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Abstract
The Yangtze River basin is one of the most species-rich regions for freshwater mussels on Earth, but 
is gravely threatened by anthropogenic activities. However, conservation planning and management 
of mussel species has been hindered by a number of taxonomic uncertainties. In order to clarify 
the taxonomic status and phylogenetic position of these species, mitochondrial genomes of four 
species (Acuticosta chinensis, Schistodesmus lampreyanus, Cuneopsis heudei and Cuneopsis capitatus) were 
generated and analyzed along with data from 43 other mitogenomes. The complete F-type mitog-
enomes of A. chinensis, S. lampreyanus, C. heudei, and C. capitatus are 15652 bp, 15855 bp, 15892 bp, and 
15844 bp, respectively, and all four F-type mitogenomes have the same pattern of gene arrangement. ML 
and BI trees based on the mitogenome dataset are completely congruent, and indicate that the included 
Unionidae belong to three subfamilies with high bootstrap and posterior probabilities, i.e., Unioninae 
(Aculamprotula, Cuneopsis, Nodularia, and Schistodesmus), Anodontinae (Cristaria, Arconaia, Acuticosta, 
Lanceolaria, Anemina, and Sinoanodonta), and Gonideinae (Ptychorhynchus, Solenaia, Lamprotula, and 
Sinohyriopsis). Results also indicate that A. chinensis has affinities with Arconaia lanceolata and Lanceolaria 
grayii and is a member of the subfamily Anodontinae.
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Introduction

The freshwater mussel family Unionidae is the most species-rich family within the 
order Unionida, including more than 620 species representing 142 genera (Graf and 
Cummings 2007; Bogan 2008). The Unionidae is widely distributed, and its members 
are found on all continents, with the exception for Antarctica (Graf and Cummings 
2007; Bogan 2008; Lopes-Lima et al. 2017a). Unfortunately, freshwater mussels are 
one of the most threatened animal groups in the world, due to habitat destruction, 
commercial exploitation, and water pollution (Lydeard et al. 2004; Vaughn et al. 2010; 
Lopes-Lima et al. 2014; Wu et al. 2017a).

Well-supported phylogenetic hypotheses for the Unionidae are crucial for under-
standing the evolutionary history and biogeography of its genera (e.g., Roe 2013; Graf 
et al. 2015), for formulating reliable classifications (e.g., Campbell et al. 2005), and 
for developing conservation priorities (Lopes-Lima et al. 2017b, 2018). Advances in 
developing improved phylogenetic hypotheses for the Unionidae have occurred in the 
past several decades (Davis 1984; Lydeard et al. 1996; Nagel and Badino 2001; Hoeh 
et al. 2001, 2002; Giribet and Wheeler 2002; Graf 2002; Campbell et al. 2005; Zan-
atta and Murphy 2006; Graf and Cummings 2007; Campbell and Lydeard 2012a, b; 
Froufe et al. 2014; Prié and Puillandre 2014; Graf et al. 2015; Pfeiffer and Graf 2015). 
Most of these studies have focused on North American, Australian, and European 
taxa, although more recently, African (Whelan et al. 2011; Graf 2013; Elderkin et al. 
2016) and Asian (Huang et al. 2002; Zhou et al. 2007; Huang et al. 2013; Bolotov et 
al. 2017a, b) taxa have been included, and a global phylogenetic framework of the Un-
ionidae has recently been established (Bolotov et al. 2017a; Lopes-Lima et al. 2017a). 
Despite these advances, the incorporation of Asian taxa into unionid phylogenetic 
hypotheses, particularly those from China has lagged.

The middle and lower reaches of the Yangtze River are a diversity hotspot for un-
ionids in East Asia (Graf and Cummings 2007; He and Zhuang 2013; Zieritz et al. 
2017), and this region may harbor as many as 15 unionid genera (Wu et al. 2000; Shu 
et al. 2009; Wu et al. 2017a). As with North American freshwater mussels, much of 
the early descriptive work on Chinese taxa occurred during the latter part of the 19th 
Century (Heude 1875, 1877a, b, 1878, 1879, 1880a, b, 1881, 1883, 1885). Pierre 
Marie Heude was a Jesuit priest who collected freshwater and terrestrial mollusks in 
China. During a ten-year period between 1882 and 1902, Heude described close to 
600 species including 140 freshwater mussel species (Johnson 1973). However, the va-
lidity and classification of many of these species were called in to question by Simpson 
(1900, 1914) and Haas (1969). Simpson (1900, 1914) presented a modified classifica-
tion based on anatomical information such as marsupium size and shape, larval type 
and umbo sculpture in addition to conchological characters. Simpson condensed the 
number of Chinese freshwater mussels down to 85 species in 14 genera and placed 
them into two subfamilies, the Unioninae and the Hyriinae. Haas (1969) further re-
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vised the classification of the Unionidae and reduced the number of Chinese unionids 
to 56 species and subspecies in 20 genera, and placed them into four subfamilies: 
Unioninae, Quadrulinae, Anodontinae and Lampsilinae. After 1949, Chinese mala-
cologists (e.g., Lin 1962; Tchang et al. 1965a, b; Liu et al. 1964, 1979, 1980, 1982; 
Wu et al. 2000) conducted a substantial amount of work on the classification of the 
Unionidae, and placed Chinese species into either the Unioninae or Anodontinae, 
based on the presence or absence of hinge teeth. In the 1990s, malacologists began to 
refocus their attention on the soft anatomy and changes to the classification, based on 
the shape of the glochidia and type of marsupium were made (Wei and Fu 1994; Wu 
et al.1999a, b; Shu et al. 2012). Despite these advances, the higher-level taxonomy of 
Chinese unionids was not updated, and only the subfamilies Unioninae and Anodon-
tinae remained in the revised system.

