroi by Costa-
Leonardo and Barsotti (1998: Table 4), who published antennal segment counts of 
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Table 1. The mean (± S.E.) number of of antennal segments in reproductives from 17 termite species. 

The t-tests are unpaired between alates and dealate.

Family Length of antennae 
(# of segments)

Change in 
length of 
antennae

t df p

 Species Alates (n) Dealates (n) # of 
segments

%

Stolotermitidae
 Porotermes adamsoni 16.3 ± 0.9 (9) 11.6 ± 1.1 (5) -4.7 -32.1 8.784 12 <0.001
 Stolotermes victoriensis 14.9 ± 1.8 (8) 10.2 ± 1.6 (12) -4.7 -31.5 6.038 18 <0.001
Kalotermitidae
 Neotermes papua 18.5 ± 0.7 (2) – –
 Neotermes insularis 18.7 ± 1.3 (14) 11.8 ± 1.3 (12) -6.9 -36.9 13.806 24 <0.001
 Ceratokalotermes spoliator 13.2 ± 0.8 (9) 8.3 ± 1.2 (6) -4.9 -33.3 9.316 13 <0.001
 Kalotermes convexus 13.6 ± 1.0 (10) 7.8 ± 1.3 (15) -5.8 -42.6 12.277 23 <0.001
 Glyptotermes brevicornis 13.5 ± 0.8 (6) 8.4 ± 1.6 (14) -5.1 -37.8 7.380 18 <0.001
 Cryptotermes secundus 16.5 ± 1.4 (14) 8.5 ± 1.0 (12) -8.0 -48.5 16.490 24 <0.001
 Bifiditermes condonensis 17.7 ± 2.0 (9) 9.1 ± 1.7 (11) -8.6 -48.6 10.372 18 <0.001
Rhinotermitidae
 Heterotermes ferox 16.9 ± 1.0 (10) 13.5 ± 2.1 (2) -3.4 -20.1 3.792 10 0.004
 Schedorhinotermes actuosus 18.8 ± 2.4 (12) 13.0 ± 2.3 (5) -5.8 -30.9 4.533 15 <0.001
 Coptotermes gestroi 20.2 ± 0.4 (80) 12.9 ± 0.2 (80) -7.3 -36.1 15.541 158 <0.001
 Coptotermes lacteus 18.4 ± 1.8 (16) 13.2 ± 0.5 (4) -5.1 -27.9 5.585 18 <0.001
Termitidae
 Microcerotermes turneri 13.8 ± 0.4 (9) 12.7 ± 2.2 (18) -1.1 -8.0 1.454 25 0.158
 Drepanotermes perniger 15.6 ± 2.2 (11) 16.5 ± 1.7 (13) 0.8 +6.7 1.058 22 0.302
 Xylochomitermes occidualis 14.9 ± 0.3 (14) 13.2 ± 1.2 (19) -1.8 -11.4 5.548 31 <0.001
 Tumulitermes nastilis 16.1 ± 1.0 (8) 12.2 ± 0.4 (5) -3.9 -23.0 8.242 11 <0.001

alates and dealates without statistical analysis. As in our original data, we used data 
from the longer of the two antennae of C. gestroi individuals.

Statistical analyses

The antennae lengths of the 17 species were analysed in a four factor Generalised 
Linear Model (GLM). The four factors used in analysis were species nested in fami-
lies, families, sex, and wing status (alate or dealate). Planned posthoc pairwise com-
parisons were used to find differences between species and families; all comparisons 
were Tukey’s-adjusted to account for potential errors. The posthoc comparisons were 
unnecessary for sex and status as there were only two levels in these factors. Interac-
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tions between families, sex and wing status were also considered in the GLM. Finally, 
unpaired t-tests were performed on wing-status for each family.

Costa-Leonardo and Barsotti (1998) collected Coptotermes gestroi alates from two 
sources, the first from a tree stump, i.e. before the alates had flown, and the second 
from a swarm, i.e. during the mating flight but prior to pairing. We compared the 
antennal length of these alates to determine whether there was a difference between 
pre-flight and during-flight alates using a two-way ANOVA with source and sex as the 
factors. In addition Costa-Leonardo and Barsotti (1998) measured dealated, mated 
pairs of Coptotermes gestroi twice; the first was at nine months after colony initiation 
and the second 2 years after colony initiation. We compared the antennal length from 
these dealates to determine whether there was a difference over time using a two-way 
ANOVA with age and sex as the two factors.