At the beginning of this century, Chinese researchers investigated the molecular 
systematics of the Unionidae and made great progress revising the earlier classifications 
(Huang et al. 2002; Wang et al. 2013; Ouyang et al. 2011, 2015; Huang et al. 2013, 2015, 
2018; Song et al. 2016; Zhou et al. 2007, 2016a, b; Wu et al. 2016, 2017b). However, 
there continued to be many discrepancies regarding the classification of genera (Table 1). 
Most recently, Lopes-Lima et al. (2017a) constructed a phylogenetic framework for the 
worldwide Unionidae; however, it only contained 17 Chinese freshwater mussel species. 
Wu et al. (2018b) generated a phylogeny based on portions of the mitochondrial COI and 
ND1genes that included 34 Chinese unionids. While the resultant trees from these studies 
resolved a number of relationships, branch support values at certain nodes were low, and 
the placements of some genera (Sinohyriopsis and Lepidodesma) were not clarified.

The purpose of this study was to clarify the taxonomic status and phylogenetic 
position of Chinese Unionidae using the DNA sequences of mitochondrial genomes 
to infer phylogenetic relationships. Phylogenetic hypotheses based on the analysis of 
mitochondrial genomes of unionids are becoming more common (Walker et al. 2006; 
Huang et al. 2013, 2018; Burzyński et al. 2017). In the Unionoida, Mytiloida, and 
Veneroida, an unusual mode of mitochondrial DNA transmission termed Doubly Uni-
parental Inheritance (DUI) occurs, in which two distinct, tissue-specific and gender-as-
sociated mitogenomes (i.e., F-type and M-type) (Breton et al. 2007) are present. For the 
remainder of this paper, all references to mitogenomes refer to the F-type mitogenome.

In this study, we sequenced and described the complete mitogenomes of four 
Chinese unionids: Acuticosta chinensis (Lea, 1868), Schistodesmus lampreyanus (Baird 
& Adams, 1867), Cuneopsis heudei (Heude, 1874), and Cuneopsis capitatus (Heude, 
1874), with the aim of combining these new genome sequences with existing mito-
chondrial genomes to develop a phylogenetic framework for the Chinese Unionidae. 
In addition, we were particularly interested in determining the taxonomic position of 
the genus Acuticosta. This genus was erected by Simpson (1900) and Acuticosta chin-
ensis (Lea, 1868) was used as the type species. The genus Acuticosta has been placed in 
a number of unionid subfamilies including the Hyriinae (Simpson, 1900), Unioninae 
(Liu 1979), Acuticostinae (Prozorova et al. 2005), and Unioninae (Huang et al. 2002, 
Graf and Cummings 2007, Zhou et al. 2007, Ouyang et al. 2011, 2015), and most 
recently, the Anodontinae (Wu et al. 2018b).
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Table 1. Chinese freshwater mussels (Unionidae) systematic taxonomy history. Shaded genera indicate 
classification disputes.

Genus Liu et al. 
1979

Huang et al. 
2002

Zhou et al. 
2007

Ouyang 
et al. 2011

Huang et al. 
2013

Ouyang 
et al. 2015

Wu et al. 
2018b

This study

Aculamprotula 
Wu et al., 1999 

– – Unioninae Unioninae Unioninae Unioninae Unioninae Unioninae

Sinanodonta 
Modell, 1944

Anodontinae Anodontinae Anodontinae Anodontinae – Anodontinae Anodontinae Anodontinae

Cristaria 
Schumacher, 1817 

Anodontinae Anodontinae Anodontinae – Anodontinae Anodontinae Anodontinae

Cuneopsis 
Simpson, 1900 

Unioninae Unioninae Unioninae Unioninae – Unioninae Unioninae Unioninae

Schistodesmus 
Simpson, 1900

Unioninae Unioninae Unioninae Unioninae – Unioninae Unioninae Unioninae

Nodularia 
Conrad, 1853

Unioninae Unioninae Unioninae Unioninae – Unioninae Unioninae Unioninae

Anemina Haas, 1969 Anodontinae Anodontinae – Anodontinae – Anodontinae Anodontinae Anodontinae
Acuticosta 
Simpson, 1900

Unioninae Unioninae Unioninae Unioninae – Unioninae Anodontinae Anodontinae

Arconaia 
Conrad, 1865

Unioninae Unioninae Unioninae – – – Anodontinae Anodontinae

Lamprotula 
Simpson, 1900

Unioninae Ambleminae Ambleminae Ambleminae – Ambleminae Gonideinae Gonideinae

Lanceolaria 
Conrad, 1853

Unioninae Unioninae Unioninae Unioninae – Unioninae Anodontinae Anodontinae

Lepidodesma 
Simpson, 1896 

Anodontinae Unioninae – – – – Incertae 
sedis

Incertae 
sedis

Ptychorhynchus 
Simpson, 1900

– Ambleminae – – – – Gonideinae Gonideinae

Solenaia Conrad, 1869 Anodontinae Ambleminae – Ambleminae Gonideinae Ambleminae Gonideinae Gonideinae
Sinohyriopsis 
Starobogatov, 1970

Unioninae Ambleminae Ambleminae Ambleminae – Ambleminae Incertae 
sedis

Gonideinae

Materials and methods

Taxon sampling, mitochondrial genome sequencing, and assembly

Samples of four species were collected from Poyang Lake (28°47.84'N; 116°2.03'E) 
in Jiangxi Province, China (Figure 1), and specimens were preserved and vouchers 
deposited in the Biological Museum of Nanchang University. Information for primers 
used for PCR amplification of F-type mitogenomes can be found in Table 2. Com-
plete mitogenomes were sequenced and annotated according to our previous study 
(Wu et al. 2016).

Dataset construction

We downloaded all published unionid mitogenomes from GenBank (as of March 
2018), and combined them with the four mitogenomes generated in this study for a to-
tal of 41 unionid mitogenomes (22 Chinese taxa). In addition, we included additional 
genomes, also downloaded from GenBank, from the Margaritiferidae (four species), 
Iridinidae (one species), and Hyriidae (one species) as out-groups for the phylogenetic 
analysis (Table 3).
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Figure 1. Shells of the unionids species in this study. A Acuticosta chinensis (Lea, 1868) B Schistodesmus 
lampreyanus (Baird & Adams, 1867) C Cuneopsis heudei (Heude, 1874) D Cuneopsis capitatus (Heude, 
1874). Scale bar: 4 cm. Photogaphs R-W Wu.

Alignments, partitioning strategies, and phylogenetic analyses

Nucleotide sequences of 12 mitochondrial protein-coding genes (we excluded atp8) 
and 2 rRNA genes were concatenated for construction of the phylogenetic trees. Nu-
cleotide sequences of protein coding genes (PCG) were translated to amino acid se-
quences using MEGA 5.0 (Tamura et al. 2011), and genes were aligned based on the 
amino acid sequence (PNGs), or nucleotide sequence (rRNA) using the MUSCLE 
program (Edgar 2004) with default settings. Alignments of sequences were manually 
checked and areas of ambiguous alignment were excluded. Finally, 12 PCGs and the 
2 rRNA genes were concatenated (11862 bp) using SequenceMatrix (Vaidya et al. 
2011). The dataset was then partitioned according to codon position of each PCG and 
each rRNA gene for phylogenetic analysis. Prior to phylogenetic analysis, a partition 
homogeneity test was carried out in PAUP* version 4.0b10 (Swofford 2003) to deter-
mine rate heterogeneity among genes and codon positions. The partition homogeneity 
test indicated there was no significant difference in signals (P > 0.05).

PartitionFinder v1.1.1 (Lanfear et al. 2012) was used to select optimal substitu-
tion models for the 2 rRNA genes and each codon position of the 12 PCG. Bayesian 
analyses were undertaken in MrBayes Version 2.01 (Ronquist et al. 2012), four chains 
were run simultaneously for 1 million generations, and trees were sampled every 1000 
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Table 2. Primers used for PCR amplification of female Acuticosta chinensis, Schistodesmus lampreyanus, 
Cuneopsis heudei, and Cuneopsis capitatus mitochondrial genomes.

Fragment Primer name Primer sequence (5’ to 3’) Length
COI (universal primer) LCO1490 GGTCAACAAATCATAAAGATATTGG ~700 bp

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA
16S (universal primer) 16SarL CGCCTGTTTATCAAAAACAT ~500 bp

16SbrH CCGGTCTGAACTCAGATCACGT
ND1 (universal primer) Leu-uurF TGGCAGAAAAGTGCATCAGATTAAAGC ~1000 bp

LoGlyR CCTGCTTGGAAGGCAAGTGTACT
COI→ND1 (A. chinensis) ZGCNH TTGGGACTGGCTGGAC ~500 bp

ZGCNR TTACTAGGAGCTATTCGAGC
2ZGCNH GAGTCTTGGGGTTTATTGT ~1400 bp
2ZGCNR AGTAGAAAGACCAAAACCG
3ZGCNH CAGTTCGGTGTTATCTTCAT ~3400 bp
3ZGCNR TGGCTAGTAGTGATTCTTGC

ND1→16S (A. chinensis) ZGN1H CGAAGCCTGACAATGTCTA ~4500bp
ZGN1R TATCGAAAGTTGGGTTTGC

16S→COI (A. chinensis) ZG1CH CTAGTGTTGCCTTTCACTG ~5200 bp
ZG1CR AGACAAGGGAGGATAAACC

COI→ND1 (S. lampreyanus) SXCNH CTGGTTGGACGGTGTATC ~3200 bp
SXCNR ATAGCCATCCCAGTAGCC

2SXCNH GTTATACTCTTCCGATCATCCT ~2100 bp
2SXCNR AACCAGCACAGAACTCAATA

ND1→16S (S. lampreyanus) SXN1H GAGATGGTTTGAGCTATGG ~4500 bp
SXN1R CGATGTTGGCTTAAGGATA

16S→COI (S. lampreyanus) SX1CH TTCCTAGTCTTGCCATTCA ~3600 bp
SX1CR GCAGGCACAAGTAATCAAA

COI→ND1 (C. heudei ) YTCNH TCTGGTGATGCCAATAATGA ~6200 bp
YTCNR TCCCCTCCTTTATAGTTTCA

ND1→16S (C. heudei) YTN1H TGTCTCTGCGAGGATTACT ~1300 bp
YTN1R ACATAAGTGCAACCGCTAT

2YTN1H TTCTGCCACCTTGCTTCA ~3300 bp
2YTN1R GGCTGACTCATACGAACCAT

16S→COI (C. heudei) YT1CH TTACTGGTTCCAAGATTGC ~5600 bp
YT1CR AATCAAACCAGGAGATCGT

COI→ND1 (C. capitatus) JSCNH GTTGCTGAGCGTATTCCTT ~5300 bp
JSCNR CTTTGACTTTGCAGAGGGA

ND1→16S (C. capitatus) JSN1H GTATTTGGAGTTGGATGATC ~4700 bp
JSN1R GAATGGCAAGACTAGGAATA

16S→COI (C. capitatus) JS1CH TATTCCTAGTCTTGCCATTC ~5000 bp
JS1CR CAATAATCTTCCAGGTTGAC

generations, with a burn-in of 25%. Stationarity was considered to be reached when 
the average standard deviation of split frequencies was less than 0.01.

The gene and codon site-based partitioned ML analysis was performed in RAxML 
implemented in raxmlGUI v.1.3 (Stamatakis 2014), using the GTRGAMMAI mod-
el of nucleotide substitution with the search strategy set for rapid bootstrapping. 
ModelFinder (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017) implemented 
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Table 3. F-type mitochondrial genomes used in this study.