Statistical analyses were performed using Systat v. 9.0 (1998).

Results

We documented a wide range of antennal lengths in the imaginal stage of termites 
(Table 1). Among alates, Schedorhinotermes actuosus had the highest number of anten-
nal segments, around 19, and Ceratokalotermes spoliator had the fewest, with about 13. 
Among dealates segments were most numerous (around 16) in Drepanotermes perniger, 
and Kalotermes convexus had the fewest, with around eight.

Overall, the difference between the sexes was small, about one antennal segment, 
with overlapping standard errors; males had 14.5 ± 0.7 antennal segments whereas 
females had 13.5 ± 0.6. However the difference between winged and wingless adults 
was substantial, about five antennal segments, with non-overlapping standard errors. 
Alates averaged 16.3 ± 0.5 antennal segments, whereas dealates averaged 11.4 ± 0.6 (all 
averaged across species; Fig. 1).

In the GLM analysis, significant differences were found between species (nest-
ed within families) (F12,379 = 8.151; p < 0.001), termite families (F3,379 = 25.586; p 
< 0.001), and wing status (F1,379 = 164.940; p < 0.001), but no significant differ-
ences between the sexes (F1, 379 = 0.133; p = 0.715) (Table 2). The GLM analysis ex-
plained three quarters of the variation (r2 = 0.757). The mean differences in antennal 
length and Tukey-corrected posthoc pairwise comparisons between species are list-
ed in Table 3. The general pattern is Ceratokalotermes spoliator, Kalotermes convexus, 
Glyptotermes brevicornis and Cryptotermes secundus, all in the Kalotermitidae, are dif-
ferent from Schedorhinotermes actuosus, Coptotermes gestroi and Coptotermes lacteus 
in the Rhinotermitidae, and Microcerotermes turneri, Drepanotermes perniger and 
Tumulitermes nastilis in the Termitidae. Differences between species therefore can be 
clustered into differences between families.

This pattern is also seen in the results of the GLM, as the F ratios suggest that the 
effect of family was about three times more important than the effect of species. In 
particular the Rhinotermitidae had longer antennae than the other families. Species 
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in the Termopsidae had 13.3 ± 1.3 antennal segments, those in Kalotermitidae 13.0 ± 
1.2, the Rhinotermitidae 16.7 ± 0.3, and the Termitidae 14.4 ± 0.6. The mean pairwise 
differences in antennal length between families, and the Tukey-corrected posthoc pair-
wise comparisons, were significantly different for Kalotermitidae × Rhinotermitidae 
(mean difference 3.3, p < 0.001), Kalotermitidae × Termitidae (md 2.1, p = 0.002) and 
Rhinotermitidae × Termitidae (md 2.0, p = 0.004); the remaining comparisons were 
not significant (Kalotermitidae × Termopsidae md 1.2, p = 0.098; Rhinotermitidae x 
Termitidae md 1.2, p = 0.239; Termitidae × Termopsidae md 0.8, p = 0.688).

The largest F ratio from the GLM was for wing status, which was about six times 
more important than family, and 20 times more important than species differences in 
determining antennae length. This is clear from the paired t-tests: 14 of the 16 possible 
alate vs. delate comparisons were significant (Table 1, Fig. 1). The two species with-
out a difference in alate and delate antennal length were Microcerotermes turneri and 
Drepanotermes perniger, which both belong to the same branch of the Termitinae in the 
Termitidae, whereas Xylochomitermes occidualis lies in another branch of the Termitinae 
and Tumulitermes nastilis is in the Nasutitermitinae (Inwood et al. 2007, Legendre et 
al. 2008).

Only one interaction was significant: family × wing status (F3,389 = 11.986, p < 
0.001), showing that antennal cropping varies among families. This variation is clear 
in Fig. 2, with alates in Stolotermitidae, Kalotermitidae and Rhinotermitidae all los-
ing five to seven antennal segments after dealation, whereas in Termitidae dealates 
lose perhaps two. Expressed as a percentage, kalotermids cropped on average the most 
antennal segments: Stolotermitidae 32.0%, Kalotermitidae 41.3%, Rhinotermitidae 
28.8% and Termitidae 8.9%. The lack of an effect due to sex either as a main effect, 

Figure 1. Average (± standard error) antenna length measured in number of antennal segments of 17 
termite species for a male and females; and b alates and delates. Species names abbreviated as in Table 3.
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Table 2. The results of the generalised linear model run on antennal length.