Taxon GenBank accession number Reference
UNIONIDAE
Ambleminae
Quadrula quadrula (Rafinesque, 1820) FJ809750 Breton et al. 2009
Venustaconcha ellipsiformis (Conrad, 1836) FJ809753 Breton et al. 2009
Potamilus alatus (Say, 1817) KU559011 Wen et al. 2017
Leptodea leptodon (Rafinesque, 1820) NC_028522 Feng et al. 2016
Toxolasma parvum (Barnes, 1823) HM856639 Breton et al. 2011
Lampsilis ornata (Conrad, 1835) NC_005335 Serb and Lydeard 2003
Gonideinae
Pronodularia japanensis (Lea, 1859) AB055625 Unpublished
Lamprotula leaii (Griffith & Pidgeon, 1833) NC_023346 Chen et al. 2012
Ptychorhynchus pfisteri (Heude, 1874) KY067440 Zhou et al. 2016a
Potomida littoralis (Cuvier, 1798) NC_030073 Froufe et al. 2016
Solenaia oleivora (Heude, 1877) NC_022701 Huang et al. 2015
Solenaia carinatus(Heude, 1877) NC_023250 Huang et al. 2013
Sinohyriopsis schlegelii (Martens, 1861) HQ641406 Unpublished
Sinohyriopsis cumingii (Lea, 1852) NC_011763 Unpublished
Anodontinae
Acuticosta chinensis (Lea, 1868) MH919390 This study
Arconaia lanceolata (Lea, 1856) KJ144818 Wang et al. 2014
Lanceolaria grayana (Lea, 1834) NC_026686 Unpublished
Pyganodon grandis (Say, 1829) FJ809754 Breton et al. 2009
Utterbackia peninsularis Bogan & Hoeh, 1995 HM856636 Breton et al. 2011
Utterbackia imbecillis (Say, 1829) HM856637 Breton et al. 2011
Lasmigona compressa (Lea, 1829) NC_015481 Breton et al. 2011
Anodonta anatina (Linnaeus, 1758) NC_022803 Soroka et al. 2015
Sinanodonta woodiana (Lea, 1834) HQ283346 Soroka et al. 2010
Sinanodonta lucida (Heude, 1877) KF667529 Song et al. 2016
Anemina arcaeformis (Heude, 1877) KF667530 An et al. 2016
Anemina euscaphys (Heude, 1879) NC_026792 Xue et al.2016
Cristaria plicata (Leach, 1814) KM233451 Wang et al. 2016
Unioninae
Lepidodesma languilati (Heude, 1874)* NC_029491 Zhou et al. 2016b
Schistodesmus lampreyanus (Baird & Adams, 1867) MH919388 This study
Cuneopsis pisciculus (Heude, 1874) NC_026306 Han et al. 2016
Cuneopsis heudei (Heude, 1874) MH919389 This study
Cuneopsis capitatus (Heude, 1874) MH919387 This study
Nodularia douglasiae (Griffith & Pidgeon, 1833) NC_026111 Unpublished
Unio delphinus Spengler, 1793 KT326917 Fonseca et al. 2017
Unio pictorum (Linnaeus, 1758) NC_015310 Soroka et al. 2010
Unio crassus Retzius, 1788 KY290446 Burzyński et al. 2017
Unio tumidus Retzius, 1788 KY021076 Soroka et al. 2018
Aculamprotula tortuosa (Lea, 1865) NC_021404 Wang et al. 2013
Aculamprotula scripta (Heude, 1875) MF991456 Wu et al. 2017b
Aculamprotula coreana (Martens, 1886) NC_026035 Lee et al. 2016
Aculamprotula tientsinensis (Crosse & Debeaux, 1863) NC_029210 Wu et al. 2016

http://www.ncbi.nlm.nih.gov/nuccore/FJ809750
http://www.ncbi.nlm.nih.gov/nuccore/FJ809753
http://www.ncbi.nlm.nih.gov/nuccore/KU559011
http://www.ncbi.nlm.nih.gov/nuccore/NC_028522
http://www.ncbi.nlm.nih.gov/nuccore/HM856639
http://www.ncbi.nlm.nih.gov/nuccore/NC_005335
http://www.ncbi.nlm.nih.gov/nuccore/AB055625
http://www.ncbi.nlm.nih.gov/nuccore/NC_023346
http://www.ncbi.nlm.nih.gov/nuccore/KY067440
http://www.ncbi.nlm.nih.gov/nuccore/NC_030073
http://www.ncbi.nlm.nih.gov/nuccore/NC_022701
http://www.ncbi.nlm.nih.gov/nuccore/NC_023250
http://www.ncbi.nlm.nih.gov/nuccore/HQ641406
http://www.ncbi.nlm.nih.gov/nuccore/NC_011763
http://www.ncbi.nlm.nih.gov/nuccore/MH919390
http://www.ncbi.nlm.nih.gov/nuccore/KJ144818
http://www.ncbi.nlm.nih.gov/nuccore/NC_026686
http://www.ncbi.nlm.nih.gov/nuccore/FJ809754
http://www.ncbi.nlm.nih.gov/nuccore/HM856636
http://www.ncbi.nlm.nih.gov/nuccore/HM856637
http://www.ncbi.nlm.nih.gov/nuccore/NC_015481
http://www.ncbi.nlm.nih.gov/nuccore/NC_022803
http://www.ncbi.nlm.nih.gov/nuccore/HQ283346
http://www.ncbi.nlm.nih.gov/nuccore/KF667529
http://www.ncbi.nlm.nih.gov/nuccore/KF667530
http://www.ncbi.nlm.nih.gov/nuccore/NC_026792
http://www.ncbi.nlm.nih.gov/nuccore/KM233451
http://www.ncbi.nlm.nih.gov/nuccore/NC_029491
http://www.ncbi.nlm.nih.gov/nuccore/MH919388
http://www.ncbi.nlm.nih.gov/nuccore/NC_026306
http://www.ncbi.nlm.nih.gov/nuccore/MH919389
http://www.ncbi.nlm.nih.gov/nuccore/MH919387
http://www.ncbi.nlm.nih.gov/nuccore/NC_026111
http://www.ncbi.nlm.nih.gov/nuccore/KT326917
http://www.ncbi.nlm.nih.gov/nuccore/NC_015310
http://www.ncbi.nlm.nih.gov/nuccore/KY290446
http://www.ncbi.nlm.nih.gov/nuccore/KY021076
http://www.ncbi.nlm.nih.gov/nuccore/NC_021404
http://www.ncbi.nlm.nih.gov/nuccore/MF991456
http://www.ncbi.nlm.nih.gov/nuccore/NC_026035
http://www.ncbi.nlm.nih.gov/nuccore/NC_029210
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Taxon GenBank accession number Reference
MARGARITIFERIDAE
Gibbosula rochechouartii (Heude, 1875) KX378172 Huang et al. 2018
Margaritifera falcata (Gould, 1850) NC_015476 Breton et al. 2011
Cumberlandia monodonta (Say, 1829) NC_034846 Guerra et al. 2017
Margaritifera dahurica (Middendorff, 1850) NC_023942 Yang et al. 2015
HYRIIDAE
Echyridella menziesii(Dieffenbach, 1843) NC_034845 Guerra et al. 2017
IRIDINIDAE
Mutela dubia (Gmelin, 1791) NC_034844 Guerra et al. 2017