Factor Sum-of-Squares df Mean-Square F-ratio p
Species(Family) 499.010 12 41.584 8.151 0.000
Family 391.608 3 130.536 25.586 0.000
Sex 0.679 1 0.679 0.133 0.715
Wing status 841.514 1 841.514 164.940 0.000
Family × Sex 16.775 3 5.592 1.096 0.351

Family × Wing status 183.450 3 61.150 11.986 0.000

Sex × Wing status 0.140 1 0.140 0.027 0.868

Family × Sex × Wing status 4.612 3 1.537 0.301 0.824
Error 1933.631 379 5.102

or in the interaction terms (Table 2) is clear from Figs. 1 and 2, with mostly small and 
inconsistent differences between males and females.

Additional comparisons for Coptotermes gestroi

The mean antennal length for Coptotermes gestroi alates from the tree stump (i.e., prior 
to swarming) was 20.7 ± 0.7 for males and 19.8 ± 1.1 for females, and from the swarm 
it was 19.2 ± 0.9 for males and 21.0 ± 0.6 for females. There were no significant differ-
ences found either for alate source (F1,76 = 0.032; p = 0.858) or sex (F1,76 = 0.228; p = 
0.635), and the interaction was not significant (F1, 76 = 2.594; p = 0.111).

The mean antennal length for Coptotermes gestroi dealates at nine months after 
colony initiation was 12.2 ± 0.6 for males and 13.6 ± 0.3 for females, and from 2 years 
after colony initiation it was 12.6 ± 0.3 for males and 13.3 ± 0.3 for females. There 
were no significant differences found for age (F1,76 = 0.035; p = 0.853) but there was a 
significant difference for sex (F1,76 = 7.122; p = 0.009), as females had longer antennae 
than males, albeit only one segment longer; the interaction was not significant (F1, 76 
= 0.651; p = 0.422), indicating that the difference between the sexes did not change 
over time.

Discussion

Our data suggest that antennal cropping is a phylogenetically widespread, fairly precise 
behavior. There was a significant decrease in the number of antennal segments in dealates 
when compared to alates in termites from all families except two species of Termitidae. 
No more than half of the antenna was trimmed in any case, although our data may 
slightly underestimate differences since we used the longer of the two antennae in our 
analysis. There is some variation in both the number of segments in the right and left 
antennae of individuals (Costa-Leonardo and Soares 1997, Costa-Leonardo and Barsotti 
1998), and among individuals within a species (Prestage et al. 1963). Our analysis sup-
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ports Costa-Leonardo and Barsotti’s (1998) conclusion that antennal cropping occurs 
only during the early stages of colony formation in termites, and Hewitt et al.’s (1972) 
suggestion that it is a controlled process. We propose that antennal cropping is part 
of the normal behavioral repertoire during colony foundation in lower termites and at 
least some of the Termitidae. As such, terms such as amputation, mutilation and can-
nibalism should be avoided. We acknowledge that interactions between reproductives in 
polygynous colonies (a derived condition) may influence the extent of antennal cropping 
(Thorne 1984, Brandl et al. 2001), and that ageing, accidents, laboratory conditions, or 
aggression in other contexts may result in the wounding of antennae, legs, mouthparts, 
and wing pads (e.g., Williams 1959, Darlington 1988, Zimmerman 1983).

The sole description of the behavioral process leading to the loss of antennal seg-
ments is by Heath (1903) in Zootermopsis; this author indicates that the condition results 
from both self-cropping (autotilly) and from a reciprocal interaction between the sexes. 
He describes individuals that repeatedly bit off small portions of their own antennae, 
as well as members of a pair taking turns biting off the antennal tips of their partner. In 
the latter case, the antennae assumed a more or less ‘stump-like condition’ within a few 
hours. Heath (1903) could fathom no possible functional significance of the behavior, 
since it ‘in no visible way affects their existence’. Later, Nel (1968), Hewitt et al (1972), 
and Watson et al. (1972) studied Hodotermes mossambicus and concluded that antennal 
cropping was a key element in the complex transition from the preflight group behavior 
exhibited by alates within a parent colony, to the paired behavior shown by post-flight 
dealates during colony initiation. The suite of coordinated behavioral changes in paired 
H. mossambicus include mating, oviposition and building behavior, aggression to in-
truders, and markedly increased levels of water consumption (Watson et al. 1972).