(*) indicates this species is incertae sedis

in IQ-TREE was used to choose the appropriate models, which additionally consid-
ers the FreeRate heterogeneity model (+R). IQ-TREE (Nguyen et al. 2015) was also 
used for ML tree reconstruction, and 1000 ultrafast bootstrap replicates were run to 
estimate branch support (Minh et al. 2013). The optimal substitution models for 
each partition by PartitionFinder and ModelFinder are shown in Suppl. material 1: 
Tables S1, S2.

Results

General features of the mitochondrial genomes

The lengths of the complete mitogenomes of Acuticosta chinensis, Schistodesmus lam-
preyanus, Cuneopsis heudei, and Cuneopsis capitatus were 15652bp, 15855bp, 15892bp 
and 15844bp, respectively. The newly sequenced four mitogenomes all contained 
13 protein-coding genes, two rRNA genes, 22 tRNAs, and one female specific gene 
(FORF). All four F-type mitogenomes had the same pattern of gene arrangement. 
Among the 38 mitochondrial genes, 11 genes were encoded on the heavy chain, and 
the remaining 27 genes were encoded on the light chain (Figure 2).

The nucleotide composition of the Acuticosta chinensis, Schistodesmus lampreyanus, 
Cuneopsis heudei and Cuneopsis capitatus had obvious A+T bias (A. chinensis: 65.73%; 
S. lampreyanus: 64.54%; C. heudei: 62.45%; C. capitatus: 63.69%). In the base com-
position analysis for the four species, the A+T skews were negative, and the G+C skew 
were positive, indicating that the bases composition ratios of the four mitogenomes 
were T biased to A, and G biased to C. In invertebrate mitochondria, there are three 
conventional start codons: ATG, ATA and ATT, and three alternative start codons: 
ATC, TTG, and GTG (Wolstenholme 1992). The mitochondrial genomes of A. chin-
ensis and C. capitatus had eleven protein coding genes which used the conventional 
start codons, and the remaining two used alternative start codons. S. lampreyanus and 
C. heudei had 12 PCG which used the common start codons, and one used the alterna-
tive start codon (Table 4).

http://www.ncbi.nlm.nih.gov/nuccore/KX378172
http://www.ncbi.nlm.nih.gov/nuccore/NC_015476
http://www.ncbi.nlm.nih.gov/nuccore/NC_034846
http://www.ncbi.nlm.nih.gov/nuccore/NC_023942
http://www.ncbi.nlm.nih.gov/nuccore/NC_034845
http://www.ncbi.nlm.nih.gov/nuccore/NC_034844
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The overlapping of neighboring genes is common in freshwater mussel mito-
chondria. There were three overlaps of neighboring genes in the mitochondrial ge-
nome of Acuticosta chinensis and Schistodesmus lampreyanus, and two in Cuneop-
sis heudei. The position of the largest gene overlap (8 bp) was between ND4 and 
ND4L. The mitochondrial genome of Cuneopsis capitatus only had one overlapping 
region between tRNAMet and ND2. There were 29 non-coding regions (NCRs) in 
A. chinensis, C. heudei, and C. capitatus, and 27 NCRs in S. lampreyanus. The long-
est NCRs of the A. chinensis, S. lampreyanus, C. heudei, and C. capitatus were 224 
bp, 349 bp, 216 bp, and 323 bp, respectively; all were located between ND5 and 
tRNAGln (Table 4).

Figure 2. The gene arrangement of the F-type mitochondrial genome of Acuticosta chinensis, Schistodes-
mus lampreyanus, Cuneopsis heudei, and Cuneopsis capitatus.
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Table 4. Structural characteristics of F-type mitochondrial genomes of Acuticosta chinensis, Schistodesmus 
lampreyanus, Cuneopsis heudei, and Cuneopsis capitatus. For each protein coding genes, start and stop co-
dons and anticodons are presented in parentheses. Gene lengths are in bp.

A. chinensis S. lampreyanus C. heudei C. capitatus 
Total size (bp) 15652 15855 15892 15844
AT% 65.73 64.54 62.45 63.69
CG% 34.27 35.46 37.55 36.31
AT skew -0.18 -0.19 -0.21 -0.18
GC skew 0.28 0.33 0.33 0.32
No. of NCR 29 27 29 29
No. of overlapping genes 3 3 2 1
Size range of gene overlap 1 to 8 1 to 8 1 to 8 1
cox1 1539 (TTG/TAG) 1578 (ATA/TAG) 1566 (TTG/TAA) 1542 (TTG/TAG)
tRNA-Asp (D) 63 (GTC) 64 (GTC) 64 (GTC) 64 (GTC)
cox3 780 (ATG/TAA) 780 (ATG/TAA) 780 (ATG/TAA) 780 (ATG/TAG)
atp6 702 (ATG/TAA) 702 (ATG/TAG) 702 (ATG/TAG) 702 (ATG/TAG)
atp8 189 (ATG/TAA) 192 (ATG/TAA) 192 (ATG/TAG) 192 (ATG/TAG)
nd4L 297 (GTG/TAG) 279 (ATG/TAA) 255 (ATG/TAG) 255 (ATG/TAG)
nd4 1347 (ATT/TAA) 1347 (ATT/TAA) 1347 (ATT/TAA) 1329 (ATA/TAA)
nd6 489 (ATT/TAG) 486 (ATC/TAA) 507 (ATA/TAA) 507 (ATA/TAA)
tRNA-Gly (G) 62 (TCC) 63 (TCC) 63 (TCC)) 63 (TCC))
nd1 900 (ATA/TAA) 900 (ATA/TAG) 900 (ATA/TAG) 900 (ATA/TAA)
tRNA-Leu (L2) 64 (TAA) 64 (TAA) 63(TAA) 64 (TAA)
tRNA-Val (V) 64 (TAC) 63 (TAC) 63 (TAC) 64 (TAC)
tRNA-Ile (I) 64 (GAT) 67 (GAT) 64 (GAT) 64 (GAT)
tRNA-Cys (C) 64 (GCA) 62 (GCA) 64 (GCA) 61 (GCA)
tRNA-Gln (Q) 69 (TTG) 70 (TTG) 69 (TTG) 69 (TTG)
nd5 1728 (ATA/TAA) 1713 (ATA/TAA) 1794 (ATA/TAA) 1734 (ATG/TAA)
tRNA-Phe (F) 66 (GAA) 65 (GAA) 65 (GAA) 64 (GAA)
Cob 1137 (ATA/TAA) 1146 (ATT/TAA) 1149 (ATA/TAA) 1020 (ATC/TAA)
tRNA-Pro (P) 64 (TGG) 66 (TGG) 64 (TGG) 64 (TGG)
tRNA-Asn (N) 65 (GTT) 66 (GTT) 68 (GTT) 65 (GTT)
tRNA-Leu (L1) 66 (TAG) 64 (TAG) 63 (TAG) 64 (TAG)
rrnL 1285 1304 1302 1297
tRNA-Tyr (Y) 60 (GTA) 61 (GTA) 63 (GTA) 63 (GTA)
tRNA-Thr (T) 61 (TGT) 66 (TGT) 64 (TGT) 63 (TGT)
tRNA-Lys (K) 68 (TTT) 70 (TTT) 70 (TTT) 70 (TTT)
rrnS 853 857 859 853
tRNA-Arg (R) 66 (TCG) 67 (TCG) 65 (TCG) 65 (TCG)
tRNA-Trp (W) 65 (TCA) 64(TCA) 63 (TCA) 62 (TCA)
tRNA-Met (M) 65 (CAT) 65 (CAT) 65 (CAT) 65 (CAT)
nd2 966 (ATG/TAA) 966 (ATG/TAA) 966 (ATG/TAA) 966 (ATG/TAA)
tRNA-Glu (E) 63 (TTC) 72 (TTC) 68 (TTC) 68 (TTC)
tRNA-Ser (S2) 68 (AGA) 73 (AGA) 68 (TCT) 68 (TCT)
tRNA-Ser (S1) 64 (TGA) 64 (TGA) 64 (CGA) 64 (CGA)
tRNA-Ala (A) 67 (TGC) 65 (TGC) 66 (TGC) 64 (TGC)
tRNA-His (H) 65 (GTG) 69 (GTG) 69 (GTG) 67 (GTG)
nd3 357 (ATG/TAG) 357 (ATG/TAG) 357 (ATG/TAA) 357 (ATG/TAG)
cox2 681 (ATG/TAA) 681 (ATG/TAG) 681 (ATG/TAA) 681 (ATG/TAG)
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All four mitochondria contained 22 tRNAs, including two serine tRNAs and two 
leucine tRNAs. The histidine tRNA and aspartate tRNA were located in the heavy 
chain, whereas the remaining 20 tRNAs were encoded by the light chain. The length 
of tRNAs differed slightly in each species (Table 4). The tRNA anticodons were the 
same in all species with the exception of two serine tRNAs. The anticodons of the two 
serines tRNAs of A. chinensis and S. lampreyanus were AGA and TGA, while those of 
C. heudei and C. capitatus were TCT and CGA (Table 4).

Phylogenetic analyses

ML and BI trees have completely congruent topologies and in general are well support-
ed by high bootstrap and posterior probability values at almost all nodes (Figure 3). 
The mitogenomic dataset supports the monophyly of four Unionidae subfamilies (i.e., 
Unioninae, Anodontinae, Ambleminae, and Gonideinae) by both ML and BI meth-
ods. Phylogenetic analyses reveal the following relationships: (((Unioninae + Anodon-
tinae) + Gonideinae) + Ambleminae) within the Unionidae.

Our phylogenetic analyses indicate that except for Lepidodesma languilati (Heude, 
1874), the 21 Chinese species belong to the following three subfamilies: Unioninae 
(Aculamprotula, Cuneopsis, Nodularia and Schistodesmus), Anodontinae (Cristaria, Ar-
conaia, Acuticosta, Lanceolaria, Anemina and Sinoanodonta), and Gonideinae (Ptycho-
rhynchus, Solenaia, Lamprotula, Sinohyriopsis). Our results support the placement of 
Acuticosta chinensis in the Anodontinae, but Leidodesma languilati is not placed as a 
member of any subfamily, but instead is the well-supported sister taxon to the mono-
phyletic group formed by the Unioninae and Anodontinae.