Figure 2. Average (± standard error) antenna length measured in number of antennal segments of four 
termite families for a male and females; and b alates and delates. Abbreviations: Stolo = Stolotermitidae; 
Kalo = Kalotermitidae, Rhino = Rhinotermitidae; Term = Termitidae.
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Table 4. The dual nature of antennal cropping: both partners are affected regardless of whether an indi-
vidual crops its own or its partner’s antennae.

Crop self Crop partner
Effect on self Decreases self ability to detect 

environmental stimuli
Decreases tactile
stimulation of self

Effect on partner Decreases tactile
stimulation of partner

Decreases partner’s ability to detect 
environmental stimuli

Antennal cropping was proposed to play a key role in the transition to pair be-
havior by decreasing the amount of physical contact perceived by the male and female 
(Hewitt and Nel 1969, Hewitt et al. 1972). The logic was that if an individual’s partner 
had stumpy antennae, then that individual would experience physical contact roughly 
equivalent to that of a solitary insect. Although Hewitt et al. (1972) demonstrated 
that it was the receipt of antennal stimulation on the body that was pivotal in the 
behavioral transitions of H. mossambicus, antennae are important in both transmitting 
and receiving information (Fraser and Nelson 1984). The loss of terminal antennal 
segments, then, likely results in a significant reduction in sensory input to the nervous 
sytem, the nature and extent of which would depend on the distribution and type of 
antennal receptors. Antennal sensillae in termites have been studied primarily in work-
ers and soldiers, but in those developmental stages antennal sensillae of most types, 
including mechanoreceptors and chemoreceptors, increase in number or in length in 
the more distal segments (Prestage et al. 1963, Tarumingkeng et al. 1976, Yanagawa et 
al. 2009). If the same is true in alates, then the removal of the distal segments has po-
tential to significantly reduce nervous input, with the loss of these signals affecting the 
endocrine system and, in turn, gene expression patterns (Gilbert 2005). Sensillae on 
the distal antennae of alates may be associated primarily with flight, mate finding, and 
mate evaluation, activities that occur only within the time frame prior to colony estab-
lishment. If so, these sensillae may be superfluous, and antennal cropping considered 
analogous to the shedding of wings: both behaviors remove a body part that no longer 
has functional significance. A detailed comparison of the sensillae in the proximal vs. 
distal halves of the antenna of alates would be of interest, because the proximal half 
of the antenna is required for successful colony foundation (Hewitt et al. 1972), and 
Richard (1969) noted that antennal cropping never reaches the level of the pedicel and 
its associated chordotonal organs.

The dual nature of the antenna as both transmitter and receiver dictates that re-
gardless of whether a paired individual crops its own or its partner’s antenna, both 
members of the pair are likely to be affected (Table 4). In its role as receiver, anten-
nal cropping would decrease an individual’s ability to detect environmental stimuli, 
including pheromones. In its role as transmitter, shorter antennae result in decreased 
tactile stimulation of the partner.

Antennal cropping has been recorded in several cockroach taxa, but its functional 
significance is unknown. Nymphs of Blattella germanica self-prune their antennae – 
the ends are nipped off just prior to molting (Campbell and Ross 1979). Although 
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first and second instars of Cryptocercus punctulatus almost always have intact antennae, 
cropped antennae can be found in third instars and are common in fourth instars (Na-
lepa 1990). Nymphs and adults of the myrmecophiles Attaphila fungicola and A. bergi 
usually have cropped antennae (Bolívar 1901, Brossut 1976); Wheeler (1900) was of 
the opinion that the host ants trimmed them for their guests, likening it to the human 
habit of cropping the ears and tails of dogs.

Conclusion

Antennal cropping should be considered a key factor when studying changes in be-
havior and physiology during termite colony foundation, as density dependent effects 
result at least in part from sensory input mediated by the antennae in both crickets and 
locusts (Saeki 1966, Mordue 1977, Applebaum and Heifetz 1999). The role of anten-
nal cropping, however, may vary with species or family, and interact with a number 
of additional stimuli in instigating the abrupt change from group to paired behavior. 
These stimuli may include exposure to the outside environment, wing use, wing loss 
(dealation), tandem behavior, and digging behavior. Regardless of the influence of 
these stimuli in shifting imagoes from group to paired behavior during colony ini-
tiation, however, the royal pair eventually re-acclimates to group living as their own 
offspring increase in number.
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