Figure 3. Phylogenetic trees of freshwater mussels obtained by Bayesian Inference (BI) and Maximum 
Likelihood (ML) analyses of 12 mitochondrial protein-coding gene sequences (except atp8) and two rRNA 
combined dataset. Support values above the branches are posterior probabilities and bootstrap support. (*) 
indicates 100 percent bootstrap support and posterior probabilities. Red font indicates Chinese species.
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Discussion

Phylogenetic relationships of subfamilies in the Unionidae

In this study, we provide a novel phylogenetic hypothesis for relationships between 
subfamilies in the Unionidae (Figure 4). Other phylogenetic analyses of the Un-
ionidae have been based on selected gene regions. For example, Lopes-Lima et al. 
(2017a) proposed the phylogenetic relationship of the subfamily based on COI 
and 28S as follows: (Anodontinae + Unioninae) + (Rectidentinae + (Ambleminae 
+ Gonideninae)). Bolotov et al. (2017a) proposed relationships based on three loci 
(COI, 16S and 28S), and adding more taxa: ((Anodontinae + Unioninae) + (Am-
bleminae + Gonideninae)) + (Rectidentinae + Pseudodontinae). Prior investigations 
into subfamily relationships in the Unionidae, based on complete mitochondrial 
genomes, seem to be consistent with these earlier studies, (Anodontinae + Unioni-
nae) + (Ambleminae + Gonideninae) (Huang et al. 2013; Burzyński et al. 2017; 
Huang et al. 2018; Wu et al. 2016, 2017b). The current study is based on the mito-
chondrial genome sequences for the largest number of unionid species (41). By in-
creasing the number of taxa and the amount of DNA sequences, we obtain a unique 
set of phylogenetic relationships: ((Anodontinae + Unioninae) + Gonideninae) + 
Ambleminae). Our phylogeny differs from other studies based on mitochondrial 
genome sequences in that the Ambleminae is the basal subfamily as opposed to the 
sister Gonideninae.

Bolotov et al. (2017a) proposed that the most recent common ancestor (MRCA) 
of the Anodontinae, Unioninae, Ambleminae, and Gonideninae likely originated in 
East Asia (Probability 65.8%). Under this scenario the MRCA of Anodontinae + Un-
ioninae arose in East Asia during the Cretaceous period, whereas the MRCA of Am-
bleminae + Gonideninae was continuously distributed in East Asia and North Amer-
ica. The ancestor of the Ambleminae was most likely to originate in North America. 
The diversification of each subfamily occurred in the late Cretaceous (Bolotov et al. 
2017a). The results of phylogenetic analyses in the current study have different evo-
lutionary implications. Our results indicate that the Ambleminae is basal to the other 
three subfamilies, and its origin is therefore earlier than the other three subfamilies. 
Globally, eight subfamilies (Anodontinae, Unioninae, Pseudodontinae, Gonideinae, 
Ambleminae, Rectidentinae, Parreysiinae, and Modellnaiinae) are recognized in the 
Unionidae (Bolotov et al. 2017a; Lopes-Lima et al. 2017a; Whelan et al. 2011). The 
lack of mitochondrial genomes for Rectidentinae, Parreysiinae, Modellnaiinae, and 
Pseudodontinae, precluded their incorporation into this study. However, we believe 
that the fully resolved phylogenetic tree, with high branch support in the present study, 
serves as a framework for further studies on the Unionidae, Future phylogenetic analy-
ses based on complete mitochondrial genome sequences of representatives of all the 
subfamilies in the Unionidae will ultimately produce well-supported phylogenetic hy-
potheses for the Unionidae.
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Phylogeny and taxonomy of Chinese taxa

The classification of the Chinese unionid genera has been in a state of flux, different 
studies having placed the same genus in different subfamilies. For example, based on 
the presence or absence of the glochidial hooks and the type of marsupium, Wu et al. 
(1999a) divided the genus Lamproula sensu lato Simpson, 1900 into Lamprotula sensu 
stricto and Aculamprotula Wu, Liang, Wang & Ouyang, 1999. This distinction was 
later confirmed by molecular data (Zhou et al. 2007; Pfeiffer and Graf 2013; Wu et al. 
2018b), but the classification of Lamprotula has also been disputed. Our results do not 
support the taxonomy of Huang et al. (2002), Zhou et al. (2007) and Ouyang et al. 
(2011; 2015) that placed Lamprotula sensu stricto in the Ambleminae. Our phyloge-
netic analyses instead confirm the results of Pfeiffer and Graf (2013), Lopes-Lima et al. 

Figure 4. Hypotheses of phylogenetic relationships among subfamilies of the Unionidae form this and 
other studies. A Lopes-Lima et al. (2017a) B Bolotov et al. (2017a) C Huang et al. 2013; Burzyński et al. 
2017; Huang et al. 2018; Wu et al. 2016, 2017b D This study.
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(2017a), Bolotov et al. (2017a; b) and Wu et al. (2018b) that Lamprotula is a member 
of the Gonideninae. The classification of the genus Sinohyriopsis has also been unstable. 
The shape of the glochidia of Sinohyriopsis cumingii (Lea, 1852) is semi-elliptical and 
unhooked, and resembles the typical morphology of glochidia in the Gonideninae 
(Wu et al. 2018a). But the marsupium of S. cumingii is restricted to the outer two 
demibranchs of the gills (ectobranchous), whereas in other species in the Gonideni-
nae (Lamprotula leaii (Griffith & Pidgeon, 1833) Solenaia carinatus (Heude, 1877) 
and Solenaia oleivora (Heude, 1877)) the marsupium includes all four demibranchs 
(tetragenous) (Wu et al. 2018a). Therefore, based on anatomical features alone, the 
classification of the Sinohyriopsis in the Gonideninae has always been in doubt. Prior 
phylogenetic analyses based on one or two mitochondrial molecular markers (Huang 
et al. 2002; Zhou et al. 2007; Ouyang et al. 2011; 2015) placed Sinohyriopsis in the 
Ambleminae, However, our results indicate that Sinohyriopsis should be placed in the 
Gonideninae, confirming the conclusions of Lopes-Lima et al. (2017a) and Bolotov et 
al. (2017a, b). The placement of Aculamprotula has not been as controversial and our 
results place it in the Unioninae.

The genus Lepidodesma Simpson, 1896 is endemic to China and Lepidodesma 
languilati (Heude, 1874) is the type species. The juvenile of this species is thin and 
fragile, and the adult shell is robust. In addition, adults lack pseudocardinal teeth, but 
possess lateral teeth and the glochidia are triangular and have hooks. The breeding 
period is from February to August, and the type of marsupium is ectobranchous (Wu 
et al. 2018a). These characteristics are similar to species in the subfamily Unioninae 
and Anodontinae. Other characters, such as the size of the glochidia, which is large, 
and the tripartite water tubes (Wu et al. 2018a), indicate an affinity with the subfam-
ily Anodontinae. The classification of Lepidodesma has alternated between these two 
subfamilies with some (Simpson 1900, Huang et al. 2002, Graf and Cummings 2007, 
Zhou et al. 2016) placing it in the Unioninae, and others (Haas 1969, Liu et al. 1979, 
Prozorova et al. 2005) in the Anodontinae. The results of our study indicate a novel 
result in which L. languilati is place in neither of these subfamilies, but is sister to a 
clade that includes both the Unioninae and Anodontinae. The robust branch support 
values indicate that L. languilati is not a member of either subfamily, but is instead 
a member of another, as yet unrecognized clade or perhaps is the remnant of a once 
larger more diverse group. Owing to the lack of available mitochondrial genomes for 
representatives of the Rectidentinae, Parreysiinae, and Pseudodontinae, our study did 
not include these subfamilies, and we recognize that their inclusion could produce a 
different set of relationships.

Due to the emphasis on the morphological characteristics of the shell, malacolo-
gists have consistently supported including both Arconaia and Lanceolaria in the Un-
ioninae (Haas 1969; Liu 1979; Graf and Cummings 2007). The shells of Arconaia 
and Lanceolaria are thick and have distinct hinge teeth, and the morphology of the 
glochidia (triangular; hooked) and type of marsupium (ectobranchous) are similar to 
species of the subfamily Unioninae and Anodontinae (Wu et al. 2018a). The phy-
logenetic relationships inferred by different molecular markers, seem to confirm the 



Analysis of mitochondrial genomes resolves the phylogenetic position... 37

phylogenetic position of these genera in the Unioninae (Huang et al. 2002; Zhou et 
al. 2007; Ouyang et al. 2015). However, the above-mentioned phylogenetic analyses 
included a limited number of taxa, and several key nodes in the phylogeny had low 
branch support. The results of the current study support the placement of Arconaia and 
Lanceolaria in the Anodontinae, confirming the results of Lopes-Lima et al. (2017a) 
and Wu et al. (2018b).

The genus Acuticosta was erected by Simpson and Acuticosta chinensis (Lea, 1868) 
was designated as the type species. Based on the marsupium, anatomy, larvae type and 
umbo sculpture, Simpson (1900) placed this genus in the Hyriinae. Subsequently, Chi-
nese malacologists (Liu et al. 1979) re-classified the genus as a member of the Un-
ioninae based on the presence or absence of hinge teeth. Prozorova et al. (2005) in a 
review of the bivalves in the Yangtze River drainage, placed the genus in Acuticostinae, 
although Graf and Cummings (2007) still maintained Acuticosta in the Unioninae. 
Molecular genetic analyses of a variety of markers by Huang et al. (2002), Zhou et al. 
(2007), and Ouyang et al. (2011; 2015) all indicated that A. chinensis was a member of 
the Unioninae. However, the limited taxon sampling and low branch support values in 
molecular phylogenetic analyses have allowed questions concerning the true affinities 
of Acuticosta to persist (Pfeiffer and Graf 2013; Huang et al. 2013; Lopes-Lima et al. 
2017). Recently, Wu et al. (2018b) indicated that A. chinensis is a member of the Ano-
dontinae based on mitochondrial DNA sequences of two genes. The current analysis of 
mitochondrial genomes provides further support for the placement of Acuticosta in the 
Anodontinae and indicates affinity of Acuticosta to the genera Arconaia and Lanceolaria.

Endangered status and conservation implications

China is a vast territory with a huge number of lakes and rivers. As a result, it is one of 
the most species-rich regions in the world (Zieritiz et al. 2017; Cai et al. 2018). How-
ever, in recent decades, freshwater mussels in China have declined drastically, and spe-
cies diversity has been seriously threatened. At present, 40 species of Chinese unionids 
are included in the 2018 IUCN Red List, although 32 of these are categorized as data 
deficient or least concern. In addition, nearly half of the species included had not been 
evaluated. At present, advancing urbanization in the Yangtze River Basin, increasingly 
threatens the habitat of freshwater mussels, and conservation and management efforts 
targeting freshwater taxa are urgently needed.

Understanding of the phylogenetic diversity of freshwater mussels has important 
significance for determining the priority conservation strategies of species (Lopes-Lima 
et al. 2017b, 2018). This study provides support for the classification of a number of 
Chinese species, and lays the foundation for the future development of a more compre-
hensive phylogenetic based classification for freshwater unionids in China. Accurate 
taxonomic placement of rare and understudied species is central to many aspects of 
conservation as important biological characteristics (e.g., habitat preferences, repro-
ductive traits) can be inferred from closely related taxa. Future research on Chinese 
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unionids should focus on species delimitation and classification. In addition, more 
research is needed on understanding the basic ecology of Chinese mussels including 
species distributions, habitat preferences, and host fish identification.
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